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• We evaluate three scenarios: 
a. Using BCH pre-trained parameters[1] to test 

on CHUV dataset; 
b. Solely training on CHUV data, with random 

initialization; 
c. Fine-tuning the network with the pre-

trained parameters of [1] . 

• Post-processing: 3D continuity of the brain 
to refine the predictions by morphological 
operations such as closing, opening and 
connected components.
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• Fetal brain extraction in MRI: first step for further 
processing (super-resolution reconstruction, tissue 
segmentation, etc.) 

• Manual annotations are cumbersome and time 
consuming, and hence inappropriate to automated 
analysis and large-scale studies. 

• Deep learning is an Artificial Intelligence branch 
that has proven to be very successful in image 
processing, including fetal brain segmentation[1-3].

Our dataset (CHUV)
• 39 subjects
• From 20 to 36 weeks of gestation
• Orthogonal T2-weighted HASTE at 1.5T
• 227 series totalling 4,767 slices
• 1.125 mm in-plane isotropic
• 3 to 5 mm slice thickness
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BACKGROUND 

MATERIALS AND METHODS

Network
• U-Net architecture[4] with ~8 million parameters
• Weighted-cross entropy loss function
• Trained with Adam optimiser for ~200 epochs

CONCLUSION

• Feasibility of using a different scanner/magnetic field strength through 
transfer learning. 

• Hospitals lacking of a large amount of data can benefit from pre-trained 
parameters from other hospitals to boost their models.

Automated brain segmentation of 
a fetus of 26 gestational weeks 
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• Deep learning limitations: 
o Need of a large amount of labeled data 
o Highly specialized models  

• Transfer learning can partially help to overcome 
these caveats. 

• Aim: To evaluate transfer learning for segmenting 
the fetal brain from one dataset (Lausanne 
University Hospital, CHUV) using the pre-trained 
parameters of a larger dataset (Boston Children 
Hospital’s, BCH [1]).

BCH dataset
• 41 subjects
• From 22 to 38 weeks of gestation
• Orthogonal T2-weighted SSFSE at 3T
• 385 series totalling ~13,000 slices
• 1 to 1.125 mm in-plane isotropic
• 2 to 3 mm slice thickness

• Directly applying the pre-trained weights      from [1] to our dataset 
generated non plausible segmentations. 

• The pre-trained network     significantly outperforms the randomly 
initialized      network in both healthy and pathological subjects 
(Wilcoxon test, p<0.05). 

• Remaining errors: 1) at extremities of the brain, 2) slices containing 
the temporal lobe. 

• The 3D topology correction did help qualitatively but not 
quantitatively.
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• 2D convolutional neural network U-Net[4].

RESULTS 
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• Model evaluation in a leave-four-out cross-
validation using an average of precision and recall
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