
proteins:Membrane (59%), Spike (26%), and
Nucleocapsid (22%), differs from that iden-
tified by Grifoni et al,7 who found Spike-
specific T cells in all of the convalescent
donors they examined. These differences
underscore the potential for variables, such
as the severity of infection and latency from
infection to evaluation to impact the im-
mune response. Furthermore, by identifying
immunodominant areas of the M protein,
this study suggests that vaccines combining
more than Spike protein antigens may
mediate durable protective immunity that
more closely mimics natural protection.

Characterization of viral CTLs for not only
the viral epitope recognized but also the
HLA allele that presents that epitope is
critical to the application of adoptive
therapy with banked, third-party T cells.5

For example, Keller et al demonstrate that
SARS-CoV-2 CTLs recognizing membrane
peptide 37 (AA 145 to 160) are restricted in
recognition of this peptide through HLA
DRB1*1101. These T-cell lines can then be
selected for use in recipients sharing this
HLA allele. A bank of viral-specific T-cell
lines restricted by a set of commonly
inherited HLA alleles could support treat-
ment of most of the world’s population.

The isolation and expansion of T cells
from individuals recovered from mild to
moderate COVID-19 infections are an
appealing way to mimic an adaptive
rather than maladaptive immune re-
sponse. Complicated questions remain,
including whether adoptive transfer of
CTLs will need to occur early after in-
fection before a maladaptive immune
response is established and which pa-
tients will need adoptive T-cell therapy.
Although the presumption is that im-
munocompromised patients such as re-
cipients of hematopoietic transplant are
at high risk of COVID-19–related mor-
tality, recent reports suggest that trans-
plant recipients can have favorable
outcomes.8 In addition, although limited
by small numbers, other reports suggest
that in patients with specific immune
deficiency disorders, the nature of the
underlying defect may predict severity
of infection, whereas in other disorders,
the specific defect is not predictive.9,10

Whether adoptive transfer of SARS-CoV-
2–specific populations of well-characterized
T cells will prevent or treat COVID-19
will need to be evaluated formally in
clinical trials. However, answering these
questions will be facilitated by the re-
markably rapid addition of CTLs to the

potential armamentarium against a
global pandemic.
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Chromosomes in
breast lymphoma
Laurence de Leval | Lausanne University Hospital; Lausanne University

In this issue of Blood,1 Los-de Vries and colleagues investigate genome-wide
chromosomal copy gains and losses in breast impant–associated anaplastic
large cell lymphomas (BIA-ALCLs) and identify that frequent losses at chro-
mosome 20q13.13 are a characteristic genomic feature of this disease.

BIA-ALCL is a very rare T-cell lymphoma
categorized in the current World Health
Organization classification of lymphoid
malignancies as a provisional entity. It is
defined as a subtype of anaplastic lym-
phoma kinase (ALK)2 anaplastic large cell
lymphoma (ALCL), which arises in pa-
tients with breast implants inserted for
either cosmetic or reconstructive pur-
poses.2 The disease typically presents as
a late-onset pericapsular effusion (seroma-
associated or in situ lymphoma) and is
usually cured by complete surgical excision.
Less commonly, patients are diagnosed

with poor prognosis, advanced stage dis-
ease with an infiltrative tumor mass, or with
regional lymph node involvement.3 Since
the first case was described in 1997, epi-
demiological studies have confirmed that
there is a causal relationship to thepresence
of textured breast implants. Our current
understanding of BIA-ALCL pathogenesis
includes a chronic inflammatory/immune
reaction elicited by the implant or bacteria
adherent to it, with secondary genetic
lesions mediating transformation, depen-
dence on cytokine activation, and JAK-
STAT pathway activation.3,4
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Because of the rarity of the disease and
usually limited availability of tumor cells
or tissues, only a small number of cases
have been evaluated by genomic and
molecular techniques. Previous studies have
focused on characterizing the mutational
landscape of BIA-ALCL or on searching for
structural variants known to occur in other
ALK2ALCLs.5 In the paper published in this
issue, the authors used shallow (low-cover-
age) whole-genome sequencing in order
to evaluate chromosomal copy number
aberrations in BIA-ALCL and compare the
results to systemic ALK2 ALCL. Shallow
whole-genome sequencing is a recently
described technique of copy number
variation sequencing, which requires a
depth of genome coverage ,1 time. It
uses shortread sequencing, making it
particularly suitable for analyzing DNA
from routinely processed formalin-fixed
samples and is based on the counts of
reads aligned to chromosomalwindows or
bins after exclusion of problematic ge-
nomic regions.6 Limitations of the method
include that it does not identify structural
chromosomal aberrations or polyploidy.
Genome-wide DNA profiling of BIA- and
systemic ALCLs detected a broad range of
genomic imbalances in the vastmajority of
cases, both gains and losses, distributed
along all chromosomes, indicating that
chromosomal instability already docu-
mented in systemic ALCLs is a shared
feature of both entities. This is also in line
with cytogenetic data from the few BIA-
ALCL cell lines consistently showing
complex karyotypes.7 There was sub-
stantial overlap and few significant dif-
ferences between the 2 entities, but
strikingly the most frequent aberration in
BIA-ALCL (ie, 20q loss peaking at
20q13.13-13.2 present in two-thirds of
the cases) was detected in only 13%
of the systemic ALK2 ALCLs analyzed.

Moreover, 20q loss has been very rarely
found in other ALCLs and peripheral T-cell
lymphoma-not otherwise specified. There-
fore, this finding qualifies 20q deletion as
a genomic marker unique to BIA-ALCL.
This feature is important for disease def-
inition and classification because it sup-
ports the concept that this a separate
entity distinct from other ALK2 ALCLs (see
figure). Indeed, besides the unique clinical
context being 1 major defining feature of
the disease, BIA-ALCL is otherwise in-
distinguishable from other ALK2ALCLs by
morphology and immunophenotype.
Moreover, the pattern of mutations ob-
served in BIA-ALCL, preferentially dis-
tributed among effector and regulators
of the JAK/STAT pathway, epigenetic
modifiers, and regulators of cell cycle is
overlapping with that of other T-cell
lymphoma entities, especially other ALK2

ALCLs.4 Of note, in line with the novel
findings reported here, 2 studies have also
documented specificities in terms of the
gene expression signature of BIA-ALCL,
notable for an hypoxic signature, which
likely reflects the peculiar confined mi-
croenvironment in which this lymphoma
develops.8,9

An interesting finding reported by Los-
de Vries et al is that in situ (seroma-type)
BIA-ALCL comprises amore aberrant and
more heterogeneous genome compared
with invasive tumors, whereas an inverse
relationship was described for muta-
tions, more numerous in tumor-type BIA-
ALCL.4 This brings a meaningful insight
into BIA-ALCL progression, which seems
to be associated with a change in on-
cogenic signatures10 and a selection of
subclones.

Whether shallow whole-genome pro-
filing represents a useful adjunct in the

assessment of periprosthetic seroma fluid
requires prospective evaluation. Feasi-
bility can be inferred from the conclusive
results on circulating free DNA, but the
major obstacle lies in the availability of
the technique. It is not yet widely used
in diagnostic laboratories. A systematic
analysis of seroma fluids, assuming suf-
ficient samples can be obtained, would
contribute interesting insights into cur-
rently poorly characterized early stages of
BIA-ALCL development.
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