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Abstract

Obtaining annotated training data for supervised learning, is a bottleneck in many

contemporary machine learning applications. The increasing prevalence of multi-modal

and multi-view data creates both new opportunities for circumventing this issue, and

new application challenges. In this thesis we explore several approaches to alleviating

annotation issues in multi-view scenarios.

We start by studying the problem of zero-shot learning (ZSL) for image recognition,

where class-level annotations for image recognition are eliminated by transferring in-

formation from text modality instead. We next look at cross-modal matching, where

paired instances across views provide the supervised label information for learning. We

develop methodology for unsupervised and semi-supervised learning of pairing, thus

eliminating the need for annotation requirements.

We first apply these ideas to unsupervised multi-view matching in the context of

bilingual dictionary induction (BLI), where instances are words in two languages and

finding a correspondence between the words produces a cross-lingual word translation

model. We then return to vision and language and look at learning unsupervised pairing

between images and text. We will see that this can be seen as a limiting case of ZSL

where text-image pairing annotation requirements are completely eliminated.

Overall these contributions in multi-view learning provide a suite of methods for

reducing annotation requirements: both in conventional classification and cross-view

matching settings.
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Chapter 1

Introduction

1.1 Background

Recent decades have seen increasing amounts of data being collected across industrial,

scientific and social applications —and a corresponding drive to develop innovative data

analysis methods. Data in this digital age is continuously evolving and comes through

multiple channels or is collected from diverse domains, for example, images are typically

associated with description and tags, videos contain audio and visual signals, a given web

page has the textual content of the page and the anchor text linking to other web pages.

The multi-modality of this digital data puts a strain on traditional learning algorithms

due to their inability to exploit the different views they arrive in. While each of the

input modalities exhibits different properties or lies in different heterogenous spaces,

the information content in multiple modalities maybe associated with each other. For

example, a wikipedia article often can be represented in text vector space but also

contains hyperlinks to be modeled in graph space.

Many popular machine learning tasks ranging from classification to regression can

benefit if multiple views of the data can be integrated. Furthermore, there is an increas-

ing realisation that important societal applications ranging from healthcare, multimedia,

visual recognition etc. can immensely benefit from comparing data which exists in mul-

tiple views [Ding et al., 2019]. Multi-view learning aims to model all the available views

present and improve the learning performance.

Most standard supervised learning algorithms require annotated data which can

prove to be a bottleneck in building scalable systems. Multi-view data or multi-modal

data can circumvent this issue by taking advantage of the other modality to replace

conventional manual annotation. Zero shot learning (ZSL) promises to reduce the an-

notation burden in visual recognition by borrowing from text representation which are

usually available in abundance. In this thesis, we explore various ways to reduce anno-

tation cost with zero-shot learning. Existing ZSL methods contribute by proposing new

vector embeddings for text/image or new cross-modal mapping methods. Differently,

in this thesis we contribute to ZSL by studying distributions rather than conventional
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vector embeddings of images and text. For this task we develop a new cross-modal

matching objective function and the results show improved performance vs vector em-

beddings. We also show how distribution embeddings can model intra-class variability

and how this feature enables meaningful conjunction-based image query.

A common assumption held in multi-view learning algorithms is that in the training

data the views are paired, which means for every example in one view, the corresponding

example in the other view should be known. However this assumption is often violated

in real world situations. We provide some relevant examples. Standard neural machine

translation [Artetxe et al., 2018, Lample et al., 2017] tasks require the presence of large

parallel corpora which are difficult to build and might be non-existent for low-resource

languages. Image captioning models [Karpathy and Fei-Fei, 2017] require the presence

of corresponding captions with their images but collecting such labeled corpus might

be unavailable. The question we would like to answer is it possible to learn meaningful

representation in data scarce or unpaired settings ?

In unsupervised cross-modal matching, existing methods are based on kernelized

sorting (KS) [Quadrianto et al., 2009] or the recently proposed CycleGAN architecture

[Zhu et al., 2017]. In this thesis, we adopt the kernelized sorting line of work through

statistical dependency measures and extend them with end-to-end deep learning. We

show that this end-to-end learning outperforms classic shallow KS methods, while being

easier to use that recent GAN methods. We first look at bilingual dictionary induction,

where instances are words in two languages and learning their pairing produces a cross-

lingual word translation model. We finally return to vision and language and look

at learning unsupervised pairing between images and text. We will see that this can

be seen as a limiting case of zero-shot learning where text-image pairing annotation

requirements are completely eliminated.

1.1.1 Thesis Goals and Layout

In this thesis, we explore the following research questions:

Q1: How well can text description of categories be used to eliminate labelling re-

quirements for supervised learning of recognition ? Specifically: can we define a

probabilistic embedding of images and text over conventional vector space embed-

dings to reduce annotation requirements with text?

Q2: Can we learn to pair or associate elements in sets of vectors defined in heterogenous

views which might be from same or different modalities ? Particularly can we do

so without resorting to unstable adverserial learning?

Q3: To what extent can such unsupervised pairing algorithms be used to perform

unsupervised learning of cross-lingual word translation and image-text matching?

The remainder of this thesis consists of seven chapters
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Chapter 2 We present a background on multi-modal learning and discuss various tech-

nical challenges associated with it.

Chapter 3 We study zero-shot learning through text→ image transfer via word-vector.

We present the first distribution-embedding approach to this task and explore

its benefits compared to standard vector-embedding approaches. This chapter

corresponds to work published in (Mukherjee et al, EMNLP 16)

Chapter 4 We introduce the problem of unsupervised matching across heterogenous

views. We introduce Canonical Correlation Analysis (CCA) [Hotelling, 1936a] and

its related unsupervsied matching models.

Chapter 5 We study the problem of bilingual dictionary induction and provide one

of the first purely unsupervised induction methods using Deep Squared Mutual

Information (SMI) as a metric for pairing. Compared to other GAN-based ap-

proaches ours is much more stable to train. This chapter corresponds to work

published in (Mukherjee et al, EMNLP 18)

Chapter 6 We next apply the same Deep SMI approach for image-text pairing and

study unsupervised captioning and unsupervised classifier learning applications.

The latter can be seen as an extreme form of ZSL where even the source class

annotation requirements are removed.

Chapter 7 We finally conclude by summarising and discussing our contribution as well

as potential future work.
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Chapter 2

Background

In this chapter we present a background of multi-modal learning. We look at various

popular methods for multi-modal data analysis. We finally discuss some background on

Zero-shot learning.

2.1 Multi-modal learning

Information in real world is inherently multimodal in nature- we see objects, hear sound,

smell odours and so on. The common notion of modality can be affiliated with a unified

bundle of sensation from multiple sensory modalities. A research problem is hence

characterized as multimodal when multiple sensory modalities like vision ,sound, touch

are involved [Baltrušaitis et al., 2017]. A logical representation of objects combining

various modalities allows for a meaningful perceptual experience.

To make truly intelligent machines, artificial intelligence needs to narrow the het-

erogeneity gap among the various multimodal signals being generated. End-to end

speech recognition [Graves and Jaitly, 2014, Oord et al., 2016], neural machine trans-

lation [Bahdanau et al., 2014, Vaswani et al., 2017], image captioning are some of the

examples where multimodal data is extensively used.

Multimodal data analysis brings in some unique challenges and some opportunities

given the heterogenous nature of data. The underlying motivation to use multimodal

data is that complementary information could be extracted from each of the modalities

considered, giving a unique and comprehensive view and is generally more informative

than unimodal data. For example, early research in speech recognition showed that

visual modality provides valuable information on lip motion and articulation of the

mouth, thus helping to improve speech recognition [Guo et al., 2019]. Learning from

multimodal data sources offers the possibility to learn from multiple corresponding

sources and offers a deep understanding to the natural phenomenon. We list and review

some technical challenges associated with multimodal data. Our list consists of the

following challenges:-
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Information Fusion methods combine information from two or multiple separate

modalities in making a single decision or prediction. The foundation of information

fusion was laid in the beginning of the 20th century [Hotelling, 1936a, Cattell, 1944].

Further research in the early 1970s came with the formulation of multiset canonical

correlation analysis [Kettering, 1971], parallel factor analysis (PARAFAC) [Harshman]

and other tensor decomposition tools [Tucker, 1966]. However most of these techniques

have remained confined in the field of chemometrics and psycometrics, the communities

where they first evolved. The late 20th century sees a lot more technological advances

with growing availibility of data sources and domains, leading to interest in exploiting

the resources efficiently. These resources are multiview, multirelational, multimodal in

nature and span the areas of social, health, electronic, manufacturing and thus the drive

to develop tools for analytical understanding is high and relevant outside of academia.

Information fusion remains one of the most popular tools due to its relevance in provid-

ing a unified picture and global view; improving decision making process, exploratory

research, identifying common versus distinctive elements across the modalities and in

general providing knowledge which could be utilized for various processes. Despite the

popularity and the massive amount of research conducted [Khaleghi et al., 2013, Shiv-

appa et al., 2010, Turk, 2014, Biessmann et al., 2011, Stathaki, 2008, Mitchell, 2012],

the process of collectively learning from multiple sources is still at its earlier stages.

Data fusion is a challenging task and raises several questions, conceptual and technical.

Earlier work in information fusion [Atrey et al., 2010, Khaleghi et al., 2013] has

spanned different research communities and the matter has been throughly investigated.

Depending on the stage of fusion, data fusion can be roughly categorized into early fu-

sion or late fusion. Early fusion focuses on the best way to combine input features

from multiple data sources either by removing correlations between the modalities and

representing the fused data in a lower dimensional subspace. Earlier techniques that

concentrated on these objectives include principal compoenent analysis (PCA), indepen-

dent component analysis (ICA) and canonical correlation analysis (CCA). The training

pipeline usually is usually simple as it requires a single model but well engineered fea-

tures from the modalities so that they align or their semantics can be represented well.

Late fusion focusses on using the decisions seperately made by each of the machine

learning models by using ensemble models. Late fusion allows the use of different mod-

els on different modalities, thus allowing freedom and flexibility in handling missing

modalities. We provide some relevant examples of information fusion in multimodal

settings. In computer vision, RGB-D (RGB-depth) along with multi-view images is

used to generate effective features. In [Eitel et al., 2015], the feature vectors obtained

from fully connected (FC) layer of two seperate CNNs are combined to generate joint

features for RGB-D. In [Gupta et al., 2014], the performance of RGB-D fusion improved

the effective encoding scheme for depth image. In [Li et al., 2017], multi-level fusion

was proposed to learn multimodal features for semantic segmentation. Other areas

where multimodal fusion have been succesfully applied is multimodal scene understand-

ing [Hospedales and Vijayakumar, 2008], understanding brain functionality [Nunez and
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Silberstein, 2000, Horwitz and Poeppel, 2002, Biessmann et al., 2011] using EEG and

fMRI data, environmental studies [Stathaki, 2008, Yokoya et al., 2011, Vivone et al.,

2015]. We refer the reader to [Lahat et al., 2015] for further reading.

Alignment Humans have a remarkable ability to spot analogies, or translate (map-

ping) information from one modality to another. This ability has been shown to be a

fundamental ingredient of human intelligence and creativity [Gentner, 1983, Gentner

and Forbus, 2011, Hummel and Holyoak, 1997, Lovett et al., 2009]. Alignment involves

using one modality, termed as source or base to better understand the second modality

known as target. The task of flexibly mapping between domains remains a challenge

for machines. Classical or symbolic AI systems are ill-equipped and lack the flexibility

to extend relations from source to target domains especially across domains previously

unknown. With the availability of multimodal datasets, alignment has been particularly

studied by the vision, natural language processing and speech community. Some exam-

ples include image captioning where one might want to find a correspondence between

image regions and captions [Karpathy and Fei-Fei, 2017], aligning movies to script [Zhu

et al., 2015], alignment of movie script to videos [Bojanowski et al., 2013, Alayrac et al.,

2016], style transfer [Hoshen and Wolf, 2018a], unsupervised learning of word trans-

lations [Conneau et al., 2017b] and cross-modal alignment of speech and text [Chung

et al., 2018].

Alignment can be broadly categorized into unsupervised and supervised algorithms.

Unsupervised algorithms operates with no label correspondence between the two do-

mains while supervised methods have access to them. We briefly review the two cate-

gories.

Unsupervised multimodal alignment arises when no direct correspondence between

the two modalities exist. Consider the example of bilingual lexicon induction for machine

translation systems where one needs to recover an alignment between two sentences.

Some of the earliest works on unsupervised alignment were motivated by applications in

measuring similarities between biological sequences or alignment for statistical machine

translation systems. To aid the task, certain constraints are put on the alignment

objective such as temporal ordering or existence of similarity metric [Baltrušaitis et al.,

2017].

Dynamic time warping (DTW) [Kruskal, 1983, ?] is one of the algorithms for mea-

suring similarity between sequences. DTW measures the similarity between two time

sequences and calculates an optimal score with certain restrictions in place. DTW has

been extended to multimodal alignment by handcrafting similarity metrics between the

modalities for example, in [Miró et al., 2014] defined a hand crafted similarity met-

ric between graphemes and phonemes, [Tapaswi et al., 2014] define a similarity metric

between visual scenes and sentences to align TV shows to plots.

Both techniques for unsupervised alignment, DTW and graphical models, place cer-

tain restrictions on the alignment e.g temporal consistency, no large jumps. While DTW

based alignments allow the latent similarity metric and alignment to be jointly learnt,
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graphical models based approaches require expert knowledge for such construction [Bal-

trušaitis et al., 2017].

Alignment of embedding spaces or high dimensional vectors is also popular across

problems in natural language processing, computer vision and speech. When dealing

with unstructured sets of high dimensional points, it is common to provide supervision

in forms of anchor points [Mikolov et al., 2013a, Xing et al., 2015]. Recently, unsuper-

vised alignment approaches have obtained compelling results by framing the problem

as a distance minimization between distributions either by adversarial training [Con-

neau et al., 2017b, Zhang et al., 2017c] or by non-adversarial techniques [Hoshen and

Wolf, 2018b, Mukherjee et al., 2018]. Unsupervised alignent approaches have also found

success in unsupervised domain alignment [Benaim and Wolf, 2017, Hoshen, 2018] and

neural style transfer [Liao et al., 2017].

Supervised alignment methods rely on paired aligned instances or some form of

supervisory signal or access to explicit alignment between instances. In word translation

[Mikolov et al., 2013c] propose to use a seed dictionary of 5000 words for cross-lingual

word translation. Many of the supervised algorithms take inspiration from unsupervised

alignment. [Bojanowski et al., 2014, 2015] propose a method similar to canonical time

warping and augment it with supervisory aligned signals for model training. [Plummer

et al., 2018, 2015] uses CCA to find latent space where image regions align to phrases.

The growing availibility of aligned language and vision datasets [Mao et al., 2016,

Plummer et al., 2015] has allowed deep learning algorithms to gain popularity. [Mao

et al., 2016] used a CNN to model visual data and LSTM language model to evaluate the

matching between an image region and referring expression. [Chan et al., 2016] model

consists of an encoder RNN network named listener and decoder RNN network named

speller which are trained jointly to map low level speech signals to output utternaces.

Translation A major challenge in multiview multimodal learning is concerned with

translating from one domain or view to the other so that the semantics of each do-

main is preserved. Translation is a widely studied problem in multimodal learning with

applications in caption generation [Karpathy and Fei-Fei, 2017, Vinyals et al., 2015],

video captioning [Krishna et al., 2017], image to image translation [Zhu et al., 2017],

cross-modal retrieval [Rasiwasia et al., 2010]. As can be seen by the noticable efforts

of computer vision and natural language processing communities in generating large

scale aligned datasets, multimodal translation is a problem of growing interest. Popular

problems include video and image captioning [Venugopalan et al., 2015, Vinyals et al.,

2015], image to image translation [Zhu et al., 2017, Isola et al., 2017], style transfer in

text [Shen et al., 2017, Mueller et al., 2017]. While there are multiple approaches for

multimodal translation, we broadly categorize them as combination based approaches

and generative approaches. Combination based approaches are motivated by the fact

that modalities often have common structure and syntax and form a model dictionary

which can be further exploited for domain translation. Most of the rules for combi-

nations are hand crafted or based on heuristics [Baltrušaitis et al., 2017]. [Kuznetsova
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et al., 2012] use a two stage approach: Firstly, they use a retrieval framework to retrieve

candidate phrases. Secondly, generate a coherent description using integer linear pro-

gramming (ILP) formulation. [Gupta et al., 2012] first retrieve a set of k− candidate

images similar to source images and then use phrases collected from a dictionary to

generate a target sentence. Combination based models are flexible and generate trans-

lations but are restrictive to include the presence of a large dictionary, often making

them expesnive to make inference.

Generative models for translation require understanding the source modality to gen-

erate a consistent and meaningful target modality. Due to the large space of possible

correct answers, these models can be quite challenging. Earlier approaches relied on

pre-defined grammar or template based models to generate a modality. [Kojima et al.,

2002] proposed a system to determine human behaviour from videos and used a template

based system to generate a description. Babytalk [Guadarrama et al., 2013] extracted

triples of the order subject,object,predicate and combine with a conditional random field

(CRF) to generate a sentence. [Li et al., 2011] take a two step approach where the first

step selects candidate phrases useful for description and a second phase of fusion which

finds an optimal and compatible set of phrases using dynamic programming. [Mitchell

et al., 2012] use a tree-generating process rather than a template based process similar

to a tree substitution grammar, which allows for descriptions to be syntactically well

formed. [Kulkarni et al., 2013] which given an image generates triple subject, object and

predicate that is used with conditional random fields to generate sentences. [Yang et al.,

2011] use object detectors and scenes from an input image, estimating a quadrupulet

structure of object, actions, scene and propostion which is used with a HMM graphical

model. An advantage of generative models using syntax is that they are likely to gen-

erate logically correct and meaningful sentences. However the use of complex pipelines

severly limits them.

Deep learning generative models are a recent addition used for multimodal transla-

tion. The popular architecture is the encoder-decoder model where an encoder is used

to model the source modality and the decoder is used to generate the target modality all

in single pass. The encoder-decoder architecture popular in neural machine translation

[Cho et al., 2014], have also been used in image captioning [Mao et al., 2015, Vinyals

et al., 2015], video description [Rohrbach et al., 2015, Venugopalan et al., 2015]. Popular

encoders to model the source modality include using RNNs to model acoustic features

[Prabhavalkar et al., 2017]. For words or sentences they are mostly encoded using dis-

tributional semantic models [Mikolov et al., 2013b, Pennington et al., 2014]. Images

are mostly encoded using CNN or their variants [Krizhevsky et al., 2012, Simonyan

and Zisserman, 2015b, He et al., 2016]. The step of decoding also uses an RNN or an

LSTM using the encoded representation as the initial hidden state. Various extensions

and strategies have been discussed in the literature to aid in the translation process

[Venugopalan et al., 2015, Rohrbach et al., 2015]. A problem generally encountered

using an RNN is that the model has to generate a description, image or sound from a

single vector which is impoverished to handle long range dependencies. It was observed

14



1 that reversing the source sentence i.e feeding it backwards to the encoder produces

significantly better results as it shortens the path from the decoder to the relevant parts

of the encoder. Similar results were observed when feeding the input sentence twice to

the encoder to better memorize things. The advantage of the attention mechanism is

that one can avoid such hacks and allow the decoder to attend to different parts of the

source sentence at each step of the output generation. Attention based models have

been succesfully applied in neural machine translation [Bahdanau et al., 2014], neural

caption generation [Xu et al., 2015], video description [Yao et al., 2015].

2.2 Zero-Shot learning

Recent major progress in visual recognition has been driven by training complex models

using a large number of annotated training examples. Scaling this paradigm to many

categories is not feasible due to the need to collect and to annotate many examples of

every category to recognize. Zero shot recognition provides a paradigm to eliminate the

need to annotate each new category, once a certain number of background categories has

been learned. Specifically, it does this by cross-modal transfer from language. The idea

is to use a limited set of training data to learn a lingusitic-visual mapping; and then

apply the induced function to map vectors representing novel entities unseen during

training to the visual domain or a shared embedding, thus enabling recognition in the

absence of visual training examples. As discussed earlier in Sec 2.1, this can be seen as a

special limiting case of translation: learn a translation model from language description

to a visual classifier given a set of aligned language description and visual examples.

An inverse translation is also feasible where one learns a mapping function from image

to language description and then match in language domain. The task of ZSL was

originally tested for neural decoding [Palatucci et al., 2009b, Mitchell et al., 2008],

mapping fMRI activations to word vectors, and then applying it to the brain signal

of a concept outside the training set, in order to read from the brain. More recently,

it has generated big impact in visual recognition [Lampert et al., 2014, Socher et al.,

2013a, Lazaridou et al., 2014] due to the potential for leveraging language to help visual

recognition scale: to many categories without work intensive image annotation, or to

fine-grained/rare categories where extensive training data may simply be unavailable.

Distributed semantic models (DSMs) typically generate vector embeddings of words,

and hence existing zero-shot methods mostly focus on establishing a cross-modal map-

ping between DSMs of category name, and visual examples of that category. However,

such vector representation have limited expressivity providing no notion of various intra-

class variances. Point vectors are compared using a series of operations comprising of

dot product, cosine distance or Euclidean distance which are incapable to represent

assymetric or hierarchical relationships. In this work we represent visual and linguistic

vectors as Gaussian distribution [Vilnis and McCallum, 2015]. Representing words as

1http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/
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distributions was initially done by [Vilnis and McCallum, 2015] where the mean vector

represents the semantics and the covariance describes the uncertainty in the meanings.

Our proposed distribution-based approach provides a representation of intra-class vari-

ability that improves zero-shot recognition, allows more meaningful retrieval by multiple

keywords, and also produces better point-estimates of word vectors.

2.3 Supervised and Unsupervised Pairing

Much of the success of deep learning can be attributed to big datasets annotated with

explicit correspondence between the modalities. Learning correspondence between data

is a fundermental building block of many applications which can be used to sort, align

and rank data. Given data from two sources, the problem of learning correspondence

finds applications in multi-modal settings. In image captioning [Karpathy and Fei-Fei,

2017] , images are usually accompanied with descriptions. Neural machine translation

[Bahdanau et al., 2014] expects a parallel corpus of source and target language.

Most successful methods heavily rely on cross-lingual supervision in the form of

translation dictionaries [Mikolov et al., 2013a, Vulic and Korhonen, 2016] or sentence

aligned corpus to derive bilingual word vectors which now have a notion of word asso-

ciation between the corpus [Gouws et al., 2015, Luong et al., 2015]. However to collect

or assume the presence of sentence aligned or parallel corpus is quite an unreasonable

assumption in real-world settings. This leads us into exploring the possibility of learning

explicit correspondence without any form of supervision.

Learning correspondence across domains is also relevant in computer vision. Image

matching is a long standing problem in computer vision with several applications ranging

from scene recognition to optical flow estimation [Forsyth and Ponce, 2002, Szeliski,

2010]. Most notable image matching have been based on feature matching or pixel

based matching. Earlier approaches were based on using descriptors such as SIFT

[Lowe, 2004] or HOG [Dalal and Triggs, 2005]. With recent advances in deep learning

especially generative adversarial networks (GAN) [Goodfellow et al., 2014], the problem

of image to image translation has gained importance provided it receives paired data.

[Isola et al., 2016] uses a GAN where the discriminator receives a pair of images where

one image is the source image and the other image is the paired image or generated

image (fake pair). The link between the source and target is further strengthened by

the U-net architecture [Ronneberger et al., 2015]. While learning correspondence across

domains require sample sets of supervision in the form of bilingual dictionaries [Mikolov

et al., 2013c] for cross-lingual transfer of word embeddings or matching pairs of images

[Isola et al., 2016] for style transfer, a question which needs to be asked is whether can

such a mapping or correspondence can be learnt without sample pairs or presence of

any supervision ?

Recent progress in GANs [Goodfellow et al., 2014] has led to major developments

in image to image translation techniques and it comes as no surprise that the state of

the art translation is employed by variants of GANS. The most popular of them has
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been CycleGAN [Zhu et al., 2017] which employs the cycle consistency as a constraint.

Other variants include DiscoGAN [Kim et al., 2017],DualGAN [Yi et al., 2017] which

include additional constraints. In natural language processing, unsupervised transfer of

monolingual word embeddings has been gaining attention especially through adverserial

techniques. [Zhang et al., 2017d] adopt GAN to transform from a source monolingual

embedding to target monolingual embedding. [Conneau et al., 2017a] use an improved

adversarial training along with a refinement procedure for cross-lingual word mapping.

More recent works use the cyclic consistency of CycleGAN into back translation loss

and adopt the sinkhorn distance into the objective function [Xu et al., 2018].

In this thesis we address unsupervised learning of cross-modal pairing. Unlike these

other approaches we do not use GAN or adverserial training, which makes our approach

easier and more stable to train.
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Chapter 3

Zero Shot Learning with

Gaussian Category

Embeddings

3.1 Introduction

Learning vector representations of word meaning is a topical area in computational

linguistics. Based on the distributional hypothesis – that words in similar context have

similar meanings – distributed semantic models (DSM)s build vector representations

based on corpus-extracted context. DSM approaches such as topic models [Blei et al.,

2003], and more recently neural networks [Collobert et al., 2011, Mikolov et al., 2013c]

have had great success in a variety of lexical and semantic tasks [Arora et al., 2015,

Schwenk, 2007].

However despite their successes, classic DSMs are severely impoverished compared to

humans due to learning solely from word co-occurrence without grounding in the outside

world. This has motivated a wave of recent research into multi-modal and cross-modal

learning that aims to ground DSMs in non-linguistic modalities [Bruni et al., 2014, Kiela

and Bottou, 2014, Silberer and Lapata, 2014]. Such multi-modal DSMs are attractive

because they learn richer representations than language-only models (e.g., that bananas

are yellow fruits [Bruni et al., 2012b]), and thus often outperform language only models

in various lexical tasks Bruni et al. [2012a].

In this thesis, we focus on a key unique and practically valuable capability enabled

by cross-modal DSMs: that of zero-shot learning (ZSL). Zero-shot recognition aims

to recognise visual categories in the absence of any training examples by cross-modal

transfer from language. The idea is to use a limited set of training data to learn

a linguistic-visual mapping and then apply the induced function to map images from

novel visual categories (unseen during training) to a linguistic embedding: thus enabling

recognition in the absence of visual training examples. ZSL has generated big impact
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[Lampert et al., 2009a, Socher et al., 2013a, Lazaridou et al., 2014] due to the potential

of leveraging language to help visual recognition scale to many categories without labor

intensive image annotation.

DSMs typically generate vector embeddings of words, and hence ZSL is typically

realised by variants of vector-valued cross-modal regression. However, such vector rep-

resentations have limited expressivity – each word is represented by a point, with no

notion of intra-class variability. In this paper, we consider ZSL in the case where both

visual and linguistic concepts are represented by Gaussian distribution embeddings.

Specifically, our Gaussian-embedding approach to ZSL learns concept distributions in

both domains: Gaussians representing individual words (as in [Vilnis and McCallum,

2015]) and Gaussians representing visual concepts. Simultaneously, it learns a cross-

domain mapping that warps language-domain Gaussian concept representations into

alignment with visual-domain concept Gaussians. Some existing vector DSM-based

cross-modal ZSL mappings [Akata et al., 2013, Frome et al., 2013a] can be seen as spe-

cial cases of ours where the within-domain model is pre-fixed as vector corresponding to

the Gaussian means alone, and only the cross-domain mapping is learned. Our results

show that modeling linguistic and visual concepts as Gaussian distributions rather than

vectors can significantly improve zero-shot recognition results.

3.2 Related Work

3.2.1 Distributed Semantic Models

Finding good representation of words which convey meaning is an important research

direction in cognitive science. Distributed semantic models (DSM) motivated by dis-

tributional hypothesis [Harris, 1954] have a long history in cognitive science, psycology

and linguistics [Firth, 1957, Miller and Charles, 1991, Wittgenstein, 1953]. Contempo-

rary vector space representations are generated by word context, with the assumption

that word similarity is then reflected by geometric similarity of their context vectors.

DSM are typically represented through vector space models (VSM) where the word

tokens are represented as a vector in high dimensional space. The earliest application

of vector based models was explored in Information Retrieval where a document was

represented by vectors [Salton et al., 1975] with the whole vocabulary represented as

dimensions. The weights of individual tokens were either computed using the frequency

of their appearance or normalized frequencies. Vector based representation have been

applied in various applications ranging from information retrieval [Lee et al., 1997], text

classification [Soucy and Mineau, 2005] to sentiment analysis [Turney, 2002]. [Turney

and Pantel, 2010] provide a comprehensive survey for vector space models of meaning

and its applications in various language domains. Later deep learning based approaches

have been exploited for learning low dimensional representations of natural language

text popularly called as word embeddings. These word embeddings have been attractive

and have been applied in multiple NLP downstream applications [Zou et al., 2013, Kim,
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2014, Weiss et al., 2015].

In this thesis, we are particularly interested in using DSMs to bridge linguistic and

visual modalities, so we focus specifically on multi-modal DSMs.

3.2.2 Multi-modal semantics

Computational linguistic models of meaning that rely of contextual information provide

a good approximation to word meaning, since semantically similar words tend to have

similar contextual distributions. Distributional semantic models use vectors to keep

track of the contexts in which target terms appear in a large corpus as proxies for

meaning representations, and apply geometric techniques to these vectors to measure

the similarity or relatedness of to the corresponding words [Allen et al., 2019, Allen and

Hospedales, 2019].

Distributional semantic models (DSM) have been criticized in that they represent the

meaning of a word solely by connection with other words in a corpus. There is increasing

realisation that meaning of a word is not only acquired from linguistic environment but

is essentially grounded to the external world through multiple channels [Landau et al.,

1998].

Multi-modal semantics are motivated from human concept acquisition where learned

linguistic representations are grounded in other modalities such as vision – as well as

obtaining better representations to improve performance on linguistic tasks, and de-

veloping cross-modal mappings. To address the grounding problem, and enrich con-

cept vectors with visual information, early studies simply concatenated conventional

uni-modal linguistic DSM representations with uni-modal visual representations (e.g.,

gradient histograms such as SIFT) from corresponding image categories [Bruni et al.,

2012a,b, Kiela and Bottou, 2014]. This improved the representation and resulting per-

formance on a variety of tasks but did not provide a truly integrated and synergistically

learned multi-modal representation. Thus more recent studies have focused on jointly

learning multi-modal models, for example with multi-modal auto encoders [Silberer

and Lapata, 2012] or Boltzmann machines [Srivastava and Salakhutdinov, 2012], multi-

modal skip-gram models [Lazaridou, 2015], deep embeddings [Frome et al., 2013b] and

dependency tree recursive neural networks [Socher et al., 2014]. These models have been

shown to be successful in various concept learning tasks [Silberer and Lapata, 2014].

3.2.3 Zero Shot Learning

An exciting and practically valuable property of learning multi-modal semantics is the

ability to do zero-shot learning [Palatucci et al., 2009a]. Applied across language and

vision domains, ZSL corresponds to the ability to recognise a visual category without

requiring any annotated examples, let alone the extensive sets typically required for

state of the art supervised learning. ZSL has generated extensive interest in both com-

putational linguistic [Lazaridou et al., 2014], machine learning [Palatucci et al., 2009a,
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Frome et al., 2013b] and computer vision [Fu et al., 2014] communities. Language-

driven ZSL is typically realised by learning text (e.g., DSM vector) and visual domain

(e.g., CNN activation) representations using an auxiliary dataset and mapping them

into a common embedding. Then at test time, given the name of a previously (visually)

unseen category, its DSM vector and thus its visual embedding can be generated, al-

lowing it to be matched (e.g., using nearest-neighbour) to images for recognition. Thus

ZSL can be seen as a form of cross-modal knowledge transfer from language to vision

[Socher et al., 2013b]. The simplest way to realise ZSL is to generate fixed and inde-

pendent linguistic and visual representations, and then learn a mapping between them

[Lazaridou et al., 2014, Fu et al., 2014, Socher et al., 2013b]. However, reflecting the

same research progression in broader multi-modal semantics, more sophisticated ap-

proaches have also been proposed that simultaneously learn both representations and

the mapping between them [Frome et al., 2013b] where such joint multi-modal learning

is typically more effective.

3.3 Methodology

3.3.1 Background

Vector Word Embeddings In a typical setup for unsupervised learning of word-

vectors, we observe a sequence of tokens {wi} and their context words {c(w)i}. The

goal is to map each word w to a d-dimensional vector ew reflecting its distributional

properties. Popular skip-gram and CBOW models [Mikolov et al., 2013c], learn a matrix

W ∈ R|V |×d of word embeddings for each of V vocabulary words (ew = W(w,:)) based

on the objective of predicting words given their contexts.

Another way to formalise a word vector representation learning problem is to search

for a representation W so that words w have high representational similarity with con-

text words c(w), and low similarity with representations of words not in context ¬c(w).

This could be expressed as optimisation of max-margin loss J ; requiring that each word

w’s representation ew is more similar to that of context words ep than non-context words

en by a margin δ

J(W ) =
∑

w,wp∈c(w),wn∈¬c(w)

max(0, δ − E(ew, ewp) + E(ew, ewn)) (3.1)

where similarity measure E(·, ·) is a distance in Rd space such as cosine or euclidean.

Gaussian Word Embeddings Vector-space models are successful, but have limited

expressivity in terms of modelling the variance of a concept, or asymmetric distances

between words, etc. This has motivated recent work into distribution-based embeddings

[Vilnis and McCallum, 2015]. Rather than learning word-vectors ew, the goal here is

now to learn a distribution for each word, represented by a per-word mean µw and

covariance Σw.
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In order to extend word representation learning approaches such as Eq. (3.1) to

learning Gaussians, we need to replace vector similarity measure E(·, ·) with a similarity

measure for Gaussians. We follow [Vilnis and McCallum, 2015] in using the inner

product between distributions f and g – the probability product kernel [Jebara et al.,

2004].

E(f, g) =

∫
x∈Rn

f(x)g(x). (3.2)

The probability product kernel (PPK) has a convenient closed form in the case of

Gaussians:

E(f, g) =

∫
x∈Rn

N (x;µf ,Σf )N (x;µg,Σg)dx

= N (0;µf − µg,Σf + Σg) (3.3)

where µf , µg are the means and Σf ,Σg are the covariances of the probability distribution

f and g.

3.3.2 Gaussian models of images and text

Distributed representation of word embeddings has shown the ability to capture seman-

tic and syntactic relationships [Mikolov et al., 2013c, Pennington et al., 2014]. However

due to their inability to model uncertainty we represent words as distributions [Vilnis

and McCallum, 2015].

Given a pre-trained set of word embeddings which would represent the means, we

describe a simple procedure to construct the empirical covariances motivated by [Vilnis

and McCallum, 2015]. For a word w and its context represented by {c(w)i} and window

size W , the variance is

Σw =
1

W

W∑
i=1

(c(w)i − w)T (c(w)i − w) (3.4)

3.3.3 Cross-Modal Distribution Mapping

Gaussian models of words can be learned as described in Sec 3.3.2, and that Gaussian

models of image categories can be trivially obtained by maximum likelihood. The central

task is therefore to establish a mapping between word-and image-Gaussians, which will

be of different dimensions dw and dx.

We aim to find a projection matrix A ∈ Rdx×dw such that a word w generates an

image vector as ex = Aew. Working with distributions, this implies that we have µx =

Aµw and Σx = AΣwA
T . We can now evaluate the similarity of concept distributions

across modalities. The similarity between image-and text-domain Gaussians f and g is:

E(f, g) = N (0;µf −Aµg,Σf +AΣgA
T ) (3.5)
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Using this metric, we can train our cross-modal projection A via the cross-domain loss:

J(A) =
∑

f,g∈P,k∈N
max(0, δ − E(f, g) + E(f, k)) (3.6)

where P is the set of matching pairs that should be aligned (e.g., the word Gaussian

‘plane’ and the Gaussian of plane images) and N is the set of mismatching pairs that

should be separated (e.g., ‘plane’ and dogs images). This can be optimised with SGD

using the gradient:

∂E

∂A
=

1

2
((Σf +AΣgA

T )−1A(Σg + ΣTg ))

+ ((µTg (Σf +AΣgA
T )−1(µf −Aµg)

+ (µf −Aµg)T (Σf +AΣgA
T )−1µTg

+ (µf −Aµg)T (Σf +AΣgA
T )−1

AT (Σg + ΣTj )(Σf +AΣgA
T )−1(µf −Aµg))

(3.7)

3.3.4 Joint Representation and Mapping

The cross-domain mapping A can be learned by picking an energy function (Eq. 3.5), a

loss function (max-margin) (Eq. 3.6) and a set of positive and negative training pairs.

It is also possible to simultaneously learn the mapping along with the text and image-

domain gaussians ({µf ,Σf}text, {µg,Σg}img) by optimising the sum of three coupled

losses: Eq. 3.1 with Eq. 3.3, Eq. 3.6 and max-margin image-classification using Gaus-

sians. We found jointly learning the image-classification Gaussians did not bring much

benefit over the MLE Gaussians, so we only jointly learn the text Gaussians and cross-

domain mapping. Algorithm 3.3.4 summarizes the training procedure.

Algorithm 1 Algorithm for Cross-Modal Training

1: procedure Training(Ds, Dtext) // Ds is cross-modal annotated category name
and image pairs,Dtext is a text-corpus

2: Initialize : {µg,Σg},A
3: Train: {µf ,Σf} by MLE
4: while not converged
5: Sample f, g, k ∼ Ds, wp, wn ∼ Dtext

6: Gradient step on Eq 3.1+ Eq 3.6
7: end procedure

3.3.5 Synthetic Data

We try to simulate a model where we are initially provided some word vectors and then

transform them to an image vectors. Now given the original word vectors and image

word vectors, can we recover the matrix used for the transformation ?
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We simulate some data from normal distribution. We project this data through a

projection matrix A and get another transformed matrix.This will be 2-D simulations

of word vectors and image vectors. Now using Eq 3.3 can we recover the transformation

matrix A.

Figure 3.1: Simulation from synthetic gaussian distributions

In Fig 3.1 the top left corner represents the original gaussian and the centre image

represents the transformation by using a projection matrix A. The top right image just

projects the image vectors through some random transformation matrix. The bottom

left image represents by just using Eq 3.3 i.e without using the max-margin framework.

The bottom right uses the complete framework. One can observe that we are able to

recover the original word vectors (approximately).

3.3.6 Application to Zero-Shot Recognition

Once the text-domain Gaussians and cross-domain mapping have been trained for a set

of known words/classes, we can use the learned model to recognise any novel/unseen

but name-able visual category w as follows:
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Algorithm 2 Algorithm for Zero Shot Recognition

1: procedure Testing(x,{µw,Σw})//Input test image and the set of known categories
subscripted by w.

2: for each target category w
3: p(x|w) ∝ N (x|Aµw, AΣwA

T )
4: end for
5: return w∗ = argmax(p(x|w)) //Return the ML category.
6: end procedure

3.3.7 Contextual Query

To illustrate our approach, we also experiment with a new variant of the ZSL set-

ting. In conventional ZSL, a novel word can be matched against images by project-

ing it into image space, and sorting images by their distance to the word (vector),

or likelihood under the word (Gaussian). However, results may be unreliable when

used with polysemous words, or words with large appearance variability. In this case

we may wish to enrich the query with contextual words that disambiguate the vi-

sual meaning of the query. With regular vector-based queries, the typical approach is

to sum the word-vectors. For example: For contextual disambiguation of polysemy,

we may hope that vec(‘bank’)+vec(‘river’) may retrieve a very different set of images

than vec(‘bank’)+vec(‘finance’). For specification of a specific subcategory or variant,

we may hope that vec(‘plane’)+vec(‘military’) retrieves a different set of images than

vec(‘plane’)+vec(‘passenger’). Fig 3.2 illustrates the contextual concept with the plane

example where we can see that different intersection (Eq 3.3) between word Gaussians

map to different regions in image space.

By using distributions rather than vectors, our framework provides a richer means to

make such queries that accounts for the intra-class variability of each concept. Consider

an example of a contextual query represented by two words. When each word is repre-

sented by a Gaussian with means µ1 and µ2, and covariances of Σ1 and Σ2 respectively,

a two-word query can be represented by their product, which is the new Gaussian with

mean and covariance

µ =
Σ−1

1 µ1 + Σ−1
2 µ2

Σ−1
1 + Σ−1

2

Σ = (Σ−1
1 + Σ−1

2 )−1)
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Figure 3.2: Schematic illustration of contextual query. Querying the conjunction of
different words is achieved by the product their corresponding Gaussians and mapping
the Gaussian intersection to image space for retrieval

3.4 Experiments

3.4.1 Datasets and Settings

Datasets: We evaluate our method 1 using the main Animals with Attributes (AWA)

and ImageNet1K benchmarks. To extract visual features we use the VGG-16 CNN

[Simonyan and Zisserman, 2015a] to extract a dx = 4096 dimensional feature for each

image. To train the word Gaussian representation, we use a combination of UkWAC

Ferraresi et al. [2008] and Wikipedia corpus of 25 million tokens, and learn a dw = 100

dimensional Gaussian representation with spherical covariance. We set our margin

parameter to δ = 1. We use mini-batch stochastic gradient descent with learning rate

set at 1e− 3 and batch size to 128.

Settings: Our zero-shot setting involves training a visual recogniser (i.e., our mapping

A) on a subset of classes, and evaluating it on a disjoint subset. For AWA, we use the

standard 40/10 class split [Lampert et al., 2009a], and for ImageNet we use a standard

800/200 class split [Mensink et al., 2012].

Competitors: We implement a set of representative alternatives for direct comparison

with ours on the same visual features and text corpus. These include: cross-modal linear

regression (LinReg, [Dinu et al., 2015]), non-linear regression (NLinReg, [Lazaridou

1Code and datasets kept at http://bit.ly/2cI64Zf
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(a) Top: ‘Military’+‘Plane’ (Gaussian), Middle:
‘Passenger’+‘Plane’ (Gaussian), Bottom: ‘Passen-
ger’+’Plane’ (Vector)

(b) Top: ‘White’+‘Horse’ (Gaussian), Middle:
‘Black’+‘Horse’ (Gaussian), Bottom: ‘Black’+’Horse’
(Vector)

Figure 3.3: Qualitative visualisation of zero-shot query with context words.

Vector space models Ours
Dataset LinReg NLinReg CME ES-ZSL Gaussian
AWA 44.0 48.4 43.1 58.2 65.4

Table 3.1: Zero-shot recognition results on AWA (% accuracy).

et al., 2014, Socher et al., 2013a]), ES-ZSL [Romera-Paredes and Torr, 2015], and a

max-margin cross-modal energy function method (CME, Akata et al. [2013], Frome

et al. [2013a]). Note that the CME strategy is the most closely related to ours in that

it also trains a dx × dw matrix with max-margin loss, but uses it in a bilinear energy

function with vectors E(x, y) = xTAy; while our energy function operates on Gaussians.

3.4.2 Results

Table 3.1 compares our results on the AWA benchmark against alternatives using the

same visual features, and word vectors trained on the same corpus. We observe that: (i)

Our Gaussian-embedding obtains the best performance overall. (ii) Our method out-

performs CME which shares an objective function and optimisation strategy with ours,

but operates on vectors rather than Gaussians. This suggests that our new distribution

rather than vector-embedding does indeed bring significant benefit.

A comparison to published results obtained by other studies on the same ZSL splits

is given in Table 3.2, where we see that our results are competitive despite exploita-

tion of supervised embeddings such as attributes [Fu et al., 2014], or combinations of

embeddings [Akata et al., 2013] by other methods.

We next demonstrate our approach qualitatively by means of the contextual query

idea introduced in Sec 3.3.7. Fig. 3.3 shows examples of how the top retrieved images

differ intuitively when querying ImageNet for zero-shot categories ‘plane’ and ‘horse’

with different context words. To ease interpretation, we constrain the retrieval to the

true target class, and focus on the effect of the context word. Our learned Gaussian

method retrieves more relevant images than the word-vector sum baseline. E.g., with
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ImageNet
ConSE [Norouzi et al., 2014] 28.5%
DeVISE [Frome et al., 2013a] 31.8%
Large Scale Metric. [Mensink et al., 2012] 35.7%
Semantic Manifold. [Fu et al., 2015b] 41.0%
Gaussian Embedding 45.7%

AwA
DAP (CNN feat) [Lampert et al., 2009a] 53.2%
ALE [Akata et al., 2013] 43.5%
TMV-BLP [Fu et al., 2014] 47.1%
ES-ZSL [Romera-Paredes and Torr, 2015] 49.3%
Gaussian Embedding 65.4%

Table 3.2: Comparison of our ZSL results with state of the art.

the Gaussian model all of the top-4 retrieved images for Passenger+Plane are relevant,

while only two are relevant with the vector model. Similarly, the retrieved black horses

are more clearly black.

3.4.3 Further Analysis

To provide insight into our contribution, we repeat the analysis of the AWA dataset and

evaluate several variants of our full method. These use our features, and train the same

cross-domain max-margin loss in Eq 3.6, but vary in the energy function and repre-

sentations used. Variants include: (i) Bilinear-WordVec: Max-margin training on word

vector representations of words and images with a bilinear energy function. (ii) Bilinear-

MeanVec: As before, but using our Gaussian means as vector representations in image

and text domains. (iii) PPK-MeanVec: Train the max-margin model with Gaussian

representation and PPK energy function as in our full model, but treat the resulting

means as point estimates for conventional vector-based ZSL matching at testing-time.

(v) PPK-Gaussian: Our full model with Gaussian PPK training and testing by Gaussian

matching.

From the results in Table 3.3, we make the observations: (i) Bilinear-MeanVec out-

performing Bilinear-WordVec shows that cross-modal (Sec 3.3.4) training of word Gaus-

sians learns better point estimates of words than conventional word-vector training, since

these only differ in the choice of vector representation of class names. (ii) PPK-Gaussian

outperforming PPK-MeanVec shows that having a model of intra-class variability (as

provided by the word-Gaussians) allows better zero-shot recognition, since these differ

only in whether covariance is used at testing time.

3.4.4 Discussion

Existing visual semantic methods model texts and images as vectors in the semantic

space. As pointed out , the popular DSM based word embeddings severely lack rep-

resentation capability. In this work, we explore the case where images and texts are
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AwA
Bilinear-WordVec 43.1%
Bilinear-MeanVec 52.2%
PPK-MeanVec 52.6%
PPK-Gaussian 65.4%

Table 3.3: Impact of training and testing with distribution rather than vector-based
representations

represented as distributions. Our visual-linguistic mapping is able to learn cross-domain

mapping by aligning language domain Gaussian concepts to visual-domain Gaussian

concepts.

Our approach models intra-class variability in both images and text. For example,

the variability in visual appearance of military versus passenger planes, and the vari-

ability in context according to whether the word ’plane’ is being used in a military

or civilian sense. Given distribution-based representations in each domain, we find a

cross-modal map that warps the two distributions into alignment.

Concurrently with our work, [Ren et al., 2016] present a related study on distribution-

based visual-text embeddings. Methodologically, they benefit from end-to-end learning

of deep features as well as cross-modal mapping, but they only discriminatively train

word covariances, rather than jointly training both means and covariances as we do.

With regards to efficiency, our model is fast to train if fixing pre-trained word-

Gaussians and optimising only the cross-modal mapping A. However, training the

mapping jointly with the word-Gaussians comes at the cost of updating the represen-

tations of all words in the dictionary, and is thus much slower.

In terms of future work, an immediate improvement would be to generalise our

Gaussian embeddings to model concepts as mixtures of Gaussians or other exponential

family distributions [Rudolph et al., 2016, Chen et al., 2015]. This would for example,

allow polysemy to be represented more cleanly as a mixture, rather than as a wide-

covariance Gaussian as happens now. We would also like to explore distribution-based

embeddings of sentences/paragraphs for class description (rather than class name) based

zero-shot recognition [Reed et al., 2016]. Finally, besides end-to-end deep learning of

visual features, going beyond our linear mapping A, and training non-linear cross-modal

mappings is also of interest.

3.5 Conclusion

In this chapter, we advocate using distribution-based embeddings of text and images

when bridging the gap between vision and text modalities. Instead of modelling text

and images as vectors as commonly practised, we advocate modeling them as distribu-

tions. We focus on the unique ability of zero-shot learning showing improved results.

Our distribution-based approach provides a representation of intra-class variability that

29



improves zero-shot recognition, allows more meaningful retrieval by multiple keywords,

and also produces better point-estimates of word vectors.

An improvement to the above model would be to model concepts as mixtures of

Gaussians or exponential families [Rudolph et al., 2016, Chen et al., 2015]. Words with

flexible structure will be able to capture subtle word meanings and advance the state

of the art. Distributions are naturally able to represent that words do not have single

precise meanings but are naturally able to capture multiple semantic information. Other

future work will include exploring better and efficient training mechanism, hyperbolic

geometry and optimal transport based models.
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Chapter 4

Unsupervised Pairing of

Multi-modal data

4.1 Introduction

An implicit assumption in modern machine learning algorithms is presence of paired

data. Succesful applications include image captioning [Vinyals et al., 2015, Karpa-

thy and Fei-Fei, 2017], neural machine translation [Bahdanau et al., 2014] and end-to-

end speech recognition [Graves and Jaitly, 2014]. Most algorithms require similarity

measures between domains or association between domains. If such an information is

provided, one can obtain a mapping function from one domain to another. However

providing such annotations and correspondence can be quite expensive and proves to

be a bottleneck in developing truly intelligent agents. In this chapter we introduce

methodologies to learn cross-modal mappings from unpaired data.

The classical method to study paired samples has been dominated by Canonical

Correlation Analysis (CCA) [Hotelling, 1936b], a classical yet powerful tool. CCA links

two sources by maximizing the correlation between the sources or the views. CCA

has been studied and generalized to add regularization [Mardia et al., 1979], kernelized

[Lai and Fyfe, 2000, Schölkopf et al., 1999]. With the excitement around deep learning,

Deep CCA has been developed [Andrew et al., 2013] and showed promise in multi-modal

applications [Wang et al., 2015, Zeng et al., 2018].

While CCA and its variants have enjoyed success, they require access to paired

samples or representations in the respective domains. Recently, work has emerged

which studies mapping these domains in an unsupervised way. They have been applied

in learning domain mapping [Hoshen, 2018], image to image translation [Kim et al.,

2017, Zhu et al., 2017] and bilingual lexicon induction [Conneau et al., 2017b, Haghighi

et al., 2008].

In this chapter, we introduce some background material explaining prior unsuper-

vised matching algorithms, and providing some background methodology that we will
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exploit later. We start by studying CCA and its unsupervised variant of Matching CCA

[Haghighi et al., 2008]. This will be useful in studying bilingual lexicon induction which

we will focus in Chapter 5. and unsupervised matching of images and text which will

be a focal point in Chapter 6.

4.2 Canonical Correlation Analysis

Canonical Correlation Analysis is a classical method for dimensionality reduction for two

paired data sources which finds a subspace that maximizes the correlation between the

data sources. Let dataset D contain two sets of vectors from two sources D = {xi,yi}ni=1

where x ∈ Rd1 and y ∈ Rd2. Both the datasets are assumed to be centered which can

be achieved by subtracting the sample mean from each sample. CCA finds two bases

wx and wy such that their correlation is maximized as

max
(wx,wy)

wT
xCXY wy√

wT
xCXXwx

√
wT
y CY Y wy

(4.1)

where CXX ,CY Y and CXY are the covariance matrices respectively. The algorithm

for obtaining these transformations is summarized in the following steps

Algorithm 3 CCA-Projection

INPUT: X = [x1, ...,xn] ∈ Rd1 and Y = [y1, ...,yn] ∈ Rd2 with
E[X] = E[Y ] = 0 , dimension m ≤ min(d1, d2)
OUTPUT : CCA projection wx ∈ Rd1×m and wy ∈ Rd2×m

1: Calculate covariance matrices CXX =
∑
i xix

T
i = 1

nxxT CY Y =
∑
i yiy

T
i = 1

nyyT

and CXY =
∑
i xiy

T
i = 1

nxyT

2: Ω← C
− 1

2

XXCXY C
− 1

2

Y Y

3: [UΣV T ] = SV D(Ω)

4: Return wx = C
−1/2
XX [u1, .., um] and wy = C

−1/2
Y Y [v1, .., vm]

Cross-modal retrieval aims to flexibly retrieve objects across unfamiliar heteroge-

neous modalities. When two modalities have a natural correspondence, the cross-modal

retrieval reduces to a classical retrieval problem. CCA aims to bridge the gap by max-

imising the pairwise correlations between two sets of heterogenous data. Under this

approach, CCA learns two linear projections wx and wy

wx : X→ ZX

and

wy : Y→ ZY

to map X and Y onto ZX and ZY respectively. The resulting intermediate subspace

is a compact, efficient representation of both modalities that possess a natural corre-

spondence. During cross-modal retrieval, one can project a text query Tq ∈ RT or
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image query Iq ∈ RI with a projection. With an appropriate choice of distance func-

tion d(ZX , ZY ) one can now flexibly retrieve and match by simple nearest neighbour

calculation.

4.3 From supervised pairing to unsupervised pairing

The CCA algorithm is predicated on the assumption of paired training data. However,

many real-world scenarios of high economic impact arise where no correspondence or

alignment is provided [Haghighi et al., 2008, Kim et al., 2017]. To adapt CCA in an unsu-

pervised setting, [Haghighi et al., 2008] proposed Matching CCA. The goal of Matching

CCA is twofold (i)To compute the shared subspace as per regular CCA (ii)To compute

the unknown correspondence between instances in the two views, which is assumed given

in regular CCA. Since these two quantities are independent, Matching CCA resorts to

coordinate-descent alternating optimisation stratergy. It iterates between solving for

the best correspondence, assuming a given subspace using the Munkres algorithm and

finding the best subspace, assuming a given correspondence, using vanilla CCA as a

subroutine.

Similar to CCA, Matching CCA assumes a dataset D containing two sets of unpaired

vectors from two sources D = ({xi}ni=1, {yj}nj=1) where x ∈ Rd1 y ∈ Rd2 . The mapping

is based on the assumption that the correct matching is the one that best captures the

correlation between the two sets. Formally we can state the problem as

max
wx,wy,π

corr(Xwx,Yπwy)

where wx and wy are linear projections similar to supervised CCA and π is a permutation

function over {1 · · ·n}. Algorithm 4 describes the procedure in brief.

Algorithm 4 Matching CCA

1: Repeat
2: //E-step
3: π ←MUNKRESπ∈Π(wxX,wyYπ)
4: //M-step
5: wx,wy = CCA(X,Yπ)
6: until convergence
7: Return wx,wy, π

4.4 Cross Domain Object Matching

The task of cross domain object matching (CDOM) is to determine correspondence

between sets of objects such as mapping of cross lingual word embeddings, point clouds

etc. CDOM is formulated as finding a correspondence between pair of objects between

different domains. The goal of CDOM can be written as follows : Given two sets of
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samples {xi}n1=1 and {yi}ni=1, find a mapping that matches them well. Thats is, we

would like to find a correspondence function π ∈ Π

Π ∈ {0, 1}n×n,Π1n = 1n,Π
T1n = 1n

where 1n is the n dimensional vector of all ones. We seek to find a permutation

Z(Π) = {(xi, yπ(i))}

The optimal permutation matrix Π∗ is obtained by maximizing the dependence

criterion between the two sets of objects {xi}ni=1 and {yi}ni=1 :

Π∗ = arg max
Π

D(Z(Π))

In this thesis we are concerned with D which maximizes the dependency between

the two sets of variables. In particular, we will look at Kernel Target Alignment (KTA)

[Cristianini et al., 2002] and Squared Mutual Information (SMI) [Yamada et al., 2015]

which we cover in the following section.

4.5 Dependence Estimation

In Section 4.3, we briefly highlighted how CCA can be adapted towards learning when

data is unpaired. While Matching CCA shows a promising direction, it is highly limited

as it works with only linear dependence. In this thesis we explore more general statistical

dependency measure statistical dependency approaches to matching. To extend CCA

with non-linear dependence, non-linear extensions have been proposed. Initially based

on neural networks [Hsieh, 2000], using kernel methods [Bach and Jordan, 2001] has

become a promising approach for extracting complex non-linear relationships. In this

thesis, we explore the use of two alternatives , the unnormalized kernel-target alignment

[Cristianini et al., 2002] and squared-loss mutual information (SMI) [Yamada et al.,

2015].

Unnormalized Kernel Target Alignment (uKTA) measures the similarity be-

tween two kernel functions. The similarity function is given by

uKTA({(xi,yi)}ni=1) = tr (KL) ,

where tr(.) is the trace operator, K and L are the Gram matrices for x and y

respectively. This similarity function takes large value if the Gram matrices K and L

are similar, and a small value if they are not similar. Note that, in the original KTA,
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we have the normalization term. However, this makes the optimization hard, and thus

we employ the unnormalized variant of KTA. Moreover, uKTA can be regarded as a

non-centered variant of HSIC [Gretton et al., 2005].

Kernelized Sorting with Kernel Target Alignment Kernelized sorting [Quadrianto

et al., 2009] refers to the problem of finding correspondence across two different domains

by maximizing the dependency measure. Specifically we look at unnormalized kernel

target alignment [Cristianini et al., 2002]. KS-uKTA is formulated as

max
Π

uKTA(Z(Π)) (4.2)

where

uKTA(Z(Π)) = tr
(
KΠTLΠ

)
(4.3)

The solution of Eq 4.3 requires solving a quadratic assignment problem which is

known to be NP-hard. Existing quadratic solvers are not practical as they have multiple

tuning parameters.

An alternative to solve Eq 4.3 is based on linear assignment problem (LAP). [Quadrianto

et al., 2009] proposed to use LAP while solving the KS-HSIC formulation.

Optimization Optimizing Eq 4.3 requires minimizing a lower bound. Since the

equation is convex in Π (Lemma 7 of [Quadrianto et al., 2009]), we minimize the lower

bound using convex concave procedure (CCCP) [Yuille and Rangarajan, 2002]. The

CCCP procedure involves minimizing the difference of two functions f(x) = g(x)−h(x)

where g is a convex function and h is a concave function. A lower bound of f is estimated

by

f(x) ≥ g(x0) + 〈x− x0, ∂xg(x0)〉 − h(x)

For a value Π̂ we rewrite the function g as

g(Π̂) = tr(KΠ̂TLΠ̂)

Invoking ∂Atr(ABATC) = CAB+CTABT , we know that ∂ΠtrKΠTLΠ = KΠL+

KTΠLT

By rearranging the values, we find the lower bound as

f(Π) ≥ tr(KΠ̂TLΠ̂) + 〈Π− Π̂, ∂ΠtrKΠTLΠ〉
= tr(KΠ̂TLΠ̂) + 〈Π− Π̂, 2tr(KΠ̂L)〉
= tr(KΠ̂TLΠ̂) + tr(KΠ̂(Π− Π̂)TL)

f(Π) ≥ tr(KΠTLΠ̂)
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To update the permutation matrices, a line search method is adopted which is used

to yield successive permutation matrices [Quadrianto et al., 2009]

Πnew = (1− η)Πold + η arg max
Π

tr(KΠLΠold) (4.4)

where η is the step size. The second term in Eq 4.4 is the well known linear assign-

ment problem (LAP) which can be solved by the Hungarian algorithm [Kuhn and Yaw,

1955].

The success of the iterative procedure to obtain an optimal solution is dependent on

the choice of initial conditions. [Quadrianto et al., 2009] proposed to sort the elements

of the kernel matrices K and L i.e matching can be achieved by sorting the elements x

and y. However in practise the kernels need to be of rank 1 which is difficult to achieve.

To alleviate this situation, [Quadrianto et al., 2009] suggested to use the principal eigen

vectors to match the initial kernel matrices.

The uKTA offers the advantage of being distribution-free but is sensitive to the

choice of the kernel. [Yamada and Sugiyama, 2011] suggests using a Gaussian kernel

with the width set to the median distance between the samples.

Now that we introduced the u-KTA based cross-modal matching, we look at kernel-

ized sorting based on SMI.

Squared Mutual Information Mutual information (MI) represents the statistical

independence between two random variables [Cover and Thomas, 2006, Shannon, 2001]

is used in a plethora of machine learning applications and has recently found its way in

deep learning [Zhao et al., 2017, Belghazi et al., 2018]. The mutual information between

two random variables X and Y

MI(X,Y) =

∫∫
p(x,y) log

p(x,y)

p(x)p(y)
dxdy,

where p(x,y) is the joint probability distribution of X and Y, and p(x) and p(y)

are the marginal probabilities of X and Y respectively.

Estimation of mutual information from data challenges has been proven to be no-

toriously hard. Nonparametric density estimation tools like kernel density estimation

(KDE) [Fraser and Swinney, 1986] or histogram based approaches have been applied

[Darbellay and Vajda, 1999], however these methods strongly are influenced by the curse

of dimensionality and could be unreliable in higher dimensions.

Approximation of MI via estimation of the density ratio p(x,y)
p(x)p(y) has recently been

proposed [Suzuki et al., 2008] which is based on the KL-divergence approximation via

direct density-ratio estimation [Sugiyama et al., 2008, Nguyen et al., 2008, Sugiyama

et al., 2012]. An advantage of this method is that it does not involve estimating of the

joint distribution p(x, y) or the marginals p(x) and p(y). However the presence of a

log-term is rather computationally expensive.

To bypass these problems, a variant of MI called Squared mutual information (SMI)
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has been proposed. SMI between two random variables is defined as [Suzuki and

Sugiyama, 2010]

SMI =

∫∫ (
p(x,y)

p(x)p(y)
− 1

)2

p(x)p(y)dxdy,

which is the Pearson divergence [Pearson, 1900] from p(x,y) to p(x)p(y). The SMI

is an f -divergence [Ali and Silvey, 1966] i.e it is a non-negative measure and is zero

only if the random variables are independent. The SMI is more attractive to use than

MI as (i) It can be shown to hold optimal non-parametric convergence rates [Sugiyama

et al., 2012] (ii) the SMI can be estimated by solving a set of linear equations (iii)

The SMI estimator is also known to be robust against outliers [Sugiyama et al., 2012].

Estimation of SMI To estimate SMI, a direct density ratio estimation approach is

useful. The key idea is to approximate the true density ratio

r(x,y) =
p(x,y)

p(x)p(y)

without estimating the densities p(x,y), p(x) and p(y).

In LSMI, the ratio r(x,y) is directly modeled by the linear model:

r(x,y;α) =

n∑
`=1

α`K(x`,x)L(y`,y),

where α = [α1, . . . , αn]> ∈ Rn is the model parameter, n is the number of basis func-

tions.

Then, the model parameter is given by minimizing the error between true density-

ratio and its model:

J(α) =

∫∫ (
p(x,y)

p(x)p(y)
− r(x,y;α)

)2

p(x)p(y)dxdy.

By approximating the loss function by samples, the parameter α is learned by solving

the following optimization problem [Suzuki and Sugiyama, 2010]

min
α

[
1

2
α>Ĥα−α>ĥ+

λ

2
||α||2

]
(4.5)

where

Ĥ =
1

n2
(KK>) ◦ (LL>), ĥ =

1

n
(K ◦L)1n,

λ ≥ 0 is a regularization parameter and ◦ is the elementwise product and 1n is the
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n-dimensional vector whose element are all ones. Differentiating Eq 4.5 with respect to

α and equating it to zero, we obtain an optimal solution

α̂ =
(
Ĥ + λIn

)−1

ĥ,

where In is the n× n dimensional identity matrix. Then, the estimator of SMI can be

given by [Yamada et al., 2015, Yamada and Sugiyama, 2011]

ŜMI({(xi,yi)}ni=1) =
1

2n
tr (diag (α̂)KL)− 1

2
, (4.6)

where diag (α) ∈ Rn×n is the diagonal matrix whose diagonal elements are α. We can

see that uKTA is a special case of SMI. Specifically, if we set α̂ = 1n, SMI boils down

to uKTA.

Kernelized sorting with SMI The objective of kernelized sorting is to find a

mapping between two sets of samples {xi}ni=1 and {yi}ni=1 so that they can be matched.

Let π be the permutation function over {1, .., n} and let Π be the permutation matrix

indicator matrix i.e

Π ∈ {0, 1}n×n Π1n = 1n and Π1Tn = 1n

The optimal permutation is obtained by maximizing the dependency measure SMI

between the two sets X and Y Π given by

ŜMI({(X,Y Π)}) =
1

2n
tr
(
diag (αΠ)KΠTLΠ

)
− 1

2
, (4.7)

and the permutation is given by

Π∗ = arg max
Π

SMI(X,Y Π) (4.8)

We summarize the steps in Algorithm 5

Algorithm 5 Algorithm for optimizing Π

1: Initialize Π using eigenvalue based initialization
2: //Dependence Estimation i.e obtain an SMI estimator given Π

3: ŜMI({(xi,yπ(i))}ni=1) = 1
2n tr

(
diag (α̂π)KΠTLΠ

)
− 1

2
4: //Dependence Maximization i.e Obtain a permutation matrix alignment Π

given ŜMI
5: Π∗ = arg maxΠ ŜMI(X,Y Π)
6: Alternate between Step 3 and Step 5
7: Return Π

Similar to kernelized sorting with uKTA, we adopt a line search procedure to update

the permutation matrix as
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Πnew = (1− η)Πold + η arg max
Π

tr(ΠTLΠoldαΠK) (4.9)

The second term in Eq 4.9 is a linear assignment problem which can be solved using

the Hungarian method.

4.6 Optimal Transport

In Sec 4.5, we discussed KTA and SMI which uses the Hungarian algorithm [Kuhn and

Yaw, 1955] to search for the best cross-modal pairing. In this section, we introduce an

alternative in the form of Sinkhorn algorithm, which is underpinned by the notion of

Optimal Transport.

Optimal Transport (OT) plays a natural role spanning across multiple problems in

machine learning problems in realizing correspondence between sets which could exist

between words or across objects in different images. OT poses the problem of finding a

correspondence between two probability masses by elegantly formulating as finding the

transportation matrix which minimizes distance between the probability masses.

Consider two sets of embeddings, X = {xi}ni=1 and Y = {yj}mj=1 where xi ∈ Rdx and

yj ∈ Rdy are the source and target respectively. Specifically we assume two empirical

distributions over these embeddings:

µ =

n∑
i=1

piδxi ν =

m∑
j=1

qjδyj (4.10)

where p and q are probability weight vectors for each point usually set to uniform

i.e pi = 1/n and qj = 1/m. and δxi and δyj is the dirac at point xi and yj , inuitively

representing a unit of mass concentred at the locations. We seek to find a transportation

map T realizing

inf
T

{∫
X
c(x, T (x))dµ(x)|T#µ = ν

}
(4.11)

where the cost matrix c(x, T (x)) contains the cost of transport x and T#µ = ν

usually called push forward operator [Peyré and Cuturi, 2019] maps the source points

to the target. While the existance of such a map maybe non-existant, a commonly

used practise is to relax to Kantorovich’s formulation [Peyré and Cuturi, 2019, Alvarez-

Melis and Jaakkola, 2018]. Kantorovich’s formulation seeks to minimize the set of

transportation plans which is a polytope:

Π(p, q) = {π ∈ Rn×m|π1n = p, πT1m = q} (4.12)

The set of all cost matrices is denoted by C ∈ Rn×m i.e Cij = ||xi−yj ||2. The total

cost incurred by π is 〈π,C〉 =
∑
ij πijCij . Thus the discrete optimal transport consists

of finding a plan π that solves
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min
π∈Π(p,q)

〈π,C〉 (4.13)

Eq 4.13 is a linear problem that can be solved by interior point methods in cubic

time complexity [Peyré and Cuturi, 2019, Alvarez-Melis and Jaakkola, 2018]. More

recently [Cuturi, 2013] proposed adding a entropic regularization term which yields an

efficient optimization and often better empirical results.

min
π∈Π(p,q)

〈π,C〉 − λH(π) (4.14)

The solution of Eq 4.14 has the form π∗ = diag(a) K diag(b) where K called the

Gibbs kernel is associated to the cost matrix C with K = exp−
C
λ and can be obtained

efficiently via the Sinkhorn-Knopp procedure, a matrix scaling procedure [Nemirovski

and Rothblum, 1999] which iteratively calculates:

a← p�Kb and b← q�KTa (4.15)

where � denotes entry-wise division. Algorithm 6 summaries the steps for obtaining

a transportation matrix.

Algorithm 6 Sinkhorn iterations to learn a transportation matrix

Input: Unpaired Data {Xi}, {Yi}. Params: λ, probability vectors p and q

1: //Compute cost matrix Cij = ||xi − yj ||2
2: a← 1 K← exp{−C/λ}
3: while not converged
4: //Sinkhorn iterations of Eq 4.15
5: a← p�Kb,b← q�KTa
6: π ← diag(a) K diag(b)
7: end while
8: Output: Transportation Matrix π.

4.7 Conclusions

In this chapter we introduced prior work on supervised and unsupervised pairing. We

first introduced the classic CCA algorithm which assumes paired training data. We

then introduced matching CCA, which extends CCA from supervised to unsupervised

pairing. Finally we introduced SMI and KTA, which provides the objective for more

advanced kernelised sorting style unsupervised pairing. We also introduce the Sinkhorn

Algoritm which will be later used in Chapter 6 to learn a permutation matrix as an

alternative to the standard Hungarian algorithm. However all this work assumes that

the input data representation X and Y are given and fixed. In the following chapters we

investigate joint representation learning (of X and Y ) and unsupervised pairing using

the statistical dependency measures introduced in this chapte and the non-deep version

of Sinkhorn algorithm.
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Chapter 5

Unsupervised Word

Translation without

Adversaries

5.1 Introduction

Translating words between languages, or more generally inferring bilingual dictionar-

ies, is a long-studied research direction with applications including machine translation

[Lample et al., 2017], multilingual word embeddings [Klementiev et al., 2012], and knowl-

edge transfer to low resource languages [Guo et al., 2016]. Research here has a long

history under the guise of decipherment [Knight et al., 2006]. Current contemporary

methods have achieve effective word translation through theme-aligned corpora [Gouws

et al., 2015], or seed dictionaries [Mikolov et al., 2013a].

[Mikolov et al., 2013a] showed that monolingual word embeddings exhibit isomor-

phism across languages, and can be aligned with a simple linear transformation. Given

two sets word vectors learned independently from monolingual corpora, and a dictionary

of seed pairs to learn a linear transformation for alignment; they were able to estimate

a complete bilingual lexicon. Many studies have since followed this approach, proposing

various improvements such as orthogonal mappings [Artetxe et al., 2016] and improved

objectives [Lazaridou et al., 2015b].

Obtaining aligned corpora or bilingual seed dictionaries is nevertheless not straight-

forward for all language pairs. This has motivated a wave of very recent research into

unsupervised word translation: inducing bilingual dictionaries given only monolingual

word embeddings [Conneau et al., 2017b, Zhang et al., 2017b,a, Artetxe et al., 2017].

The most successful have leveraged ideas from Generative Adversarial Networks (GANs)

[Goodfellow et al., 2014]. In this approach the generator provides the cross-modal map-

ping, taking embeddings of dictionary words in one language and ‘generating’ their

translation in another. The discriminator tries to distinguish between this ‘fake’ set

41



of translations and the true dictionary of embeddings in the target language. The two

play a competitive game, and if the generator learns to fool the discriminator, then

its cross-modal mapping should be capable of inducing a complete dictionary, as per

[Mikolov et al., 2013a].

Despite these successes, such adversarial methods have a number of well-known

drawbacks [Arjovsky et al., 2017]: Due to the nature of their min-max game, adversarial

training is very unstable, and they are prone to divergence. It is extremely hyper-

parameter sensitive, requiring problem-specific tuning. Convergence is also hard to

diagnose and does not correspond well to efficacy of the generator in downstream tasks

[Hoshen and Wolf, 2018c].

In this chapter, we propose an alternative statistical dependency-based approach to

unsupervised word translation. Specifically, we propose to search for the cross-lingual

word pairing that maximizes statistical dependency in terms of squared loss mutual

information (SMI) [Yamada et al., 2015, Suzuki and Sugiyama, 2010]. Compared to prior

statistical dependency-based approaches such as Kernelized Sorting (KS) [Quadrianto

et al., 2009] we advance: (i) through use of SMI rather than their Hilbert Schmidt

Independence Criterion (HSIC) and (ii) through jointly optimising cross-modal pairing

with representation learning within each view. In contrast to prior work that uses a fixed

representation, by non-linearly projecting monolingual world vectors before matching,

we learn a new embedding where statistical dependency is easier to establish. Our

method: (i) achieves similar unsupervised translation performance to recent adversarial

methods, while being significantly easier to train and (ii) clearly outperforms prior non-

adversarial methods.

5.2 Proposed model

5.2.1 Deep Distribution Matching

Let dataset D contain two sets of unpaired monolingual word embeddings from two

languages D = ({xi}ni=1, {yj}nj=1) where x,y ∈ Rd. Let π be a permutation func-

tion over {1, 2, . . . , n}, and Π the corresponding permutation indicator matrix: Π ∈
{0, 1}n×n,Π1n = 1n, and Π>1n = 1n. where 1n is the n-dimensional vector with all

ones. We aim to optimize for both the permutation Π (bilingual dictionary), and non-

linear transformations gx(·) and gy(·) of the respective wordvectors, that maximize

statistical dependency between the views. While regularising by requiring the original

word embedding information is preserved through reconstruction using decoders fx(·)
and fy(·). Our overall loss function is:

42



min
Θx,Θy,Π

Ω(D; Θx,Θy)︸ ︷︷ ︸
Regularizer

−λDΠ(D; Θx,Θy)︸ ︷︷ ︸
Dependency

,

DΠ(D; Θx,Θy) = DΠ({gx(xi), gy(yπ(i))}ni=1),

Ω(D; Θx,Θy) =

n∑
i=1

xi − fx(gx(xi))
2
2

+ yi − fy(gy(yi))
2
2

+R(Θx) +R(Θy).

(5.1)

where Θs parameterize the encoding and reconstruction transformations, R(·) is a reg-

ularizer (e.g., `2-norm and `1-norm), and DΠ(·, ·) is a statistical dependency measure.

Crucially compared to prior methods such as matching CCA [Haghighi et al., 2008], de-

pendency measures such as SMI do not need comparable representations to get started,

making the bootstrapping problem less severe.

5.2.2 Dependence Estimation

Dependence estimation is a fundermental property to study the relation between two

random variables in staitstics. Familiar examples of dependent phenomenon are cor-

relation between the height of parents and offsprings, correlation between the price of

goods and supply of product.

As discussed in Chapter 4, mutual information is a popular mechanism to study the

independence of two random variables. Our focus in this thesis and specifically in this

chapter is Squared-Loss Mutual Information (SMI). SMI between two random variables

x and y is defined as [Suzuki and Sugiyama, 2010]:

SMI =

∫∫ (
p(x,y)

p(x)p(y)
− 1

)2

p(x)p(y)dxdy,

which is the Pearson divergence [Pearson, 1900] from p(x,y) to p(x)p(y). The SMI is

an f -divergence [Ali and Silvey, 1966]. That is, it is a non-negative measure and is zero

only if the random variables are independent.

5.2.3 Optimization of parameters

To initialize Θx and Θy, we first independently estimate them using autoencoders.

Then we employ an alternative optimization on Eq. 5.1 for (Θx,Θy) and Π until

convergence. We use 3 layer MLP neural networks for both f and g. Algorithm 7

summarises the steps.
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Algorithm 7 SMI-based unsupervised word translation

Input: Unpaired word embeddings D = ({xi}ni=1, {yj}nj=1).

1: Init: weights Θx, Θy, permutation matrix Π.
2: while not converged
3: Update Θx,Θy given Π: Backprop Eq (5.2).
4: Update Π given Θx,Θy: LSOM Eq (5.3).
5: Output: Permutation Matrix Π. Params Θx, Θy.

Optimization for Θx and Θy With fixed permutation matrix Π (or π), the objec-

tive function

min
Θx,Θy

Ω(D; Θx,Θy)− λDΠ(D; Θx,Θy) (5.2)

is an autoencoder optimization with regularizer DΠ(·), and can be solved with back-

propagation.

Optimization for Π To find the permutation (word matching) Π that maximizes

SMI given fixed encoding parameters Θx,Θy, we only need to optimize the dependency

term DΠ in Eq. 5.1. We employ the LSOM algorithm [Yamada et al., 2015]. The

estimator of SMI for samples {gx(xi), gy(yπ(i))}ni=1 encoded with gx, gy is:

ŜMI =
1

2n
tr
(
diag (α̂Θ,Π)KΘxΠ>LΘyΠ

)
− 1

2
.

Which leads to the optimization problem:

max
Π∈{0,1}n×n

tr
(
diag (α̂Θ,Π)KΘxΠ>LΘyΠ

)
s.t. Π1n = 1n,Π

>1n = 1n. (5.3)

Since the optimization problem is NP-hard, we iteratively solve the relaxed problem

[Yamada et al., 2015]:

Πnew = (1− η)Πold + η arg max
Π

tr
(
diag (α̂Θ,Π)KΘxΠ>LΘyΠold

)
where 0 < η ≤ 1 is a step size. The optimization problem is a linear assignment problem

(LAP). Thus, we can efficiently solve the algorithm by using the Hungarian method

Kuhn [1955]. To get discrete Π, we solve the last step by setting η = 1. Intuitively, this

can be seen as searching for the permutation Π for which the data in the two (initially

unsorted views) have a matching within-view affinity (gram) matrix, where matching is

defined by maximum SMI.
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5.2.4 Cross-Domain Similarity Local Scaling (CSLS)

Most existing cross-lingual systems view translation as a retrieval of the nearest neigh-

bors from source word embeddings in a shared common embedding space based on

cosine similarity. However in higher dimensions, a common problem is encountered

known as the hubness problem [Radovanovic et al., 2009, 2010] i.e in higher dimensions

a phenomenon is observed that an object is the nearest neighbour of multiple objects

while other objects dubbed antihub are not nearest neighbors to any object. [Lazaridou

et al., 2015a] proposed to use a corrected neighbour retrieval method to mitigate hub-

ness. [Smith et al., 2017] propose a similar strategy by inverting the softmax for finding

the translation of target words rather than source words [Ruder, 2017]. In this work,

we adopt the Cross-domain Similarity Local Scaling (CSLS) [Conneau et al., 2017b].

Given two embeddings x and y, CSLS can be computed by

CSLS(x, y) = 2cos(x,y)− 1

k

∑
y′∈NY (x)

cos(x,y′)− 1

k

∑
x′∈NX(y)

cos(x′,y)) (5.4)

where NY (x) is the set of k nearest neighbors of the point x in the set of target word

vectors y and cos is the cosine similarity.

Once we obtain the parameters Θx, Θy and Π from Algorithm 7 we revise the CSLS

score as

CSLS(Θxx,Θyy) = 2 cos(Θxx,Θyy)− rt(Θxx)− rs(Θyy) (5.5)

where rt is the mean cosine similarity of a target word to its neighbourhood defined

as rt(Θxx) = 1
k

∑
y′∈NY (Θxx) cos(Θxx,y

′)

5.2.5 Regression based bilingual mapping

We start with our dataset D = ({xi}ni=1, {yj}nj=1) where x,y ∈ Rd. A linear regression

[Montgomery et al., 2006] model learns a linear mapping W ∈ Rd×d between the word

vectors that minimizes the discrepancy between mapped word vectors of the source

language and word vector language:

min
W∈Rd×d

1

n

n∑
i=1

`(Wxi,yi) (5.6)

where ` is the commonly used square loss i.e `2(x,y) = ||x− y||2
By plugging this W in the CSLS objective Eq 5.4 where cos(Wxi,yi) = xTi W

Tyi

we can rewrite the new objective as
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MUSE Dataset BLI Datasets
Methods es-en en-es it-en en-it zh-en en-zh es-en en-es it-en en-it zh-en en-zh

TM Mikolov et al. [2013a] 5.6 4.8 5.2 4.8 2.6 1.8 3.2 2.9 4.6 4.2 3.2 2.0
CCA Faruqui and Dyer [2014] 6.1 5.6 5.8 5.2 3.1 2.3 5.3 5.0 4.6 4.1 3.2 2.9
MCCA Haghighi et al. [2008] 5.7 5.1 5.4 4.8 3.0 2.2 2.9 2.5 4.2 4.1 2.8 1.9
KS Quadrianto et al. [2009] 8.3 7.4 6.3 5.7 4.8 3.2 9.6 8.9 8.2 7.3 3.7 3.5

Self-Training Artetxe et al. [2017] 12.4 12.2 10.7 10.2 5.8 5.6 15.8 14.5 13.7 12.7 14.8 13.4
EMDOT Zhang et al. [2017b] 72.4 71.8 72.8 72.6 32.8 31.7 29.3 31.2 25.6 28.4 24.2 27.8
W-GAN Zhang et al. [2017b] 78.2 77.4 75.3 74.8 38.6 37.5 23.4 26.7 24.0 25.3 21.2 22.8

GAN-NN Conneau et al. [2017b] 69.8 71.3 72.1 71.5 41.3 40.2 21.4 24.3 22.7 23.2 21.3 21.8
Deep-SMI (Ours) 75.9 80.6 75.7 75.2 38.5 38.1 27.3 28.2 25.7 26.4 22.5 22.3
Deep-SMI-CSLS 79.2 84.5 78.8 78.5 43.7 42.8 28.6 29.3 26.7 28.2 23.2 24.7

Table 5.1: Unsupervised word translation on MUSE and BLI datasets. Pre-
cision @ 1 metric. Top group: Conventional methods. Middle group:
Adversarial methods. Bottom group: Our methods. Language codes
zh=Chinese,en=English,es=Spanish,it=Italian

MUSE Dataset BLI Datasets
Methods es-en en-es it-en en-it zh-en en-zh es-en en-es it-en en-it zh-en en-zh

TM Mikolov et al. [2013a] 32.6 30.1 34.3 33.6 32.4 31.2 28.2 32.1 29.2 32.1 28.5 27.4
CCA Faruqui and Dyer [2014] 27.3 27.1 25.4 24.2 23.1 20.2 25.8 28.3 24.3 25.1 19.2 22.8
MCCA Haghighi et al. [2008] 26.3 25.8 22.7 21.3 24.5 23.8 24.2 26.1 17.6 19.2 18.4 21.6
KS Quadrianto et al. [2009] 34.5 32.6 35.2 33.8 34.3 33.2 27.5 29.1 34.3 32.1 20.0 23.2

Self-Training Artetxe et al. [2017] 35.8 31.4 36.0 34.6 34.3 33.0 27.8 29.8 39.7 33.8 23.6 21.4
EMDOT Zhang et al. [2017b] 78.2 76.3 75.0 74.6 33.2 32.0 30.2 28.4 31.7 30.3 29.3 28.7
W-GAN Zhang et al. [2017b] 81.2 80.5 77.2 75.1 39.0 38.2 28.6 27.9 33.7 29.5 36.7 34.4

GAN-NN Conneau et al. [2017b] 74.8 72.3 74.3 72.5 43.2 42.7 22.8 26.1 27.9 27.1 24.2 23.6
Deep-SMI (Ours) 80.6 75.9 78.2 76.7 45.7 44.6 38.5 37.6 42.3 38.2 29.2 27.4
Deep-SMI-CSLS 84.5 79.2 79.7 78.7 42.3 44.4 28.6 29.3 26.7 28.2 23.2 24.7

Table 5.2: Semi-supervised word translation on MUSE and BLI using 500 seed pair
initial dictionary. Precision @ 1 metric. Top group: Conventional methods. Middle
group: Adversarial methods. Bottom group: Our methods.

CSLS(Wx,y) = 2 cos(Wx,y)− 1

k

∑
yj∈NY (Wxi)

xiW
Tyj −

1

k

∑
Wxj∈NX(yi)

xjW
Tyi

(5.7)

5.3 Experiments

In this section, we evaluate the efficacy of our proposed method against various state of

the art methods for word translation.

Implementation Details Our autoencoder consists of two layers with dropout and a

tanh non-linearity. The encoding layers consists of 300− 250− 200. We use polynomial

kernel to compute the gram matrices K and L. For all pairs of languages, we fix the

number of training epochs to 20. All the word vectors are `2 unit normalized. For CSLS

we set the number of neighbors to 10. For optimizing Π at each epoch, we set the step

size η = 0.75 and use 20 iterations. For the regularization R(Θ), we use the sum of

the Frobenius norms of weight matrices and the regularization parameter λ is 0.75. We

train Θ using full batch gradient-descent, with learning rate 0.05.
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Datasets We performed experiments on the publicly available English-Italian, English-

Spanish and English-Chinese datasets released by [Dinu and Baroni, 2015, Zhang et al.,

2017b, Vulic and Moens, 2013]. We name this collective set of benchmarks BLI. We

also conduct further experiments on a much larger recent public benchmark, MUSE

[Conneau et al., 2017b]1. The words have a vocabulary of 200, 000 and dimensions of

300. The smaller BLI dataset maintains 20, 000 words and dimensions of 50.

Setting and Metrics We evaluate all methods in terms of Precision@1, following

standard practice. We note that while various methods in the literature were initially

presented as fully supervised [Mikolov et al., 2013a], semi-supervised (using a seed

dictionary) [Haghighi et al., 2008], or unsupervised [Zhang et al., 2017b], most of them

can be straightforwardly adapted to run in any of these settings. Therefore we evaluate

all methods both in the unsupervised setting in which we are primarily interested.

These methods are transductive in nature as we allow the test words from the bilingual

dictionary to be a part of the initial monolingual word embedding. Based on prior work

of [Glavaš et al., 2019, Conneau et al., 2017b] dictionaries are created of size 5K if it is

to be used for training and 1.5K to be used for testing. Furthermore smaller dictionaries

of 500 words are maintained to test for semi-supervised examples.

Testing To compare our method to other baselines, we need to fix the monolingual

embeddings and evaluation dictionary. For that reason, we decided to use the monolin-

gual embedding and evaluation dictionary from MUSE [Conneau et al., 2017b]. Once

Alg 7 is run over the embeddings, the returned Π and parameters Θx, Θy are used

to align the monolingual embeddings. The induced embeddings are evaluated with

retrieval methods (standard nearest neighbor and CSLS).

Competitors: Non-Adversarial In terms of competitors that, like us, do not make

use of GANs, we evaluate: Translation Matrix Mikolov et al. [2013a], which alternates

between estimating a linear transformation by least squares and matching by nearest

neighbour (NN). Multilingual Correlation [Faruqui and Dyer, 2014], and Matching

CCA [Haghighi et al., 2008], which alternates between matching and estimating a joint

linear subspace. Kernelized Sorting [Quadrianto et al., 2009], which directly uses

HSIC-based statistical dependency to match heterogeneous data points. Self Training

Artetxe et al. [2017] A recent state of the art method that alternate between estimating

an orthonormal transformation, and NN matching.

Competitors: Adversarial In terms of competitors that do make use of adversar-

ial training, we compare: W-GAN and EMDOT [Zhang et al., 2017b] make use of

adversarial learning using Wasserstein GAN and Earth Movers Distance respectively.

GAN-NN [Conneau et al., 2017b] uses adversarial learning to train an orthogonal

1https://github.com/facebookresearch/MUSE/
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transformation, along with some refinement steps and an improvement to the conven-

tional NN matching procedure called ‘cross-domain similarity local scaling’ (CSLS).

Since this is a distinct step, we also evaluate our method with CSLS.

We use the provided code for GAN-NN and Self-Train, while re-implementing EDOT/W-

GAN to avoid dependency on theano.
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Figure 5.1: Training process of Deep-SMI

5.3.1 Results

Fully Unsupervised Table 5.1 presents comparative results for unsupervised word

translation on BLI and MUSE. From these we observe: (i) Our method (bottom) is con-

sistently and significantly better than non-adversarial alternatives (top). (ii) Compared

to adversarial alternatives Deep-SMI performs comparably.

All methods generally perform better on the MUSE dataset than BLI. These differ-

ences are due to MUSE being a significantly larger dataset than BLI, benefitting meth-

ods that can exploit a large amount of training data. In the ground-truth annotation,

BLI contains 1-1 translations while MUSE contains more realistic 1-many translations

(if any correct translation is picked, a success is counted), making it easier to reach a

higher score. We would like to highlight that generally MUSE dictionaries have certain

entries which allow for 1-N translations. While training, we enforce our permutation

matrix to be 1-1 while during testing we rely on the NN or CSLS for retrieval.

Semi-supervised The first experiment studied fully unsupervised learning. However

it is often the case that at least a small set of frequent words will have known translations.

This leads to a semi-supervised learning scenario where we wish to learn a complete

bilingual dictionary based on a small matched set and a large unmatched set of words.

Results using a 500-word bilingual seed dictionary are presented in Table 5.2.

From these we observe: (i) The conventional methods’ performances (top) jump

up, showing that they are more competitive if at least some sparse data is available.

(ii) Deep-SMI performance also improves, and still outperforms the classic methods

significantly overall. (iii) Again, we perform comparably to the GAN methods.
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MUSE Dataset
Methods CSLS Reconstruction es-en en-es

KTA X - 36.56 29.85
SMI X - 37.80 30.73
SMI X - 40.49 32.26

Deep-KTA X X 68.06 61.48
Deep-KTA X X 71.32 63.70

Deep-SMI X X 57.71 49.63
Deep-SMI X X 63.16 52.59
Deep-SMI X X 75.90 80.62
Deep-SMI X X 79.2 84.5

Table 5.3: Ablation study on MUSE dataset with Shallow and Deep version

5.3.2 Further Experiments

Ablation Study We next perform some ablation studies on the different compo-

nents of the model (CSLS post processing and auto encoder reconstruction loss). Our

experiments on English-Spanish pair on the MUSE dataset are presented in Table 5.3.

From the results we can see that: (i) CSLS makes a quite a consistent improvement in

performance compared to vanilla NN matching across a variety of settings, (ii) Using

the reconstruction loss is very important to make our idea of joint deep presentation

learning and pairing perform well. This is understandable, because without this regu-

lariser in Eq 5.1, statistical dependency can be improved for an arbitrary pairing Π by

learning degenerate representations such as mapping paired words to matching 1-hot

vectors.

Qualitative Analysis Figure 5.1 shows the convergence process of Deep-SMI. From

this we see that: (i) Unlike the adversarial methods, our objective (Eq. (5.1)) improves

smoothly over time, making convergence much easier to assess. (ii) Unlike the adversar-

ial methods, our accuracy generally mirrors the model’s loss. In contrast, the various

losses of the adversarial approaches do not well reflect translation accuracy, making

model selection or early stopping a challenge in itself. Please compare our Figure 5.1

with Fig 3 in [Zhang et al., 2017b], and Fig 2 in [Conneau et al., 2017b].

There are two steps in our optimization: matching permutation Π and represen-

tation weights Θ. Although this is an alternating optimization, it is analogous to an

EM-type algorithm optimizing latent variables (Π) and parameters (Θ). While local

minima are a risk, every optimisation step for either variable reduces our objective

Eq. (5.1). There is no min-max game, so no risk of divergence as in the case of adver-

sarial GAN-type methods.

Our method can also be understood as providing an unsupervised Deep-CCA type

model for relating heterogeneous data across two views. This is in contrast to the re-

cently proposed unsupervised shallow CCA [Hoshen and Wolf, 2018c], and conventional

supervised Deep-CCA [Chang et al., 2018] that requires paired data for training; and
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using SMI rather than correlation as the optimisation objective.

5.4 Discussion

In this chapter we studied the problem of unsupervised word translation. The current

model is inductive i.e test data is not used for training. But it could be studied in a

transductive framework to improve results. Since SSL is generally better than supervised

lower bound, this is expected to work.

Our permutation matrix is assumed to be 1-1 during training but this is a generally

hard and strong constraint and can be relaxed in future work in order for this method

to actually be useful in practice.

5.5 Conclusion

We have presented an effective approach to unsupervised word translation that per-

forms comparably to adversarial approaches while being significantly easier to train

and diagnose; as well as outperforming prior non-adversarial approaches.
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Chapter 6

Unsupervised Learning in

Vision and Language

6.1 Introduction

Learning representations from multi-modal data is a widely relevant problem setting in

many applications of machine learning and pattern recognition. In computer vision it

arises in tagging [Feng et al., 2014, Gong et al., 2013], cross-view [Gong et al., 2014,

Kan et al., 2016] and cross-modal [Ouyang et al., 2016] learning. It is particularly rele-

vant at the border between vision and other modalities, for example audio-visual speech

classification [Ngiam et al., 2011] and describing images and videos [Coyne and Sproat,

2001, Guadarrama et al., 2013, Gupta et al., 2012, Krishnamoorthy et al., 2013, Or-

donez et al., 2011] in the case of audio and text respectively. The wide applicability of

multi-modal representation learning has motivated the study of numerous cross-modal

learning methods including Canonical Correlation Analysis (CCA) [Hardoon et al., 2004,

Hotelling, 1936b] and Kernel CCA [Bach and Jordan, 2003]. Progress has further accel-

erated recently with the contribution of large parallel datasets [Lin et al., 2014b, Young

et al., 2014], which have permitted the application of deep multi-modal models such as

DeepCCA [Andrew et al., 2013] and other two branch deep networks to tasks such as

image-caption matching [Wang et al., 2017] and zero-shot learning [Frome et al., 2013b].

Nevertheless a pervasive limitation of all these methods is that they are fully supervised

methods in the sense that they require paired training data to learn the cross-modal

mapping or embedding space. However, in many applications paired data may be rel-

atively sparse compared to unpaired data, in which case semi-supervised cross-modal

learning methods would be beneficial to exploit the abundant unpaired data. Moreover,

in some cases it may be desirable to learn from pools of data in each modality which

are completely unpaired, necessitating unsupervised cross-modal learning.

In this paper we address the task of cross-modal learning from partially or completely

unpaired data. There have been only a few prior attempts to address inferring pair-
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ings from partially or completely unpaired data. These include Kernelized sorting (KS)

[Djuric et al., 2012, Jebara, 2004, Quadrianto et al., 2009], least-square object match-

ing (LSOM) [Yamada et al., 2015, Yamada and Sugiyama, 2011], and matching CCA

(MCCA) [Haghighi et al., 2008]. However these existing algorithms are all non-deep

approaches and thus may not perform well on challenging complex data where repre-

sentation learning is important, such as images and text. We introduce Deep Matching

Autoencoders (DMAE), which to our knowledge provides the first deep representation

learning approach to unpaired cross-modal learning.

Our DMAE method employs auto-encoders in both data views, which are learned

by minimizing reconstruction error as usual. We further introduce a latent alignment

matrix to model the unknown pairing between views, which we optimize using cross-

modal dependency measures kernel target alignment (KTA) [Cristianini et al., 2002] and

squared-loss mutual information (SMI) [Yamada et al., 2015]. With this framework we

simultaneously learn the autoencoding representation and the cross-view pairing. In this

way the representation is trained to support cross-view matching. During training the

learned representation improves as cross-view matching is progressively disambiguated,

and cross-modal items are paired more accurately as the learned representation pro-

gressively improves.

Our proposed framework elegantly spans the spectrum from fully supervised to fully

unsupervised cross-modal learning. The fully supervised case corresponds to conven-

tional cross-modal learning, where it is an alternative to DeepCCA [Andrew et al.,

2013] or two branch matching nets [Wang et al., 2017], except that we use a statistical

dependency-based rather than correlation or ranking-based loss. More interestingly,

our approach is effective for semi-supervised learning (only subset of pairings available),

and we show that it is able to better exploit unlabeled multi-modal data to improve

performance compared to alternatives such as matching CCA [Haghighi et al., 2008].

Most interestingly, DMAE is effective for semi-supervised cross-modal learning where

partial pairings are given. We demonstrate this capability by introducing and solving a

novel task termed unsupervised classifier learning (UCL).

In the UCL task we assume a pool of unlabelled images are given along with a pool of

category embeddings (e.g., word-vectors) that describe the images in the pool. However

it is unsupervised in that no pairings between images and categories are given. This

task corresponds to an application where we have a pool of images and we have some

idea of the classes likely to be represented in those images; but no specific class-image

pairings. Based on these inputs alone we can train classifiers to recognise the categories

represented in the category embedding pool. Like the classic clustering problem, this

task is unsupervised in that there is no supervisory pairing given. However like the

conventional supervised learning setting, UCL produces classifiers for specific nameable

image categories as an output. This task can be seen as an extreme version of zero-

shot learning [Lampert et al., 2009b, Tsai et al., 2017], where there is no auxiliary set

with image + class embedding pairs available to learn an image-category embedding

mapping. The image-category mapping must be learned in an entirely unsupervised

52



DMAE
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Figure 6.1: (a) Multimodal learning from unpaired data problem setting. DMAE inputs
a set of unpaired instances in each view and learns both a permutation matrix associ-
ating objects across views and a new representation for each with maximum statistical
dependency. (b) Architecture and dataflow schematic of DMAE.

way.

Our contributions are summarized as follows: (i) We propose DMAE, a cross-view

learning and matching framework that elegantly spans supervised, semi-supervised and

unsupervised cross-modal learning. (ii) We introduce and provide a first solution to the

novel problem of unsupervised classifier learning.

6.2 Related Work

Many modern digital events are inherently multimodal in nature, i.e a video or im-

age that you favourite is followed with a caption, a tag or comment. In most super-

vised multi-modal learning setups, it is a privilege to have access to paired data (i.e.,

{(xi,yi)}ni=1). For example where x is a vector of image and y is a vector of text. In

unsupervised multi-modal learning setup, we can only access to unpaired data {xi}ni=1

and {yj}nj=1. The semi-supervised setup is the obvious mixture of the supervised and

unsupervised setup.

Supervised multi-modal learning The most established supervised multi-modal

learning algorithm is canonical correlation analysis (CCA) [Hotelling, 1936b], which

learns a linear projection of features in two views such that are maximally correlated in

a common latent space. CCA has been studied extensively and has a number of useful

properties Hardoon et al. [2004]. In particular, the optimal linear projection mapping

can be obtained by solving an eigenvalue decomposition. It has also been extended

to the non-linear case via kernelization (KCCA) [Bach and Jordan, 2003]. The huge

success of deep neural network (DNN) in computer vision and NLP has inspired many

deep multi-modal learning algorithms including DeepCCA [Andrew et al., 2013], multi-

modal deep autoencoders (DAEs) [Feng et al., 2014, Ngiam et al., 2011], and two branch

matching or ranking networks [Wang et al., 2017]. DeepCCA [Andrew et al., 2013]

shares the correlation maximizing objective with classic CCA, but learns a non-linear
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projection via deep neural networks. It has been shown to outperform linear CCA and

its non-linear KCCA extension. In multi-modal DAEs [Ngiam et al., 2011] multi-modal

autoencoders are trained with a shared hidden layer. More generally paired data has

been used to train two branch DNNs to learn view-invariant embeddings for example

via a learning to rank [Frome et al., 2013b, Wang et al., 2017] objective.

In contrast to these Euclidean-based metrics, statistical dependency-based measures,

namely Hilbert-schmidt independence criterion (HSIC) [Gretton et al., 2005] have hardly

been studied as objectives for multi-modal learning. One example is HSIC-CCA [Chang

et al., 2013], which learned a CCA type architecture but with HSIC rather than cor-

relation objective. However, the above supervised algorithms – particularly the deep

learning ones – require a large number of paired samples to learn an effective cross-modal

embedding.

Unsupervised multi-modal learning The desirability of learning from more widely

available unpaired data has motivated some research into the harder problem of unsu-

pervised cross-modal learning by introducing latent variables for cross-view pairing. An

early approach was Matching CCA [Haghighi et al., 2008]. It alternates between learn-

ing a joint embedding with CCA, and solving a bipartite matching problem to associate

the unpaired data. Unlike statistical dependency measures, CCA’s correlation-based

objective requires comparable embeddings to estimate a match. So Matching CCA can

never bootstrap itself if initialised with completely random embeddings and no pairing

information at all. Indeed it was only shown to work when used with a seed of paired

samples for bootstrapping [Haghighi et al., 2008] – i.e., in the semi-supervised setting.

Probabilistic latent variable approaches have also been proposed to match across-views

[Iwata et al., 2013], however this was only demonstrated to work on toy problems. Both

of these are limited to linear projections.

To handle non-linearity in unsupervised multi-modal learning, kernel based ap-

proaches were proposed including Kernelized sorting (KS) [Djuric et al., 2012, Jebara,

2004, Quadrianto et al., 2009] and least-squared object matching [Yamada et al., 2015,

Yamada and Sugiyama, 2011]. In KS, unpaired data are matched by maximizing HSIC,

and it outperforms MCCA on NLP tasks [Jagarlamudi et al., 2010]. In LSOM, squared-

loss mutual information (SMI) is used as a dependence measure, and it was shown

to outperform the HSIC-based KS. However, both KS and LSOM are non-deep meth-

ods, so may not perform well for image and text data where representation learning

is beneficial. In this paper we leverage HSIC and SMI-based objectives for learning

representations for matching in a deeper context. In early work, [de Sa, 1993] showed

that a disagreement cue can also be used to learn from complementary views, however

note that despite the title, this method requires paired data and so is supervised in our

context.

Visual Description with Natural Language Generating or matching natural lan-

guage descriptions for images and videos has recently become a popular topic in cross-
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modal learning in the last five years [Ordonez et al., 2011]. A common approach is to

learn an image embedding (e.g., CNN), a text representation (e.g., Bag of Words or

LSTM [Hochreiter and Schmidhuber, 1997]) and then map these into a common latent

space via two-branch deep networks [Klein et al., 2015, Wang et al., 2017, Yan and Miko-

lajczyk, 2015]. In this latent space, images or videos and associated text descriptions

can be matched: supporting annotation or retrieval applications. Our proposed DMAE

solves supervised image captioning comparably well to the state of the art methods. But

unlike prior approaches it can be generalized to the semi-supervised and unsupervised

case for exploiting unpaired data.

Zero-shot learning Our DMAE approach is related to ZSL methods in that it

can be applied to learn cross-modal embeddings between images and category vectors,

and hence it can also be used as a classifier for novel classes. However it has a few

crucial benefits: (i) It can be learned in a semi-supervised way, which encompasses

the transductive [Fu et al., 2015a, Tsai et al., 2017] and semi-supervised [Tsai et al.,

2017] variants of ZSL. (ii) More interestingly, it can also be learned in an entirely un-

supervised way – requiring no paired samples at all ; unlike all existing ZSL methods.

We term this specific problem setting unsupervised classifier learning (UCL).

A recent ZSL method ReViSE [Tsai et al., 2017] is related to ours in that it can also

benefit from the semi-supervised learning setting via a MMD-based domain adaptation

loss. However ReViSE is engineered specifically for ZSL. In contrast our DMAE is a

general cross-modal learner, and can address the completely unsupervised setting unlike

ReViSE.

6.3 Deep Matching Autoencoders

We introduce our cross-domain object matching methodology, Deep Matching Autoen-

coders (Figure 6.1 (a)) from the unsupervised learning perspective where no paired

training data is assumed. From here semi-supervised and supervised variants are a

straightforward special case. For simplicity we also assume an equal number of samples

in each view, but this can be relaxed in practice.

6.3.1 Multi-View Autoencoders

Consider two unpaired sets of samples, {xi}ni=1 and {yi}ni=1, where x ∈ Rdx and y ∈
Rdy . For example, x is a feature vector extracted from an image and y is a vector

representation of a text. We assume a heterogeneous setup; the dimensionality of x and

y are completely different.

Let us denote the autoencoders of x and y as

fx(gx(x; Θx); Θx), fy(gy(y; Θy); Θy),
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where g(·) and f(·) are encoder and decoder functions, with parameters. Θx and Θy.

Our motivation is to learn comparable representation embeddings gx(·) and gy(·) given

no paired training data. This is a significantly harder problem than other multi-modal

autoencoder approaches that rely on paired data. [Chandar et al., 2016, Ngiam et al.,

2011]

6.3.2 Learning from Unpaired Data

To learn from unpaired data we introduce a permutation matrix to represent the un-

known correspondence between data items in two views [Quadrianto et al., 2009, Ya-

mada and Sugiyama, 2011, Yamada et al., 2015]. Let π be an permutation function

over {1, 2, . . . , n}, and let Π be the corresponding permutation indicator matrix:

Π ∈ {0, 1}n×n,Π1n = 1n, and Π>1n = 1n,

where 1n is the n-dimensional vector with all ones. Then, we consider the following

optimization problem:

min
Θx,Θy,Π

n∑
i=1

||xi − fx(gx(xi))||22 + ||yi − fy(gy(yi))||22 − λDΠ({gx(xi), gy(yπ(i))}ni=1)

(6.1)

where we simultaneously optimise autoencoders (Θx and Θy) as well as the cross-

domain match (Π) with tradeoff parameter λ. The key component here is the function

DΠ(·, ·) which is a non-negative statistical dependence measure between the x and y

views. DΠ(·, ·) needs to be a measure which does not require comparable representations

a priori in order to enable learning to get started.

6.3.3 Dependence Measures

The statistical dependence measure is the crucial component in achieving our goal. In

this paper, we explore two alternatives: the squared-loss mutual information (SMI)

introduced in Sec 4.5 [Suzuki and Sugiyama, 2010, Yamada et al., 2015, Yamada and

Sugiyama, 2011] and the unnormalized kernel target alignment (KTA) [Cristianini et al.,

2002]. Note that SMI is an independence measure. However, since we want to make

Θx and Θy generate similar representations, we use SMI as a dependence measure.

p(x,y) to p(x)p(y). The SMI is an f -divergence [Ali and Silvey, 1966] that is it is

a non-negative measure and is zero only if the random variables are independent.

To estimate SMI we take a direct density ratio estimation approach [Suzuki and

Sugiyama, 2010]. This leads [Yamada et al., 2015, Yamada and Sugiyama, 2011] to the

estimator:

ŜMI({(xi,yi)}ni=1) =
1

2n
tr (diag (α̂)KL)− 1

2
,
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where tr(·) is the trace operator, K is the Gram matrix for x and L is the Gram matrix

for y, and α̂ is the model parameter written by [Suzuki and Sugiyama, 2010]

α̂ =
(
Ĥ + λIn

)−1

ĥ, Ĥ =
1

n2
(KK>) ◦ (LL>), ĥ =

1

n
(K ◦L)1n.

Here λ is a regularizer, and we use the Gaussian kernel:

Kij = exp
(
− ||xi − xj ||

2
2

2σ2
x

)
,Lij = exp

(
− ||yi − yj ||

2
2

2σ2
y

)
where σx > 0 and σy > 0 are the Gaussian width. Given un-aligned data which depends

on a permutation matrix Π with respect to y, we can write SMI as [Yamada et al., 2015,

Yamada and Sugiyama, 2011]

ŜMI({(xi,yπ(i))}n1 ) =
1

2n
tr
(
diag (α̂Π)KΠ>LΠ

)
− 1

2
, (6.2)

where α̂Π is computed by using {(xi,yπ(i))}ni=1. If we set α̂Π = 1n and ignore

constants of Eq.(6.2), SMI boils down to an unnormalized variant of the kernel target

alignment (uKTA) [Cristianini et al., 2002]:

uKTA({(xi,yπ(i))}ni=1) = tr
(
KΠ>LΠ

)
. (6.3)

This similarity function takes large value if the Gram matrices K and L are similar,

and a small value if they are not similar. Note that, in the original KTA, we have the

normalization term. However, this makes the optimization hard, and thus we employ

the unnormalized variant of KTA. Moreover, uKTA can be regarded as a non-centered

variant of HSIC [Gretton et al., 2005].

6.3.4 Optimization

For initializing Θx and Θy, we first independently estimate Θx and Θy by using au-

toencoders. Then we employ an alternative optimization for learning Θx and Θy and

Π together. We optimize Θx and Θy with fixed Π (intuition: learn a representation

that maximizes statistical dependency, while preserving reconstruction), and then opti-

mize Π with fixed Θx and Θy (intuition: find the cross-domain matches that maximize

statistical dependency). This alternation is continued until convergence. We summarize

the steps in Algorithm 8

Optimization for Θx and Θy With fixed permutation matrix Π (or π), the overall

DMAE objective function is written as:

min
Θx,Θy

n∑
i=1

||xi − fx(gx(xi))||22 + ||yi − fy(gy(yi))||22 − λDΠ({gx(xi), gy(yπ(i))}ni=1)

57



This problem is within-view autoencoder learning with the additional objective that the

representation should maximize statistical dependency between the views. This can be

solved by backpropagation, by differentiating the dependency measures in Eqs. 6.3 or

6.2 with respect to Θx and Θy.

Optimizing Π (SMI) For optimizing Π, we employ a regularized variant of LSOM

[Yamada et al., 2015, Yamada and Sugiyama, 2011]. Given our autoencoder represen-

tations {gx(xi), gy(yπ(i))}ni=1, the empirical estimate of SMI is:

SMI =
1

2n
tr
(
diag (α̂Θ)KΘxΠ>LΘyΠ

)
− 1

2
, (6.4)

where

[KΘx ]ij = exp
(
− ||xi − xj ||

2
2

2σ2
x

)
, [LΘy

]ij = exp
(
− ||yi − yj ||

2
2

2σ2
y

)
The optimization problem can then be written as:

max
Π∈{0,1}n×n

tr
(
diag (α̂Θ)KΘxΠ>LΘyΠ

)
s.t. Π1n = 1n,Π

>1n = 1n.

This is a quadratic assignment programming problem and is NP-hard. Thus, to

solve for the permutation matrix Π efficiently, we solve a relaxed version of the problem

with the regularization based optimization technique [Djuric et al., 2012]:

max
Π

tr
(
diag (α̂Θ)KΘxΠ>LΘyΠ

)
−λΠ

n∑
k=1

((

n∑
`=1

Πk` − 1)2 + (

n∑
`=1

Π`k − 1)2

)
s.t. Πk` ≥ 0, for k, ` ∈ {1, 2, . . . , n},

where λΠ ≥ 0 is a regularizer and Π is optimized with gradient ascent.

Optimizing Π (KTA) For optimizing Π, we employ a kernelized sorting Djuric

et al. [2012], Quadrianto et al. [2009] strategy. The empirical estimate of uKTA us-

ing {gx(xi), gy(yπ(i))}ni=1 is

uKTA = tr
(
KΘxΠ>LΘyΠ

)
. (6.5)

This is again a quadratic assignment programming problem and is NP-hard. Thus,

we solve a relaxed version of this problem which is convex in nature [Djuric et al., 2012]:

min
Π∈[0,1]n×n

||KΘx
ΠT − (LΘy

Π)T ||2F s.t. Π1n = 1n,Π
>1n = 1n.

This problem is convex with respect to Π, and thus, we can obtain a globally optimal

solution for this sub-problem. To efficiently estimate the permutation matrix, we solve
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the following problem by using gradient descent. [Djuric et al., 2012]:

min
Π
||KΘx

ΠT − (LΘy
Π)T ||2F + λΠ

n∑
k=1

(
(

n∑
`=1

Πk` − 1)2+(

n∑
`=1

Π`k − 1)2

)
s.t.Πk` ≥ 0, for k, ` ∈ {1, 2, . . . , n},

Algorithm 8 Learning algorithm for DMAE-SMI

Input: Unpaired Data {Xi}, {Yi}. Params: λ, σx and σy.

1: Init: weights ΘX , ΘY , alignment matrix Π.
2: while not converged
3: Update ΘX , ΘY with backprop on Eq 6.1. Fix Π.
4: Update Π with gradient ascent. Fixing ΘX , ΘY .
5: end while

Output: Pairing Matrix Π. Encoders ΘX , ΘY .

6.3.5 Generalizations

Learning from Paired and Unpaired Data In the previous section we introduced

our method assuming no paired data was available (unsupervised) case. We next explain

our method in the case of some paired data (semi-supervised) case. Denote the paired

data as {(x′j ,y′j)}n
′
j=1 and unpaired data as {xi}ni=1 and {yi}ni=1 (n′ < n). Then, the

semi-supervised variant of DMAE is as follows:

With fixed permutation matrix Π (or π), the objective function is:

min
Θx,Θy

n∑
i=1

||xi − fx(gx(xi))||22 + ||yi − fy(gy(yi))||22

+

n′∑
j=1

||x′j − fx(gx(x
′
j))||22 + ||y′j − fy(gy(y

′
j))||22

− λ
(
DΠ(gx(xi), gy(yπ(i))

n

i=1
) +D(gx(xj), gy(yj)

n′

j=1)
)

This is optimized for Θx and Θy with backpropagation as before, fixing Π. Then with

a given Θx and Θy, we can optimize Π as:

max
Π

DΠ({gx(xi), gy(yπ(i))}ni=1)− λΠ

n∑
k=1

(
(

n∑
`=1

Πk` − 1)2 + (

n∑
`=1

Π`k − 1)2

)
s.t. Πk` ≥ 0, for k, ` ∈ {1, 2, . . . , n}.

Fully Supervised Case The fully supervised case is a trivial extension of the above.

In this case n = 0, Π is given, and we only need to optimize Θx and Θy for matching

criterion DΠ(·, ·).
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6.4 Optimal Transport & Sinkhorn Matching

Thus far we have introduced DMAE-SMI as our main method for cross-modal match-

ing. This algorithm benefits from joint representation learning and matching, however

depends on the Hungarian algorithm. Hungarian algorithm is known to be of cubic time

complexity and thus prevents us to scale to large multi-view datasets. In this section

we briefly introduce an alternative cross-modal matching algorithm based on the notion

of optimal transport, as realised by the Sinkhorn algorithm.

Aligning two high dimensional points is a fundermental problem in machine learning

with applications in natural language processing such as word translation [Alvarez-Melis

and Jaakkola, 2018, Artetxe et al., 2016] to problems in computer vision such as point

set registration [Cootes et al., 1995]. These approaches assumed certain geometric con-

straints and provided reasonable success. Optimal Transport (OT) [Peyré and Cuturi,

2019] provides an elegant framework to compare high dimensional probability spaces.

It provides a well-founded, geometrically well driven approach to realize the alignment

between objects such as words in different languages. The Sinkhorn algorithm (Sec 4.6

Alg 6) can be used to estimate effective cross-modal matching between two sets of

data points that can be compared directly to define a reasonable cost matrix. In the

multi-view case data cannot be compared directly to define a cost matrix, so applying

Sinkhorn to this problem requires jointly learning a shared embedding or cross-modal

mapping. We explore an optimization scheme that iterates between: (i) updating a

cross-modal mapping in the form of a linear regression, conditional on the currently

estimated matching, and (ii) updating Sinkhorn-based matching conditional on the cur-

rent cross-modal regression. The resulting procedure, shown in Algorithm 9, thus jointly

estimates both matching and cross-modal mapping. In the experiments we compare this

Sinkhorn-based alternative to our DMAE-SMI.

Algorithm 9 Procedure to learn a transportation matrix

Input: Unpaired Data {Xi}, {Yi}. Params: λ, probability vectors p and q, regularizer
ν

1: //Compute weight matrix W = (XTX)−1XTY
2: //Compute cost matrix Cij = ||Wxi − yj ||2
3: a← 1 K← exp{−C/λ}
4: while not converged
5: //Sinkhorn iterations of Eq 4.15
6: a← p�Kb,b← q�KTa
7: π ← diag(a) K diag(b)
8: W ←W − ν ∂

∂W (XW − πY )2

9: end while
10: Output: Transportation Matrix π,W .
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6.5 Experiments

We evaluate our contributions with two sets of experiments: image-caption matching

(Section 6.5.1) and classifier learning (Section 6.5.2).

Datasets We evaluate our method on the well known Microsoft COCO dataset [Lin

et al., 2014a] and the Flickr30k dataset [Plummer et al., 2015]. Flickr30k has 30000

standard training images. We use identical training , testing splits of [Karpathy and

Fei-Fei, 2017, Faghri et al., 2018]. As explained in [Faghri et al., 2018], there is a set of

30, 504 validation images that are generally included in the training process have been

left out of this split. The results are reported on testing on the full 5K test images.

Settings We use a standard SGD optimizer. The number of encoding and decoding

layers were set to 3. The encoding layer consists of 1000−300−50 and tanh was used for

activation (See Figure 6.1 (b) for the model architecture). The regularization parameter

were set to λ = 0.7, λΠ = 1.0, and the kernel parameters σ2
x = 2.5 and σ2

y = 0.5 for all

experiments. The learning rate was set at 1e− 3.

Alternatives: Supervised For supervised learning, we evaluate the following base-

lines. DeepCCA: CCA with deep architecture [Andrew et al., 2013]. Two-way Nets:

Two way nets use pre-trained VGG networks followed by fully connected layers (FC)

and ReLU nonlinearities [Wang et al., 2016, 2017]. Captioning only. ReViSE: uses

autoencoders for each modality, minimizing the reconstruction loss for each modality

and the maximum mean discrepancy between them [Tsai et al., 2017].

Alternatives: Semi-supervised We evaluate our proposed DMAE-uKTA and

DMAE-SMI methods against the following alternatives for unpaired data learning:

MCCA: Matching CCA [Haghighi et al., 2008] for learning from paired and unpaired

data across multiple views. Shallow-KTA and Shallow-SMI which are the non deep

version are evaluated to learn from paired and unpaired data.

6.5.1 Image-Sentence/Sentence-Image Retrieval

Benchmark Details We evaluate Image→Sentence and Sentence→Image retrieval

using the widely studied Flickr30K [Young et al., 2014] and MS-COCO [Lin et al.,

2014b] datasets. Flickr30K consists of 31,783 images accompanied by descriptions.

The larger MS-COCO dataset [Lin et al., 2014b] consists of 123,000 images, along

accompanied by descriptions. Each dataset has 1000 testing images. Flickr30K has 5000

test sentences and COCO has 1000. To compare the methods, we use the evaluation

metrics proposed in [Karpathy and Fei-Fei, 2017]: Image-text and text-image matching

performance quantified by Recall@K = {1, 5}. We encode each image with 4096d VGG-

19 deep feature [Simonyan and Zisserman, 2014] and a 300d word-vector [Mikolov et al.,

2013d] average for each sentence.
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Table 6.1: Fully supervised image-sentence matching results on Flickr30K and MS-
COCO. 1. Our implementation of ReViSEb variant (reconstruction loss and MMD).
Top block: Prior methods. Middle block: Ablations of our method. Bottom block: Our
methods.

Flickr30K
Image-to-Text Text-to-Image

Approach R@1 R@5 R@1 R@5
DeepCCA [Andrew et al., 2013] 29.3 57.4 28.2 54.7
Two-way nets [Wang et al., 2017] 49.8 67.5 36.0 55.6
ReViSE b [Tsai et al., 2017] 2 34.7 63.2 29.2 58.0
MCCA 4.3 5.7 3.1 8.4
DMAE-SMI 20.7 22.6 10.5 11.4
DMAE-uKTA 20.2 22.4 10.4 11.2

MS-COCO
DeepCCA [Andrew et al., 2013] 40.2 68.7 27.8 58.9
Two-way nets [Wang et al., 2017] 55.8 75.2 39.7 63.3
ReViSE [Tsai et al., 2017] 51.8 76.3 38.7 64.2
MCCA 12.8 13.6 7.2 8.3
DMAE-SMI 19.8 20.9 17.6 21.2
DMAE-uKTA 19.0 20.7 17.0 21.1

Table 6.2: Semi-supervised and unsupervised image-sentence retrieval results on
Flickr30K and MS-COCO. The metric used is R@1 and retrieval is done directly and
using regression methods. Chance value is 0.1%

Flickr30K
Supervised Un/Semi-Supervised

MCCA shallow KTA shallow SMI DMAE-uKTA DMAE-SMI MCCA shallow KTA shallow SMI DMAE-uKTA DMAE-SMI
Labels I→T T→I I→T T→I I → T T → I I →T T → I I → T T→I I→T T→I I→T T→I I→T T→I I→T T→I I→T I→T

0% (Direct) - - - - - - - - - - 0.0 0.0 - - - - 0.1 0.1 0.2 0.1
0% (Regression) - - - - - - - - - - 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.1

20% (Direct) 0.1 0.0 - - - - 0.5 0.6 0.5 0.6 0.1 0.0 - - - - 0.8 0.6 1.2 0.6
20% (Regression) 0.1 0.1 0.1 0.1 0.1 0.1 0.6 0.6 0.6 0.6 0.1 0.2 0.2 0.0 0.2 0.0 0.9 0.6 1.3 0.6

40% (Direct) 0.9 0.5 - - - - 4.3 3.4 4.5 3.4 0.9 0.6 - - - - 4.5 3.3 4.8 3.4
40% (Regression) 0.9 0.6 4.5 3.3 4.5 3.3 4.7 3.4 4.7 3.4 1.0 0.6 4.3 3.4 4.5 3.4 4.5 3.3 5.0 3.4

MS-COCO
Supervised Un/Semi-Supervised

MCCA shallow KTA shallow SMI DMAE-uKTA DMAE-SMI MCCA shallow KTA shallow SMI DMAE-uKTA DMAE-SMI
Labels I→T T→I I→T T→I I → T T → I I →T T → I I → T T→I I→T T→I I→T T→I I→T T→I I→T T→I I→T I→T

0% (Direct) - - - - - - - - - - 0.0 0.0 - - - - 0.1 0.1 0.3 0.1
0% (Regression) - - - - - - - - - - 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.3 0.1

20% (Direct) 0.0 0.0 - - - - 0.4 0.3 0.5 0.3 0.1 0.2 - - - - 0.4 0.3 0.8 0.5
20% (Regression) 0.1 0.0 0.1 0.0 0.1 0.1 0.4 0.3 0.5 0.3 0.1 0.2 0.1 0.2 0.2 0.2 0.5 0.3 1.0 0.5

40% (Direct) 0.7 0.3 - - - - 3.4 2.6 3.6 2.7 0.8 0.4 - - - - 3.6 2.7 3.8 2.9
40% (Regression) 0.9 0.3 0.9 0.4 1.2 0.5 3.5 2.8 3.8 2.8 1.2 0.5 1.2 0.6 1.2 0.6 3.7 2.8 3.8 2.9

Supervised Learning We first evaluate our methods against prior state of the art in

Image-Sentence matching in the standard supervised learning setting. From the results

in Table 6.1 we make the following observations: (i) Our SMI provides a slightly better

objective for our method than uKTA, this is expected since as we saw uKTA is a special

case of SMI. (ii) Overall our approach is not comparable to state of the art captioning

algorithms such as [Wang et al., 2016, 2017]. (iii) However unlike these, our method is

general purpose designed for captioning. Nevertheless we outperform alternative general

purpose methods such as MCCA.

Semi-supervised and Unsupervised Learning In the second experiment we in-

vestigate whether it is possible to learn captioning from partially paired or unpaired

data. For the results in Table 6.2 the left (Supervised) block uses only the specified %

of labeled data, and the right (Un/Semi-supervised) block uses both labeled and the
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available unlabeled data. We make the following observations: (i) This task is clearly

significantly harder as all methods struggle with reduced data annotation. In particular,

in the unsupervised case, only DMAE-SMI performs slightly above chance (0.1%) in the

I→T condition. (ii)Semi-supervised learning here is also challenging. Comparing the

left and right column groups, we can see that only DMAE-SMI based SSL sometimes im-

proves on the supervised baseline (e.g Flickr I→T in the 20% condition). (iii)Comparing

direct NN matching vs matching via using the estimated pairing to train a cross-modal

regression model, we can see that using the regression based approach tends to improve

performance slightly.

Discussion Unsupervised image captioning is a difficult, challenging and a real prob-

lem. While recently, unsupervised word translation [Conneau et al., 2017b] and un-

supervised neural translation [Lample et al., 2017] map source and target language in

similar space so that words across different languages can be aligned, the same does not

hold for image captioning datasets. Some recent work [Kim et al., 2019] has managed to

obtain some impressive results with semi-supervision. We hope future work can build

towards this direction.

6.5.2 Unsupervised Classifier Learning

We consider training a classifier given a stack of images and stack of category embeddings

(we use word vectors) that describe the categories covered by images in the stack. This

is the ‘unsupervised classifier learning’ problem when there are no annotated images, so

no pairings given. If the category labels of some images are unknown, and all categories

have at least one annotated image, this a semi-supervised learning problem. In the

case where the category labels of some images are unknown and some categories have

no annotated images, this is a zero-shot learning problem. If category labels of all

images are known (all pairings given), this is the standard supervised learning problem.

Our framework can apply to all of these settings, but as fully supervised and zero-shot

learning are well studied, we focus on the unsupervised and semi-supervised variants.

Benchmark Details We evaluate our approach on AWA [Lampert et al., 2009b].

As category embeddings, we use 300d word-vectors [Mikolov et al., 2013d]. For image

features we use 4096d VGG-19 [Simonyan and Zisserman, 2014] features for AwA, Thus

for AwA, image data is a 4096 × n stack of n images, and category domain data is a

300×m stack of m = 50 word vectors. Unsupervised DMAE learns a joint embedding

and the association matrix Π ∈ {0, 1}n×n that pairs images with categories where we

duplicated the text vectors to ensure Π is square. The learned Π should ideally match

the 1-hot label matrix that would normally be given as a target in supervised learning.

Settings We consider the unsupervised and semi-supervised in which only partial or

no paired data are given for training.
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Figure 6.2: Evolution of label matrix Π prediction accuracy during unsupervised clas-
sifier learning.

Metrics To fully diagnose the performance, we evaluate the following metric: (i)

Matching accuracy. The accuracy of predicted Π̂ on the training split compared to the

ground-truth Π as quantified by average precision and average recall.

Results: Unsupervised Matching In the unsupervised classifier learning setting,

it is a non-trivial achievement to correctly estimate associations between images and

categories better than chance since we have no annotated pairings, and the heteroge-

neous domains are not a priori comparable. To quantify the accuracy of pairing, we

compare estimated Π̂ and true Π and compute compute the precision and recall by

class. After learning DMAE-SMI on AwA we obtain a precision of 0.042 and recall of

0.021 averaged over all 50 classes given no prior pairings to start with.

To see how the accuracy of Π estimation changes during learning, we visualise the

mean precision and recall over learning iterations in Figure 6.2. We can see that:

(i) Precision and recall rise monotonically over time before eventually asymptoting.

(ii) DMAE-SMI performance grows faster and converges to a higher point than the

alternatives.

Results: Testing Accuracy To complete the evaluation of the actual learned clas-

sifier, we next assume that the estimated Π̂ label matrix is correct, and use these labels

to train a SVM classifier, which is then evaluated on the testing split of each dataset.

The results for AwA are shown in Table 6.3. The L-U-T splits listed define different su-

pervised (all training data pairs given), semi-supervised (some training pairs given) and

unsupervised (no training pairs given) experimental conditions. For example 40-0-60

in AWA is supervised setting with 40% paired images for training and 60% for testing,

while 20-20-60 is semi-supervised with 20% paired images and 20% unpaired images for

training, and 60% testing images. We use the SVM classifier provided in [Pedregosa

et al., 2011].

From the results we can see that (i) In the unsupervised 0-40-60 condition, all the

shallow models perform at chance level (2%) while DMAE-SMI and Sinkhorn perform
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Table 6.3: Classification accuracy on AWA test sets. The data is split is denoted as
L-U-T, specifying the amount of (L)abeled training, (U)nlabeled training, and (T)esting
data. AWA is 50-way classification so chance is 2% and the given L-U-T split is in %.

AwA
L-U-T MCCA KTA SMI DMAE-uKTA DMAE-SMI Sinkhorn
0-40-60 0.02 0.02 0.02 0.03 0.03 0.04

20-0-60 0.82 0.82 0.82 0.82 0.82 0.82
20-20-60 0.82 0.84 0.84 0.84 0.85 0.87
40-0-60 0.88 0.88 0.88 0.88 0.88 0.88

above chance. (ii)Using labeled data for supervised learning brings a dramatic increase

in performance as seen in 20-0-60 and 40-0-60 conditions. (iii)The 20-20-60 condition is

the semi-supervised learning condition which aims to bridge the gap between the lower

(20-0-60) and upper (40-0-60) bound supervised learning conditions. We can see that

most methods bring some improvement from semi-supervised learning with DMAE-SMI

and Sinkhorn performing best.

Discussion The current paradigm for building visual recognition systems requires la-

borious and costly per-image annotation. The above proof of concept demonstration of

UCL with some labeled information shows a promising direction. In future by providing

a pool of images and a list of wordvectors describing categories likely to be contained

therein, visual recognition models of a reasonable degree of reliability could be learned

with by providing some labeled information. However while promising results are ob-

tained for SSL setting, more work is required to realise this vision for unsupervised

setting. This could provide significant time and cost savings in many potential applica-

tion scenarios like cross domain alignment [Yuan et al., 2020] which could reduce cost

in automatic caption generation systems.

6.5.3 Further Analysis

Runtime and Complexity Our DMAE implementation is full batch for simplicity

and accuracy. This means the required pairwise matching problem includes a O(n2) cost

term. This limits scalability, but is not unexpected, and widely shared by many other

matching algorithms. There are approximation routes to alleviate this. For example

divide and conquer [Lyzinski et al., 2015] minibatch-based training reduces the cost to

O(Bn2
b + nB) for n instances, B minibatches and nb � n instances per minibatch.

6.5.4 Discussion

Limitations In this chapter we discussed some ways to learn unsupervised alignment

between images and text. However there remains some limitations among the described

algorithms which we highlight below

• The current model assumes our permutation matrix to be square and 1-1 which

could be made more realistic using 1-many matching. For UCL, we currently
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stack the word vectors to ensure the square nature of the Π matrix to make it

square which is inelegant method. A more realistic vision is to relax and make

it rectangular which will allow for more realistic applications. To handle two

different sequences, [Yamada et al., 2015] padded the sequences with zeros to

ensure a square cost matrix. One can potentially use this idea in the current

framework.

• The current DMAE-SMI algorithm has a clean objective for end-to-end matching

and deep representation learning, but suffers from relying on the Hungarian algo-

rithm. Meanwhile Sinkhorn algorithm provides effective matching, but currently

only addresses cross-modal matching through an alternating optimization heuris-

tic, and a simple linear cross-modal mapping. The main future task is to thus

define an single objective for end-to-end optimization of both matching (using

Sinkhorn) and deep representation learning.

• While we have explored the Sinkhorn algorithm, we havent explored the utility of

different cost metrics. Commonly used metrics like Euclidean distance might not

be the appropriate choice and other non-euclidean metrics could offer an elegant

choice.

• The quality of the permutation matrix in Algorithm 9 depends on the choice of

initial weight matrix W . Some future work would be to learn a better weight

matrix with convergence guarantee.

• Gromov-Wasserstein [Mémoli, 2011] provides an elegant framework to compare

two hetergenous metric spaces and provide a transportation cost to move from

one space to the other. We would like to explore this in future work.

6.6 Conclusion

We proposed Deep Matching Autoencoders (DMAE), as an application of our previous

cross-lingual matching idea to match between image and language modalities.

Conceptually DMAE elegantly spans unsupervised, semi-supervised, fully-

supervised and zero-shot settings. However in practice our results were weaker than

in the case of language. This may be because the intra-domain simliarities that our

mehod aligns are less consistent between vision and language than they are between

different languages, and thus harder to align. We have also shown how the Sinkhorn al-

gorithm can lead to improved results with some seed labelled data. In future we will try

to improve these results by combining sinkhorn-based alignment algorithm to replace

the iterative Hungarian algorithm-based solution that we evaluated here.
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Chapter 7

Conclusions and Outlook

7.1 Conclusion

In this thesis, we thoroughly studied the problems related with reducing annotation

requirement through multi-view learning. With the increasing demand on creating

intelligent systems, obtaining or creating annotated data proves to be a gridlock in

many contemporary machine learning systems. Motivated by these ambition, the thesis

looked at three different problems.

• In Chapter 3 we studied Zero shot learning through text-image transfer. We

present the first distribution-embedding approach to category names and showed

the benefit of using this approach compared to the traditional setting of vector

based embeddings.

• Chapter 4 discussed varying degrees of metrics for aligning different views of a

dataset.

• In Chapter 5, we discussed bilingual dictionary induction and looked into aligning

monolingual word embeddings. We extended the existing SMI-based measures

for unsupervised pairing to an end-to-end deep learning setting and demonstrated

improved dictionary induction performance as a result.

• In Chapter 6, we applied our ideas to vision and language problems including

captioning and introduced the novel problem of unsupervised classifier learning.

We look at some possible future directions. Specific highlights are summarised as

7.2 Limitations and Future work

In this section we discuss the possibilities of some limitations of our methods and some

new future directions
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7.2.1 Multi-sense probabilistic embeddings

Traditional distributional semantic models (DSM’s) derive the meaning of a word solely

based on co-occurance of words in a text. An exciting opportunity arises in DSM’s in

infusing visual information with text corpora. Most of the existing work represent word

or image as vectors. Inspired by [Vilnis and McCallum, 2015], we proposed to represent

images and text as distributions. In Chapter 3, we extended this framework towards

zero shot learning. The current model has unimodal structure due to the gaussian

assumption on embeddings. This assumption is problematic in the case of polysemous

words. Many words have different senses based on the contextual surrounding. For

example the word ’apple’ could mean a fruit or could also represent the incorporation.

A possible solution to ease this problem is to represent words as Gaussian mixture

models (GMM’s) where each sense is represented as a gaussian component. For future

work, another worthy direction is to look at embedding distributions in a Wasserstein

spaces. Wasserstein spaces provide probability distributions with an optimal transport

metric which measures the distance traveled in transporting the mass in one distribution

to the other. Recent work has shown that Wasserstein spaces offer more flexibility and

are able to model complex relationships where Euclidean spaces fail [Frogner et al.,

2019].

7.2.2 Optimal Transport

The DMAE algorithm comprises of a representation learning framework along with a

dependency matching framework. The dependency measure framework relies on the

Hungarian algorithm which is known to not scale to large datasets. Meanwhile we

discussed the Sinkhorn algorithm which provides effective matching, but currently only

addresses cross-modal matching through an alternating optimization heuristic, and a

simple linear cross-modal mapping. In future, we would like to build our representation

learning framework along with the Sinkhorn algorithm hoping to build more scalable

models.

Another interesting direction is to build on top of the Gromov Wasserstein distance

[Mémoli, 2011] which can be used to compare different metrics in different spaces. While

it has been popularly used in the computer graphics community in shape matching, it

holds a lot of promise in problems involving multimodal data.

Almost all problems in finding correspondence in optimal transport depends on the

definition of a transportation cost. To design a reliable function is often difficult and

practitioners often resort to using hand crafted measures or Euclidean distance. In

future work, we could take a step towards learning appropriate cost function.

7.2.3 Graph Matching

In Chapters 4,5,6, we introduced an assignment matrix which was usually for simplicity

assumed to be square and usually assumes one-to-one mapping. Graph Matching for
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shape comparision or network analysis is an exciting area in network modelling. Among

the known algorithms, a class of problems called inexact graph matching is tailored

specifically to real-world graph representations. This class of methods allows for a less

strict correspondence of the graph vertices, allowing for many-to-many graph matching.

Combined with optimal transport they open an interesting line of research direction

which can be further explored.
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