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Abstract

Approximately 28% of the human population have been exposed to Mycobacterium tubercu-

losis (MTB), with the overwhelming majority of infected individuals not developing disease

(latent TB infection (LTBI)). While it is known that uncontrolled HIV infection is a major risk

factor for the development of TB, the effect of underlying LTBI on HIV disease progression

is less well characterized, in part because longitudinal data are lacking. We sorted all partici-

pants of the Swiss HIV Cohort Study (SHCS) with at least 1 documented MTB test into one

of the 3 groups: MTB uninfected, LTBI, or active TB. To detect differences in the HIV set

point viral load (SPVL), linear regression was used; the frequency of the most common

opportunistic infections (OIs) in the SHCS between MTB uninfected patients, patients with

LTBI, and patients with active TB were compared using logistic regression and time-to-

event analyses. In adjusted models, we corrected for baseline demographic characteristics,

i.e., HIV transmission risk group and gender, geographic region, year of HIV diagnosis, and

CD4 nadir. A total of 13,943 SHCS patients had at least 1 MTB test documented, of whom

840 (6.0%) had LTBI and 770 (5.5%) developed active TB. Compared to MTB uninfected

patients, LTBI was associated with a 0.24 decreased log HIV SPVL in the adjusted model

(p < 0.0001). Patients with LTBI had lower odds of having candida stomatitis (adjusted odds

ratio (OR) = 0.68, p = 0.0035) and oral hairy leukoplakia (adjusted OR = 0.67, p = 0.033)

when compared to MTB uninfected patients. The association of LTBI with a reduced HIV set
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point virus load and fewer unrelated infections in HIV/TB coinfected patients suggests a

more complex interaction between LTBI and HIV than previously assumed.

Background

Models suggest that Mycobacterium tuberculosis (MTB) might have emerged as a human path-

ogen around 400,000 years ago [1]. Over this long period, MTB and humans have evolved to

reach a balance; MTB infects many people—approximately 28% of the human population have

been exposed to MTB [2]—but over 90% of infected individuals do not develop disease [3].

The evidence of an immune response to MTB in the absence of clinical disease is termed

Latent Tuberculosis Infection (LTBI). LTBI represents a spectrum of outcomes, but the differ-

entiation of individuals who harbor viable bacteria from those who have cleared the infection

is currently impossible [4,5]. The vast majority of research on LTBI has focused on the aspects

of the host–pathogen interface that prevent progression to active pulmonary TB. This frame-

work neglects a basic understanding about how LTBI itself alters human biology.

Recent research in animal models suggests that nonlethal pathogens and commensals pro-

vide many benefits to the host [6]. Exposure of pathogen-free laboratory mice to naturally

occurring, nonlethal mouse pathogens, for example, has profound effects on the composition

of the immune system and confers protection against unrelated pathogens, such as Listeria
monocytogenes [7]. Chronic Herpes virus infection primes the murine immune system to pro-

vide antigen-independent beneficial effects [8]. Contained MTB infection itself protects

against MTB rechallenge and heterologous challenges (L. monocytogenes and Melanoma

metastases) through low-grade cytokinaemia and an augmented innate immune response [9].

In humans, the nonspecific impacts of low-grade infections have not been well studied. The

best analogy for self-limiting infections in the human system are live-attenuated vaccines.

There is a significant body of evidence suggesting that live-attenuated vaccines may provide

additional immune benefits beyond protection against the specific vaccine target [10,11]. Spe-

cifically, administration of the TB vaccine bacillus Calmette–Guérin (BCG) or measles vac-

cines in children reduces overall mortality by more than what would be expected by

prevention of these 2 diseases alone [12]. Several ongoing clinical trials will shed light on

whether the nonspecific benefits of BCG vaccination can be harnessed to prevent progression

of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic [13–17].

Based on these findings, we hypothesize that the continuous interaction between MTB and

the host during LTBI benefits the host by augmenting the immune response to other, unre-

lated pathogens. In particular, we hypothesize that patients with LTBI have fewer opportunistic

infections (OIs) and can control HIV better compared to MTB uninfected patients. The exten-

sion of this hypothesis predicts that active TB, which is associated with a pronounced inflam-

matory response and loss of the equilibrium between the host and the pathogen, reflects the

breakdown of the protective state seen in LTBI and therefore is associated with more OIs and

faster progression of HIV infection. Indeed, the detrimental interaction between HIV and

active TB has been extensively described [18].

In this study, we investigated the association of MTB status with HIV disease progression

(including both the HIV set point viral load (SPVL) and the occurrence of OIs). By controlling

for other major known risk factors of HIV disease progression, we specifically tested for effects

associated with having LTBI or active TB disease in people living with HIV. Assessing the asso-

ciation of either LTBI or active TB on HIV SPVL adjusted for CD4 T cell count requires
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prospective sampling of both viral load and CD4 T cells over years in thousands of patients.

The Swiss HIV Cohort Study (SHCS) is in a unique position to study the interaction between

LTBI and its host as well as to dissect latent and active TB. Most importantly, information on

clinical phenotypes in the SHCS is richly detailed [19]. For example, the high granularity of the

longitudinal, clinical data allowed us to investigate patients who developed active TB prior to

other OIs in time-to-event analyses.

Results

Selection of the study population

We included information from 13,326 tuberculin skin reactivity tests of 10,649 patients and

3,978 Interferon-gamma Release Assay (IGRA) results of 3,623 patients. In total, we analyzed

test results from 17,243 different time points of 13,675 patients, with 11,057 (80.1%) patients

having only 1 test available (see Fig 1). Of all tests, 1,258 (7.3%) were positive. We removed 187

patients with positive and negative results at different time points, leaving 840 patients with

LTBI. Active TB was diagnosed in 770 patients, with 367 cases of extrapulmonary and 546

cases of pulmonary TB (see S1 Text). In total, 13,943 patients were included in our analysis,

12,333 (88.4%) MTB uninfected patients, 840 (6.0%) patients with LTBI, and 770 (5.5%)

patients with active TB (see Fig 2).

Characteristics of the study population (Table 1)

The fraction of male patients was 71.8% for MTB uninfected patients, 65.4% for patients with

LTBI, and 65.1% for patients with active TB. The median birth year was 1964 for MTB unin-

fected patients, 1969 for patients with LTBI, and 1962.5 for patients with active TB. Similarly,

the median HIV diagnosis year was 1998 for MTB uninfected patients, 5 years later for patients

with LTBI, and 4 years earlier for patients with active TB. Moreover, 70.7% of MTB uninfected

patients were from the region of Western Europe, while this was the case in 44.5% of patients

with LTBI and 47.5% of patients with active TB. The most frequent HIV risk group for MTB

infected patients was heterosexual contacts (LTBI: 48.3%, active TB: 47.8%), and men who

have sex with men (MSM) (39.2%) for MTB uninfected patients. The median years of follow-

up was 9.6 for MTB uninfected patients, 9.5 years for patients with LTBI, and 6.5 for patients

who developed active TB. While 36.1% of patients with active TB died, this was the case in

21.6% for MTB uninfected patients and 9.3% of patients with LTBI. However, many patients

were lost to follow-up in all 3 groups (no TB infection: 22.5%, LTBI: 29.5%, active TB: 22.7%),

so the actual fraction of patients who died might strongly differ from the confirmed death

cases. The first CD4 cell count and the CD4 nadir was lowest for patients with active TB

(median first CD4 count: 195.5, median CD4 nadir: 70) and highest for patients with LTBI

(median first CD4 count: 455.5, median CD4 nadir: 265). Moreover, 52.1% of MTB uninfected

patients and 28.2% of patients with LTBI had at least 1 OI, with a total of 109.8 OI per 1,000

person years in MTB uninfected patients and 44.7 OI per 1,000 person years in patients with

LTBI (see Table 1 for more information on basic characteristics of the study population). Both

the diagnosis date of OIs as well as the time points of the antiretroviral therapy (ART)-naïve

RNA measurements used to calculate HIV SPVL were close to the LTBI test date (Fig 1).

Association of LTBI and active TB with HIV SPVL

We could determine HIV SPVL values for 4,516 (32.4%) patients (12,512 patients had at least

1 HIV RNA measurement available, 8,616 at least 1 measurement before initiation of ART,

and 4,516 of these during chronic infection). Of these, 4,069 (90.1%) were MTB uninfected,
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bacillus Calmette–Guérin; CI, confidence interval;

HET, heterosexual; IDU, intravenous drug user;

IGRA, Interferon-gamma Release Assay; LTBI,

latent tuberculosis infection; MSM, men who have

sex with men; MTB, Mycobacterium tuberculosis;

OI, opportunistic infection; OR, odds ratio; SARS-

CoV-2, Severe Acute Respiratory Syndrome

Coronavirus 2; SHCS, Swiss HIV Cohort Study;

SPVL, set point viral load; TB, tuberculosis; TST,

tuberculin skin test.

https://doi.org/10.1371/journal.pbio.3000963


Fig 1. Timing of the studied events: (A) Mean log viral load measurements of TB-uninfected and LTBI patients and (B)

fraction of OIs of TB-uninfected LTBI patients (see S3 Data for the underlying numerical values). ART, antiretroviral

therapy; LTBI, latent tuberculosis infection; OI, opportunistic infection; TB, tuberculosis.

https://doi.org/10.1371/journal.pbio.3000963.g001
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375 (8.3%) LTBI, and 72 (1.6%) developed active TB. The overall log10 mean HIV SPVL was

4.40 (standard deviation (SD) = 0.75). The log mean HIV SPVL was 4.43 (SD = 0.74) for MTB

uninfected patients, 4.11 (SD = 0.71) for patients with LTBI, and 4.63 (SD = 0.80) for patients

with active TB (see Fig 3A). In the unadjusted linear regression model, LTBI was associated

with a 0.32 (confidence interval (CI) = [0.24, 0.40], p< 0.0001) decrease in HIV SPVL (log10

RNA) compared to MTB uninfected patients and with a decrease of 0.21 (CI = [0.13, 0.28],

p< 0.0001) in the adjusted model (see Fig 3B). This reduction in HIV SPVL remained signifi-

cant in all sensitivity analyses when restricting the study populations, pooling patients with

LTBI and active TB as well as for alternative definitions of HIV SPVL (see Fig 2 and S2 Text).

For patients with active TB, we observed an increased HIV SPVL as compared to MTB unin-

fected patients.

Association of MTB status with opportunistic infections

The 10 most frequent OIs (excluding pulmonary and extrapulmonary TB) in the study popula-

tion were candida stomatitis (3,860 cases), oral hairy leukoplakia (1,772 cases), herpes zoster

multidermatomal or relapse (1,553 cases), esophageal candidiasis (1,289 cases), Pneumocystis
jiroveci pneumonia (1,261 cases), HIV-related thrombocytopenia (894 cases), Kaposi sarcoma

(632 cases), HIV-related encephalopathy (452 cases), cerebral toxoplasmosis (423 cases), and

bacterial pneumonia (396 cases) (see S1 Text). In the unadjusted analysis, all tested OIs were

significantly less frequent in patients with LTBI as compared to MTB uninfected patients (see

Fig 4). In the adjusted model, LTBI was associated with significantly fewer cases of candida

stomatitis (OR = 0.68, CI = [0.52, 0.87], p = 0.004) and oral hairy leukoplakia (OR = 0.67,

Fig 2. Description of the study population and the sensitivity analyses; B1 to B7 refer to the respective sections in S2 Text. ART, antiretroviral therapy; LTBI,

latent tuberculosis infection; SHCS, Swiss HIV Cohort Study; TB, tuberculosis.

https://doi.org/10.1371/journal.pbio.3000963.g002
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CI = [0.46, 0.96], p = 0.03). The effects were robust in all sensitivity analyses (see S2 Text for

the summary). In stark contrast to the comparison of MTB uninfected patients and patients

with LTBI, most tested OIs were more frequent in the unadjusted analysis in patients with

active TB compared to MTB uninfected patients. After adjustment, the effect weakened for 8

out of 10 OIs in the case of LTBI and for 4 out of 8 in the case of active TB.

Time-to-event analysis for candida stomatitis, oral hairy leukoplakia, and

herpes zoster

In the time-to-event analysis, LTBI was associated with a lower hazard of candida stomatitis

(Fig 5A) as compared to MTB uninfected patients: Without correction for CD4 cell counts, the

hazard ratio was 0.33 [0.25, 0.43], after correction 0.48 [0.37, 0.63] (time-updated inclusion of

CD4 cell counts as continuous variable) and 0.49 [0.37, 0.64] (inclusion of CD4 cell counts as

categorical variable). Independently of MTB status, lower CD4 cell counts were associated

with higher hazard ratios of developing candida stomatitis. After additional correction for

HIV transmission group and gender, region, and HIV diagnosis year, the hazard ratios were

0.49 [0.37, 0.64], 0.71 [0.54, 0.94], and 0.70 [0.53, 0.92], respectively. Likewise, LTBI was associ-

ated with a lower hazard of oral hairy leukoplakia (Fig 5B) when compared to MTB uninfected

patients: The hazard ratios in the 3 tested models (no correction for CD4 cell count, time-

updated inclusion of CD4 cell counts as continuous variable, inclusion of CD4 cell counts as

Table 1. Basic characteristics of the study populations: MTB uninfected patients, patients with LTBI, and patients with active TB.

Variable MTB uninfected LTBI Active TB

Total (n) 12,333 840 770

Sex male (n, %) 8,861 (71.8%) 549 (65.4%) 501 (65.1%)

Birth year (median, IQR) 1964 [1958,1972] 1969 [1961,1977] 1962.5 [1957,1970]

Ethnicity white (n, %) 9,364 (75.9%) 459 (54.6%) 299 (38.8%)

Region Western Europe (n, %) 8,718 (70.7%) 374 (44.5%) 366 (47.5%)

HIV subtype B (n, %) 6,079 (49.3%) 314 (37.4%) 193 (25.1%)

Diagnosis year (median, IQR) 1998 [1990,2007] 2003 [1997,2009] 1994 [1987,2002]

Registration year (median, IQR) 2000 [1994,2009] 2004 [1998,2011] 1997 [1990,2005]

Transmission group MSM (n, %) 4,833 (39.2%) 232 (27.6%) 143 (18.6%)

HET (n, %) 3,944 (32%) 406 (48.3%) 368 (47.8%)

IDU (n, %) 3,020 (24.5%) 148 (17.6%) 224 (29.1%)

other (n, %) 536 (4.3%) 54 (6.4%) 35 (4.5%)

SHCS follow-up active (n, %) 6,897 (55.9%) 514 (61.2%) 317 (41.2%)

lost to follow-up (n, %) 2,775 (22.5%) 248 (29.5%) 175 (22.7%)

dead (n, %) 2,661 (21.6%) 78 (9.3%) 278 (36.1%)

Years of follow-up total 138,270.4 8,865.3 6,919.5

median, IQR 9.6 [3.9, 17.7] 9.5 [3.7, 16.4] 6.5 [1.9, 15.2]

First CD4 count (median, IQR) 340 [170,540] 455.5 [292.8,662] 195.5 [80,400]

CD4 nadir (median, IQR) 177 [60,297] 265 [171.8,385.5] 70 [20,172.8]

Primary infection (n, %) 815 (6.6%) 68 (8.1%) 15 (1.9%)

OI total, at least 1 OI (n, %) 6,467 (52.4%) 237 (28.2%) 770 (100%)

all OIs (n) 15,180 396 2102

per 1,000 person years 109.8 44.7 303.8

HET, heterosexuals; IDU, intravenous drug users; IQR, interquartile range; LTBI, latent tuberculosis infection; MSM, men who have sex with men; MTB,

Mycobacterium tuberculosis; OI, opportunistic infection; SHCS, Swiss HIV Cohort Study; TB, tuberculosis.

https://doi.org/10.1371/journal.pbio.3000963.t001
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Fig 3. (A) Distribution of HIV SPVL values (log RNA) for patients with LTBI, active TB, and MTB uninfected patients. The lines indicated the density function of

the log RNA values in the 3 studied groups. (B) Association of various factors with the log set point virus load; the lines indicate the 95% CIs obtained in the

regression model; the dots indicate the regression coefficients. (see S3 Data for the underlying numerical values) CI, confidence interval; HET, heterosexual; IDU,

intravenous drug users; LTBI, latent tuberculosis infection; MSM, men who have sex with men; MTB, Mycobacterium tuberculosis; SPVL, set point viral load; TB,

tuberculosis.

https://doi.org/10.1371/journal.pbio.3000963.g003

Fig 4. Association of the 10 most frequent OIs with TB infection: Patients with active TB and LTBI compared to MTB uninfected patients, respectively (active

TB versus no TB, latent versus no TB). The lines indicate the 95% CIs obtained through the logistic regression model; the dots indicate the ORs. (see S3 Data for the

underlying numerical values) CI, confidence interval; LTBI, latent tuberculosis infection; MTB, Mycobacterium tuberculosis; OI, opportunistic infection; OR, odds

ratio; TB, tuberculosis.

https://doi.org/10.1371/journal.pbio.3000963.g004
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Fig 5. Time-to-event analysis of the occurrence of candida stomatitis (A), oral hairy leukoplakia (B), and herpes zoster

(C): Patients with active TB or LTBI compared to MTB uninfected patients, respectively. The lines indicate the 95% CIs

obtained through the cox proportional hazards model; the dots indicate the HRs. (see S3 Data for the underlying numerical

values) CI, confidence interval; HR, hazards ratio; LTBI, latent tuberculosis infection; MTB, Mycobacterium tuberculosis; MV,

multivariable; TB, tuberculosis; UV, univariable.

https://doi.org/10.1371/journal.pbio.3000963.g005
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categorical variable) were 0.26 [0.17, 0.40], 0.36 [0.23, 0.56], and 0.36 [0.24, 0.56], respectively,

and 0.44 [0.28, 0.68], 0.61 [0.39, 0.94], and 0.59 [0.38, 0.92] after additional correction for HIV

transmission group and gender, region, and HIV diagnosis year. In the unadjusted analysis of

the occurrence of herpes zoster (Fig 5C), we obtained the hazard ratios 0.43 [0.30, 0.62] (no

correction for CD4 cell count), 0.55 [0.38, 0.80] (CD4 cell count as continuous variable), and

0.55 [0.39, 0.80] (CD4 cell count as categorical variable). In the adjusted model, we obtained

the hazard ratios 0.55 [0.38, 0.80] (no correction for CD4 cell count), 0.70 [0.48, 1.01] (inclu-

sion of CD4 cell counts as continuous variable), and 0.69 [0.48, 1.00] (inclusion of CD4 cell

counts as categorical variable). For all 3 tested diseases, the effects only reached borderline sig-

nificance in some sensitivity analyses when restricting the study population (see S2 Text).

Moreover, for all 3 tested OIs, no clear pattern of an association between active TB and OIs

was found (see Fig 5). A potential confounder in this cohort could be the fact that active TB is

an OI, which potentially might develop prior to the OI of interest, i.e., prior to diagnosed can-

dida stomatitis, oral hairy leukoplakia, or herpes zoster. In a sensitivity analysis, we pooled

patients with active TB and LTBI and censored for active TB, i.e., we took into account

whether active TB or the OI of interest was first diagnosed. In this sensitivity analysis, hazards

were reduced for patients with LTBI for all 3 tested diseases when compared to TB uninfected

patients.

Discussion

In this study, we assessed the association of LTBI infection or active TB with HIV SPVL and

the development of OIs at the population level in a prospective, nationwide clinical cohort.

Compared to MTB uninfected patients, LTBI was associated with a significant decrease in

HIV SPVL, suggesting new and exciting interactions between LTBI and HIV. This effect

remained significant after adjusting for HIV transmission group and gender, geographic

region of origin, HIV diagnosis year, and CD4 cell counts, and in all sensitivity analyses. In

addition, we compared the occurrence of the 10 most frequent OIs (excluding pulmonary and

extrapulmonary TB) between MTB uninfected patients, patients with LTBI, and patients with

active TB. Compared to 52.4% of MTB uninfected patients, only 28.2% of patients with LTBI

developed an OI.

Due to the heterogeneous group of OIs, we analyzed the 10 most frequent OIs separately.

In the univariate approach, LTBI was associated with a reduced risk for all tested diseases

when compared to MTB uninfected patients. In the adjusted model, the association of LTBI

diagnosis with the less frequent occurrence of candida stomatitis, oral hairy leukoplakia, and

herpes zoster (the 3 most prevalent OIs) remained significant. The lack of an association

between LTBI and the occurrence of other tested OIs could be due to a small number of events,

as reflected by similar effects sizes but larger CIs. Ideally, further analyses with a larger sample

size within populations of higher MTB prevalence will further dissect the association between

LTBI, HIV viral load, and OIs in people living with HIV.

Although the interplay of the altered immune landscape caused by HIV and MTB infection

has been studied before, the focus has been almost exclusively on active TB disease. Ongoing

HIV replication was shown to be an independent risk factor for active TB [20]. It is well

known that decreasing viral load with antiretroviral therapy (ART) lowers the risk for active

TB by an order of magnitude prior to the recovery of CD4 T cells [21].

The major strength of our study—the rich and detailed data provided by the SHCS includ-

ing notifications of OIs and routine MTB testing—allowed us to extend previous studies to

interactions between LTBI and HIV. Routine viral load measurements allowed us to determine

HIV SPVL of almost one-third of the patients, and routine CD4 cell measurements made it
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possible to study the occurrence of OIs in CD4 time-updated models. In addition, the exten-

sive demographic and clinical data in the SHCS allowed numerous multivariate and sensitivity

analyses to strengthen our results.

Patients with TB infection (both LTBI and active TB) were less often from Western Europe,

were more likely to be infected with non-B HIV subtype, and were female or reported hetero-

sexual contacts as the most likely route of HIV acquisition as compared to MTB uninfected

patients. To account for these differences, we included them in the multivariate analyses. We

included the cofactor of geographic region in the main analysis instead of ethnicity, as this

information was available for almost all patients. To correct for potential differences between

these 2 variables (e.g., ethnicity representing host genetic differences and geography represent-

ing MTB differences), we adjusted for ethnicity instead of geographic region in a sensitivity

analysis. Additionally, we performed independent sensitivity analyses restricting the study

population to patients of white ethnicity and HIV subtype B, respectively. Strikingly, through-

out these analyses, LTBI decreased the HIV log SPVL as much as well-studied host genetic fac-

tors (e.g., the 0.32 log decrease attributed to HLA-C locus polymorphisms [22]).

The lack of a gold standard in tests for defining LTBI is a fundamental limitation to all stud-

ies in the field. Since MTB tests (both tuberculin skin test (TST) and IGRA) rely on a T cell

memory response, immunosuppression, often causes false negative tests [3], especially in peo-

ple living with HIV [23]. To control for this, we repeated our analyses for patients with either

>350 or >500 CD4 T cells at the time of the MTB test (B1.3). In another analysis, we corrected

for the CD4 cell count at the MTB test date (B1.3). The robustness of our results in these analy-

ses suggests that misdiagnosis due to immune suppression plays at most a minor role. To fur-

ther correct for false negative tests, patients who developed active TB were classified as MTB

infected, regardless of MTB test results.

Another difficulty in defining LTBI is the dynamic nature of the course of MTB infection

over a lifetime [4,5]. In this study, we assumed “LTBI” is a stable condition since most of the

OIs were diagnosed approximately at the same time (Fig 1). The clustering in time is an artifact

of clinical care: Patients are often diagnosed with an OI prior to the HIV diagnosis and receive

the MTB test soon after HIV diagnosis. ART and prophylactic antibiotic treatment decrease

the probability of OIs further. Therefore, we are focusing on clinical observations proximal to

HIV diagnosis and MTB testing; for most patients, the duration of this time period falls within

the months–years range over which a T cell response is considered stable [4].

Since this is a multicenter study conducted over multiple decades, we are unable to provide

details about tuberculin types, the thresholds of IGRAs, etc. While the study design lacks test-

level granularity, we benefit from decades of follow-up across multiple centers with close to

14,000 patients. Setting aside the difficulties in LTBI definition, our data indicate that at the

time point of HIV diagnosis, the detection of a peripheral MTB-specific T cell response is asso-

ciated with reduced HIV SPVL and reduced occurrent of the 3 most common OIs in HIV–

infected patients.

Categorizing patients based on MTB status introduces a potential bias: Patients with low

CD4 cell counts might have died or developed the OI of interest before developing active TB.

To account for the time aspect, we performed a sensitivity analysis pooling all MTB-infected

patients, censoring for the diagnosis of active TB in the time-to-event analysis (B6). All 3 tested

OIs occurred significantly less frequently in MTB-infected patients in this analysis. Moreover,

we performed a sensitivity analysis excluding patients who were prophylactically treated for

TB (B4): All results remained significant, even though this almost halved the study population.

We included patients with active TB to test the reverse of our primary hypothesis: Once

immunological control is lost over asymptomatic LTBI infection, active TB fuels CD4 deple-

tion, weakens the immune system, and increases susceptibility to other diseases [12]. In line
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with our hypothesis and in contrast to LTBI, almost all tested diseases occurred more fre-

quently in patients with active TB when compared to MTB uninfected patients prior to adjust-

ment for confounders. CD4 T cell count provides a reliable surrogate of immune competence

in people living with HIV [24]. When we included CD4 cell counts as a confounder in an array

of multivariate models and sensitivity analyses investigating the effect of active TB on the

occurrence of OIs and HIV SPVL, all observed effects either weakened or disappeared.

The lack of a significant effect after adjustment has 2 possible explanations: First, increased

frequency of OIs and active TB concurs because of significant immunodeficiency or second,

active TB weakens the immune system leading to the occurrence of additional OIs. Either way,

the disappearance of the effect after adjustment suggests that our model accounts for the most

important confounders. These data agree with the well-documented association between OIs

and active TB in people living with HIV and the nonsignificant increase in HIV SPVL for

active TB after adjustment observed in a South African cohort [18,25]. However, it cannot be

excluded that the results found in then multivariable model are due to residual confounding

(most notably for herpes zoster).

The logical extension of the pattern seen in active TB would be that LTBI is associated with

lower HIV SPVL and fewer OIs because of changes in CD4 T cell counts. Our findings do not

support such a model. In particular, candida stomatitis and oral hairy leukoplakia occurred

less frequently in patients with LTBI as compared to MTB uninfected patients after accounting

for CD4 cell count and other cofactors in the multivariate model. That the associations in

LTBI are independent of CD4 T cells is substantiated by reduced hazards of these infections in

a CD4 cell time-updated time-to-event analysis. Since known immunological confounders do

not explain the association between LTBI and decreased HIV SPVL and OIs described in this

study, we suggest that additional research should address how LTBI alters the host immune

response.

As with every observational study, causation of an observation is impossible to prove. We

cannot rule out that the beneficial effects observed for patients with LTBI are due to host-spe-

cific factors that protect against active TB and other OIs and simultaneously improve control

of HIV. Therefore, untested features of the innate immune system (e.g., macrophages [26])

could explain the association between LTBI and lower HIV SPVL. However, this explanation

would require that those patients also maintain a more robust MTB-specific CD4 T cell

response in peripheral blood.

To summarize, we demonstrate that LTBI was associated with a reduced HIV SPVL and

fewer cases of the most prevalent OIs on a population level. These associations were robust to

adjusting for the most important demographic and clinical confounders. Independently, var-

ious sensitivity analyses further strengthened these observations. These findings support the

hypothesis that LTBI can benefit host immune responses and provides new avenues for

future research to continue to unravel the complex interactions between mycobacteria and

humans.

Methods

The Swiss HIV Cohort Study

The SHCS, launched in 1988, is a prospective, multicenter cohort study enrolling adults living

with HIV in Switzerland (www.shcs.ch) [19]. The SHCS is a nationwide cohort with 7 centers:

Zurich, Basel, Bern, Geneva, Lausanne, Lugano, and St. Gallen. Demographic information and

the medical history regarding ART, CD4 cell measurements, HIV RNA, and OIs is collected at

study registration. Further clinical and laboratory information is prospectively collected in half

yearly follow-up visits.
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Study population and definitions

In the SHCS, 1 TB test is usually performed around study registration, further tests are not

standard but all test results are recorded. In line with routine clinical practice and in line with

all major clinical guidelines, most of the patients had only 1 LTBI test. In our study, all patients

with at least 1 tuberculin skin reactivity test or IGRA for MTB, or clinically diagnosed active

TB (see S1 Text), were included in our analysis. In the main analysis, patients with positive and

negative MTB tests at different time points were excluded, but included in a sensitivity analysis

(see S2 Text). LTBI was defined as a positive skin reactivity test or positive IGRA and no devel-

opment to active TB during follow-up. The MTB test results were obtained in the form of P

(positive), N (negative), and B (borderline) entries, i.e., the interpretation of the test results

was performed by the treating physicians. Active TB was defined as at least 1 entry for clini-

cally diagnosed pulmonary or extrapulmonary TB. Most MTB tests were performed around

SHCS registration; however, we used all TB test results provided in the SHCS, including tests

performed before, during, or after SHCS study entry. In a sensitivity analysis, we restricted our

study population to patients with TB tests within 1 year of SHCS registration (see S2 Text).

Patients were assigned to the group of MTB uninfected if all MTB tests during the observation

period were negative. The stratification into the 3 groups (MTB uninfected, LTBI, or active

TB) were fixed throughout time, as most of the study measurements (TB test, diagnosis of OIs,

and viral load measurements used for SPVL) clustered around SHCS registration (see Fig 1

and S1 Text).

The HIV diagnosis year was defined using the earliest information available: either a docu-

mented positive HIV test or the registration year of the SHCS. HIV risk group was defined as

the most likely transmission route: MSM, HET, IDU, or other. Geographic regions of origin

were reported according to the UNAIDS region codes. CD4 nadir was defined as the lowest

CD4 cell count ever reported in the SHCS. For the calculation of HIV SPVL, only ART-naïve

measurements were considered. HIV SPVL was then defined as the mean of all ART-naïve log

RNA measurements in the chronic phase of the HIV infection, i.e., at least 90 days after the

first positive test and before occurrence of any opportunistic infection.

Statistical analysis

In the first analysis, the association between MTB status (LTBI, active TB, or TB uninfected)

and HIV SPVL was investigated using linear regression, with TB uninfected being the refer-

ence group. The model was adjusted for HIV transmission group and gender (MSM, male

HET, female HET, male IDU, female IDU, male other, female other—where “other” includes

all transmission modes other than MSM, HET, and IDU, as well as unknown transmission

mode), geographic region, HIV diagnosis year, and CD4 nadir.

In the second analysis, the association between MTB status and the occurrence of OIs was

tested using logistic regression, again with TB uninfected being the reference group. We tested

the 10 most frequent OIs diagnosed in the study population, excluding pulmonary or extrapul-

monary TB (see S1 Text). Again, the model was adjusted for HIV transmission group and gen-

der, geographic region, HIV diagnosis year, and CD4 nadir. Additionally, we used cox

proportional hazard regressions to model the association of MTB status on the hazard of the 3

most frequent OIs. In these cox proportional hazard regressions, 3 different approaches were

used to assess the impact of CD4 cell counts: (1) no correction for CD4 cell counts; (2) inclu-

sion of CD4 cell counts in the form of a continuous variable (time-updated for each new

value); and (3) inclusion of CD4 cell categories (<50, 50 to 200, 200 to 350, 350 to 500, and

>500 cells, time-updated for each new value). In all models, the observation time started with
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the first available CD4 measurement until either an event, i.e., diagnosis of the OI of interest,

or censoring for death or loss to follow-up. Again, the model was adjusted for HIV risk group

and gender, geographic region, and HIV diagnosis year.

Sensitivity analysis

An overview of all performed sensitivity analyses and the respective study size is illustrated in

Fig 2, and details can be found in S2 Text. To understand the potential impact of our defini-

tions of the study population on the observed associations, we performed numerous sensitivity

analyses: First, we assessed the impact of different ways of defining MTB infection (B1). For

this, (1) we included all patients with at least 1 TB test (including those with different results

over time); (2) we excluded patients with ambiguous test results (borderline or positive and

negative for the 2 type of tests); (3) we restricted the study population using CD4 cell count at

the TB test date in 2 independent analyses: (a) at least 350 CD4 cells/mL; and (b) at least 500

CD4 cells/mL. Second, we assessed the impact of the timing of the TB test by (1) restricting

our study population to patients with a TB test within 1 year of SHCS registration; and (2)

restricting to patients with OIs diagnosed within 2 years of SHCS registration (B2). Third, we

assessed the impact of ART in the analysis of OIs by performing a time-to-event analysis

restricted to ART-naïve patients and censoring for the start of ART. Fourth, to assess the

impact of prophylactic TB treatment, we excluded 406/840 (48.3%) patients classified as

“LTBI” who obtained prophylactic treatment (Rifampicin or Isoniazid) (B4). Fifth, to assess

the impact of the geographic region of origin and ethnicity, (1) we restricted to patients with

HIV subtype B; and (2) we assessed the impact of ethnicity and region in 3 ways: (a) instead of

correcting for the geographic region as done in the main analysis, we corrected for ethnicity,

i.e., white, black, or other ethnicities; (b) we restricted the analysis to patients of white ethnic-

ity; and (c) we restricted to patients from Western Europe (B5). Sixth, we assessed the impact

of TB categorization by performing analyses on pooled patients with LTBI and active TB (B6):

In the corresponding survival analysis, we censored for active TB using the time point 1.5

years before the diagnosis of active TB [27]. Seventh, we assessed the impact of our choice of

definition of HIV SPVL by restricting to chronic, ART-naïve samples within the first 2 years

after HIV diagnosis and excluding patients with large variability in VL measurements (B7). All

analyses were performed with R (version 3.4.4; R Foundation for Statistical Computing,

Vienna, Austria).
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