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Abstract. This paper proposes a spectral-domain likelihood function for3

the Bayesian estimation of hydrological model parameters from a time se-4

ries of model residuals. The spectral-domain error model is based on the Power-5

Density-Spectrum (PDS) of the stochastic process assumed to describe resid-6

ual errors. The Bayesian Spectral Likelihood (BSL) is mathematically equiv-7

alent to the corresponding Bayesian Time-domain Likelihood (BTL) and yields8

the same inference when all residual error assumptions are satisfied (and all9

residual error parameters are inferred). However, the BSL likelihood func-10

tion does not depend on the residual error distribution in the original time-11

domain, which offers a theoretical advantage in terms of robustness for hy-12

drological parameter inference. The theoretical properties of BSL are demon-13

strated and compared to BTL and a previously proposed spectral likelihood14

by Montanari and Toth (2007), using a set of synthetic case studies and a15

real case study based on the Leaf River catchment in the US. The empiri-16

cal analyses confirm the theoretical properties of BSL when applied to het-17

eroscedastic and autocorrelated error models (where heteroscedasticity is rep-18

resented using the log-transformation and autocorrelation is represented us-19

ing an AR(1) process). Unlike MTL, the use of BSL did not introduce ad-20

ditional parametric uncertainty compared to BTL. Future work will explore21

the application of BSL to challenging modeling scenarios in arid catchments22

and ”indirect” calibration with non-concomitant input/output time series.23
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1. Introduction

Bayesian and other likelihood-based inference methods have a strong tradition in hydro-24

logical modeling, with the overall goal of providing reliable hydrological predictions and25

uncertainty estimates [e.g., Kuczera, 1983; Beven and Binley, 1992; Kuczera and Parent,26

1998; Bates and Campbell, 2001, and many others]. The key ingredient of likelihood-based27

inference is the likelihood function, which should provide a probabilistic description of the28

uncertainty in the model predictions [e.g., Box and Tiao, 1992]. In the simplest case, the29

likelihood function aims to describe the statistical properties of the model residual er-30

rors, i.e., the time series of differences between observed responses (e.g., streamflow) and31

corresponding model predictions [e.g., Box and Tiao, 1992; Kuczera and Parent, 1998].32

A major concern is that, in hydrology, probabilistic inference methods have often been33

used with ostensibly wrong assumptions [e.g., as noted by Beven and Binley, 1992; Kavet-34

ski et al., 2006; Honti et al., 2013, and others]. For example, it is still common for35

hydrological calibration applications to assume independent and identically distributed36

Gaussian model residuals, and relatively few studies rigorously assess how well these as-37

sumptions are actually satisfied [e.g., Engeland et al., 2005; Schaefli et al., 2007]. Recent38

work is addressing these shortcomings, contributing more statistically reliable error mod-39

els and likelihood functions [e.g., Kuczera, 1983; Kavetski et al., 2006; Schaefli et al., 2007;40

Thyer et al., 2009; Schoups and Vrugt, 2010; Smith et al., 2010; Pianosi and Raso, 2012;41

Evin et al., 2014; McInerney et al., 2017, and many others].42

In this paper, we explore new perspectives for hydrological parameter inference by43

introducing a Bayesian Spectral Likelihood (BSL), based on a statistical description of44
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the model residuals in the spectral-domain, i.e., in the Fourier-transformed-domain rather45

than in the time-domain. The term ”spectral-domain” rather than ”frequency-domain” is46

used to emphasize that the proposed likelihood is based on the power-density spectrum.47

This work is not the first attempt to use spectral methods in hydrological modeling.48

For example, Montanari and Toth [2007] applied the Whittle likelihood [Whittle, 1953]49

to calibrate hydrological model parameters. Other studies used spectral likelihoods or50

spectral signatures in more informal settings. Quets et al. [2010] used the sum of squared51

differences between the Fourier amplitudes, or between the Fourier amplitudes and phases52

of observed and simulated streamflow time series, to calibrate the SWAT model. A sim-53

ilar approach was followed by Pauwels and De Lannoy [2011] and De Vleeschouwer and54

Pauwels [2013]. Moussu et al. [2011] used the root-mean-squared difference between the55

estimated autocorrelation functions of the observed and simulated streamflow series to56

calibrate two conceptual rainfall-runoff models of a karst system. Winsemius et al. [2009]57

and Hartmann et al. [2013] used the streamflow autocorrelation function as a signature to58

assess the model performance in a multi-criteria model identification setting. Schaefli and59

Zehe [2009] proposed to assess hydrologic model performance in terms of the Kolmogorov-60

Smirnoff distance between the estimated wavelet power spectra of observed and simulated61

streamflow series. Several studies proposed to use spectral calibration for non-concomitant62

(or indirect) calibration, where input and output observations are not available over the63

same time period [Montanari and Toth, 2007; De Vleeschouwer and Pauwels, 2013].64

The main motivation for this paper is to present the key theoretical aspects of spectral65

parameter inference, especially in light of recent interest in spectral model calibration and66

performance assessment. Our paper addresses the current research gap that the major-67
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ity of hydrological calibration approaches based on spectral techniques do not explicitly68

articulate the probabilistic assumptions underlying their choice of objective (likelihood)69

function; this limitation complicates the derivation of probability limits on the estimated70

model parameters and predictions. The properties of BSL are investigated using a series71

of synthetic and real data case studies, and are compared to the properties of the corre-72

sponding (standard) time-domain likelihood and of the spectral-domain likelihood used73

previously by Montanari and Toth [2007]. The method of Montanari and Toth [2007]74

is of particular relevance to this work, because to our knowledge it is the only spectral75

calibration method in the hydrological literature that uses a spectral likelihood function76

with an explicit probabilistic interpretation.77

The BSL approach introduced in this work is obtained by expressing the probability78

density function (pdf) of residual errors of a hydrological model in terms of their Fourier79

power-density spectrum [e.g., Jenkins and Watts, 1968]. This spectral-domain probabilis-80

tic characterization is presented in considerable detail because, despite spectral analysis81

being widely used in time series analysis, it remains relatively rare in hydrology, and ex-82

isting literature generally does not describe the pdf of the entire power-density spectrum.83

The remainder of the paper is structured as follows. Section 2 presents all required84

definitions and the derivation of BSL for common stochastic error models. This section85

also briefly outlines the relationship of BSL to the likelihood presented by Montanari and86

Toth [2007]. Section 3 details the case studies and the analysis methodology. Section 487

presents and discusses the case study results. Section 6 summarizes the key conclusions of88

the paper, outlines some important open questions and suggests future research directions.89

90

D R A F T July 14, 2017, 12:24pm D R A F T



X - 6 SCHAEFLI AND KAVETSKI: BAYESIAN SPECTRAL LIKELIHOOD

2. Theoretical development

2.1. Bayesian time-domain likelihood (BTL)

Consider a hydrological model H

Ŷ = H(θ,X) (1)

where X = (Xt)t=1,..,N are the system inputs (e.g., rainfall and potential evapotranspi-91

ration) at time steps t = 1, .., N , Ŷ = (Ŷt)t=1,..,N is the system output predicted by the92

model (e.g. streamflow), and θ is a vector of model parameters. On overview of all used93

mathematical notations is given in Table 1.94

In practice, the true system input X is unknown, and we only have observed inputs X̃,95

which are affected by sampling and measurements errors. In this paper, we represent total96

predictive uncertainty using residual errors, which are assumed to aggregate the effects97

of all sources of error including data uncertainty and model structural errors. We do not98

attempt error decomposition, i.e., to model individual sources of error using separate error99

models [e.g., Kavetski et al., 2006; Renard et al., 2011].100

The simulated system output Ŷ = (Ŷt)t=1,..,N differs from the observed system output,101

Ỹ = (Ỹt)t=1,..,N , for several reasons: i) errors in the observed system inputs, e.g., raingauge102

sampling errors [Renard et al., 2011; McMillan et al., 2011]; ii) errors in the observed103

system output, e.g., rating curve errors [Thyer et al., 2009; McMillan and Westerberg,104

2015]; iii) structural errors in the model equations, e.g., due to the inability of lumped105

models to represent spatially distributed processes, incomplete representation of dominant106

hydrological processes, etc. [Beven and Binley, 1992; Kuczera et al., 2006]; (iv) parameter107

errors, including those due to the uncertainty arising from finite-length and uncertain108

calibration data, due to limitations of parameter optimization algorithms, etc.109
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Consider the vector of model residuals ε,

ε = q(Ỹ )− q(Ŷ ) (2)

where we allow for a response transformation q() [e.g., logarithmic, see McInerney et al.,110

2017].111

By construction, Equation 2 lumps all sources of error in the residual error term. There-

fore, in this case, likelihood-based inference requires the specification of a statistical model

of the residual errors, i.e., a ”residual error model”,

ε ∼ E(Ŷ ,ϑ) = E(X,θ,ϑ), (3)

where ϑ denotes the error model parameters (which can be inferred or fixed a priori).112

Hydrological model residuals are often well-described by Gaussian AR(1) processes (”red

noise”) [Schaefli et al., 2007; Evin et al., 2013; Li et al., 2013].

εt = µε + ρ(εt−1 − µε) + δt, δt ∼ NID(µδ, σ
2
δ ) (4)

where δt is the innovation at time step t, ρ is the (lag-1) autoregressive parameter,113

µδ is the innovation mean, σ2
δ the innovation variance, µε the residual mean and NID114

denotes the independent Gaussian distribution. To assist in the residual error analysis, it115

is convenient to define the innovation mean, µδ = µε(1− ρε).116

The BTL corresponding to AR(1) residuals with Gaussian innovations is:

p(Ỹ |X,θ,ϑ) =

√
1− ρ2

(2πσ2
δ )
N/2

exp

[
− 1

2σ2
δ

{
(1− ρ2)(ε1 − µε)2 +

N∑
t=2

(εt − µε − ρ(εt−1 − µε))2

}]
.

(5)

where εt are the raw residuals computed from Equation 2 [see e.g. Priestley, 1981, for117

the derivation of the probability density of Gaussian AR(1) processes].118
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In many cases, the assumption of Gaussian errors is not supported by residual analysis119

[e.g., Schoups and Vrugt, 2010]. An alternative assumption that we consider in this120

study is that the innovations follow a Laplace distribution, with pdf fLaplace(x|µ, b) =121

1/(2b)exp (−|x− µ|/b), where the standard deviation is
√

2b.122

The BTL corresponding to AR(1) residual errors with Laplacian innovations is

p(Ỹ |X,θ,ϑ) =
√

1− ρ2

(√
2

2σδ

)N

exp

[
−
√

2

σδ

{√
1− ρ2|ε1 − µ|+

N∑
t=2

|εt − µ− ρ(εt−1 − µ)|

}]
,

(6)

For details of more general AR(n) processes, see Box and Jenkins [1976, p. 274ff].123

2.2. Spectral-domain: basic concepts

To derive the likelihood of the model residuals in the spectral-domain rather than in the124

time-domain, we need the same key ingredients as for BTL: (i) a residual error model in125

the spectral-domain (e.g., based on the power-density spectrum of the stochastic process126

assumed to describe the residuals), (ii) a parametric description of the probability distri-127

bution function associated with this error model, and (iii) spectral-domain realizations of128

the model residuals (either obtained directly in the spectral-domain or from a transform129

of time-domain realizations). The derivation of these ingredients is presented next.130

In the derivations to follow, it is important to distinguish between the application of131

Fourier transforms to deterministic vs stochastic processes. In general, we use lower132

case symbols (e.g., z) to denote deterministic processes and realizations (samples) from133

stochastic processes and upper case symbols (e.g., Z) to denote stochastic processes (for134

example, the process Z that generated the realization z).135

Consider a deterministic process z = (zt)t=−∞,..,∞, defined over discrete time steps t of

length ∆t. If the process is absolutely summable [Oppenheim and Schafer, 1989, p. 47],
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its discrete time Fourier transform can be written as

Fω[z] = ∆t
∞∑

t=−∞

zt exp(−itω∆t) (7)

where i =
√
−1.136

The discrete time Fourier transform Fω is a vector of complex numbers. Its components137

are indexed by the angular frequency ω [rad/T] [e.g., Oppenheim and Schafer, 1989, p.138

698].139

Next, consider a stochastic processZ = (Zt)t=−∞,..,∞. In this case, the Fourier transform140

Fω[Z] is itself a stochastic process, obtained as a derived distribution. In particular, the141

Fourier transform maps a time series of random variables Z into a set of frequency-ordered142

random variables Fω[Z]. This can be seen by considering the application of the Fourier143

transform to a set of individual time series z sampled from a stochastic process Z, and144

then considering the distribution of the set of transformed time series Fω[z].145

Stochastic processes can be analyzed using the power-density spectrum (PDS), defined

as the Fourier transform of the autocovariance function of Z [Oppenheim and Schafer,

1989, p. 843]:

Pω[Z] = Fω

[
υ`[Z]

]
(8)

where υ`[Z] = E [Zt conj(Zt+`)] is the autocovariance function of process Z, E[] is the146

expectation operator, ` is the lag [T] and conj() denotes complex conjugation. Note that147

the autocovariance function is often referred to as the ”autocorrelation sequence” in the148

signal processing literature [e.g., Oppenheim and Schafer, 1989, p. 743].149

Assuming process ergodicity, the PDS of a stochastic process can be related to the

expectation of the Fourier transform of the stochastic process. For a finite-domain process
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Z(N) = (Zt)t=1,..,N , it holds that [Oppenheim and Verghese, 2015, chapter 11]

Pω[Z(N)] =
1

N
E

[∣∣∣∣∣Fω[Z(N)]

∣∣∣∣∣
2]
, (9)

where | · | denotes the absolute value (or, more generally, the complex modulus). The150

PDS of an infinite-domain process is obtained by taking the limit N →∞ in Equation 9.151

In the signal processing literature, both formulations of the PDS are attributed to152

Wiener-Khinchin; in recent literature, the formulation in Equation 9 is referred to as the153

Einstein-Wiener-Khinchin theorem [Oppenheim and Verghese, 2015, chapter 11].154

We stress that, unlike the Fourier transform of a stochastic process, the PDS of a155

stochastic process is a deterministic quantity: it is defined either in terms of the autoco-156

variance function (Equation 8) or in terms of expectations (Equation 9).157

2.3. The PDS variate, PDSV

Given a finite-length sample z(N) = (zt)t=1,..,N , the Fourier transform Fω[z(N)] provides158

a spectral-domain sample of the discrete-time Fourier transform of the entire infinite-159

domain process Z [Oppenheim and Schafer, 1989, p. 695].160

Due to the finite length of the sample, the mapping between the time- and spectral-

domain is possible only at a finite number of frequencies ωj. These frequencies are given

by integer multiples of the fundamental frequency ωf :

ωj = jωf ; j = 0, .., N − 1 (10)

ωf =
2π

N∆t
(11)

Accordingly, we will use the subscript j as the index of the discrete-time finite-sample161

Fourier transform. Since the exponential basis functions used by the Fourier transform are162
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orthogonal and complex-valued, N/2 frequencies are sufficient to describe the N elements163

of z(N) and hence we have j = 0, ..., N/2− 1.164

We now define a transformation of a stochastic process such that the expected value of

this transformation is the PDS of the original stochastic process. To this end, we define

the ”power-density spectrum variate” (PDSV) corresponding to a finite-length process

Z(N) = (Zt)t=1,..,N , as:

Qj[Z
(N)] =

1

N∆t

∣∣∣∣∣Fj
[
Z(N)

]∣∣∣∣∣
2

. (12)

The following observations can be made:165

1. The probability distribution p(Q[Z(N)]) is a derived distribution that depends on166

p(Z(N));167

2. The power-density spectrum Pj[Z(N)] is the expectation of Qj[Z
(N)], i.e. Pj[Z(N)] =168

E

[
Qj[Z

(N)]

]
;169

3. A sample from the distribution of Qj[Z
(N)] can be obtained by applying the trans-

formation in Equation 12 to a time-domain sample z(N) from the stochastic process Z(N).

Pj[z
(N)] =

1

N∆t

∣∣∣∣∣Fj
[
z(N)

]∣∣∣∣∣
2

. (13)

The quantity Pj[z
(N)] is often called the periodogram of z(N) (usually defined with170

∆t = 1) [Oppenheim and Schafer, 1989]. The periodogram can be seen to represent a171

”single sample” estimator of the mean of the power-density spectrum.172

2.4. Statistical properties of quantities in the spectral-domain

We now turn our attention to the probability distributions of quantities in the spectral-173

domain.174
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For j ≥ 1, the quantity

∣∣∣∣∣Fj
[
Z(N))

]∣∣∣∣∣
2

is known to have the χ2-distribution with two175

degrees of freedom, i.e. an exponential distribution with pdf fexp(x|β) = 1/βexp(−x/β),176

where E[x] = β and var[x] = β2 [e.g. Bartlett, 1950]. The periodogram at j = 0 follows the177

χ2 distribution with 1 degree of freedom (see below). These distributional properties of178

the PDS variate have important implications for parameter inference, and are elaborated179

in further detail in Section 2.10.180

Since Pj[z
(N)] represents a sample from Qj[Z

(N)], and Pj[Z(N)] is by definition the

expected value of Qj[Z], we can express the probability density of Pj[z
(N)] for j > 0 using

the exponential pdf with mean Pj[Z] = E[Qj[Z
(N)]]:

p(Pj[z]|Pj[Z]) = fexp(Pj[z]|Pj[Z]); j = 1, .., N/2− 1, (14)

where, for simplification, we omitted the time-domain superscript (N) on Z.181

The probability distribution of Qj[Z
(N))] at j = 0 is the scaled χ2 distribution with 1

degree of freedom,

p(Pj[z]|Pj[Z]) = fχ2
1
(Pj[z]|Pj[Z]); j = 0, (15)

where fχ2
1
(x|β) = 1

β
1√

2π(x/β)
exp[−(x/β)/2].182

Unlike the exponential distribution, for the χ2 distribution with 1 degree of freedom,183

we have E[x] = β and var[x] = 2β2. Inspection of the χ2 distribution with 1 degree184

of freedom indicates that it corresponds to the distribution of the square of a Gaussian185

variate (hence it can be referred to as a ”squared-Gaussian” distribution).186

Having derived the distribution of the PDSV for all frequencies (p(Pj[z]|Pj[Z]) in equa-187

tions 14 and 15, and having a method to compute samples from the PDSV (the peri-188
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odogram in Equation 13), the remaining step is to obtain an expression for the PDS189

Pj[Z] of specific stochastic processes used to describe residual errors.190

2.5. PDS of uncorrelated processes

For simple uncorrelated processes, the following relations hold:

P0[Z] = ∆tσ2
Z +N∆tµ2

Z (16)

Pj[Z] = ∆tσ2
Z ; j = 1, .., N/2− 1. (17)

Equation 17, obtained from Parseval’s theorem [Jenkins and Watts, 1968], is a well-191

known result and generally referred to as the ”mean value of the periodogram”.192

Equation 16 is less known. In fact, the PDS spike at zero frequency of any process193

with non-zero constant mean is often discarded, e.g., in the Whittle estimator [Whittle,194

1953] used by Montanari and Toth [2007], and in the mixed time-domain spectral-domain195

calibration presented by Morlando et al. [2016]. An example where it is explicitly included196

is the analysis of De Vleeschouwer and Pauwels [2013].197

2.6. Bayesian spectral likelihood for uncorrelated processes

The Bayesian spectral likelihood (BSL) of time-domain observations Ỹ is obtained as

the joint probability of the corresponding spectral-domain residual realizations P [ε] at all

frequencies. When the residual errors are assumed to be uncorrelated, we obtain,

p(Ỹ |X,θ,ϑ) = p(P0[ε]|P0[E ])

N/2−1∏
j=1

p(Pj[ε]|Pj[E ])

= fχ2
1
(P0[ε]|P0[E ])

N/2−1∏
j=1

fexp(Pj[ε]|Pj[E ]),

(18)

where P0[] is given in Equation 16 and Pj[] is given in Equation 17.198
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Note that the PDSV is obtained from the actual realization of residuals ε (Equation 2),199

whereas the PDS is a property of the underlying stochastic process E (e.g., Gaussian).200

Substituting the expressions for P0[Z] and Pj[Z] from Equation 16 and Equation 17,201

and assuming ∆t = 1 and µ2
E = 0, yields the BSL for zero-mean white noise with variance202

σδ:203

p(Ỹ |X,θ, σδ) = fχ2
1
(P0[ε]|σ2

δ )

N/2−1∏
j=1

fexp(Pj[ε]|σ2
δ ), (19)

where the definitions of fexp() and fχ2
1
() are as given in Section 2.3.204

2.7. PDS of autocorrelated processes

As the residuals of hydrological errors are typically highly autocorrelated, it is of interest205

to consider the PDS of autocorrelated processes.206

Regardless of the autocorrelation structure, Equation 16 holds for frequency j = 0.207

However, for j > 0, the PDS of an autocorrelated process depends on j.208

For Gaussian red noise, AR(1), it can be shown that [Brockwell and Davis, 1987]

Pj[Z] =
∆tσ2

Z

ρ2sin2(ωj) + [1− ρcos(ωj)]2
. (20)

More generally, the PDS of any stationary process Z with finite variance and linear au-

tocorrelation structure (e.g., with moving-average components, non-Gaussian innovations,

etc.) can be expressed using a ”profile” function, ζZj (ϑζ) [Fox and Taqqu, 1986]:

Pj[Z(N)] = ∆tσ2
Zζ

Z
j (ϑζ). (21)

where ϑζ are the parameters of the autocorrelation structure.209
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The profile function ζZj is a function of the frequency index j and depends solely on the210

autocorrelation structure of the process; it depend neither on the probability distribution211

e innovations, nor on the variance of the innovations.212

Equation 20 can be derived from the general Equation 21, with parameters ϑζ = ρ213

[Box et al., 1994]. The corresponding expressions for other autoregressive processes can214

be found in references such as Box et al. [1994] and others.215

2.8. General Bayesian spectral likelihood

The general BSL formulation is obtained by expressing the joint probability distribution216

of the PDS variate (PDSV) at all frequencies j = 0,..,N/2− 1:217

p(Ỹ |X,θ,ϑ) =

N/2−1∏
j=0

fj(Pj[ε]|Pj[E ]). (22)

Recalling the different form of the probability distribution for frequency j = 0 (Equa-218

tion 15) than for frequencies j > 0 (Equation 14), the above equation becomes:219

p(Ỹ |X,θ,ϑ) = fχ2
1
(P0[ε]|P0[E ])

N/2−1∏
j=1

fexp(Pj[ε]|Pj[E ]), (23)

P0 is given by Equation 16 and Pj by Equation 21:

P0[E ] = ∆tσ2
δ +N∆tµ2

ε (24)

Pj[E ] = ∆tσ2
δζ

E
j [ϑζ ]. (25)

The above equations hold for any homoscedastic (constant-variance) residual model,220

independent of the residual distribution. For hydrological model residuals, the main221

focus will be on AR(1) residual models, for which ζEj is given by Equation 20. Note222
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that the homoscedasticity assumption can be addressed by using transformations such as223

logarithmic or Box-Cox when calculating the residuals in Equation 2 (see below).224

2.9. Incorporation of BSL into a full Bayesian framework

The preceding Section 2.6 and Section 2.8 derived the likelihood function p(Ỹ |X̃,θ,ϑ)

for Bayesian spectral-domain inference. The Bayesian posterior distribution p(θ,ϑ|Ỹ , X̃)

is then obtained by specifying a prior distribution for all inferred quantities, p(θ,ϑ),

p(θ,ϑ|Ỹ , X̃) ∝ p(Ỹ |X̃,θ,ϑ)× p(θ,ϑ) (26)

The specification of the prior distribution allows incorporating existing (approximate)225

knowledge of hydrological model parameters, eg, based on previous investigations [e.g.,226

Viglione et al., 2013], theoretical constraints, as well as estimates of error model param-227

eters from auxiliary studies such as rainfall and rating curve error analysis [e.g., Renard228

et al., 2011]. In the simplest instance where such additional information is not avail-229

able, such as in the case studies of this paper, a uniform prior distribution can be used,230

p(θ,ϑ) ∝ const.231

In general, the likelihood function must account for any data transformations, such as

the logarithmic or Box-Cox transformations often used to stabilize the error variance,

p(Ỹ |X̃,θ,ϑ) = detJq(Ỹ )× p(E|X̃,θ,ϑ) (27)

where detJq denotes the Jacobian determinant of transformation q, e.g., in the case232

of the logarithmic transformation q(y) = log y used in Section 3.4, we have detJq(ỹ) =233 ∏N
t=1 1/ỹ [e.g., see McInerney et al., 2017]. Unless the data transformation includes fitted234

parameters (e.g., the Box-Cox transformation applied with a fitted rather than fixed value235
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of the power parameter λ), the Jacobian term is constant with respect to the inferred236

quantities (θ,ϑ), and can be treated as part of the proportionality constant in Equation 26.237

2.10. Theoretical advantages of BSL

An interesting and useful feature of BSL is that its likelihood function, given in Equa-238

tion 23, is ”almost” (asymptotically for large N) independent from the distribution of239

residuals in the original (time) domain. This behavior arises from the χ2 form of the240

probability distribution of the PDS variate (PDSV), used to derive BSL (see equations 14241

and 15).242

Intuitively, the asymptotic properties of the PDSV can be related to the mathemati-243

cal form of the Fourier transform, which is defined as a sum of a series of variables (see244

Equation 7). When these variables are random, as is the case when the Fourier transform245

is applied to a stochastic process, the Central Limit Theorem results in an asymptotic246

convergence to a Gaussian distribution almost irrespective of the distribution of the in-247

dividual terms in the sum [see Brillinger, 1981; Cohen, 1998, for details]. Next, when we248

consider the definition of the power-density spectrum variate (PDSV, Q) in Equation 12,249

we see that, for j > 0, the complex modulus operation results in the sum of squares250

of two Gaussian terms, which by definition yields the χ2 distribution with 2 degrees of251

freedom, i.e., the exponential distribution. A slightly different result holds for j = 0 (see252

Equation 14).253

A more formal derivation of the (asymptotic) distributional properties of spectral quan-254

tities is provided by Brillinger [1981, theorem 4.4.2] and [Cohen, 1998]. This behavior and255

associated advantages are illustrated and discussed in Section 4.256
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It is emphasized that, strictly speaking, the Power-density spectrum variate (PDSV) fol-257

lows the exact χ2 distribution only for white noise (uncorrelated homoscedastic Gaussian258

processes). For strongly non-Gaussian, heteroscedastic and/or auto-correlated processes,259

the distribution of the PDSV converges to the χ2 distribution asymptotically as N →∞260

[e.g., Duchon and Robert Hale, 2012, chapter 1]. The greater the departure from white261

noise, the longer data period (larger value of N) is needed before the χ2 distribution be-262

comes a reasonable approximation (similar to Central Limit Theorem converging slower263

when summing highly non-Gaussian, heteroscedastic and/or autocorrelated random vari-264

ables). Given the long times series used in this paper (e.g., N = 215 in case study 2),265

convergence of the PDSV to the χ2 distribution is not a limiting factor.266

Another useful theoretical feature of BSL is that it can quite readily accommodate vir-267

tually any residual autocorrelation structure, as long as the autocorrelation decays to zero.268

This can be achieved by substituting the appropriate parameterization for ζEj in Equa-269

tion 25. Examples of estimating the parameters of the well-known ”1/f” noise [e.g. West270

and Shlesinger, 1990; Ward and Greenwood, 2007a] and of a process with an exponentially271

decaying PDS are provided in Section 3. In contrast, it might be difficult to derive the272

corresponding autocorrelation functions in the time-domain, and indeed impossible in the273

case of ”1/f” noise [Ward and Greenwood, 2007b]. The practical advantages afforded by274

this flexibility of BSL are discussed further in Section 5.275

2.11. Relationship to the estimator of Montanari and Toth (2007)

Montanari and Toth [2007] have previously investigated the calibration of hydrologi-

cal models using the maximum likelihood estimator introduced by Whittle [1953]. The
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likelihood proposed by Montanari and Toth [2007] is

p(Ỹ |X,θ,ϑ) =

N/2∏
j=1

fexp(Pj[Ỹ ]|Pj[H(θ, X̃)] + Pj[E|ϑ]) (28)

where Pj[H(θ, X̃)] is the periodogram of the model simulation and is used as an esti-276

mate of the PDS of the hydrological model Pj[H(θ)]. The term Pj[E|ϑ] is the PDS of the277

residual model as in Equation 23, and Pj[Ỹ ] is the periodogram of the observed output.278

Note that, as discussed in Section 2.11, Equation 28 does not include the PDS value for279

j = 0. Furthermore, both periodograms (of the model simulation and of the observed280

output) are obtained via the Fast Fourier transform without windowing [Montanari and281

Toth, 2007, and the R-code available from the authors].282

The approach suggested by Montanari and Toth [2007], which will be referred to as the283

”Montanari-Toth likelihood” (MTL), requires two important assumptions:284

1. The PDS of the observations Ỹ = H(θ, X̃) + E can be approximated as P[Ỹ ] =285

P[H(θ, X̃)]+P[E ] or, more generally, P[q(Ỹ )] = P[q(H(θ, X̃))]+P[E∗] when the residuals286

E∗ are defined in transformed space. This approximation holds only if the hydrological287

model and the residual model are independent, i.e., if their cross-spectrum is zero [e.g.,288

see Brockwell and Davis, 1987].289

2. The generally unknown PDS of the hydrological model P[H(θ, X̃)] can be approx-290

imated by the periodogram of a model simulation, P [H(θ, X̃)]. As the periodogram is a291

”single-sample” estimator of the PDS, this approximation introduces additional noise into292

the estimation procedure. More stable (less noisy) PDS estimators exist [e.g., Welch, 1967]293

but have not been investigated in the context of the Whittle estimator for hydrological294

model calibration.295
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As shown by Montanari and Toth [2007], assumptions 1-2 above can often provide296

useful practical results. However, the additional approximation errors introduced by these297

assumptions can be expected to inflate posterior parameter uncertainty compared to BSL,298

which does not make these assumptions. These theoretical considerations are investigated299

empirically in Section 4 and discussed in Section 5.300

Note also that MTL is formulated in terms of the observed streamflows given a model301

simulation and a residual error model, whereas BSL is formulated in terms of the observed302

residuals given a residual error model. In this respect, the convenience of the BSL formu-303

lation presented in this work is that it does not require dealing with spectral analysis of304

the hydrological model equations.305

3. Case studies

Four case studies are presented: (i) illustration of the properties of the periodogram306

(used in the BSL inference), using pure random processes; (ii) inference of parameters307

of autocorrelation functions of pure random processes; (iii) synthetic hydrological cali-308

bration, where we investigate the inference of hydrological and error model parameters309

under controlled conditions; and (iv) real hydrological calibration, where we investigate310

parameter inference when model assumptions are not fully met.311

A summary of the case studies is given in Table 3 and a summary of notations in Table 4.312

3.1. Case study 1 (synthetic): Properties of the periodogram / BSL

One of the interesting properties of the periodogram of a random process is that its ele-313

ments follow (approximately) the χ2 probability distribution regardless of the probability314

distribution of the original random process (see Section 2.8). This property is illustrated315
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for uncorrelated non-Gaussian processes, with innovations from the following four proba-316

bility distributions: i) uniform distribution in [−1, 1], ii) Laplace distribution with µ = 0,317

σ = 1, iii) bimodal Gaussian distribution with µ1 = 1, µ2 = −1, σ1 = σ2 = 0.5 and weight318

0.2 of the first component; (iv) an AR(1) process with the parameters of the Gaussian319

error model of Table 4, selected based on hydrological experience.320

The methodology employed to empirically confirm the probability distribution proper-321

ties of the periodogram is given in Appendix A1.322

3.2. Case study 2 (synthetic): Inference of pure random processes

The ability of BSL to retrieve the parameters of the process that generated the ”ob-323

served” data are first illustrated using a synthetic case study based on pure random324

processes (i.e., without a deterministic component).325

The following stochastic processes are investigated:

fP1(ω;A1, B1) = A1 exp(−B1ω) (29)

fP2(ω;A2, B2) = A2/ω
B2 (30)

with reference parameter values (A1, B1) = (100, 0.001) and (A2, B2) = (10.5, 3), re-326

spectively.327

The methodology for generating the synthetic data for this case study is detailed in328

Appendix A2. This analysis allows establishing the theoretical properties of BSL under329

idealized conditions. As we do not carry out a Markov Chain Monte Carlo (MCMC)330

analysis of the posterior distribution, we are limited to examining the properties of the331

optimal BSL estimate, rather than of the entire BSL distribution. Note that optimization332
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of the likelihood corresponds to optimization of the Bayesian posterior under uniform333

prior assumptions.334

3.3. Case study 3 (synthetic): simple hydrological model

Following the basic verification of the BSL using pure random processes, we investigate335

its properties when applied to hydrological models with synthetic rainfall-runoff data.336

The synthetic data is generated using a simple rainfall generator and hydrological model,337

in order for the synthetic streamflow data to generally resemble real observations; see338

Appendix A3 for a detailed description.339

The rainfall generator used is a Poisson rectangular pulse model with an exponential340

distribution for both the rain cell intensity and the duration [e.g. Bierkens and Puente,341

1990]. The model has three parameters: the arrival rate λ, the mean intensity ir and the342

mean duration tr.343

The hydrological model used is a simple model with two linear reservoirs in series,344

described by three parameters. The reservoir outflow is q = ks, where q is the outflow,345

s is the storage and k−1 is the residence time. The residence time of the first reservoir,346

k−1
1 , is shorter than the residence time of the second reservoir, k−1

2 . The leaching from347

reservoir 1 to reservoir 2 is assumed to be constant and equal to lg. We refer to this model348

as the simple linear HM (”linearity” here refers to the flux formulation).349

The following residual error models are used: (i) Gaussian AR(1) process (Section 2.1);350

(ii) Laplacian AR(1) process (Section 2.1); and (iii) a process with the autocorrelation351

structure υ` = f(`; %1, %2) = exp(−%1`− %2`
0.5), which corresponds to the autocorrelation352

structure of the model residuals of Schaefli et al. [2007]. We consider cases where the error353

model is specified correctly and cases where it is misspecified. The analyses of misspecified354
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error models include erroneous distributional assumptions and erroneous autocorrelation355

structure assumptions.356

The model parameters and the selected reference values for the synthetic case studies357

are summarized in Table 4. The maximum likelihood parameter set is estimated using358

the Nelder-Mead simplex algorithm [e.g. Press et al., 2007] in Matlab Version 2010b.359

The statistical reliability of the predictions in this case study is assessed against multiple360

realizations of synthetic data using a predictive quantile-quantile plot, constructed as a361

generalization of the predictive qq-plot plot proposed by Thyer et al. [2009] for the case362

of a single reference realization (the observed data) (see Appendix A3).363

3.4. Case study 4 (real data): Leaf River modeling

The behavior of BSL under real data conditions is investigated by calibrating the hy-364

drological model HYMOD [Boyle, 2000] to the well-known Leaf River basin near Collins,365

Mississippi [e.g. Sorooshian et al., 1993; Vrugt et al., 2005; Smith et al., 2008]. The catch-366

ment has an area of about 1950 km2. Daily area-average precipitation, evapotranspiration367

and streamflow estimates are available from the Hydrologic Research Laboratory of the368

National Weather Service. The calibration period ranges from October 1948 to September369

1951. The validation period ranges from January 1951 to December 1969.370

To stabilize the variance of the model residuals, we apply a log-transformation to the

observed and simulated streamflow

εt = log(ỹt + A)− log(ŷt + A), (31)

where A is a small fixed offset to avoid numerical problems when applying the trans-371

formation to zero and near-zero flows. Here, we use A = 10−4 (mm/d).372
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We assume that the residuals of log-transformed responses can be described by a random373

vector E that (approximately) follows an AR(1) process with Gaussian innovations. In this374

case, BTL and BSL can be applied without further modification to the log-transformed375

residuals (see Section 2.9). The posterior parameter distribution with BSL or BTL are376

sampled using the Metropolis algorithm described in Schaefli et al. [2007], which was used377

to produce 1000 samples from a stable chain (no update of the sampling distribution).378

All error model parameters are sampled jointly with the hydrological model parameters.379

We use uniform priors for all parameters except the error model innovation variance σ2
δ ,380

for which Jeffreys prior is used (p(σ2
δ ) = 1/σ2

δ ) [see Schaefli et al., 2007]. Note that381

the mean of the innovations µδ, which effectively acts as a mass balance parameter, is382

inferred jointly with all other parameters. In principle this estimation approach can lead383

to non-robust predictions, as shown empirically by Evin et al. [2014]. Although such non-384

robustness was not seen in the current case study, we note that joint inference of mass385

balance parameters, error variance and error autocorrelation should be undertaken with386

care to avoid poor inference and predictions.387

4. Results

4.1. Case study 1: Theoretical properties

An important property of BSL, arising from its use of the periodogram, is that its388

formulation does not depend on the process distribution in the original (time-)domain389

(Section 2.10). This is illustrated in Figure ??, which shows Gaussian qq-plots of the390

realizations from three different non-Gaussian random processes, and the χ2 qq-plots of391

the corresponding periodograms. Figure ??a-b show three theoretical process examples,392

while Figure ??c-d applies this analysis to the (highly non-Gaussian) residuals time series393
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obtained from the inferred maximum likelihood parameter set of the Leaf River case study394

(Section 4.4). In all cases, irrespective of the process distribution in the original domain,395

the periodograms follow a χ2 distribution with two degrees of freedom for all frequencies396

j > 0. This findings provides empirical confirmation of the theoretical considerations397

given in Section 2.10.398

4.2. Case study 2: Inference of PDS parameters

Another important property of BSL is that it can be readily used to infer the parameters399

of processes with virtually any PDS. This is illustrated in Figure ??, which shows, for400

each parameter of the two pure random processes given in Table 3, the distributions of401

optimal estimates obtained by maximizing the likelihood function over multiple process402

realizations with the same underlying true parameters (see Section 3.2).403

Figure ?? show that the distributions are (correctly) centered on the true parameter404

values used to generate the original process realizations. The variability of the optimal405

estimates is indicative of the parametric uncertainty associated with fitting the model406

to finite-length realizations (in this particular example, parametric uncertainty is quite407

small, less than 5% in both cases, due to the relatively long realization used (see Appendix408

A2).409

4.3. Case study 3: Synthetic hydrological calibration

4.3.1. Correct versus misspecified error models410

The mathematical equivalence of BSL and BTL is illustrated in Figure ??, which shows411

the parameter distributions obtained for the simple linear HM with a Gaussian AR(1)412

residual model where all model assumptions are respected. The inferred parameter dis-413

tributions are almost indistinguishable for the BSL and BTL likelihoods.414
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Figure ?? shows the same experiment, except that the residuals are generated from415

a Laplace AR(1) distribution. We consider three likelihoods: Gaussian BTL, Laplace416

BTL and BSL (which remains unchanged because it does not depend on the assumed417

distribution of residual errors).418

The parameter distributions inferred with BSL, Gaussian BTL and Laplace BTL are al-419

most identical, and are centered on the true parameter values. This finding demonstrates420

the general robustness of the Gaussian BTL with respect to the underlying distribution of421

model residuals. This robustness is confirmed by repeating the same experiment (results422

not shown) with different residual error parameters (namely ρε ∈ 0, 0.5, 0.8, µδ ∈ 0, 0.23, 1)423

and σδ ∈ 0.06, 0.13, 0.5), and for log-normal residual distributions. This robustness ex-424

presses the fact that in any of these experiments, BTL-Gauss is maximized for almost425

the same parameter set as BTL-Laplace or BTL-lognormal (differences in optimal pa-426

rameter values of a few percent). The robustness of least squares parameter estimates427

to moderate departures from Gaussian distribution assumptions is fairly well established428

in the statistical literature [e.g., White, 1981]. Note that here were are concerned with429

departures from the overall shape of the error distribution rather than to the presence of430

strong outliers, as in the latter case least squares estimates can indeed deteriorate very431

rapidly [Press et al., 2007].432

The robustness of BTL does start to break down if wrong assumptions are made about433

the residual autocorrelation structure (rather than about the residual distribution). This434

is illustrated in Figure ??, which shows the parameter distributions obtained for BTL,435

BSL and MTL for the synthetic case when the residuals have an exponential rather than436

AR(1) autocorrelation structure (see Section 3.2). The parameter distributions show437
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that both BTL-Gauss-AR1 and BSL-AR1 yield unbiased parameter estimates. However,438

compared to the distributions obtained under the correct likelihood (called BSL-nonAR1),439

BTL-Gauss-AR1 yields too wide hydrological parameter distributions, in particular for440

parameter k2 (compare Figure ?? top row and bottom row). The distributions of the441

parameters k1, k2 and lg under BSL-AR1 are similar to the distributions obtained under442

the correct likelihood BSL-nonAR1 (compare Figure ?? 2nd row and bottom row). This443

finding suggests that BSL is slightly more robust than BTL to violations of assumptions444

describing the residual error autocorrelation.445

The differences between the distributions become more visible when comparing their446

reliability using the predictive qq-plots shown in Figure ??. These predictive qq-plots447

show the probability distribution of the underlying true reference simulations within the448

model simulations. The predictive qq-plot for BSL-nonAR1 is clearly closer to the 1:1 line449

(corresponding to a perfectly reliable probabilistic model) than for the other likelihoods.450

Finally, Figure ?? shows the spectral-domain differences between the PDS inferred under451

the assumptions of BTL-Gauss-AR1, BSL-AR1 and BSL-nonAR1 versus the true PDS. It452

can be seen that there is a relatively pronounced difference between the PDS inferred with453

the correct likelihood BSL-nonAR1 and the PDS obtained with the likelihoods assuming454

(wrongly) a AR1 process.455

4.3.2. Comparison of MTL versus BSL and BTL456

Figure ?? compares the parameter distributions for the simple linear HM obtained using457

the MTL likelihood to the parameter distributions obtained using BTL and BSL.458

The MTL inference of all model parameters (hydrological and error model) is unbiased459

despite the fact that the error innovation mean cannot be inferred (Section 2.11). However,460
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the posterior distributions (of all parameters) have a larger variance under MTL than461

under BTL and BSL, in particular for the hydrological model parameter k2 and the error462

model autocorrelation ρ.463

In terms of sensitivity to residual error assumptions, MTL does not, in theory, depend on464

the residual distribution in the original domain (this property is similar to BSL). For the465

previously discussed case of Laplace distributed residuals, MTL indeed results in unbiased466

parameter distributions (Figure ??), despite the fact that the mean of the innovations, µδ,467

cannot be inferred with MTL (the zero frequency does not enter the computation of the468

Whittle likelihood). This example shows that non-zero-mean residuals do not necessarily469

lead to biased MTL estimates.470

In contrast, MTL is highly sensitive to wrong autocorrelation assumptions as demon-471

strated with the experiment with non-AR(1) residual realizations: the resulting parameter472

distributions are biased (Figure ??), the prediction range does not correspond to the range473

of reference simulations (Figure ??) and, compared to the periodogram of the residuals,474

the PDS does not show enough power for high frequencies (Figure ??).475

4.4. Case study 4: Leaf river case study

The posterior distributions of HYMOD and residual error model parameters inferred in476

the Leaf River case study using BTL-Gauss, BSL and MTL are shown in Figure ??. The477

corresponding maximum likelihood parameter sets are listed in Table 5.478

The distributions produced using BTL-Gauss and BSL are very similar. Notable dif-479

ferences arise between the inferred residual innovation means µδ, the HYMOD parameter480

bH (which parameterizes the degree of spatial variability of the soil moisture) and the481

HYMOD parameter α (which parameterizes the distribution of flow between the slow482
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and quick reservoirs). MTL gives a very different range of posterior parameter values for483

the two reservoir parameters νs and νq resulting in lower base flow, slower recessions and484

a slower response to rainfall events. Overall, this leads to more strongly autocorrelated485

residuals, as reflected in the distribution of ρ for MTL.486

Figure ?? shows the streamflow simulation during the validation period corresponding487

to the parameter set with the highest BSL value. Included are plots of the log-transformed488

streamflow to show the model performance during low flows, a plot of the corresponding489

residual time series, a plot of the residuals against the rank of the simulated streamflow,490

a predictive qq-plot and a plot of the partial autocorrelation of the residuals.491

The diagnostic plots in Figure ?? show that, in the case of BSL, the logarithmic transfor-492

mation stabilizes the variance of residual errors and the assumption of constant-variance493

Gaussian residuals holds at least approximately. The autocorrelation of the residual errors494

is reasonably approximated by the AR(1) process (Figure ??f).495

In contrast, the corresponding diagnostic plots for MTL clearly show that the results496

obtained with this likelihood do not comply with the underlying assumptions. In par-497

ticular, the residuals are strongly non-symmetric (Figure ??d), do not have an AR(1)498

autocorrelation structure (Figure ??c,f) and are non-Gaussian (Figure ??e).499

The results for the maximum likelihood simulation with BTL are very similar to BSL500

Figure ??. However, the residual time series computed in the BSL and BTL inferences501

are not identical. In particular, the distributions of residual model parameters are slightly502

different (especially for the innovation mean µδ, see Figure ??), which translates into a503

different mean and total variance in the AR(1) residual model.504
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Accordingly, the total prediction limits for BSL and BTL are also different (Figure ??).505

These limits are obtained from 500 random model realizations (hydrologic model simu-506

lation plus residual error realization) corresponding to random draws from the posterior507

parameter distributions. As can be seen in Figure ??, the parametric uncertainty is rela-508

tively small for BSL, BTL and MTL (because of the length of the calibration data), and509

the majority of the predictive uncertainty is due to residual errors.510

Overall, the total 90% prediction limits obtained with BSL and BTL from the 1000511

samples span, respectively, around 93% and 90% of observed values in the calibration512

period and around 94% and 87% of observed values in the entire simulation period (cal-513

ibration and validation). The predictive qq-plots for the validation period (Figure ??a514

and d) show that both likelihoods lead to very similar statistical reliability, with minor515

deviations from the uniform distribution. Considering high flow and low flow separately,516

(Figure ??b-c and e-f) suggests that BSL gives more reliable results than BTL for low517

flow simulations (Figure ??c and f).518

5. Discussion

Given the theoretical aspects presented in Section 2 and the results of the empirical519

case studies reported in Section 3, we are now in a position to discuss the advantages and520

limitations of the BSL approach, relate it to the existing techniques for parameter inference521

in the time- and spectral-domains, and outline directions for further investigations.522

We begin by comparing BSL to other spectral calibration methods proposed in the523

hydrological literature, with a particular focus on the MTL approach [Montanari and524

Toth, 2007], and then make a broader comparison to traditional time-domain calibration525

(BTL).526
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The majority of spectral-domain calibration methods in the hydrological literature are527

heuristic, in the sense that they do not explicitly articulate a probabilistic model of the528

system of interest (here, the catchment and observation systems) when constructing the529

objective function. For example, consider the case of parameter calibration that searches530

for the hydrological parameter set to match the autocorrelation function of the simulated531

discharge and the autocorrelation function of the observed discharge, using the root-mean-532

squared-error as a distance metric [Moussu et al., 2011]. This approach is useful from the533

point of view of maximizing particular model fit features, and establishing the sensitivity534

of the fit to parameter values, but cannot provide probabilistic estimates of uncertainty in535

the estimated parameters and predictions.536

In addition, heuristic approaches, such as matching the autocorrelation function, hide a537

number of assumptions, such as the distributional properties of the errors. For example,538

using the sum-of-squared differences between the autocorrelation functions of observed539

versus simulated streamflow implies an assumption that these differences follow an inde-540

pendent Gaussian distribution. Unless these assumptions are stated and tested explicitly,541

the ability of the inference to provide meaningful probabilistic estimates is questionable.542

For these reasons, our interest in this study is on likelihood functions explicitly derived543

from probabilistic models of the hydrological system and observations systems.544

To the best of our knowledge, MTL is the only approach in the hydrological literature545

where a likelihood function is formally articulated from a probabilistic description of the546

data. The Whittle likelihood employed in the MTL approach is used outside of hydrology,547

in particular to infer the parameters of time series models [Ives et al.] or to estimate the548

power-density spectrum of time series [Choudhuri et al., 2004]. However, it is usually used549
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in contexts where the PDS of the model can be computed directly [e.g., Montanari et al.,550

1997], whereas in the MTL approach, the PDS of the (error) model is approximated (with551

potentially large errors) by subtracting the periodogram of model simulations from the552

periodogram of observed times series (Section 2.11).553

In this work, we use a different strategy when deriving the BSL approach - we articulate554

the spectral-domain error model by computing the distribution of residual errors in the555

spectral-domain from the time series of residuals in the time-domain.556

What are the advantages and limitations of the BSL approach versus the MTL ap-557

proach? By explicitly computing the residual error time series and then transforming to558

the spectral-domain, BSL avoids the approximations and ensuing noise incurred by MTL.559

This behavior can be seen in the empirical case studies 3.1 and 3.2 (Table 3, Figure ??,560

Figure ??) where parametric uncertainty in the BSL approach was similar to the BTL561

inference. Especially under synthetic conditions with the correct error model (case study562

3.1, Figure ??), we can take BTL as the reference solution because it works directly with563

the raw residuals without any spectral-domain transformations.564

In contrast, MTL inference yields parameter distributions that are clearly wider than565

those of BTL and BSL, as can be seen in case studies 3.1, 3.2, 3.3 (Figure ??, Figure ??,566

Figure ??). We can attribute the additional noise in MTL to at least two potential567

reasons: (i) MTL uses the periodogram to estimate the PDS of the hydrological model.568

As the periodogram is a single-sample estimator of the PDS, it increases the variance of569

the resulting parameter estimates; (ii) MTL excludes the 0th frequency of the PDS from570

the likelihood function and hence looses information about the mean of the stochastic571

process assumed to describe residual errors.572
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This paper has not investigated the individual impact of these approximations on the573

MTL inference. It is possible that the use of more robust PDS estimators, for example,574

Welch’s method [Welch, 1967] could reduce the impact of some of the limitations. That575

said, testing the theoretical properties of approximations to spectral properties of hydro-576

logical models is difficult because, except for special cases, the true PDS of hydrological577

models is unknown. For example, Bierkens and Puente [1990] proposed analytical expres-578

sions for the autocorrelation of the outputs from a simple hydrological model forced with579

stochastic inputs. However, their derivations hold only for the specific model used and580

only for small lags; these results are hence of limited value with respect to more general581

analyses of the MTL inference scheme.582

It is worth adding that, in BSL, the periodogram of residual errors is used not as an583

estimator of their power-density spectrum (PDS), but to compute samples of the power-584

density spectrum variate (PDSV). Hence, replacing the periodogram P (ε) used in BSL by585

a more stable estimator of the PDS [e.g., the method of Welch, 1967] would be detrimental586

to the probabilistic properties of BSL, because it would (by construction) under-estimate587

the variability of residual errors in the spectral domain.588

The advantage of the BSL approach in avoiding the approximations of MTL does not589

come free. In particular, the MTL approach appears simpler to apply to indirect cali-590

bration problems such as non-concomitant calibration, because the residual errors do not591

have to be computed explicitly. BSL will require further development to be applicable to592

this problem, including an approximation of the PDS of the residual errors that does not593

ignore the cross-spectrum (Section 2.11).594
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These extensions to the MTL and BSL approaches lie beyond the scope of current work595

and will be explored in follow-up studies.596

We now shift our attention to a broad comparison of BSL and time-domain estimation597

(BTL). In view of the close correspondence of BSL and BTL, does BSL represents a new598

error model, or a new solution approach for the same error model as BTL? In principle,599

BSL is obtained via Fourier transform of the time-domain realization and, therefore,600

could be seen to rely on the same initial assumptions as BTL (here, that residuals follow601

a Gaussian AR(1) process). However, due to the properties of the Fourier transform and602

the PDS definition listed in Section 2, the influence of assumptions such as that the errors603

are Gaussian is greatly diminished. In this respect, the BSL approach could be viewed to604

represent a more robust error model, especially with respect to distributional assumptions.605

The advantages / attractive features of BSL versus BTL can be summarizes as follows.606

a) Theoretical robustness against violation of distributional assumptions. As noted in607

the theory section (Section 2.3), the power-density spectrum variate central to the BSL608

approach has a χ2 distribution almost independently from the (residual error) time series609

it is computed from. This is an attractive theoretical property because it can be expected610

to reduce the impact of violating distributional assumptions such as Gaussian errors, etc.611

We note that least squares methods are often robust against departures from Gaussian612

assumptions [e.g., White, 1981, , and case study 3.2]. For this reason, a comparison613

of BSL and BTL in catchments with strongly non-Gaussian errors is of interest and614

recommended for future work. The impact of strong outliers is of particular interest given615

the susceptibility of least squares estimation to this particular departure from Gaussianity616

[Press et al., 2007].617

D R A F T July 14, 2017, 12:24pm D R A F T



SCHAEFLI AND KAVETSKI: BAYESIAN SPECTRAL LIKELIHOOD X - 35

b) Flexibility in representing the autocorrelation structure of the model residuals. This618

flexibility arises due to the structure of BSL where the autocorrelation profile function619

((21)) is formulated directly in the spectral-domain. In case study 2.2, we considered620

processes with autocorrelation structures that cannot be readily formulated in the time-621

domain. For example, the correlation structure of ”1/f” (pink) noise has no simple rep-622

resentation in the time-domain. Using BTL for such problems would require approxima-623

tions, e.g., by AR(n) processes, and does not appear robust (e.g., case study 3.3).624

The theoretical flexibility of BSL over BTL in representing error autocorrelation be-625

comes particularly attractive when modeling environmental processes with strong cyclic626

behavior. For example, water temperature time series typically exhibit a pronounced di-627

urnal cycle [e.g., Comola et al., 2015]. A water temperature model that does not capture628

this diurnal cycle will generally yield residuals with a cyclic autocorrelation structure629

peaking every 24 hours. This type of autocorrelation structure is difficult to represent in630

the time-domain, but is relatively easier to represent in the spectral-domain (e.g., with631

the profile function, equation (21)). This example illustrates a case where BSL offers use-632

ful practical advantages for modeling environmental systems where the autocorrelation of633

the model and/or observation errors is (much) easier in the spectral-domain than in the634

time-domain.635

c) Opportunities to extend the method to indirect calibration problems, by taking636

advantage of working in the spectral-domain (see discussion above).637

The practicality of a calibration scheme such as BSL depends not only on its inferential638

properties, but also on its computational cost. A major computational feature of spectral-639

domain methods is their use of Fourier transformed quantities. In practical work, the640
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Fourier transform is invariably implemented using the Fast Fourier Transform (FFT)641

algorithm, which requires of the order of N logN operations [Rao et al., 2010]. BTL642

does not require any FFT operations (it operates exclusively in the time-domain), MTL643

requires a single FFT operation per likelihood evaluation (FFT of the hydrological model644

simulations, assuming the FFT of observed data is pre-computed once) and BSL also645

requires a single FFT operation per likelihood evaluation (FFT of the residual error time646

series). While the cost of FFT can be appreciable for very long time series, in most cases647

we expect it to be dominated by the cost of running the hydrological model, which in648

general requires the solution of differential and algebraic equations at each time step.649

Consequently, it is unlikely that the computational cost of FFT within the BSL (and650

MTL) approaches could be a major limiting factor in practical work.651

Finally, in terms of future work, we note that many aspects of hydrological calibration652

in the spectral-domain remain poorly understood. Based on the findings reported in this653

paper, the following specific directions deserve focused investigation:654

(a) Investigate the robustness of BSL versus MTL and BTL under conditions of strongly655

non-Gaussian errors. In principle, BSL and MTL should provide practical robustness,656

which should be established using both ”realistically constructed” synthetic data and real657

data case studies, in particular in arid/semi-arid catchments;658

(b) Apply BSL to environmental modeling problems where the error time series ex-659

hibit nontrivial persistence patterns (for example, the diurnal water temperature models660

mentioned earlier);661

(c) Indirect calibration, including calibration using non-concomitant input-output data662

time series, and calibration in ungauged catchments;663
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(d) Using BSL in studies exploring error decomposition. In this paper, we focused664

exclusively on aggregated treatment of errors using a single residual error model. The665

alternative paradigm of error decomposition is of tremendous interest, as it allows esti-666

mating dominant sources of uncertainty and devising strategies for reducing these errors.667

In principle, BSL can be incorporated directly into the likelihood terms of hierarchical668

Bayesian approaches such as BATEA [Kavetski et al., 2006; Renard et al., 2011], but the669

advantages, limitations and practicalities of doing so remain to be established empirically.670

6. Conclusions

This paper presents the derivation of the spectral-domain counterpart of the widely used671

time-domain likelihood for Bayesian inference of environmental models. The theoretical672

and empirical properties of the proposed Bayesian spectral likelihood (BSL) are compared673

to the properties of the Bayesian time-domain likelihood (BTL), and to the Whittle-type674

spectral-domain likelihood (MTL) previously proposed by Montanari and Toth [2007].675

The key conclusions of this paper are as follows:676

1. The Bayesian spectral-domain likelihood derived in this work is mathematically677

equivalent to its time-domain counterpart in the case when the residual errors are as-678

sumed to be Gaussian (and autocorrelated). However, the spectral formulation offers two679

theoretical benefits: (i) its likelihood function is (asymptotically) independent from the680

probability distribution of residual errors, and (ii) it can accommodate residual errors681

with more complicated autocorrelation structure (for which time-domain representations682

are difficult or impossible).683

2. At least under synthetic conditions, the time-domain likelihood is relatively robust684

to departures from the assumption of Gaussian residuals, but this robustness breaks down685

D R A F T July 14, 2017, 12:24pm D R A F T



X - 38 SCHAEFLI AND KAVETSKI: BAYESIAN SPECTRAL LIKELIHOOD

for departures from the assumed autocorrelation structure. This is an aspect in which the686

spectral-domain inference might offer practical benefits over time-domain inference.687

3. For the Whittle-type spectral-domain likelihood proposed by Montanari and Toth688

[2007], the synthetic and real data studies suggest that the simplifying assumptions made689

in this likelihood tend to produce parameter distributions that are too wide compared to690

inference in the time-domain, and potentially biased when autocorrelation assumptions691

are violated. The Bayesian spectral-domain likelihood introduced in this work does not692

appear to suffer from these limitations and does not incur a loss of information compared693

to the corresponding time-domain inference.694

4. The real data case study based on the Leaf River and the hydrological model HY-695

MOD reinforces the (relative) robustness of the time-domain and spectral-domain infer-696

ence for a typical hydrological setting. Both inferences produced similar results, despite697

some moderate departures from the residual error model assumptions.698

The theoretical derivations and analyses presented in this paper represent the first step699

towards formal Bayesian inference in the spectral-domain. Further work is required to700

better understand the properties of spectral-domain inference and its potential advan-701

tages in environmental model calibration. Future studies will include: (i) investigation702

of the robustness of BTL and BSL in cases where the model residuals are strongly non-703

Gaussian, e.g., as common in models of arid and semi-arid catchments; (ii) a wider range704

of hydrological case studies to gain more general insights into the practical performance of705

spectral-domain inference, including for models with non-trivial / cyclic autocorrelation706

structures; (iii) extensions of BSL to parameter inference with non-concomitant input-707
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output time series; and (iv) extensions of BSL to more comprehensive inference setups708

with individual treatment or sources of uncertainty (error decomposition).709

A Matlab implementation of BSL for AR(1) error models is available in the Supporting710

Information.711
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Appendix A: Details of case study methodology

A1. Analysis of periodogram properties in case study 1

This section details the methodology employed in case study 1 to empirically confirm720

the probability distribution properties of the periodogram:721

1. Select a time-domain process (e.g. from the list of case studies summarized in Table722

3);723

2. Generate a sample of multiple independent realizations from the stochastic process.724

Here we generate a sample z of length N = 213.725

3. Compute the periodogram Pj(z) using the FFT operation [Welch, 1967];726

4. Produce a Gaussian qq-plot of the sample z from in Step 2. This plot is used to727

illustrate that the distribution of the processZ in the time-domain is clearly non-Gaussian.728

5. Produce a χ2 qq-plot of the values of the periodogram Pj(z) from Step 3. This729

plot is used to demonstrate that distribution of the process in the spectral-domain follows730

the χ2 distribution. Note that for an uncorrelated process, the distribution of the PDS731

element Pj[Z] does not depend on the element index j.732

A2. Generation of synthetic data and inference verification in case study 2

This section describes the methodology employed in case study 2 to generate the syn-733

thetic data and use it to verify the results of the inference und all tested likelihoods.734

1. Select a stochastic process, defined by its PDS function fP(ω;γ), where γ is a set of735

parameters. We also select a reference set of parameters, γr.736

2. Generate a random process realization z
(ı)
P(γr) of length N with PDS fP(γr), as follows

z(ı)
ω ← N(0, 12) (A1)
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z
(ı)
P(γr) = f−1

FFT

[
fP(ω;γr)

0.5fFFT(z(ı)
ω )
]
, (A2)

where fFFT denotes the fast Fourier transform (FFT) operation, f−1
FFT is the inverse FFT737

operation, and z
(ı)
ω is a standard Gaussian white noise realization (but any other probabil-738

ity distribution could be used here). fP(ω;γr)
0.5fFFT(z

(ı)
ω ) corresponds to an element by739

element (i.e. frequency by frequency) multiplication of the square-root of the PDS fP(γr)740

with fFFT(z
(ı)
ω ).741

3. Infer the maximum BSL estimate γ̂(ı) by maximizing the log-BSL, log p(z
(ı)
P(γr) | γ)742

with respect simplex direct search algorithm [Lagarias et al., 1998] for this maximization.743

direct search algorithm [Lagarias et al., 1998] for this maximization.744

4. Repeat steps 2-3 for ı = 1, ..,m to obtain an empirical distribution of optimized745

parameter estimates γ̂(ı). All presented results use m = 400 replicates each of length746

N = 215.747

5. Compare the empirical distribution of γ̂(ı) to the reference value γr.748

This analysis allows establishing the theoretical properties of BSL under idealized con-749

ditions. As we do not carry out a Markov Chain Monte Carlo analysis of the posterior750

distribution, we are limited to examining the properties of the optimal BSL estimate,751

rather than of the entire BSL distribution. Note that optimization of the likelihood cor-752

responds to optimization of the Bayesian posterior under uniform prior assumptions.753

A3. Generation of synthetic data in the hydrological case study 3

This section describes the methodology employed in case study 3 to investigate the BSL754

inference under synthetic hydrological conditions.755

1. Select a rainfall generator G, and a reference parameter set ϕr.756
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2. Select a rainfall-runoff model H , and a reference parameter set θr.757

3. Select a stochastic process to represent residual errors E , and a reference parameter758

set ϑr.759

4. Generate a realization of the rainfall, x(ı) ← G(ϕr) of length N .760

5. Compute the synthetic ”true” streamflow realization, y(ı) = H(θr,x
(ı)) of length761

N .762

6. Generate a realization of residuals, ε(ı) ← E(ϑr) of length N .763

7. Compute the synthetic ”observed” streamflow realization, ỹ(ı) = y(ı) +ε(ı), of length764

N .765

8. Select a likelihood formulation (BTL, BSL or MTL) and infer the maximum like-766

lihood estimates (θ̂(ı), ϑ̂(ı)) by maximizing the log-likelihood, log p(ỹ(ı) | x(ı),θ,ϑ) with767

respect to (θ,ϑ). Note that, similar to case study 1, this procedure corresponds to maxi-768

mizing the Bayesian posterior under uniform prior assumptions.769

9. Repeat steps 4-8 for ı = 1, ...,m to obtain an empirical distribution of the optimized770

rainfall-runoff model parameters θ̂(ı) and residual model parameters ϑ̂(ı). All presented771

results use m = 400 replicates.772

The statistical reliability of the predictions obtained in this study is assessed using a773

predictive quantile-quantile (qq) plot constructed as follows: (i) compute the median of the774

reference simulations at time step t; (ii) estimate the quantiles of this median simulation775

within the predictions at time step t; (iii) estimate the frequency of these quantiles for776

selected bins; (iv) repeat steps (i) - (iii) but swapping the reference simulations and the777

predictions; (v) plot the frequencies against each other; this should plot on a 1:1 line.778

Note that the predictive qq-plot constructed using the approach above is a generalization779
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of the predictive qq-plot proposed by [Thyer et al., 2009], where only a single reference780

realization (the observed data) was used.781
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Table 1. Mathematical notations used for the methods (for case studies see Table 1) We

use capital letters for stochastic processes, lower case letters for process realizations (samples)

or deterministic processes. Bounded domain continuous-time stochastic processes are written as

(Zt)t=1,..,N , bounded domain stochastic discrete-time processes are written as (Zk)k=1,..,N .

Notation Type Meaning
p() Function Probability density
E[] Function Expectation
t Variable Time step of a discrete-time process
∆t Parameter Length of the discrete time step
` Variable Time lag (autocorrelation function)
N Parameter Number of time steps
ω Variable Angular frequency index of continuous Fourier transform
ωf Parameter Fundamental frequency, = 2π

N∆t
ωj Variable Frequency discrete-time Fourier transform ( j − th multiple of ωf )
j Variable Frequency index of discrete Fourier transform
H Process Hydrological process model
X Process True hydrol. system input

X̃ Process Observed system input
Y Process True system output

Ỹ Process Observed system output
E Stoch. Process Model residual process
Z Stoch. Process General stochastic process
z Det. Process General deterministic process
Z(N) Stoch. Process Discrete process Z in the bounded domain N
ε Det. Process Error process realisation
δ Det. Process Realisation of error process innovations
ρ Parameter AR(1) autoregressive parameter
µ Parameter Error process mean
σ Parameter Error process variance
µδ Parameter Innovation process mean
σδ Parameter Innovation process variance
y Det. Process Realisation of hydrol. system output

Ỹ Det. Process Realisation of observed system output
x Det. Process Realisation of rainfall input
ŷ Det. Process Realisation of hydrol. process model (simulation)
F Variable Fourier transform (discrete- and continuous-time)
P Variable Power density spectrum (PDS)
Q Variable Stochastic process having PDS as expected value (PDSV)
P Variable Sample of the PDSV, Periodogram
Pj Variable Mean of the periodogram
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Table 2. Table 1 (continued)

Notation Type Meaning
ζZj Variable Profile function (Equation 21)
ζEj Variable Spectral profile function of residuals
fFFT Operation Fast Fourier transform (FFT) operation
θ Parameter Parameter vector of hydrol. process model
ϑ Parameter Error model parameters
ϑζ Parameter Autocorrelation parameters of error model
µε Parameter Mean of error process
fj Function Probability density function at frequency j
fχ2

1
Function χ2 probability density function

fexp Function Exponential probability density function
q Function Transformation function, e.g. log
Jq Function Jacobian of the transformation q
υ` Function Autocovariance function at lag `
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Table 3. Summary of all the used case studies.

Name Type Purpose
Case study 1.1 synthetic uncorrelated process with innovations from a uniform distribution in [−1, 1]
Case study 1.2 synthetic as 1.1 but Laplace distribution with µ = 0, σ = 1
Case study 1.3 synthetic as 1.1 but bimodal Gaussian distrib.: µ1 = 1, µ2 = −1, σ1 = σ2 = 0.5, weight of 1st component: 0.2
Case study 1.4 synthetic AR(1) process with parameters of Gaussian error model of Table 4
Case study 2.1 synthetic pure random process with fP1(ω; (A1, B1)) = A1 exp(−B1ω), A1 = 100, B1 = 0.001
Case study 2.2 synthetic pure random process with fP2(ω; (A2, B2)) = A2/ω

B2 , A2 = 10.5, B2 = 3
Case study 3.1 synthetic simple hydrologic model + Gaussian AR(1) error process (Table 4)
Case study 3.2 synthetic as 3.1 but Laplacian AR(1) error process
Case study 3.3 synthetic as 3.1 but error process with autocorrel. structure υ` = f(`; %1, %2) = exp(−%1`− %2`

0.5)
Case study 4 real data HYMOD model for Leave river + AR(1) Gaussian error process in log-transformed space
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Table 4. Mathematical notations used for the case studies (for methods see Table 1), including

the reference values for the model parameters.

Notation Type Meaning Reference value
m Parameter Number of experiment repetitions
G Process Rainfall generator model
ϕ Parameter Parameter vector of rainfall generator
λ Parameter Arrival rate (rainfall generator) 0.5 d−1

ir Parameter Rainfall event mean intensity (rainfall generator) [L/T] 3.3 mm/d
tr Parameter Rainfall event mean duration (rainfall generator) [T] 0.8 d
% Parameter Autocorrelation parameters (synthetic rainfall-runoff)
` Variable Lag (synthetic rainfall-runoff)
k1 Parameter Linear reservoir coefficient 1 [1/T] (synthetic rainfall-runoff) 0.1 d−1

k2 Parameter Linear reservoir coefficient 2 [1/T] (synthetic rainfall-runoff) 0.05 d−1

lg Parameter Leaching parameter [L/T] (synthetic rainfall-runoff) λirtr mm/d
ρε Parameter AR1 parameter (error model) 0.8
µδ Parameter Mean of innovations (error model) 0.25
σδ Parameter Standard deviation of innov. (error model) 0.015
smax Parameter Max. storage (HYMOD)[L]
bH Parameter Spatial variability (HYMOD)[-]
α Parameter Flow splitting (HYMOD)[-]
νs Parameter Residence time slow reservoir (HYMOD) [T]
νq Parameter Residence time fast reservoirs (HYMOD) [T]
mH Parameter Number of fast reservoirs (HYMOD) [-]
A Parameter Numerical offset for log computation
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Table 5. Leaf River case study: limits of the uniform priors, parameter values inferred

using BTL and BSL (columns denoted with inf ), and empirical quantities estimated from the

computed residuals (columns denoted with emp). The number of fast reservoirs, mH , is fixed to

2 after initial optimization. The prior for σδ is obtained according to the method used in [Schaefli

et al., 2007]. NSE stands for the Nash-Sutcliffe efficiency.

smax bH α νs mH ρ inf µδ inf σδ inf ρ emp µδ emp σδ emp NSE
mm - - - - - mm/d mm/d - mm/d mm/d -

Prior min 50 0.05 0.01 0.001 0.001 0 -0.25 0 - - -
Prior max 800 1.95 1 0.20 0.95 0.99 0.25 - - - -
BTL-Gauss 149 0.51 0.11 0.16 0.01 0.90 -0.02 0.19 0.71 -0.05 2.08 0.70
BSL 174 0.38 0.10 0.15 0.01 0.89 0.01 0.20 0.73 -0.02 2.10 0.68
MTL 173 0.34 0.08 0.08 0.84 0.97 -0.01 0.21 0.80 -0.02 2.13 0.59
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