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In the present work, we extend and generalize our previous work regarding the scale dependence
applied to black holes in the presence of non-linear electrodynamics [1]. The starting point for this
study is the Einstein-power-Maxwell theory with a vanishing cosmological constant in (3+1) dimen-
sions, assuming a scale dependence of both the gravitational and the electromagnetic coupling. We
further examine the corresponding thermodynamic properties and how these quantities experience
deviations from their classical counterparts. We solve the effective Einstein’s field equations using
the “null energy condition” to obtain analytical solutions. The implications of quantum corrections
are also briefly discussed. Finally, we analyze our solutions and compare them to related results in
the literature.

I. INTRODUCTION

Einstein’s theory of General Relativity (GR) [2], a geo-
metric theory of gravity compatible with Special Relativ-
ity, is not only beautiful but also very successful as well
[3, 4]. Indeed, both the classical and solar system tests
[5], and a few years back the direct detection of gravi-
tational waves by the aLIGO/VIRGO observatories [6]
have confirmed a series of remarkable predictions of GR,
including the existence of gravitational waves. In fact, a
series of additional gravitational wave events from black
hole mergers [7–10], combined with the first image of a
black hole from the Event Horizon Telescope last year
[11–13], have provided us with the strongest evidence so
far that black holes (BHs) exist in nature.
Despite the phenomenological success of classical GR
there are numerous open questions concerning the quan-
tum nature of this theory. The quest for a theory of grav-
ity that consistently incorporates quantum mechanics is
still one of the major challenges in modern theoretical
physics. Most current approaches to the problem found
in the literature (for a partial list, see e.g., [14–22] and
references therein), seem to share one particular prop-
erty. The couplings that enter into the action defining
ones favorite model, such as the cosmological constant,
the gravitational and electromagnetic couplings etc, be-
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come scale-dependent (SD) quantities at the level of an
effective averaged action after incorporating quantum ef-
fects. This was to be expected in some sense that since
scale dependence at the level of the effective action is a
generic feature of ordinary quantum field theory.
On the other hand, classical electrodynamics is based
on a system of linear Maxwell equations. However, as
is usual in quantum physics, the effective equations be-
come non-linear when quantum effects are taken into ac-
count. Many decades back, and in particular in the 30’s,
Euler and Heisenberg calculated QED corrections [23],
while Born and Infeld managed to obtain a finite self-
energy of point-like charges [24]. Those works triggered
the interest in non-linear electrodynamics (NLE), which
has attracted a lot of attention for several decades now,
and it has been studied over the years in several differ-
ent contexts. One advantage of considering non-linear
electromagnetic Lagrangians is the fact that assuming
appropriate non-linear electromagnetic sources, which in
the weak field limit are reduced to the usual Maxwell’s
linear theory, one can generate a new class of Bardeen-
like [25, 26] BH solutions [27–34] with certain desirable
properties. In particular, those solutions, on the one
hand, do have a horizon, which is the defining property of
BHs, and, on the other hand, their curvature invariants,
such as the Ricci or the Kretschmann scalar, are regu-
lar everywhere. This is to be contrasted to the standard
Reissner-Nordström solution [35], which is characterized
by a singularity at the origin.
Finally, Maxwell’s theory may be easily generalized in
a straightforward manner by a simple model called the
Einstein-power-Maxwell (EpM) theory [36–46]. In this
toy model, the theory is described by a Lagrangian den-
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sity of the form L(F ) ∼ F β , where β is an arbitrary ratio-
nal number, F ≡ FµνFµν is the Maxwell invariant, with
Fµν ≡ ∂µAν − ∂νAµ being the field strength, and Aµ is
the Maxwell potential. Even more, although our observ-
able Universe seems to be four-dimensional, the question
”How many dimensions are there?” is one of the funda-
mental questions that modern High Energy Physics tries
to answer. Kaluza-Klein theories [47, 48], Supergravity
[49] and Superstring/M-Theory [50, 51] have pushed for-
ward the idea that extra spatial dimensions may exist.
The advantage of the EpM theory is that it preserves
the nice conformal properties of the four-dimensional
Maxwell’s theory in any number of space-time dimension-
ality d, provided the power β is chosen to be β = d/4,
as it is easy to verify that for this particular value the
electromagnetic stress-energy tensor becomes traceless.
In black hole physics, the impact of the SD scenario on
properties of BHs has been studied over the last years,
and it has been found that the scale dependence modifies
the horizon, the thermodynamics, as well as the quasi-
normal spectra of classical BH backgrounds [1, 52–58].
To the best of our knowledge, however, the impact of the
SD scenario on four-dimensional charged black holes in
the EpM theory has not been studied yet. In the present
work, we propose to study for the first time the prop-
erties of scale-dependent BHs with a net electric charge
in the EpM non-linear electrodynamics with a two-fold
goal in mind. First, to fill a gap in the literature and,
second, to make a direct comparison between i) SD BHs
in the EpM theory versus their four-dimensional classical
counterparts, and ii) the results obtained in the SD sce-
nario versus those obtained by Renormalization Group
(RG hereafter) improvement methods.

It is well-known that properties of physical systems de-
pend on the dimensionality of space-time, see e.g. [59] for
Hawking radiation from higher-dimensional black holes,
and [60] for quasi-normal modes of black holes in Gauss-
Bonnet gravity. Therefore, although EpM theory is bet-
ter motivated in dimensions other than four, we still feel
it would be interesting to see how the properties of black
holes in this class of non-linear Electrodynamics change
as we move from three to four dimensions.

Our work in the present article is organized as follows:
In the next section, we review the classical EpM the-
ory, while in section 3, we briefly present the BH solu-
tions within EpM non-linear electrodynamics for arbi-
trary power β. In the fourth section, we comment on the
null energy condition, an essential ingredient of the SD
scenario. After that, in section 5, we discuss the prop-
erties of the SD charged BHs in four-dimensional EpM,
and a comparison with the results produced by RG im-
provement methods is made as well. We finish our work
with some concluding remarks in the last section.

II. CLASSICAL EINSTEIN-POWER-MAXWELL
THEORY

This section is devoted to introducing a particular type
of NLE that we are interested in. To be more precise, we
will use the well–known EpM theory. First, we remember
that the standard Maxwell contribution to the action is
defined as F ≡ FµνFµν/4. This solution has been ex-
tensively studied in the context of black holes in (2+1),
(3+1), and in general in d dimensional space-time. An
apparently more complicated contribution to the action
is obtained allowing powers of the aforementioned invari-
ant, namely, now we accept a Lagrangian density of the
form: L(F ) ≡ D1F +D2F

2 +D3F
3 + · · ·+DnF

n. This
Lagrangian density is not easy to investigate because, in
general, it does not give exact solutions. A more treatable
way to make progress is to take into account the special
case L(F ) = Dβ |F |β , being D a constant with appropri-
ate units and β a free dimensionless parameter.
Those theories will then be investigated in the context of
scale-dependent couplings. Thus, we will start consider-
ing the so–called EpM action without cosmological con-
stant (Λ0 = 0), assuming the aforementioned Lagrangian
density, namely

I0[gµν , Aµ] ≡
∫

d4x
√
−g
[

1

2κ0
R− 1

e2β
0

L(F )

]
, (1)

where the parameters are defined as follow: κ0 ≡ 8πG0 is
the gravitational coupling, G0 is the dimensionful New-
ton’s constant, e0 is the dimensionful electromagnetic
coupling constant, R is the Ricci scalar and F has the
usual meaning. We use the metric signature (−,+,+,+),
and natural units (c = ~ = kB = 1) such that the action
is dimensionless. The power β also appears in the ex-
ponent of the electromagnetic coupling. This inclusion
is justified because we need to maintain the action di-
mensionless. On the one hand, this generalized action
also contains the classic Einstein-Maxwell case after the
replacement β = 1. On the other hand, one can obtain
deformed Maxwell solutions when β 6= 1. In what fol-
lows, we shall consider the general case, namely, when
β is taken to be an arbitrary parameter. It is essential
to point out that this generalization should recover the
classical case, at least at a certain limit. At this point
we could consider a (naive) range β ∈ R+ [74], but our
solution could have restrictions on the values of the pa-
rameter β.
In the context of SD gravity in the presence of NLE, the
corresponding equations of motion are

Gµν =
κ0

e2β
0

Tµν . (2)

The energy-momentum tensor Tµν is associated to the
electromagnetic field strength Fµν through

Tµν ≡ TEM
µν = L(F )gµν − LFFµγFν γ , (3)
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remembering that LF = dL/dF . Besides, for static
spherically symmetric solutions the electric field E(r) is
given by

Fµν = (δrµδ
t
ν − δrνδtµ)E(r). (4)

The variation of the classical action with respect to the
field Aµ(x) gives simply

Dµ

(
LFFµν

e2β
0

)
= 0, (5)

where e2β
0 is a constant. Combining Eq. (2) with

Eq. (5) we are able to determine the set of functions
{f0(r), E0(r)}. Also, it is important to point out that the
classical version of this problem was certainly discussed
before [74] as well as the corresponding SD Einstein-
Maxwell case in (3+1) dimensions [75]. In both cases,
the thermodynamic and the asymptotic properties were
investigated in detail.

III. BLACK HOLE SOLUTION FOR
EINSTEIN-MAXWELL MODEL OF ARBITRARY

POWER

The general metric ansatz assuming spherical symmetry
is given by

ds2 = −f0(r)dt2 + g0(r)dr2 + r2
(
dθ2 + sin2(θ)dφ2

)
, (6)

where f0(r) and g0(r) are the metric functions and can
be linked via the Schwarzschild relation, i.e. g0(r) =
f0(r)−1. In GR, one only computes the electric field
E0(r) and the lapse function f0(r) only by solving: i)
the Einstein field equations and ii) the equation obtained
after the variation of the classical action respect the po-
tential Aµ. For practical purposes, we will summarize
the classical solutions for an arbitrary index, β. Solv-
ing the Einstein field equations for the classical case we
obtain:

f0(r) = 1 +
C

r
+
B̃

rα
, (7)

E0(r) =
Ã

rα
, (8)

where the power α is linked to the power-Maxwell expo-
nent as follows

α =
2

2β − 1
, (9)

and the case β = 1/2 is excluded from the solution. The

pair {Ã, C} are constants of integration directly related
to the electric charge and the mass, respectively, of the
black hole, while B̃ is given in terms of Ã as follows
[74]

B̃ ≡ κ0

(
− 2Ã2D

)β (1− 2β)2

(2β − 3)
. (10)

Furthermore, Ã is identified with the electric charge, Q0,
while C = −2G0M0 is proportional to the mass of the
black hole, M0. Throughout the manuscript, all clas-
sical quantities carry a sub-index ”0”, whereas scale-
dependent quantities carry no sub-indices. Clearly, in
the special case β = 1 and α = 2 the usual Reissner-
Nordström (RN) black hole solution is recovered.

It is important to point out that M0 is the ADM/Komar
mass of the black hole. The ADM mass is defined via
the ADM formalism at spatial infinity only. In practice,
it is read off from the decay of g00; the Komar mass is
defined as a flux integral associated to the stationarity,
and it can be computed at any closed 2-surface in a space-
like surface. The Komar mass coincides with the ADM
mass in the case of asymptotically flat space-times, such
as the RN geometry.

Furthermore, we observe two natural ranges that respect
the exponent α, i.e., whether or not 1/rα goes faster to
zero than the Schwarzschild potential 1/r. Regarding BH
thermodynamics, we first should compute the classical
horizon, r0,which is obtained demanding that f0(r0) = 0.
By writing the lapse function in terms of the horizons,
we have

f0(r) =

[
1− rA

r

][
1−

[
1− rA

rB

1− rA
r

] [ rA
r −

(
rA
r

)α
rA
rB
−
(
rA
rB

)α
]]
. (11)

Firstly, notice that these horizons, {rA, rB}, can be
linked to the BH mass and electric charge. Also, the
classical BH horizon is the outer root of the lapse func-
tion, i.e., r0 ≡ max{rA, rB}. Given the non-trivial form
of the lapse function, it is impossible to obtain the corre-
sponding roots for an arbitrary index α, reason why we
write it down implicitly. Also, to get insights into this
model, it is always useful to study some thermodynamic
properties. We can then define three quantities, i. e., the
Hawking temperature, TH , the Bekenstein-Hawking en-
tropy, S, and the specific heat, CQ. Their corresponding
expressions are given as follow

T0(r0) =
1

4π

∣∣∣∣∣ lim
r→r0

∂rgtt√
−gttgrr

∣∣∣∣∣, (12)

S0(r0) =
A0

4G0
, (13)

C0(r0) = T
∂S

∂T

∣∣∣∣∣
r0

, (14)

being A0 the horizon area defined as

A0 =

∮
d2x
√
h = 4πr2

0, (15)

where hij is the induced metric at the horizon, r0.
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IV. SCALE DEPENDENT COUPLING AND
SCALE SETTING

This section is devoted to summing up the main features
and equations of motion for the SD EpM theory with an
arbitrary index in four dimensions. The idea and spirit
follow references [93–102]. and references therein. In
the SD formalism, the couplings evolve with the energy
scale. In our case, we have two coupling functions to
consider, i. e., i) the Newton’s coupling Gk (which is
related to the gravitational coupling by κk ≡ 8πGk), and
ii) the electromagnetic coupling, 1/ek. Besides, there
are three independent fields, which are the metric ten-
sor, gµν(x), the electromagnetic four-potential, Aµ(x),
and the scale field, k(x), where xµ ≡ x is any space-time
point. Notice that in Schwarzschild coordinates we can
write: xµ = {t, r, θ, φ}, and due to the spherical symme-
try all quantities depend on the radial coordinate only,
e.g. k(r).
The effective action for this theory takes the form

Γ[gµν , Aµ, k] =

∫
d4x
√
−g
[

1

2κk
R− 1

e2β
k

L(F )

]
. (16)

Following the same strategy used in the non-improved
case, we can obtain the equation of motion by taking the
variation of (16) with respect to gµν(x), namely

Gµν =
κk

e2β
k

T eff
µν , (17)

where the effective energy-momentum tensor is defined
in such a way that the classical contribution is shifted
by the inclusion of the Newton’s scale-dependent cou-
pling:

T eff
µν = TEM

µν −
e2β
k

κk
∆tµν . (18)

To be more precise, TEM
µν is given by (3) and the extra

contribution ∆tµν is

∆tµν = Gk

(
gµν�−∇µ∇ν

)
G−1
k . (19)

Equivalently, the equations of motion for the four-
potential Aµ(x) when the electromagnetic coupling
evolves take the following form

Dµ

(
LFFµν

e2β
k

)
= 0. (20)

At this level, some comments are in order. As we pre-
viously said, the SD scenario takes advantage of asymp-
totically safe gravity. In particular, in any quantum field
theory, the renormalization scale k has to be set to a
quantity characterizing the physical system under consid-
eration. Thus, for background solutions of the gap equa-
tions, the renormalization scale can evolve. However, the

price to pay is that the set of equations of motion does
not close consistently. The latter means that the energy-
momentum tensor could not be conserved for almost any
choice of the functional dependence k = k(x), being x
an arbitrary coordinate. Also, an appropriated choice
of x depends of the symmetry and the problem itself,
so, such identification will be specified later. Also, such
feature was also extensively investigated in the context
of renormalization group improvement of BHs in asymp-
totic safety scenarios [103–119]. The loss of conservation
laws comes from the fact that there is one consistency
equation missing.

Varying the effective action (16) with respect to the scale
field k(x) we can find the missing equation, i.e.

d

dk
Γ[gµν , Aµ, k] = 0, (21)

which can be considered as as variational scale setting
procedure [99, 120–123]. To achieve the conservation of
the stress-energy tensor, we can combine Eq. (21) with
the above equations of motion. Further details regarding
the split symmetry within the functional renormalization
group equations support this approach of dynamic scale
setting can be found in [124]. Now, it should be noticed
that the implementation of the variational procedure (21)
requires the knowledge of the corresponding β-functions
of the problem. This, however, is a strong disadvantage
because those are not unique. Thus, to by-pass such a
problem, we will close our system by adding a constraint
on one energy condition. The latter has also been used
in some concrete BH solutions [94, 95, 97, 98, 125–127].
We then adopt the same route by imposing the so-called
null energy condition (NEC) to study EpM BHs in four
dimensions.

V. THE NULL ENERGY CONDITION

To close our system, we need to select a supplementary
condition. As we have treated in previous works, we will
take advantage of the so-called NEC. In general, an en-
ergy condition is an extra relation that we impose on
the energy-momentum tensor to try to capture the idea
that energy should not be negative [128]. We usually
have four energy conditions: i) dominant, ii) weak, iii)
strong, and finally, iv) the NEC. In a well-defined prob-
lem in GR, such restrictions are satisfied, although in
some other cases, they can be violated [129, 130].

It is also remarkable that the NEC is a critical ingre-
dient in the Penrose singularity theorem [131]. Given
that our solutions belong to an extension of GR, it is
also suitable to maintain at least one energy condition.
In such a sense, the NEC is the less restrictive of them.
Assuming as valid the classical NEC, we always have a
singularity. Thus, any contracting Universe ends up in a
singularity, provided its spatial curvature is dynamically
negligible [130]. NECs can even be extended to quantum
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formulations [132, 133]. Given the relevance and partic-
ular beauty of the NEC, we will focus our attention on
it. Our starting point is to consider certain null vector,
called `µ, and to contract it with the matter stress energy
tensor as the NEC demands, i. e. :

Tmµν`
µ`ν ≥ 0. (22)

The latter strategy was also used in Ref. [94] inspired
by Jacobson’s idea [134] on getting acceptable physical
solutions. Besides, the relevance of the NEC becomes
notorious when we recognize that such a condition is
not optional in proving some fundamental BH theorems,
such as the no-hair theorem [135], and the second law
of black hole thermodynamics [136]. In the SD scenario
we maintain the same condition in a more restrictive and
thus more useful form by making the inequality an equal-
ity

T eff
µν `

µ`ν =

(
TEM
µν −

e2β
k

κk
∆tµν

)
`µ`ν = 0. (23)

For the null vector we choose a radial null vector `µ =
{f−1/2, f1/2, 0}. Since the electromagnetic contribution
to the effective stress energy tensor (3) satisfies the NEC
(23) by construction, the same has to hold for the ad-
ditional contribution introduced due to the SD of the
gravitational coupling:

∆tµν`
µ`ν = 0. (24)

VI. SCALE DEPENDENT
EINSTEIN-POWER-MAXWELL THEORY

A. Solution

Now, we will compute the solutions for our SD system of
differential equations. In classical BH solutions, we need
to find the lapse function and the electric field. Instead,
we need to compute the same functions in the SD BH ver-
sion and the corresponding Newton and electromagnetic
couplings. Thus, we can sum up it as follows:

{f0(r), E0(r), G0, e0} → {f(r), E(r), G(r), e(r)} (25)

Notice that in Schwarzschild coordinates we can write:
xµ = {t, r, θ, φ}, and then due to spherical symmetry
xµ = r only. The first step to find the full solution is to
calculate Newton’s coupling. We first solve it because, in
practice, when the NEC is used, the differential equation
for G(r) is not coupled to the rest of the functions. We
can then solve it directly. The differential equation is
written as

G(r)
d2G(r)

dr2
− 2

(
dG(r)

dr

)2

= 0, (26)

which allows us to obtain

G(r) =
G0

1 + εr
, (27)

after a suitable choice of integration constants. Be aware
and notice that the constant ε encodes quantum features;
therefore, the classical solution is recovered when ε goes
to zero. The second step is to solve the equation of mo-
tion for the 4-potential given by Eq. (20).

dE(r)

dr
−

[(
1 +

1

2
α

)
e′(r)

e(r)
− α

r

]
E(r) = 0. (28)

In light of the radial dependency of the electric field,
the differential equation can also be solved directly to
get

E(r) = Ã

[
e(r)(1+ 1

2α)

rα

]
. (29)

At this level, we would like to clarify the meaning of some
of the integration constants. Firstly, we introduce the so-
called running parameter, ε, which controls the strength
of the scale dependence; G0 is the classical Newton’s cou-
pling constant and, finally, Ã is a coupling constant which
controls the strength of the electric field. Solving for
the remaining function f(r) and e(r) we obtain the non-
trivial solutions

f(r) =
1

6
(1 + εr)−(1+ 1

2α)

[
6B̃

rα
− (−εr)−α

3α+ 2
×

×

{(
4α(α+ 1) + ε(6(3α+ 2)C

+ (3α− 2)(7α+ 4)r) + 3α(3α− 2)r2ε2
)

×B−rε
(
α− 1, 1 +

1

2
α

)
− α(1 + εr)×

×
(
α(3rε+ 4) + 4

)
B−rε

(
α− 1,

1

2
α

)}]
,

(30)

e(r)(1+ 1
2α) = W0

(1 + εr)−
α
2−2

r
×

×

[
W0(r, ε) +

rα+1(−rε)−α

3α+ 2
×

×

{
W1(r, ε)B−rε

(
α− 1, 1 +

1

2
α

)

+ W2(r, ε)B−rε

(
α− 1,

1

2
α

)}]
,

(31)

where we have defined the intermediate functions
as

W0 ≡
2

1
α−

13
2 α

3πG0

(
ÃD

1
2

)−(α+2
α )

, (32)
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FIG. 1: The lapse function f(r) and the electromagnetic coupling e(r)1+
1
2
α versus radial coordinate r for two concrete cases.

The first line correspond to the lapse function while the second line correspond to the electromagnetic coupling. The first (left),
and second (right) column correspond to the cases α = {2, 3} respectively. We show the classical model (solid black line) and
three different cases for each figure: i) ε = 0.033 (dashed blue line), ii) ε = 0.067 (dotted red line) and iii) for ε = 0.010 (dotted
dashed green line). We have used the set {Q0, e0, G0,M0} = {1, 1/(2

√
π), 1/(16π2), 32π2} . The numerical values of the event

horizon are: i) for α = 2, {rH(ε = 0), rH(ε = 0.033), rH(ε = 0.067), rH(ε = 0.010)} = {3.73204, 3.52496, 3.35651, 3.21518} and
ii) for α = 3, {rH(ε = 0), rH(ε = 0.033), rH(ε = 0.067), rH(ε = 0.010)} = {1.61803, 1.57659, 1.539, 1.50465}.

W0(r, ε) ≡ 6B̃r
(
α(3rε+ 2)2 − 2(3rε(rε+ 2) + 2)

)
−

2rα(rε+ 1)
α
2 +1(6C(3rε+ 2)+ (33)

r(3α(rε+ 2)(3rε+ 2)− 4(3rε(rε+ 3) + 5))),

W1(r, ε) ≡ 4α(3rε+ 1)
(
6ε(C + r)− 3r3ε3 + 4

)
+

2α2ε(2r(9rε(3rε(rε+ 4) + 14) + 41)− (34)

9C(3rε+ 2)2)) + 8ε(3C(3rε(rε+ 2) + 2)−
2r(2rε+ 1)(3rε+ 4))− α3(3rε+ 2)2×
(3rε(3rε+ 7) + 4),

W2(r, ε) ≡ α(rε+ 1)(α2(3rε+ 4)(3rε+ 2)2 − 6αrε (35)

× (rε(3rε+ 10) + 6)− 16(rε+ 1)(3rε+ 1)).

The solution is expressed in terms of the incomplete Beta
function Bz(a, b) defined as

Bz(a, b) ≡
∫ z

0

dτ τa−1(1− τ)b−1. (36)

In particular, notice that Bz(a, b) has a branch cut dis-
continuity in the complex z plane running from −∞ to 0.
Similarly Bz(a, b) can also be defined as follows:

Bz(a, b) = za
∞∑
n=0

(1− b)n
n!(a+ n)

zn, (37)

where (· · · )n is the Pochhammer symbol, i.e.

(· · · )n =
Γ(x+ n)

Γ(x)
. (38)

An interesting case appears when z = 1. In such circum-
stance, the incomplete beta function Bz(a, b) becomes to
the usual beta function B(a, b).

B. Setting the integration constants

Up to now, our generalized SD solution has a few ar-
bitrary constants. To obtain them, we usually demand
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that the new solution should converge to the classical
one when ε is taken to be zero. We must emphasize the
number of integration constants involved in the problem.
Analogously to the lower-dimensional case, the SD grav-
itational coupling introduces two of them. In this case,
they are the classical Newton’s constant G0 and the run-
ning parameter ε. Also, the electromagnetic field shows
an additional integration constant Ã, and the solution of
the lapse function is parametrized by two additional in-
tegration constants B̃ and C. As was pointed out above,
B̃ and C are related to the electric charge and classical
mass, respectively, and the value Ã is connected to the
conventional charge. Taking the limit when ε → 0 we
have

lim
ε→0

f(r) = f0(r) = 1 +
C/(α− 1)

r
+
B̃

rα
,

lim
ε→0

E(r) = E0(r) = Ã

[
ξ1+ 1

2α

rα

]
,

lim
ε→0

G(r) = G0, (39)

lim
ε→0

e(r)1+ 1
2α = ξ1+ 1

2α ≡ B̃α(α− 1)

16πG0

[
Ã

[
D

2

] 1
2

]−α+2
α

.

Also, for Maxwell electrodynamics (α = 2) we recover
the well-known family of solutions, i.e.,

lim
ε→0

f(r) = f0(r) = 1 +
C

r
+
B̃

r2
,

lim
ε→0

E(r) = E0(r) = Ã

[
ξ2

r2

]
,

lim
ε→0

G(r) = G0, (40)

lim
ε→0

e(r)2 = ξ2 =
B̃

4πG0Ã2D
.

We can now take advantage of the SD Maxwell BH solu-
tion previously obtained in [127]. Following that setting,

we take the parameters {Ã, B̃, C,D} as follow

Ã =
Q2

0

4πe2
0

, (41)

B̃ =
4πG0

e2
0

Q2
0, (42)

C = −2G0M0, (43)

D =
1

Q2
0

. (44)

Thus, we will finally have the set {G0, e0, Q0,M0, ε}.
Also, we can observe how the running of the gravitational
coupling distorts the solution.

To get some insights, we expand the solution for small
values of the running parameter ε up to second-order to

obtain to get

f(r) ≈ f0(r) +

(
α2 − 1

)
rε((3α+ 4)rε− 2(α+ 2))

2(α− 1)(α+ 1)(α+ 2)

+
1

8
B̃r−α((α+ 2)rε((α+ 4)rε− 4) + 8)

+
C
(
4(α+ 1) + 3(3α+ 2)r2ε2 − 6(α+ 1)rε

)
4(α− 1)(α+ 1)r

,

(45)

and

e(r)1+ 1
2α ≈ ξ1+ 1

2α

24(α− 1)B̃r

[
2Zrα

2 + α− 2α2 − α3
+ Y

]
,

(46)

where Y ≡ Y (r, ε) and Z ≡ Z(r, ε) are supplementary
functions defined as

Z(r, ε) = 6(α+ 2)C
(
α2(rε− 2)(rε+ 1) + rε(1− 4rε) + 2

)
+
(
α2 − 1

)
r
(
−4(α+ 2)(3α− 5) + (α(3α+ 2)

− 44)r2ε2 − 4(α+ 2)(3α− 4)rε
)
, (47)

Y (r, ε) = 3B̃r
(
8(α− 1) + (α− 3)(α− 2)(α+ 2)r2ε2−

4(α− 2)(α− 1)rε
)
+2rα

(
6C(rε− 2)(rε+ 1)+

(3α− 4)r2ε(rε− 4) + 4(5− 3α)r
)
. (48)

Finally, the electric field and Newton’s coupling take the
form

E(r) ≈ Ãξ1+ 1
2α

24(α− 1)B̃r1+α

[
2Zrα

2 + α− 2α2 − α3
+ Y

]
,

(49)

G(r) ≈ G0

(
1− (εr) + (εr)2

)
. (50)

It is essential to point out that certain values of the power
α are not allowed. We read-off those values from the cor-
responding lapse function. Firstly, α = 1 is excluded
from the solution to satisfy the classical solution. After
that, the SD lapse function has other problematic points
to be excluded from the general solution. Thus, α = −1
and α = −2 are ignored too. To show the lapse function’s
behavior, we will take benchmarks to get insights about
the underlying physics. Fig (1) can be observed the be-
havior of the lapse function and the electromagnetic cou-
pling for different values of the parameter α.

VII. INVARIANTS

In this part, we will briefly summarize how the Ricci
scalar looks like when Newton’s coupling constant be-
comes SD in light of an EpM source. The Kretschmann
scalar is optional in this case, the reason why we will
omit such a computation. Thus, the Ricci scalar take
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the complicated form

R =
1

24(3α+ 2)

[
r−α−3(−rε)−α(rε+ 1)−

α
2−3

× (2(−rε)α(rα(rε+ 1)
α
2 +1(6(3α+ 2)C(2α+ 3αrε− 4)

+ r(4(α− 2)(α(9α− 17)− 14) + 3(α(9α2 − 30α+ 40)

+ 16)r2ε2 + 8(α(3α(3α− 8) + 25) + 16)rε))

− 3(3α+ 2)B̃r(α2(3rε+ 2)2 − 6α(rε(rε+ 4) + 2) + 8))

+ rα+1((16(α− 2)(α− 1)α(α+ 1) + (3α− 2)r2ε3

× (18α(3α+ 2)C + (3α− 4)(α(33α− 50)− 8)r)
(51)

+ 4rε2(18(α− 2)α(3α+ 2)C + (3α− 2)(α(α(27α

− 83) + 34) + 24)r) + 4(α− 2)ε(6(α− 1)(3α+ 2)C

+ (α(α(33α− 53)− 2) + 24)r) + 9(α− 2)α(3α− 4)

× (3α− 2)r4ε4)B−rε

(
α− 1,

α

2
+ 1
)
−α(rε+ 1)

× (α3(3rε+ 2)2(3rε+ 4)− 2α2(rε(3rε(15rε+ 32)

+ 70) + 16) + 8α(rε(rε(9rε+ 13) + 1)− 2)

+ 32(rε+ 1)2)B−rε

(
α− 1,

α

2

)
))

]
.

Also, notice that, different from the classical case, α =
−2/3 makes that the Ricci scalar blows up. Besides, as
the incomplete beta functions are present, negative val-
ues of α should be ignored to maintain a non-singular
Ricci scalar. The classical case can be recovered demand-
ing that ε→ 0 to get

R0 ≡ lim
ε→0

R = − B̃

rα+2
(α− 2)(α− 1). (52)

Finally, the Einstein-Maxwell solutions are obtained
when α = 2 to achieve a null scalar.

VIII. HORIZON AND THERMODYNAMICS

This section is dedicated to reviewing the main thermo-
dynamic properties in the SD scenario. Some details to
the computation of the corresponding thermodynamics
properties can be consulted,for instance, in [141].

A. Black hole horizon

An essential ingredient to analyze the correspondent
thermodynamics is the BH horizon. Thus, the horizon
where the temperature, entropy, and capacity heat are
evaluated is precisely the reason why it will compute it.
The BH horizon is found by demanding that f(rH) = 0.
In the simplest cases, we might obtain the explicit form
of rH . In this case, however, such a task is not possible
to achieve. That problem is indeed present in the clas-
sical solution for an arbitrary EpM index. Even though,

when the arbitrary index is fixed, we could then obtain a
tractable lapse function and an analytical expression for
the horizon. Now, in the SD solution, we will take two
concrete cases: α = {2, 3}, to show their behavior. As
can be observed in Fig. (2) (left panel) the BH horizon
decreases when the running parameter increases. The
latter can be confirmed by taking, for instance, α = 2
and the running parameter close to zero, namely:

rH(α = 2) = r0

[
1− 1

2
εr0 +O(ε2)

]
, (53)

where r0 is the classical BH horizon. We then confirm
that the SD BH horizon is smaller than its classical coun-
terpart, its major deviation appearing when εr0 is signif-
icant compared to unity. In Fig. (1) we have added the
numerical values of the event horizon for reference. We
have also checked, and a second-order expansion in ε is
enough to make the exact value and the approximated
value quite close. Be aware and notice that, for a given
value of α, the classical BH mass should be related to
the other parameters of the theory. To be more precise,
it should satisfy:

M ≥


(

4πQ2
0

e20G0

)1/2

if α = 2,(
27πQ2

0

e20G
2
0

)1/3

if α = 3,
(54)

for the classical solution. The latter bounds are obtained
to bypass troubles due to the appearance of naked singu-
larities in the classical solution. It should also be pointed
out that the classical black hole mass is not obtained
using the counter-term method or the Hamiltonian ap-
proach. Instead, such a parameter is found under the
appropriate identification with the classical black hole so-
lution. Keep in mind that the SD BH solution includes
the classical solution. The latter means that such a min-
imum value of the mass should be considered as a naive
restriction, still in the SD case. It is remarkable that, at
least for α = 2 in the SD scenario, the minimum bound
of the BH mass is maintained, i.e., Mmin does not depend
on ε. For α = 3 the situation is blurred due to the spe-
cial functions in which the lapse function is written. The
latter can be understood as follows: considering that the
event horizon rH (which should be higher than zero) is
used to read-off some bound for M0, rH should be rela-
tively simple. However, for α = 3, the black hole horizon
is not analytical; therefore, it is impossible to collect M0

and build the corresponding bound (as was made for the
classical case). Thus, for the SD case, the mass bound
for α = 3 is impossible to obtain.

B. Temperature

In theories beyond Einstein’s gravity, it is still possible
to obtain the Hawking temperature following the usual
route. The starting point is the Euclidean action method
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[142]. First, note that the metric can be written in terms
of the Euclidean time τ̃ after the change t→ −iτ̃

ds2 = f0(r)dτ̃2 + g0(r)dr2 + r2
(
dθ2 + sin2(θ)dφ2

)
, (55)

we then consider the requirement of the absence of
the conical singularity in the Euclidean space-time (55)
causes the Euclidean time τ̃ to have a period β0, which
varies that the temperature is given by

TH =
1

4π

∣∣∣∣∣ lim
r→rH

∂rgtt√
−gttgrr

∣∣∣∣∣. (56)

The complexity of the metric potentials makes it impos-
sible to obtain an explicit form of the temperature. How-
ever, implicitly, writing the event horizon and taking ad-
vantage of small values of the running parameter might
bypass the problem, at least for concrete cases. In Fig.
(2) (middle panel) we show the behaviour of the Hawk-
ing temperature for α = {2, 3}. Notice that, starting
from a certain point, the Hawking temperature increases
to reach a maximum value, and, after that, it decreases
when the mass M ≡M0 increases. Also, a small, but still
the noticeable difference is appreciated when the running
parameter is modified. Thus, when the running parame-
ter is turned on, the Hawking temperature increases with
respect to its classical value. To show the impact of SD
gravity on classical solutions, we take the simplest case
(i.e., Einstein-Maxwell). We observe that the correction
to the background solution appears at second order in ε
and also increases the effective temperature.

TH(α = 2) ≡ T0(α = 2)

∣∣∣∣∣1 +
1

4

(
εr0

)2
+ O(ε3)

∣∣∣∣∣. (57)

Finally, the case α = 3 is investigated only numerically
due to the complicated expression for the lapse func-
tion.

C. Entropy and Heat capacity

The Bekenstein-Hawking entropy in SD gravity can be
safely computed by considering the theory as a special
subclass of scalar-tensor theories. As it is well known
from Brans-Dicke theory [143, 144], the entropy of black
hole solutions in d+1 spacetime dimensions with varying
Newton’s constant is computed as follow

S =
1

4

∮
r=rH

dd−1x

√
h

G(x)
, (58)

where hij is the induced metric at the horizon rH . For
the present spherically symmetric solution this integral
is quite simple. So, G(x) = G(rH) is constant along
the horizon due to spherical symmetry. Thus, for prac-
tical purposes, it is enough to replace G0 → G(r) to

obtain

SH =
AH
4G0

(1 + εrH). (59)

Thus, for large values of the combination εrH , the cor-
responding entropy is considerably disturbed; otherwise,
the corrections are practically imperceptible. In this case,
we still require a concrete form of the BH horizon. Given
that we cannot analytically find it, we again take advan-
tage of the numerical solutions. Fig. (2) (right panel)
shows, from top to down, the Bekenstein-Hawking en-
tropy for α = 2 and α = 3 (down) for several values
of the running parameter, ε. Notice that the entropy is
smaller than its classical counterpart, which we think is
remarkable. The heat capacity can be obtained from the
following definition:

CH ≡ T
∂S

∂T

∣∣∣∣∣
Q

, (60)

and simplifying, we finally write the compact expres-
sion

CH = −S0(rH)(1 + εrH). (61)

Interestingly, the negative sign is maintained in the SD
version of the EpM BH solution. Thus, in this sense, the
BH is still unstable when Newton’s coupling is positive.
As the combination εrH is always small, the potential
corrections to the heat capacity are quite weak.

IX. CONCLUSIONS

To summarize, in the present work, we have discussed
a charged black hole solution in four-dimensional space-
time in light of the scale-dependent scenario, strongly
inspired by asymptotically safe gravity. After a short
pass by the effective action, we have derived the corre-
sponding effective Einstein’s field equations coupled to
non-linear electrodynamics. Then, we have computed
the metric potential as well as the basic thermodynamics
properties. We have observed that all new non-classical
effects are controlled by the running parameter, ε. Thus,
our solution mimics the classical one when ε ∼ 0 and dif-
ferences emerge when ε becomes large. Finally, we have
pointed out that, to obtain a well-defined solution, the
black hole mass should satisfy a minimum value which is
present both in the classical and in the scale-dependent
settings.
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[75] Á. Rincón, E. Contreras, P. Bargueño, B. Koch and
G. Panotopoulos, Eur. Phys. J. C 78, no. 8, 641 (2018)

[76] S. H. Hendi and H. R. Rastegar-Sedehi, Gen. Rel. Grav.
41, 1355 (2009).

[77] H. Maeda, M. Hassaine and C. Martinez, Phys. Rev. D
79, 044012 (2009).

[78] S. H. Hendi and B. E. Panah, Phys. Lett. B 684, 77
(2010).

[79] S. H. Hendi and S. Kordestani, Prog. Theor. Phys. 124,
1067 (2010).

[80] M. Cataldo, N. Cruz, S. del Campo and A. Garcia, Phys.
Lett. B 454, 154 (2000).

[81] Y. Liu and J. L. Jing, Chin. Phys. Lett. 29, 010402
(2012).

[82] K. C. K. Chan and R. B. Mann, Phys. Rev. D 50, 6385
(1994) Erratum: [Phys. Rev. D 52, 2600 (1995). ]

[83] C. Martinez, C. Teitelboim and J. Zanelli, Phys. Rev.
D 61, 104013 (2000).

[84] M. Hassaine and C. Martinez, Phys. Rev. D 75, 027502
(2007).

http://arxiv.org/abs/gr-qc/9612057
http://arxiv.org/abs/gr-qc/9911046
http://arxiv.org/abs/gr-qc/9911084
http://arxiv.org/abs/hep-th/9911174
http://arxiv.org/abs/gr-qc/0006014
http://arxiv.org/abs/gr-qc/0006014
http://arxiv.org/abs/gr-qc/0407072
http://arxiv.org/abs/gr-qc/0407072
http://arxiv.org/abs/gr-qc/0506126
http://arxiv.org/abs/gr-qc/0506126
http://arxiv.org/abs/1401.2136
http://arxiv.org/abs/1408.0306
http://arxiv.org/abs/0803.2946
http://arxiv.org/abs/1804.04684
http://arxiv.org/abs/1010.2340
http://arxiv.org/abs/1808.05171
http://arxiv.org/abs/1103.5646
http://arxiv.org/abs/1408.1998
http://arxiv.org/abs/1704.04845
http://arxiv.org/abs/1711.04146
http://arxiv.org/abs/1801.03248
http://arxiv.org/abs/1807.08047
http://arxiv.org/abs/1606.04123
http://arxiv.org/abs/1801.03248
http://arxiv.org/abs/1803.03255
http://arxiv.org/abs/1806.03024
http://arxiv.org/abs/1807.08047
http://arxiv.org/abs/1901.03650
http://arxiv.org/abs/1906.06990
http://arxiv.org/abs/1402.3952
http://arxiv.org/abs/hep-th/0410057
http://arxiv.org/abs/0706.3359


12

[85] H. A. Gonzalez, M. Hassaine and C. Martinez, Phys.
Rev. D 80, 104008 (2009)
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