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Unanimous and strategy-proof

probabilistic rules for single-peaked

preference profiles on graphs
∗

Hans Peters† Souvik Roy‡ Soumyarup Sadhukhan§

March 2019

Abstract

Finitely many agents have single-peaked preferences on a finite set of alternatives
structured by a connected graph. First, all unanimous and strategy-proof probabilistic
rules are characterized when the graph is a tree. These rules are uniquely determined by
their outcomes at those preference profiles where all peaks are on leafs of the tree, and
thus extend the known case of a line graph. Second, it is shown that every unanimous
and strategy-proof probabilistic rule is random dictatorial if and only if the graph has
no leafs. Finally, the two results are combined to obtain a general characterization for
every connected graph.

JEL Classification: D71
Keywords: probabilistic rules, unanimity, single-peaked preferences, strategy-proofness,
graphs

1 Introduction

Finitely many agents have preferences over a finite set of alternatives. The alternatives are
the vertices in a connected graph, and the preferences of an agent are linear orderings which
are single-peaked with respect to some spanning tree of the graph: there is a single top
alternative, the peak, and preference decreases along the paths in this tree away from the
peak. The objective is to choose an alternative based on these preferences, or rather – in
this paper – a probability distribution over the alternatives.

An example of such a situation is a road or railroad network, where the vertices (junc-
tions) are also the locations of villages or cities. The objective is to locate a public good
(shopping mall, museum, hospital, school, etc.) based on the preferences of the agents over
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these junctions. Distance from one’s home or from a nearby bus stop may determine prefer-
ence, but also the path one has to take. Single-peakedness is then a plausible assumption.
Alternatively, the graph may represent a network of personal relations between the agents,
and the objective is to distribute a public good – e.g., disperse information – over the vertices
in this network. Also here, both the length of a path and the nodes (e.g., friends) to be
visited may be important determinants for preference, and single-peakedness along a specific
spanning tree captures this.

We consider probabilistic rules: these assign a probability distribution over the alterna-
tives to every profile of single-peaked preferences. The conditions we impose are unanimity
and strategy-proofness. Unanimity means that if all agents have the same peak then prob-
ability one is assigned to that alternative. Strategy-proofness means that no agent, by
misrepresenting its true preference, can increase the probability on any upper contour set,
i.e., any set of alternatives (weakly) preferred to some given alternative. Put differently,
the probability distribution attained by reporting truthfully stochastically dominates any
probability distribution achievable by misreporting.

We first consider the case where the graph has no cycles, i.e., is a tree (and thus its
unique spanning tree). For this case, our main result (Theorem 3.13) is that a probabilistic
rule is unanimous and strategy-proof if and only if it is ‘monotonic’. In a nutshell, this
means that such a rule is uniquely determined by the probability distributions it assigns
to the preference profiles with all peaks at the leafs of the tree (i.e., the alternatives with
degree one). We show that such a collection of probability distributions has the following
properties: (i) a leaf is assigned probability one if all peaks are at this leaf; (ii) if an agent
changes its peak from one leaf to another, then (a) probability does not decrease along the
path from the former to the latter and (b) probability does not change off this path. These
collections of probability distributions are also called ‘monotonic’. They play a role similar
to the collections of ‘fixed probabilistic ballots’ in Ehlers et al (2002) – see also below.

Second, for the case where the graph is arbitrary (but connected), we show that every
unanimous and strategy-proof probabilistic rule is random dictatorial if and only if the
graph has no leafs. In fact, we show this for the case of two agents and then extend the
result to more than two agents by using a result of Chatterji et al (2014) – this is Theorem
4.7. Random dictatorship means that each agent is assigned a fixed probability (weight) and
every alternative is chosen with probability equal to the sum of the probabilities of the agents
having this alternative as their peak. If the graph is not a tree but has a leaf, then indeed
unanimous and strategy-proof random social choice functions exist which are not random
dictatorial, as we show by an example, and as also follows from the main result of the paper
later on (Theorem 5.5). In order to prove Theorem 4.7 we first consider 2-connected graphs,
i.e., graphs in which for every pair of distinct alternatives there is a cycle containing them,
and next extend to arbitrary leafless graphs by decomposing the graph in a way analogous
to the concept of a ‘block tree’ (Menger, 1927; Whitney, 1931; or, e.g., Bondy and Murty,
2008).

Third, for the general case, where the graph is not necessarily a tree, can have leafs,
but is still connected, we show that every unanimous and strategy-proof probabilistic rule
behaves like a monotonic rule on the branches of the graph and as a random dictatorial
rule on the maximal leafless subgraph of the graph, such that the total probability on each
branch is equal to the total weight of the agents who have their peaks on this branch. This
is Theorem 5.5, which generalizes both Theorems 3.13 and 4.7.

Our first main result, Theorem 3.13 on trees, generalizes the case where the alternatives
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are ordered on a straight line and agents have single-peaked preferences. The latter case
has been dealt with in Ehlers et al (2002): they consider the whole real line, but their
characterization remains valid on a finite or discrete set of alternatives. In Peters et al
(2014) it is shown that, for the version with finitely many alternatives, all probabilistic rules
are convex combinations of deterministic rules. In the tree case it turns out that this no
longer holds – see Section 6 for an example of a unanimous and strategy-proof probabilistic
rule which is not a convex combination of deterministic rules with these properties. This
supports the fact that the general tree case is not a straightforward generalization of the
straight line case.

A consequence of Theorem 3.13 is a characterization of all unanimous and strategy-proof
deterministic rules if agents have single-peaked preferences on a tree, which to the best of
our knowledge is new as well (see Section 6). Schummer and Vohra (2002) also consider
this issue but their setting is different: a graph is a subset of some Euclidean space (so
there are infinitely many alternatives), and preferences are uniquely determined by their
peaks by considering Euclidean distance along the paths in the graph. Nevertheless, their
results are roughly in line with ours: if the graph is a tree, then strategy-proof and onto
deterministic rules (unanimity is implied) are characterized by so-called extended generalized
median voter schemes (cf. Moulin, 1980); for other graphs, there is dictatorship on cycles but
if a graph has a leaf then other rules are possible. For earlier work concerning social choice
for single-peaked preferences on trees see Hansen and Thisse (1981) and Demange (1982).

Our results show that unanimity and strategy-proofness of probabilistic rules for single-
peaked preferences on graphs imply that these rules are tops-only – they depend only on
the peaks of the preferences. In fact, we start out by deriving this result using Theorem 1
in Chatterji and Zeng (2018), see Lemma 2.6. From this lemma we then easily obtain that
our rules are uncompromising on trees (cf. Border and Jordan, 1983): if an agent changes
its peak, then probabilities assigned to alternatives off the path between the old peak and
the new peak remain unaltered (Lemma 3.2).1

The literature on strategy-proof probabilistic social choice functions or rules started with
the paper of Gibbard (1977), who showed that without restrictions on preferences the condi-
tions of unanimity and strategy-proofness result in random dictatorship. The single-peaked
domain restriction (which dates back at least to Black, 1984) allows for other rules, which can
be seen as probabilistic extensions of the generalized median rules (Moulin, 1980; Barberà
et al, 1993; and others): as already mentioned see Ehlers et al (2002) and Peters et al (2014)
for the case with finitely many agents who have single-peaked preferences on the real line
or a finite subset of the real line. Dutta et al (2002) show that even under single-peaked
preferences, every unanimous and strategy-proof probabilistic rule is a random dictatorship
if the dimension is higher than one.2 Chatterji et al (2016) show a kind of converse to (among
others) our results: a domain has to be single-peaked in order to allow for the existence of
unanimous and strategy-proof probabilistic rules satisfying two additional conditions.3 See
also Chatterji and Massó (2018) for a similar result in the deterministic case. For unanimous
and strategy-proof probabilistic rules when preferences are cardinal see the seminal work of
Hylland (1980), and further Dutta et al (2007) and Nandeibam (2013).

1In an earlier version of the paper (Peters et al, 2018) uncompromisingness on trees was derived indepen-
dently for a smaller set of single-peaked preferences.

2In spirit, this result is in line with our result on leafless graphs (Theorem 4.7).
3Namely, tops-onliness and a ‘compromise’ property. Under the assumptions in our paper tops-onliness

follows from the other conditions. The ‘compromise’ property is not necessarily satisfied by a monotonic
probabilistic rule.
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The paper is organized as follows. After preliminaries in Section 2, including the result
that a unanimous and strategy-proof rule is tops-only, we consider the tree case in Section
3 and the leafless graph case in Section 4. Our main and most general result is derived in
Section 5. In Section 6 we show that in this context a probabilistic rule on a tree is not
necessarily a convex combination of deterministic rules. Section 7 concludes. An appendix
presents the proof of Lemma 2.6 on tops-onliness.

2 Preliminaries

Let A be a finite set of at least two alternatives and let N = {1, . . . , n} with n ≥ 2 be a finite
set of agents. A complete, reflexive, antisymmetric, and transitive binary relation over A is
called a preference. We denote by L(A) the set of all preferences. A collection of preferences
PN = (P1, . . . , Pn) ∈ L(A)N is called a preference profile.

For a preference P ∈ L(A) we denote the top alternative by t(P ), i.e., t(P ) = a if and
only if aPx for all x ∈ A. The upper contour set of an alternative a at preference P is the
set U(a, P ) = {x ∈ A : xPa}.4

For PN ∈ L(A)N and i ∈ N , P−i ∈ L(A)N\{i} denotes the restriction of PN to N \ {i}.

2.1 Single-peaked preferences

Single-peaked preferences in social choice were already introduced in Black (1948) and Inada
(1964). Here, we consider a generalization.

First, we introduce a graph structure on the set of alternatives. A pair G = (A,E), where
E ⊆ {{a, b} : a, b ∈ A, a 6= b}, is an (undirected) graph. The elements of E are called edges.
The degree of a ∈ A is the number |{{x, y} ∈ E : a ∈ {x, y}}|. A leaf is an alternative with
degree one, and L(G) ⊆ A is the set of leafs.

For a, b ∈ A with a 6= b, a path from a to b in G is a sequence of distinct alternatives
a1, . . . , ak such that a1 = a, ak = b, and {ai, ai+1} ∈ E for all i = 1, . . . , k − 1. If it is clear
which path is meant, we also denote it by [a, b]. In this case, by (a, b] we denote the sequence
a2, . . . , ak, and by (a, b) the sequence a2, . . . , ak−1. Whenever it is clear from the context, the
notations [a, b], (a, b], and (a, b) will also be used to denote the sets of alternatives (instead
of the sequences) that appear in the path. When a = b, the notation [a, b] simply denotes
the alternative a, x ∈ [a, b] means x = a, and x /∈ [a, b] means x 6= a.

Throughout this paper we assume that G is connected, i.e., there is a path from a to b
for all distinct a, b ∈ A. If this path is unique for all a, b ∈ A, then G is a tree. A spanning

tree of G is a tree T = (A,ET ) where ET ⊆ E.
For a path [x1, xℓ] with sequence x1, . . . , xℓ, we write P = [x1, xl] · · · to denote a prefer-

ence P with x1Px2P · · ·Pxℓ Px for all x ∈ A \ [x1, xℓ]. Notations like P = · · · [x1, xℓ] · · ·
and combinations of these have similar meanings. Also, brackets are sometimes left out if
confusion is unlikely.

Definition 2.1. A preference P is single-peaked if there is a spanning tree T of G such that
for all distinct x, y ∈ A with t(P ) 6= y,

x ∈ [t(P ), y] =⇒ xPy,

4Observe that a ∈ U(a, P ) by reflexivity.
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where [t(P ), y] is the path from t(P ) to y in T . By S ⊆ L(A) we denote the set of all
single-peaked preferences. For a single-peaked preference, the top alternative is also called
the peak.

2.2 Probabilistic rules

By △A, we denote the set of all probability distributions on A. A probabilistic rule (PR)
is a function ϕ : SN → △A. For B ⊆ A and PN ∈ S

N , we write ϕB(PN) =
∑

a∈B ϕa(PN),
where ϕa(PN) is the probability of a at ϕ(PN).

We proceed by defining the main properties of PRs that are of interest in this paper.
The first property needs no explanation.

Definition 2.2. A PR ϕ is unanimous if ϕa(PN) = 1 for all a ∈ A and all PN ∈ S
N with

t(Pi) = a for all i ∈ N .

The second property is the strategy-proofness condition introduced in Gibbard (1977).
It says that reporting a preference different from the sincere (true) one cannot increase
the probability on any sincere upper contour set; in other words, the probability distribution
over the alternatives induced by reporting truthfully stochastically dominates any probability
distribution induced by reporting differently.

Definition 2.3. A PR ϕ is strategy-proof if for all i ∈ N , all PN ∈ S
N , all P ′i ∈ S, and all

x ∈ A,
ϕU(x,Pi)(Pi, P−i) ≥ ϕU(x,Pi)(P

′
i , P−i).

It is not hard to see that under strategy-proofness the unanimity condition could be
weakened to requiring ϕa(PN) = 1 for all a ∈ A and all PN ∈ S

N with Pi = Pj and t(Pi) = a
for all i, j ∈ N . For later reference we also include the following observation.

Remark 2.4. Let L, L′ ∈ △A and let P ∈ L(A). Suppose LU(x,P ) = L′U(x,P ) for all x ∈ A,

where LU(x,P ) denotes the total probability on the upper contour set U(x, P ). Then L = L′.

Two profiles PN , P
′
N ∈ S

N are tops-equivalent if t(Pi) = t(P ′i ) for all i ∈ N . The following
condition again needs no explanation.

Definition 2.5. A PR ϕ is tops-only if ϕ(PN) = ϕ(P ′N) for all tops-equivalent PN , P
′
N ∈ S

N .

In our model, unanimity and strategy-proofness of a PR imply tops-onliness. This can be
proved by using the main result in Chatterji and Zeng (2018), as we show in the Appendix.

Lemma 2.6. Let G = (A,E) be a connected graph and let PR ϕ on SN be unanimous and

strategy-proof. Then ϕ is tops-only.

Proof. See Appendix A.

5



3 Trees

Throughout this section the graph G = (A,E) is a tree. We will characterize all unanimous
and strategy-proof probabilistic rules for this case. To this end the following property will
be very useful.

Definition 3.1. Let G = (A,E) be a tree. A PR ϕ : SN → △A is uncompromising if
ϕd(PN) = ϕd(P

′
i , P−i) for all i ∈ N , all PN ∈ S

N , all P ′i ∈ S and all d ∈ A such that
d /∈ [t(Pi), t(P

′
i )].

This property, which was first introduced by Border and Jordan (1983) for deterministic
rules, says that if an agent changes its preference then the probabilities of alternatives which
are not on the path between the former and the new peak of that agent, do not change.
Uncompromisingness is closely related to strategy-proofness but often easier to work with.
Clearly, an uncompromising PR is tops-only. The latter property also follows from Lemma
2.6. In the following lemma we show that, by using tops-onliness, uncompromisingness can
easily be derived from unanimity and strategy-proofness.

Lemma 3.2. Let G = (A,E) be a tree and let ϕ : SN →△A be a unanimous and strategy-

proof PR. Then ϕ is uncompromising.

Proof. Let PN , P
′
N ∈ S

N and i ∈ N such that P−i = P ′−i. In order to prove that ϕx(PN) =
ϕx(P

′
N) for all x /∈ [t(Pi), t(P

′
i )], it is without loss of generality to assume {t(Pi), t(P

′
i )} ∈ E.

Then, by tops-onliness (Lemma 2.6), we may assume that Pi = t(Pi)t(P
′
i ) · · · and P ′i =

t(P ′i )t(Pi) · · · such that zPiz
′ ⇔ zP ′iz

′ for all z, z′ ∈ A \ {t(Pi), t(P
′
i )}. Now the lemma

follows directly from strategy-proofness.

In what follows we show that a unanimous and strategy-proof PR is completely deter-
mined by its values for profiles where the peaks of the agents are located on the leafs of the
tree. Therefore, we introduce the following definition.

Definition 3.3. A leaf assignment is a function µ : N → L(G). The set of all leaf assign-
ments is denoted by M. For a ∈ A and PN ∈ S

N , a leaf assignment µ is monotonic with

respect to (a, PN) if for all i ∈ N and b ∈ L(G), µ(i) = b implies t(Pi) ∈ [a, b]. The set of
leaf assignments that are monotonic with respect to (a, PN) is denoted byM(a, PN).

Thus, a leaf assignment assigns to each agent a leaf of the tree. If a leaf assignment
is monotonic with respect to an alternative a and a preference profile, then the peak of
each agent must be on the path from a to the leaf which is assigned to that agent. If, in
particular, this leaf is equal to a, then that agent’s peak is also a. Clearly, if PN , P

′
N ∈ S

N are
tops-equivalent, then M(a, PN) = M(a, P ′N). The following example illustrates Definition
3.3.

Example 3.4. Consider the following tree.

✉a3 ✉

✉a1 ✉
1

✉a2 ✉a4✉
2

✉a5✉
3

✉a6

✉a7✉
6



LetN = {1, 2, 3}, and let PN be a profile with (t(P1), t(P2), t(P3)) = (a1, a4, a5), as illustrated
in the picture. Then

µ ∈M(a1, PN ) ⇔ µ(1) ∈ {a1, a3, a6, a7}, µ(2), µ(3) ∈ {a6, a7}

µ ∈M(a2, PN ) ⇔ µ(1) = a1, µ(2), µ(3) ∈ {a6, a7}

µ ∈M(a3, PN ) ⇔ µ(1) = a1, µ(2), µ(3) ∈ {a6, a7}

µ ∈M(a4, PN ) ⇔ µ(1) = a1, µ(2) ∈ {a1, a3, a6, a7}, µ(3) ∈ {a6, a7}

µ ∈M(a5, PN ) ⇔ µ(1) = a1, µ(2) ∈ {a1, a3}, µ(3) ∈ {a1, a3, a6, a7}

µ ∈M(a6, PN ) ⇔ µ(1) = a1, µ(2) ∈ {a1, a3}, µ(3) ∈ {a1, a3, a7}

µ ∈M(a7, PN ) ⇔ µ(1) = a1, µ(2) ∈ {a1, a3}, µ(3) ∈ {a1, a3, a6}

With each µ ∈M we associate a probability distribution βµ over A.

Definition 3.5. A collection of probability distributions (βµ)µ∈M over A is called monotonic

if

(i) for every b ∈ L(G) and µ ∈M, if µ(i) = b for all i ∈ N , then βµ(b) = 1,

(ii) for all µ, µ̂ ∈M and i ∈ N such that µ(j) = µ̂(j) for all j ∈ N \ {i},

(a) βµ̂([c, µ̂(i)]) ≥ βµ([c, µ̂(i)]) for all c ∈ [µ(i), µ̂(i)],

(b) βµ(c) = βµ̂(c) for all c ∈ A \ [µ(i), µ̂(i)].

Part (i) in this definition says that if all agents are assigned to the same leaf then that
leaf obtains probability one. Part (ii) says that if an agent i moves from one leaf (at µ)
to another (at µ̂), then probability increases along the path from the former to the latter
leaf (part (a)), whereas off this path nothing changes (part (b)). Clearly, the conditions
(i), (ii)(a), and (ii)(b), are related to the conditions of unanimity, strategy-proofness, and
uncompromisingness of a PR.

The following example illustrates the notion of monotonic probability distributions.

Example 3.6. Consider again the tree of Example 3.4 but now assume that there are three
agents, N = {1, 2, 3}. For convenience we replicate the tree.

✉a3

✉a1

✉a2 ✉a4 ✉a5

✉a6

✉a7
Consider the probability distributions (βµ)µ∈M in the table below. For simplicity, we assume
that the collection (βµ)µ∈M is ‘anonymous’, which means that the probabilities depend only
on the numbers of agents on the leafs. The µ-assignments are to the leafs a1, a3, a6, and a7
consecutively. The probabilities (the numbers in the table divided by 10) are those assigned
to a1, . . . , a7, consecutively. It is left to the reader to verify that (βµ)µ∈M in this table satisfies
monotonicity.
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µ βµ µ βµ

(3, 0, 0, 0) (10, 0, 0, 0, 0, 0, 0) (1, 0, 2, 0) (1, 3, 0, 2, 2, 2, 0)
(0, 3, 0, 0) (0, 0, 10, 0, 0, 0, 0) (0, 1, 2, 0) (0, 2, 3, 2, 1, 2, 0)
(0, 0, 3, 0) (0, 0, 0, 0, 0, 10, 0) (0, 0, 2, 1) (0, 0, 0, 0, 7, 2, 1)
(0, 0, 0, 3) (0, 0, 0, 0, 0, 0, 10) (1, 0, 0, 2) (1, 3, 0, 2, 2, 0, 2)
(2, 1, 0, 0) (4, 3, 3, 0, 0, 0, 0) (0, 1, 0, 2) (0, 2, 3, 2, 1, 0, 2)
(2, 0, 1, 0) (4, 2, 0, 2, 1, 1, 0) (0, 0, 1, 2) (0, 0, 0, 0, 7, 1, 2)
(2, 0, 0, 1) (4, 2, 0, 2, 1, 0, 1) (1, 1, 1, 0) (1, 2, 3, 2, 1, 1, 0)
(1, 2, 0, 0) (1, 5, 4, 0, 0, 0, 0) (1, 1, 0, 1) (1, 2, 3, 2, 1, 0, 1)
(0, 2, 1, 0) (0, 2, 4, 2, 1, 1, 0) (1, 0, 1, 1) (1, 3, 0, 3, 1, 1, 1)
(0, 2, 0, 1) (0, 2, 4, 2, 1, 0, 1) (0, 1, 1, 1) (0, 3, 1, 3, 1, 1, 1)

Below we associate a PR with each monotonic collection of probability distributions. As
a preparation we need the following lemma.

Lemma 3.7. Let (βµ)µ∈M be a monotonic collection of probability distributions. Let a ∈ A,
b, c ∈ L(G), PN ∈ S

N , and µb, µ̂b, µc, µ̂c ∈ M(a, PN) such that for each x ∈ {b, c} and all

i ∈ N , µx(i) = x if and only if t(Pi) ∈ [a, x] and µ̂x(i) = x if and only if t(Pi) ∈ (a, x]. Then

βµb
([a, b])− βµ̂b

((a, b]) = βµc
([a, c])− βµ̂c

((a, c]) ≥ 0. (1)

Proof. First, we argue that the left-hand side of (1) does not depend on the particular choice
of µ̂b. An analogous argument holds for the right-hand side. Take µ̂′b ∈ M(a, PN) such that
for all i ∈ N , µ̂′b(i) = b if and only if t(Pi) ∈ (a, b]. Then, by condition (ii)(b) in Definition
3.5 we have

βµ̂b
((a, b]) = βµ̂′

b
((a, b]). (2)

It is sufficient to prove the lemma for the case where a ∈ [b, c]. Otherwise, there is a
d ∈ L(G) such that both a ∈ [d, b] and a ∈ [d, c]. Then, if we show (1) for the pairs of leafs
b, d and c, d, (1) follows for the pair b, c by combining the two equations. Thus, we assume
a ∈ [b, c]. For the equality in (1), it is in view of (2) sufficient to show that

βµb
([a, b])− βµc

((a, b]) = βµc
([a, c])− βµb

((a, c]).

By condition (ii)(b) in Definition 3.5 we have

βµb
[b, c] = βµc

[b, c]. (3)

Therefore,

βµb
([a, b])− βµc

((a, b]) = βµb
([b, c])− βµb

((a, c])− βµc
((a, b])

= βµc
([b, c])− βµc

((a, b])− βµb
((a, c])

= βµc
([a, c])− βµb

((a, c])

where the second equality follows from (3).
Finally, by condition (ii)(a) in Definition 3.5 we have

βµ̂b
((a, b]) ≤ βµb

((a, b]),

which implies the nonnegativity of the expressions in (1) and completes the proof of the
lemma.
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Let B = (βµ)µ∈M be a monotonic collection of probability distributions over A. With B
we associate a map ϕB : SN →△A by defining, for each a ∈ A and PN ∈ SN ,

ϕB
a (PN) = βµb

([a, b])− βµ̂b
((a, b]) (4)

for some b ∈ L(G) and µb, µ̂b ∈M(a, PN) such that µb(i) = b if and only if t(Pi) ∈ [a, b] and
µ̂b(i) = b if and only if t(Pi) ∈ (a, b]. In words, the probability assigned by ϕB to alternative
a if the preference profile is PN , is determined as follows. Take an arbitrary leaf b, take a
leaf assignment where all agents with peaks on the path [a, b] are assigned to b, and compute
the sum of the associated probabilities assigned to alternatives on the path [a, b]. Next,
take a leaf assignment where all agents with peaks on the path (a, b] (but not those with
peak at a) are assigned to b, and compute the sum of the associated probabilities assigned
to alternatives on the path (a, b]. The difference between these numbers is the probability
assigned to a.

Note that by Lemma 3.7, ϕB is well-defined: it does not depend on the particular choice
of b, µb, or µ̂b. Moreover we have:

Lemma 3.8. ϕB defined by (4) is a PR.

Proof. By Lemma 3.7, ϕB
a (PN) ≥ 0 for every a ∈ A and PN ∈ S

N . We still have to prove
that

∑
a∈A ϕ

B
a (PN) = 1 for every PN ∈ S

N .

Let a ∈ A, b ∈ L(G), and let µ ∈M(a, PN) such that µ(i) = b if and only if t(Pi) ∈ [a, b],
for all i ∈ N . We claim that ϕB

[a,b](PN) = βµ([a, b]). To show this, write [a, b] = (a1, . . . , ak),

where a = a1 and b = ak. For every j = 1, . . . , k let µj , µ̂j ∈ M(aj, PN) such that for all
i ∈ N we have µ(j) = b⇔ t(Pi) ∈ [aj, b] and µ̂(j) = b⇔ t(Pi) ∈ (aj , b]. Then

ϕB
[a,b](PN) = βµ1

([a1, b])− βµ̂1
((a1, b])

+βµ2
([a2, b])− βµ̂2

((a2, b])

+βµ3
([a3, b])− βµ̂3

((a3, b])
...

+βµk
({b})− βµ̂k

(∅)

= βµ1
([a1, b])

= βµ([a, b])

where the before last equality follows since βµ̂j
((aj, b]) = βµ̂j

([aj+1, b]) = βµj+1
([aj+1, b]) for

every j = 1, . . . , k−1 by condition (ii)(b) in Definition 3.5, and also the last equality follows
from this condition.

Now let PN ∈ S
N be arbitrary. We partition A into subsets A1, . . . , Ak, such that each Aℓ

is of the form Aℓ = [aℓ, . . . , bℓ] for some aℓ ∈ A and bℓ ∈ L(G) (possibly aℓ = bℓ). We define
the leaf assignment µ as follows: (i) for each ℓ = 1, . . . , k, µ−1(bℓ) = {i ∈ N : t(Pi) ∈ A

ℓ},
and (ii) for each b ∈ L(G) \ {b1, . . . , bk}, µ−1(b) = ∅ (case (ii) occurs if b = aℓ for some ℓ).
Then by condition (ii)(b) in Definition 3.5, for every ℓ = 1, . . . , k there is a µℓ ∈ M(aℓ, PN)
such that βµℓ

(Aℓ) = βµ(A
ℓ). Hence, by the previous part of the proof,

∑
a∈A ϕ

B
a (PN) =∑k

ℓ=1 βµℓ
(Aℓ) =

∑k

ℓ=1 βµ(A
ℓ) = βµ(A) = 1.

Definition 3.9. A PR ϕ is monotonic if there is a monotonic collection of probability
distributions B = (βµ)µ∈M such that ϕ = ϕB.
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An example of a monotonic PR is the following.

Example 3.10. Consider the tree of Example 3.6. LetN = {1, 2, 3}. Let ϕ be the monotonic
(anonymous, i.e., invariant under any permutation of the agents) PR with respect to (βµ)µ∈M
as in Example 3.6. Consider the profile PN with (t(P1), t(P2), t(P3)) = (a1, a4, a5) as in
Example 3.4. We take the fixed leaf a1 for the computations in the following table, which
provides the outcome of ϕ at PN .

a b βµ([a, b])− βµ′((a, b]) ϕa(PN )
a1 a1 β(1,0,2,0)([a1, a1])− β(0,0,3,0)((a1, a1]) .1
a2 a1 β(1,0,2,0)([a2, a1])− β(1,0,2,0)((a2, a1]) .3
a3 a1 β(1,0,2,0)([a3, a1])− β(1,0,2,0)((a3, a1]) 0
a4 a1 β(2,0,1,0)([a4, a1])− β(1,0,2,0)((a4, a1]) .4
a5 a1 β(3,0,0,0)([a5, a1])− β(2,0,1,0)((a5, a1]) .2
a6 a1 β(3,0,0,0)([a6, a1])− β(3,0,0,0)((a6, a1]) 0
a7 a1 β(3,0,0,0)([a7, a1])− β(3,0,0,0)((a7, a1]) 0

Our main result will be that these monotonic PRs are exactly the unanimous and
strategy-proof PRs for single-peaked preferences on trees.

Lemma 3.11. Let B = (βµ)µ∈M be a monotonic collection of probability distributions over

A. Then ϕB is unanimous and strategy-proof.

Proof. In this proof we write ϕ instead of ϕB. Unanimity follows directly from the definition
of ϕ.

We next argue that ϕ is uncompromising. Let PN ∈ S
N , i ∈ N , P ′i ∈ S, and d ∈

A \ [t(Pi), t(P
′
i )]. Take b ∈ L(G) such that [d, b]∩ [t(Pi), t(P

′
i )] = ∅. Then, by definition of ϕ,

in particular (4), we obtain ϕd(PN) = ϕd(P−i, P
′
i ). This shows that ϕ is uncompromising.

In order to prove strategy-proofness, assume for contradiction that there exists i ∈ N ,
PN ∈ S

N , and P ′i ∈ S such that ϕU(c,Pi)(PN) < ϕU(c,Pi)(P
′
i , P−i) for some c ∈ A. Since

ϕ is uncompromising and thus tops-only, we may assume without loss of generality that
Pi = [t(Pi), . . . , t(P

′
i )] · · · and P ′i = [t(P ′i ), . . . , t(Pi)] · · · , and by uncompromisingness we

also have ϕz(PN) = ϕz(P
′
i , P−i) for all z /∈ [t(Pi), t(P

′
i )]. Therefore, we may assume without

loss of generality that c ∈ [t(Pi), t(P
′
i )) and

ϕ[t(Pi),c](PN) < ϕ[t(Pi),c](P
′
i , P−i). (5)

Let d appear just after c on the path [t(Pi), t(P
′
i )]. Let P c ∈ S with t(P c) = c and

P d ∈ S with t(P ) = d. By uncompromisingness, ϕ[t(Pi),c](PN) = ϕ[t(Pi),c](P
c, P−i) and

ϕ[t(Pi),c](P
d, P−i) = ϕ[t(Pi),c](P

′
i , P−i). By (5), this yields ϕ[t(Pi),c](P

c, P−i) < ϕ[t(Pi),c](P
d, P−i).

Since by uncompromisingness ϕz(P
c, P−i) = ϕz(P

d, P−i) for all z /∈ {c, d}, this implies

ϕc(P
c, P−i) < ϕc(P

d, P−i). (6)

Now take b, b′ ∈ L(G) such that {c, d} ⊆ [b, b′] and d /∈ [b, c]. By (4),

ϕc(P
c, P−i) = βµb

([c, b])− βµ̂b
((c, b]) (7)

where µb, µ̂b ∈ M(c, (P c, P−i)) are such that µb(j) = b if and only if t(Pj) ∈ [c, b] and
µ̂b(j) = b if and only if t(Pj) ∈ (c, b] for all j ∈ N . Let µ′b be such that µ′b(j) = µ(j) for
all j ∈ N \ {i} and µ′b(i) = b′; and let µ̂′b = µ̂b. Note that µ′b, µ̂

′
b ∈ M(c, (P d, P−i)). Also,
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writing P̂N = (P d, P−i), we have µ′b(j) = b if and only if t(P̂j) ∈ [c, b] and µ̂′b(j) = b if and

only if t(P̂j) ∈ (c, b] for all j ∈ N . Therefore, by (4),

ϕc(P
d, P−i) = βµ′

b
([c, b])− βµ̂′

b
((c, b]). (8)

By (6), (7), (8), and the fact that µ̂′b = µ̂b, we obtain

βµb
([c, b]) < βµ′

b
([c, b]). (9)

However, as (i) µ−1b (b̂) = µ′−1b (b̂) for all b̂ ∈ L(G) \ {b, b′} and (ii) µ′−1b (b) ⊆ µ−1b (b), this
contradicts condition (ii)(a) in Definition 3.5.

Next we show the converse of Lemma 3.11.

Lemma 3.12. Let ϕ be a unanimous and strategy-proof PR. Then there is a monotonic

collection of probability distributions B = (βµ)µ∈M such that ϕ = ϕB.

Proof. By Lemma 3.2, ϕ is uncompromising. For every µ ∈ M define βµ = ϕ(PN), where
PN ∈ S

N satisfies t(Pi) = µ(i) for all i ∈ N .
We first show that B = (βµ)µ∈M thus defined, is a monotonic collection. Clearly, since

ϕ is unanimous, condition (i) in Definition 3.5 is satisfied. For condition (ii), let µ, µ̂ ∈ M
and i ∈ N such that µ(j) = µ̂(j) for all j ∈ N \ {i} and let PN , P̂N such that t(Pk) =
µ(k) and t(P̂k) = µ̂(k) for all k ∈ N . Since ϕ is uncompromising, ϕc(PN) = ϕc(P̂N)
for all c /∈ [t(Pi), t(P̂i)], hence βµ(c) = βµ̂(c) for all c /∈ [µ(i), µ̂(i)], i.e., condition (ii)(b)

is satisfied. Moreover, by strategy-proofness of ϕ we have for all c ∈ [t(Pi), t(P̂i)] that
ϕU(c,P̂i)

(P̂N) ≥ ϕU(c,P̂i)
(PN). Since ϕz(PN) = ϕz(P̂N) for all z /∈ [t(Pi), t(P̂i)], this implies

ϕ[c,P̂i]
(P̂N) ≥ ϕ[c,P̂i]

(PN), and therefore βµ̂([c, µ̂(i)]) ≥ βµ([c, µ̂(i)]) for all c ∈ [µ(i), µ̂(i)]. This
proves condition (ii)(a).

Finally, we show that ϕ = ϕB. Let PN ∈ S
N and a ∈ A. Let µ′, µ′′ ∈ M(a, PN) and

b ∈ L(G) such that, for all i ∈ N , µ′(i) = b if and only if t(Pi) ∈ [a, b] and µ′′(i) = b if and
only if t(Pi) ∈ (a, b]. Also, let P ′N ∈ S

N such that t(P ′i ) = µ′(i) for all i ∈ N and P ′′N ∈ S
N

such that t(P ′′i ) = µ′′(i) for all i ∈ N . Then

ϕB
a (P

N) = βµ′([a, b])− βµ′′((a, b])

= ϕ[a,b](P
′
N)− ϕ(a,b](P

′′
N )

= ϕa(PN)

where the last equality follows by uncompromisingness of ϕ. We conclude that ϕ = ϕB.

Lemmas 3.11 and 3.12 now imply the main result of this section.

Theorem 3.13. Let G = (A,E) be a tree. Then a PR ϕ on SN is unanimous and strategy-

proof if and only if it is monotonic.

Theorem 3.13 implies a characterization of deterministic unanimous and strategy-proof
rules on tree as a corollary. See Section 6, where we show in particular that the probabilistic
rules with these properties are not necessarily convex combinations of deterministic rules.
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4 Leafless graphs

In this section G = (A,E) is a connected graph without leafs. The main result will be that
every unanimous and strategy-proof PR is random dictatorial, to be defined below. We will
derive this result for the case of two agents, and then use Theorem 5 in Chatterji et al (2014)
to extend to more than two agents.

Our notational conventions about preferences as introduced in Section 2 will still be used.
Additionally, for a path π = [x1, xℓ] with sequence x1, . . . , xℓ we denote by π−1 = [xℓ, x1]
the path in reverse direction, i.e., with sequence xℓ, . . . , x1, and use this in notations for
preferences such as P = π · · · , P = π−1 · · · , etc., with obvious meaning.

A cycle in G is a sequence of distinct alternatives x1, . . . , xk ∈ A for some k ≥ 2 such
that {{xi, xi+1}, {xk, x1} : i = 1, . . . , k − 1} ⊆ E.

The following lemma considers unanimous and strategy-proof PRs for the case of two
agents.

Lemma 4.1. Let n = 2 and let ϕ : SN → ∆(A) be a unanimous and strategy-proof PR.

(i) Let a, b ∈ A, a 6= b, such that there is a cycle containing a and b. Then there exists ǫ ∈
[0, 1] such that for all P1, P2 ∈ S with t(P1) = a and t(P2) = b we have ϕa(P1, P2) = ǫ
and ϕb(P1, P2) = 1− ǫ.

(ii) Let, additionally, c /∈ {a, b} such that there is a cycle containing a and c, and a path

from b to c not containing a. Then ϕa(P1, P2) = ǫ and ϕc(P1, P2) = 1 − ǫ for all

P1, P2 ∈ S with t(P1) = a and t(P2) = c, with ǫ as in (i).

Proof. (i) Since there is a cycle containing both a and b, there exist two paths π and π̂ from
a to b in G such that π ∩ π̂ = {a, b}. Hence, there are P,Q ∈ S such that P = π · · · and
Q = π̂−1 · · ·

Suppose that ϕc(P,Q) > 0 for some c ∈ A \ {a, b}. Since U(b, P ) ∩ U(a,Q) = {a, b}, we
have c /∈ U(b, P ) or c /∈ U(a,Q). By unanimity, in the first case agent 1 can manipulate
by changing to Q and in the second case agent 2 can manipulate by changing to P . This
contradicts strategy-proofness, and therefore we have ϕc(P,Q) = 0 for all c ∈ A \ {a, b}.
Thus, there exists ǫ ∈ [0, 1] such that ϕa(P,Q) = ǫ and ϕb(P,Q) = 1− ǫ. Statement (i) now
follows from tops-onliness of ϕ (Lemma 2.6).

(ii) Let P1, P2 ∈ S with t(P1) = a and t(P2) = c. Assume that ϕa(P1, P2) = ǫ′. By a
similar argument as in step (i), this implies ϕc(P1, P2) = 1− ǫ′. Thus, it is sufficient to show
that ǫ = ǫ′. Suppose not. Assume without loss of generality that ǫ > ǫ′. Let π now be a path
from b to c such that a /∈ π, and consider associated preferences P = π · · · , P ′ = π−1 · · · ∈ S.
By part (i), ϕU(c,P )(P1, P ) = 1−ǫ < 1−ǫ′ = ϕU(c,P )(P1, P

′). This violates strategy-proofness
and, hence, ǫ = ǫ′.

A PR ϕ is random-dictatorial if there are α1, . . . , αn ∈ [0, 1] with
∑

i∈N αi = 1, such that
for every PN ∈ S

N and a ∈ A we have ϕa(PN) =
∑

i∈N :t(Pi)=a αi.
Clearly, a random dictatorial rule is unanimous and strategy-proof. Indeed, when G is a

tree, a random dictatorial rule is monotonic. To see this note that, if ϕ is random dictatorial
with weights α1, . . . , αn, then for each leaf assignment µ ∈ M define βµ(a) =

∑
i∈N :µ(i)=a αi

for every a ∈ L(G). Then the collection (βµ)µ∈M is monotonic and it is easy to verify that
ϕ = ϕB. The following example provides an illustration of this.
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Example 4.2. Consider the following tree:

r
a

r
r
c
1, 3 r

d

2 r
b

r

r
r r

Let N = {1, 2, 3} and let ϕ be the random dictatorship with weights (α1, α2, α3) = (1
6
, 1
3
, 1
2
).

The peaks of the agents in the profile PN are indicated in the picture. Hence ϕc(PN) =
1
6
+ 1

2
= 2

3
and ϕd(PN ) =

1
3
. With the collection B defined as above, we obtain

ϕB
c (PN) = βµ([c, a])− βµ̂((c, a])

=
1

6
+

1

2
− 0 =

2

3
= ϕc(PN),

where µ(1) = µ(3) = a, µ(2) = b, and µ̂(1) = µ̂(2) = µ̂(3) = b. Similarly,

ϕB
d (PN) = βµ′([d, a])− βµ̂′((d, a])

= 1−
1

6
−

1

2
=

1

3
= ϕd(PN),

where µ′(1) = µ′(2) = µ′(3) = a, µ̂′(1) = µ̂′(3) = a, and µ̂′(2) = b.

A graph G is 2-connected if for all distinct x, y ∈ A there is a cycle in G containing x
and y. We can now state the following consequence of Lemma 4.1.

Lemma 4.3. Let n = 2 and let ϕ : SN → ∆(A) be a unanimous and strategy-proof PR.

Assume that the graph G is 2-connected. Then ϕ is random dictatorial.

Proof. Let a ∈ A. By Lemma 4.1 there is an α ∈ [0, 1] such that for all x ∈ A and
P1, P2 ∈ S

N with t(P1) = a and t(P2) = x we have ϕa(P1, P2) = α and ϕx(P1, P2) = 1 − α.
Now let b ∈ A, b 6= a. Then similarly one proves that there is α′ ∈ [0, 1] such that for
all x ∈ A and Q1, Q2 ∈ S

N with t(Q1) = x and t(Q2) = b we have ϕb(Q1, Q2) = α′ and
ϕx(Q1, Q2) = 1 − α′. Since the latter holds for x = a in particular, we have 1 − α′ = α.
This implies that for all x, y ∈ A and Z1, Z2 ∈ S

N with t(Z1) = x and t(Z2) = y we have
ϕx(Z1, Z2) = α and ϕy(Z1, Z2) = 1− α. Hence, ϕ is random dictatorial.

The following lemma shows that random dictatorship for n = 2 still holds if the graph
G has no leaf.

Lemma 4.4. Let n = 2, and let G have no leaf. Let ϕ : SN → ∆(A) be a unanimous and

strategy-proof PR. Then ϕ is random dictatorial.

Proof. If G is 2-connected then the result follows from Lemma 4.3. Now assume that G
is not 2-connected. Since G is connected we can decompose it into 2-connected subgraphs
(A1, E1), . . . , (Aℓ, Eℓ), the set of remaining alternatives B = A \ ∪ℓi=1Ai and the set of re-
maining edges E ′ = E \ ∪ℓi=1Ei.

5

5This decomposition is close to the decomposition as a so-called block-tree. See, for instance, Bondy and
Murty, 2008. The formal definition of a block-tree is slightly different, but the decomposition here is more
convenient for our purposes.

13



For any distinct 1 ≤ p, q ≤ ℓ there are ap ∈ Ap and aq ∈ Aq such that all paths in
G from an alternative in Ap to an alternative in Aq leave Ap via ap and enter Aq via aq.
In this case, with some abuse of notation we use [ap, aq] to denote the set of alternatives
containing ap, aq, and all x such that there is some path π in G with x ∈ π, starting at ap
such that π ∩ Ap = {ap}, and aq /∈ π; or there is some path π in G with x ∈ π, starting at
aq such that π ∩ Aq = {aq}, and ap /∈ π. Similarly, [ap, aq) = [ap, aq] \ {aq}; [←, ap] denotes
all alternatives on paths starting at ap which have only ap in common with [ap, aq]; [aq,→]
denotes all alternatives on paths starting at aq which have only aq in common with [ap, aq];
[←, aq] denotes all alternatives on paths starting at aq which have only aq in common with
Aq; and so on and so forth. See the following diagram, which shows a possible part of the
decomposition of G, and visualizes parts of rest of the proof.

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

Ap Ai Aq

Aj

s
ap

s
b1

s
z

s
bm

s s
z′

ss
s

s

s
s

aq s
s

By (the proof of) Lemma 4.3 there are α1, . . . , αℓ ∈ [0, 1] such that, for all i = 1, . . . , ℓ,
ϕt(P1)(P1, P2) = αi and ϕt(P2)(P1, P2) = 1 − αi for all (P1, P2) ∈ S

N with t(P1), t(P2) ∈ Ai.
(In words, ϕ induces a random dictatorship on every Ai.) The proof proceeds in three steps.

(a) With notations as above, we first consider a profile (P1, P2) such that t(P1) ∈ Ap \ {ap}
and t(P2) ∈ Aq \ {aq} for some 1 ≤ p < q ≤ ℓ. Since ϕaq(P

′
1, P2) = αq for P ′1 ∈ S with

t(P ′1) = aq, strategy-proofness (considering agent 1) implies that

ϕ[←,aq](P1, P2) ≥ αq. (10)

Similarly,
ϕ[ap,→](P1, P2) ≥ 1− αp. (11)

Now consider P̃1 ∈ S with t(P̃1) ∈ Aq\{t(P2)} and such that xP̃1t(P2) for all x ∈ [←, aq]. Let
y ∈ [←, aq] such that xP̃1y for all x ∈ [←, aq]. Since ϕt(P̃1)

(P̃1, P2) = αq, strategy-proofness
(considering agent 1) requires that ϕU(y,P̃1)

(P1, P2) ≤ αq, hence:

ϕ[←,aq](P1, P2) ≤ αq. (12)

Similarly,
ϕ[ap,→](P1, P2) ≤ 1− αp. (13)

Combining (10) and (12) we obtain ϕ[←,aq](P1, P2) = αq, and combining (11) and (13)
we obtain ϕ[ap,→](P1, P2) = 1 − αp. By adding up these two equalities it follows that
ϕ[ap,aq](P1, P2) = αq − αp. Similarly one proves ϕ[ap,aq ](P1, P2) = αp − αq. Hence, αp = αq

and ϕ[ap,aq](P1, P2) = 0. Now writing α for α1, . . . , αℓ, we obtain by (10) and (11) that
ϕ[←,ap)(P1, P2) = α and ϕ(aq ,→](P1, P2) = 1− α.

We next show that ϕt(P1)(P1, P2) = α. Consider two paths π and σ in G from t(P1) to
ap with all alternatives in Ap and which only have t(P1) and ap in common, and let P ′1 ∈ S
with P ′1 = π · · · . By strategy-proofness6 (considering agent 1), it is sufficient to prove that

ϕt(P ′

1
)(P

′
1, P2) = α. (14)

6Or by tops-onliness, Lemma 2.6.
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Since ϕ[←,ap)(P1, P2) = α and ϕaq(P̂1, P2) = α for P̂1 ∈ S with t(P̂1) = aq, by strategy-
proofness we have ϕπ(P

′
1, P2) = α. Suppose that there is a v ∈ π, v 6= t(P ′1), v 6= ap, such

that
ϕv(P

′
1, P2) > 0. (15)

Consider P ′2 ∈ S with t(P ′2) ∈ Aq and with P ′2 = · · ·x · · · (π−1 \ {ap, t(P1)})(σ \ {ap}) · · ·
for all x ∈ [ap,→]. (Hence, P ′2 orders all alternatives ‘to the right’ of ap before ap, then
the alternatives on path π in reverse order, next the alternatives on path σ up to but not
including ap, and finally all remaining alternatives.) By (15) and strategy-proofness,

ϕ[v,ap)(P
′
1, P

′
2) > 0 (16)

where [v, ap) denotes the part of path π from v up to but excluding the end point ap. Next
consider P ′′1 ∈ S with P ′′1 = σ · · · . Then by strategy-proofness ϕσ(P

′′
1 , P

′
2) = α (otherwise

agent 1 manipulates), which again by strategy-proofness implies ϕt(P ′

1
)(P

′′
1 , P

′
2) = α (other-

wise agent 2 manipulates). In turn, by strategy-proofness this implies ϕt(P ′

1
)(P

′
1, P

′
2) = α

(otherwise agent 1 manipulates), which contradicts (16). Consequently, (15) does not hold,
which implies (14).

Similarly, one proves that ϕt(P2)(P1, P2) = 1− α.

(b) Second, all paths in G from ap to aq have a common initial part which is either (i) only
ap or (ii) [ap, b1, . . . , bm] for some m ≥ 1 with b1, . . . , bm−1 ∈ B. Let now (P1, P2) be a profile
with t(P2) ∈ Aq \ {aq} and t(P1) = z, where z = ap in case (i), or z ∈ [ap, b1, . . . , bm) in case
(ii). By strategy-proofness (considering agent 1) and part (a), we have ϕ[←,aq](P1, P2) = α.
By strategy-proofness (considering agent 2) and unanimity, ϕ[z,→](P1, P2) = 1. Therefore,
ϕ[z,aq](P1, P2) = α and ϕ(aq ,→](P1, P2) = 1− α.

Consider P ′1 ∈ S with P ′1 = [z, ap] · · ·x · · · y · · · for all x ∈ [←, ap) and all y ∈ (z,→].
Then as before ϕ[z,aq](P

′
1, P2) = α, which together with part (a) and strategy-proofness

(considering agent 1) implies ϕz(P
′
1, P2) = α. In turn, by strategy-proofness (considering

agent 1) this implies ϕt(P1)(P1, P2) = ϕz(P1, P2) = α.

Suppose ϕb(P1, P2) > 0 for some b ∈ (aq,→] with b 6= t(P2). Then consider P̃1 ∈ S with
t(P̃1) ∈ Ap \ {ap} and bP̃1t(P2). Then agent 1 with preference P̃1 manipulates via P1, a
contradiction. Hence, ϕt(P2)(P1, P2) = 1− α.

Similarly one proves ϕt(P1)(P1, P2) = α and ϕt(P2)(P1, P2) = 1 − α if t(P1) ∈ Ap \ {ap}
and t(P2) = z′, where z′ is an alternative on the common initial part of all paths from aq to
ap, analogously as above.

(c) Finally, let (P1, P2) be a profile with t(P1) = z and t(P2) = z′ with z and z′ as in
part (b). By unanimity and strategy-proofness, ϕ[z,z′](P1, P2) = 1. In order to prove that
ϕz(P1, P2) = α and ϕz′(P1, P2) = 1−α it is therefore sufficient to prove that ϕz(P1, P2) ≥ α.
Consider P ′1 ∈ S as in (b), i.e., P ′1 ∈ S with P ′1 = [z, ap] · · ·x · · · y · · · for all x ∈ [←, ap) and
all y ∈ (z,→]. By strategy-proofness (considering agent 1) and part (b), ϕz(P

′
1, P2) ≥ α. By

strategy-proofness this implies ϕz(P1, P2) ≥ α, as was to be proved.

Theorem 5 in Chatterji et al (2014) states that if, for n = 2, every unanimous and
strategy-proof PR on a domain satisfying ‘Condition α’ is random dictatorial, then the same
is true for n > 2. This Condition α requires that there are distinct alternatives a, b, c ∈ A
and preferences P1, P2, and P3, such that (i) P1 = a · · · b · · · c · · · , P2 = b · · · c · · · a · · · , and
P3 = c · · · a · · · b · · · , and (ii) for every x ∈ A \ {a, b, c}, cP1x or aP2x or bP3x. It is not hard
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to verify that Condition α holds if G does not have a leaf.7 Hence, by Lemma 4.4, we have
the following result.

Lemma 4.5. Let ϕ : SN → ∆(A) be a unanimous and strategy-proof PR, and let the graph

G have no leaf. Then ϕ is random dictatorial.

If G has a leaf, then a unanimous and strategy-proof PR is not necessarily random
dictatorial, as the following lemma shows.

Lemma 4.6. Let G have a leaf. Then there exists a unanimous and strategy-proof PR which

is not random dictatorial.

Proof. Let x ∈ A be a leaf and let y ∈ A with {x, y} ∈ E. Let α1, . . . , αn ∈ [0, 1] with∑
i∈N αi = 1. For every PN ∈ S

N such that t(Pi) 6= x for some i ∈ N and every a ∈ A\{x, y}
define ϕa(PN) =

∑
i∈N :t(Pi)=a αi, and define ϕy(PN) =

∑
i∈N :t(Pi)∈{x,y}

αi. For every PN ∈ S
N

such that t(Pi) = x for every i ∈ N define ϕx(PN) = 1. Then it is straightforward to verify
that ϕ is unanimous and strategy-proof. However, ϕ is not random dictatorial.

In fact, in the next section, for general connected graphs, all unanimous and strategy-
proof PRs are characterized. For now, combining Lemmas 4.5 and 4.6, we obtain the main
result of this section.

Theorem 4.7. Let G be a connected graph. Then every unanimous and strategy-proof PR

on SN is random dictatorial if and only if G has no leaf.

5 General connected graphs

Throughout the section, G = (A,E) is an arbitrary connected graph. Let Ḡ = (Ā, Ē) denote
the maximal subgraph of G (i.e., Ē ⊆ E and Ā = {a ∈ A : {a, b} ∈ Ē for some b ∈ A}) that
has no leaf. Observe that Ḡ is unique, and Ḡ = ∅ (i.e., Ā = Ē = ∅) if and only if G is a tree.

For each leaf l ∈ L(G), the set of alternatives A(l) ⊆ A and the set of edges E(l) ⊆ E
are defined by

A(l) = {l} ∪ {a ∈ A : there is a path [a, l] such that |[a, l] ∩ Ā| ≤ 1},

and
E(l) = {{a, b} ∈ E : a, b ∈ A(l)}.

The subgraph (A(l), E(l)) is called the branch of l. Observe that A(l) has a unique alternative
in common with Ā, which we denote by a(l). We also denote Ā0 = Ā \ {a(l) : l ∈ L(G)}.
Thus, Ā0 together with the sets A(l) for l ∈ L(G) form a partition of A. (For an illustration
of these concepts see Example 5.7 below.)

In this section we characterize all unanimous and strategy-proof PRs. We start with the
following auxiliary lemma.

7If G does not have a leaf, it has a cycle. Take three adjacent alternatives a, b, c on this cycle and take
a spanning tree T = (A,ET ) with {a, b}, {b, c} ∈ ET . Take preferences P1 = abc · · · and P2 = bca · · · .
Take another spanning tree including a path from c to a that does not contain b, and take a preference
P3 = c · · · a · · · b · · · . Then a, b, c and P1, P2, P3 ∈ SN satisfy Condition α.
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Lemma 5.1. Let i ∈ N , Pi ∈ S, P−i ∈ S
N\{i}, and x, y ∈ A such that {x, y} ∈ E and

t(Pi) = x. Let P ′i = yx · · · ∈ S such that aP ′i b ⇔ aPib for all a, b ∈ A \ {x, y}. Let ϕ be a

unanimous and strategy-proof PR. Then ϕa(Pi, P−i) = ϕa(P
′
i , P−i) for all a /∈ U(y, Pi).

Proof. Write Pi = xb1 · · · bkya1 · · · aℓ, then P ′i = yxb1 · · · bka1 · · · aℓ. By strategy-proofness,
ϕU(aℓ−1,Pi)(Pi, P−i) ≥ ϕU(aℓ−1,Pi)(P

′
i , P−i) and ϕU(aℓ−1,P

′

i )
(P ′i , P−i) ≥ ϕU(aℓ−1,P

′

i )
(Pi, P−i), hence

ϕaℓ(Pi, P−i) = ϕaℓ(P
′
i , P−i). Repeating this argument we obtain ϕaj (Pi, P−i) = ϕaj (P

′
i , P−i)

for all j = 1, . . . , ℓ.

The next lemma shows that a unanimous and strategy-proof PR ϕ is a random dictator-
ship when restricted to profiles with all peaks in Ā.

Lemma 5.2. Let ϕ be a unanimous and strategy-proof PR. Then there exist α1, . . . , αn ≥ 0
with

∑n

i=1 αi = 1 such that ϕa(PN) =
∑

i∈N :t(Pi)=a αi for all a ∈ Ā and all PN ∈ S
N with

t(Pi) ∈ Ā for all i ∈ N .

Proof. Let PN ∈ S
N with t(Pi) ∈ Ā for all i ∈ N . Suppose that ϕA(l)\{a(l)}(PN ) > 0 for some

l ∈ L(G). Consider i ∈ N and let T be a spanning tree of G such that Pi is single-peaked
with respect to T . Let x = t(Pi) and suppose that x 6= a(l). Take y ∈ Ā such that {x, y} is an
edge of T and y is on the path from x to a(l) in T . Let P ′i be derived from Pi as in Lemma 5.1,
i.e., P ′i = yx · · ·a(l) · · · , Pi = x · · · y · · ·a(l) · · · , and Pi and P

′
i order all alternatives different

from x and y equally. Then Lemma 5.1 implies that ϕa(P
′
i , P−i) = ϕa(Pi, P−i) in particular

for all a ∈ A(l). By repeatedly applying this argument for player i and for all other players
we arrive at a profile P̃N with t(P̃j) = a(l) for every j ∈ N and still ϕA(l)\{a(l)}(P̃N) > 0,
which contradicts unanimity of ϕ. Hence, ϕĀ(PN) = 1.

Next, for all a(l) ∈ Ā, let P l be a single-peaked preference on A(l) with graph (tree)
(A(l), E(l)) and peak a(l). For any single-peaked preference P̄ on (Ā, Ē), construct the
single-peaked preference P̄ e on G by substituting, in P̄ , each a(l) by P l. Now define the PR
ϕ̄ on (Ā, Ē) by

ϕ̄(P̄N) = ϕ(P̄ e
N) (17)

for each P̄N on Ā which is single-peaked with respect to (Ā, Ē). By the first part of the
proof, ϕ̄ is well-defined, i.e., ϕ̄Ā(P̄N) = 1 for all P̄N . Also, it inherits unanimity and strategy-
proofness from ϕ. By Theorem 4.7 it follows that there are α1, . . . , αn ≥ 0 with

∑n

i=1 αi = 1
such that ϕ̄a(P̄N) =

∑
i∈N :t(P̄i)=a αi for all a ∈ Ā and each P̄N consisting of preferences

that are single-peaked with respect to (Ā, Ē). By (17), the proof of the lemma is complete
by observing that, due to tops-onliness (Lemma 2.6), ϕ̄ does not depend on the particular
extension P̄ e of P̄ .

The next lemma extends the previous one by also including the branches of G.

Lemma 5.3. Let ϕ be a unanimous and strategy-proof PR. Then there exist α1, . . . , αn ≥ 0
with

∑n

i=1 αi = 1 such that for all a ∈ Ā0 and all l ∈ L(G)

ϕa(PN) =
∑

i∈N :t(Pi)=a

αi

and

ϕA(l)(PN) =
∑

i∈N :t(Pi)∈A(l)

αi

for every PN ∈ SN .
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Proof. Let PN ∈ S
N and suppose that i ∈ N and t(Pi) = x ∈ A(l)\{a(l) for some l ∈ L(G).

Consider P ′i with t(P
′
i ) = y such that {x, y} ∈ E, y on the path from x to a(l), as in Lemma

5.1. By this lemma, we obtain that ϕa(P
′
i , P−i) = ϕa(PN) for all a /∈ A(l)\{a(l)}. The proof

is complete by repeating this argument for agent i and all other agents, and next applying
Lemma 5.2.

We now fix a spanning tree T = (A,ET ) of the graph G = (A,E). Clearly, L(G) ⊆ L(T ),
i.e., each leaf of G is still a leaf of T . For l ∈ L(T ) \ L(G) define A(l) = {l}. The set of
preferences on A that are single-peaked with respect to T is denoted by ST . LetM denote
the set of leaf assignments with respect to T (cf. Section 4). The next lemma connects a
unanimous and strategy-proof PR ϕ to a monotonic PR ϕB, as defined in Section 4.

Lemma 5.4. Let ϕ be a unanimous and strategy-proof PR on SN , and let ϕ̃ denote the

restriction of ϕ to SN
T . Then there are α1, . . . , αn ≥ 0 with

∑n
i=1 αi = 1 and a monotonic

collection of probability distributions B = (βµ)µ∈M with

βµ(A(l)) =
∑

i∈N :µ(i)∈A(l)

αi for every l ∈ L(T ) and µ ∈M (18)

such that ϕ̃ = ϕB.

Proof. Let the numbers α1, . . . , αn be as in Lemma 5.2. Clearly, ϕ̃ defined on SN
T is unani-

mous and strategy-proof, and thus by Lemma 3.12 there is a monotonic collection of prob-
ability distributions B = (βµ)µ∈M such that ϕ̃ = ϕB. We are left to show (18). Let µ ∈ M
and take PN ∈ S

N
T such that t(Pi) = µ(i) for every i ∈ N .

(i) First consider l ∈ L(G), and consider µ̂ ∈ M such that µ̂(i) = µ(i) for all i ∈ N with
µ(i) 6= l, and with µ̂(i) 6= l for all i ∈ N with µ(i) = l. Then µ, µ̂ ∈M(l, PN) and by (4) we
obtain

ϕB
l (PN) = βµ({l})− βµ̂(∅) = βµ({l}). (19)

Again by (4), for a ∈ A(l) \ L(G),

ϕB
a (PN) = βµ([a, l])− βµ((a, l]) = βµ({a}), (20)

where [a, l] and (a, l] are paths in T . By (19) and (20) we obtain for each l ∈ L(G)

βµ(A(l)) =
∑

l′∈A(l)∩L(G)

βµ({l
′}) +

∑

a∈A(l)\L(G)

βµ({a}) = ϕB
A(l)(PN), (21)

hence by the definition of ϕ̃ = ϕB and Lemma 5.3

βµ(A(l)) = ϕA(l)(PN) =
∑

i∈N :µ(i)∈A(l)

αi. (22)

(ii) Second consider l ∈ L(T ) \ L(G). Similarly as in (i) we obtain βµ(A(l)) = βµ({l}) =
ϕB
l (PN), which by Lemma 5.3 implies

βµ(A(l)) =
∑

i∈N :µ(i)=l

αi. (23)

Now (18) follows from (22) and (23).
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We can now state and prove the main and most general result of this paper.

Theorem 5.5. Let G = (A,E) be a connected graph and let T be a spanning tree of G. A

PR ϕ on SN is unanimous and strategy-proof if and only if there are α1, . . . , αn ≥ 0 with∑n
i=1 αi = 1 and a monotonic collection of probability distributions B = (βµ)µ∈M with

βµ(A(l)) =
∑

i∈N :µ(i)∈A(l)

αi for every l ∈ L(T ) (24)

such that ϕ(PN) = ϕB(P̃N ) for all tops-equivalent PN ∈ S
N and P̃N ∈ S

N
T .

Proof. The only-if direction follows from Lemmas 5.4 and 2.6. For the if-direction, with
(αi)i∈N and B as in the statement of the theorem, define the PR ϕ on SN by ϕ(PN) = ϕB(P̃N)
for every PN ∈ S

N , where P̃N ∈ S
N
T is arbitrary but tops-equivalent to PN . Clearly, since

ϕB is tops-only by Lemma 2.6 and Theorem 3.13, ϕ is well-defined. It is straightforward to
check that ϕ is unanimous and strategy-proof.

Theorem 5.5 indeed generalizes Theorems 3.13 and 4.7, as we show in the following
remark.

Remark 5.6. (i) If G is a tree, then T = G and A(l) = A for all l ∈ L(G). In this case
one can take α1, . . . , αn arbitrary and (24) is trivially satisfied. Thus, Theorem 5.5 reduces
to Theorem 3.13. (ii) If G has no leaf, then A(l) = {l} for every l ∈ L(T ). Now (24) and
the definition of ϕB imply that ϕ is a random dictatorship with weights α1, . . . , αn. Thus,
Theorem 5.5 reduces to Theorem 4.7.

We conclude the section with a few examples illustrating Theorem 5.5.

Example 5.7. Consider the following graph:

r

r
r r r

r

r
rr

r

r
r r r

r

This graph has two branches (within the dotted circles), and the maximal leafless subgraph
is the middle part (within the dashed oval). We take an arbitrary spanning tree:
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Now every unanimous and strategy-proof probabilistic rule is of the form ϕB, where B =
(βµ)µ∈M is a monotonic collection of probability distributions for this spanning tree satisfy-
ing, for every µ ∈M,

βµ(x) =
∑

i∈N :µ(i)=x

αi for every x ∈ {g, h}
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and

βµ({x, y, z}) =
∑

i∈N :µ(i)∈{x,y,z}

αi for {x, y, z} = {a, b, c} and {x, y, z} = {d, e, f} }

for weights α1, . . . , αn.

Example 5.8. Consider the following graph and (on the right) a spanning tree:

r r
r

r
r

a b

c

d

e r r
r

r
r

a b

c

d

e

Let N = {1, 2, 3}, α1 = α2 = α3 = 1
3
, and let each βµ assign equal probabilities to a and b

if the number of agents assigned to a is below 3. Then, for instance, if PN ∈ S
N satisfies

t(P1) = a, t(P2) = c, and t(P3) = d, then ϕB assigns (1
6
, 1
6
, 1
3
, 1
3
, 0) to (a, b, c, d, e).

6 Random and deterministic rules

Let G = (A,E) be a tree. The collection of monotonic PRs characterized in Theorem 3.13
contains deterministic rules, i.e., rules that assign probability one to some alternative. It
is not difficult to verify that these deterministic rules correspond to monotonic collections
B = (βµ)µ∈M which are deterministic, that is, for every µ ∈M, βµ(x) = 1 for some x ∈ A.

The following example shows that, in contrast to the case where the graph is a line graph
(Peters et al., 2014) not every monotonic PR can be written as a convex combination of
deterministic monotonic rules.

Example 6.1. Let N = {1, 2, 3} and A = {a, b, c, d}, and let G = (A,E) be the tree below.
We consider the anonymous monotonic rule with monotonic collection of leaf assignments
as in the following table, in which β(j,k,l) denotes the probabilities assigned by the leaf
assignment where j agents are assigned to a, k agents to b, and l agents to c.

✉c ✉b

✉d

✉a
a b c d

β(1,1,1) .5 .3 .2 0
β(2,1,0) .7 .3 0 0
β(1,2,0) .5 .4 0 .1
β(2,0,1) .7 0 .2 .1
β(1,0,2) .5 0 .3 .2
β(0,2,1) 0 .4 .2 .4
β(0,1,2) 0 .3 .3 .4

Additionally, β(3,0,0), β(0,3,0), and β(0,0,3) assign probability 1 to a, b, and c, respectively. The
associated PR is denoted by ψ, and we will show that ψ cannot be written as a convex
combination of unanimous and strategy-proof deterministic rules.

Let F be the set of all unanimous and strategy-proof deterministic rules for prefer-
ence profiles that are single-peaked with respect to the given tree. Further, for an alter-
native x and a profile PN , let F (x, PN) be the set of all deterministic rules f such that
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f(PN) = x. By (S1, S2, S3), where S1, S2, S3 are disjoint with union N , we denote a pro-
file where the top-alternatives of the agents in S1, S2, and S3 are a, b, and c, respec-
tively. Let F1 = F (a, ({1, 2}, {3}, ∅)), F2 = F (b, ({1, 3}, {2}, ∅)), F3 = F (c, ({1}, {2}, {3})),
F4 = F (b, ({1, 2}, {3}, ∅)), and F5 = F (b, ({1}, {2, 3}, ∅)). Then, by Theorem 3.13, or more
directly by uncompromisingness (Lemma 3.2), it follows that F1 ∩ F3 = ∅ and F2 ∩ F3 = ∅.
Combining, we have

(F1 ∪ F2) ∩ F3 = ∅. (25)

Assume for contradiction that ψ can be written as
∑

f∈F αff , where αf ≥ 0 for all f ∈ F
and

∑
f∈F αf = 1. For G ⊆ F , let αG =

∑
f∈G αf . Then αF1∪F2

= αF1
+ αF2

− αF1∩F2

together with (25), yields αF1
+ αF2

− αF1∩F2
+ αF3

≤ 1. Since ψ =
∑

f∈F αff , we have
αF1

= ψa({1, 2}, {3}, ∅), αF2
= ψb({1, 3}, {2}, ∅), αF3

= ψc({1}, {2}, {3}). Using the values
given in the table we obtain

αF1∩F2
≥ 0.2. (26)

Since the rules in F1 and F4 give different outcomes (a and b, respectively) at the same
profile ({1, 2}, {3}, ∅), we have F1∩F4 = ∅. Moreover, by uncompromisingness, F2 ⊆ F5 and
F4 ⊆ F5, and hence F2 ∪ F4 ⊆ F5. Because F1 ∩ F4 = ∅, we have

(F1 ∩ F2) ∩ F4 = ∅. (27)

Also, because F2 ∪ F4 ⊆ F5,
(F1 ∩ F2) ∪ F4 ⊆ F5. (28)

Combining (27) and (28), we have αF1∩F2
+αF4

≤ αF5
. By (26) and the table, αF1∩F2

+αF4
≥

0.5, and hence αF5
≥ 0.5. However, from the table it follows that αF5

= 0.4. This is a
contradiction. Thus, ψ cannot be written as a convex combination of deterministic rules.

7 Concluding remarks

The main result in this paper (Theorem 5.5) characterizes all unanimous and strategy-
proof probabilistic rules for single-peaked preference profiles on a connected but otherwise
arbitrary graph of which the nodes are the alternatives. Such a rule is a random dictatorship
on the maximal leafless subgraph, and on each branch it is a monotonic rule – extending the
median-like rules in Moulin (1980) and the probabilistic rules in Ehlers et al (2002) on the
line graph – such that the total probability on each branch equals the sum of the random
dictatorship weights of the agents who have their peaks on this branch.

Contrary to the line graph case (Peters et al, 2014) not every probabilistic rule is a convex
combination of deterministic rules, as we have shown in Section 6.

An earlier version of the paper (Peters et al, 2018) shows that at least the results on the
case where the graph is a tree can be derived for a smaller set of single-peaked preferences.

A Proof of Lemma 2.6

The proof of Lemma 2.6 will be based on Theorem 1 in Chatterji and Zeng (2018). We
need to introduce two concepts used there, namely the Interior Property and the Exterior
Property.

We say that preferences P, P ′ ∈ L(A) are adjacent if there are distinct x, y ∈ A with
P = · · ·xy · · · and P ′ = · · · yx · · · such that for all a, b ∈ A with {a, b} 6= {x, y} we have
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aPb⇔ aP ′b. A subset L ⊆ L(A) has the Interior Property if for all a ∈ A and all P, P ′ ∈ L
with t(P ) = t(P ′) = a there are P 1, . . . , P k ∈ L with k ≥ 1 and t(P j) = a for every
j = 1, . . . , k such that P = P 1, P ′ = P k, and for each j = 1, . . . , k − 1 the preferences
P j, P j+1 are adjacent.

Lemma A.1. Let G = (A,E) be a connected graph. Then S has the Interior Property.

Proof. Let 1 ≤ k ≤ |A| − 2 and let a1, . . . , ak, ak+1 be distinct alternatives. Consider a
preference P = a1 · · · ak · · ·xak+1 · · · single-peaked with respect to a spanning tree T of G,
and a preference P ′ = a1 · · ·akak+1 · · · single-peaked with respect to a spanning tree T ′ of G.
(Thus, a1, . . . , ak are ranked above all other alternatives at P , and a1, . . . , ak+1 are ranked
above all other alternatives at P ′.) It is sufficient to prove that there is a spanning tree T̃
with respect to which preference P̃ = a1 · · · ak · · · ak+1x · · · (adjacent to P ) is single-peaked.
If x is not on the path π = [a1, ak+1] in T , then we can simply take T̃ = T . Otherwise,
we have π = [a1, . . . , x, ak+1]. Let π′ = [a1, . . . , aℓ, ak+1] be the path in T ′ from a1 to ak+1;
observe that the alternatives in π′ are a subset of {a1, . . . , ak+1}. Construct T̃ from T as
follows. First, delete the edge {x, ak+1} from T . This results in two disconnected subtrees
with a1, . . . , ak and x in one subtree and ak+1 in the other: this follows from single-peakedness
of P with respect to T (if ai for some 2 ≤ i ≤ k would be in the same subtree as ak+1, then
ak+1 would be on the path in T from a1 to ai and thus ak+1Pai by single-peakedness, a
contradiction). Therefore, by adding the edge {aℓ, ak+1} we obtain a spanning tree T̃ . The
proof of the lemma is complete if we show that P̃ is single-peaked with respect to T̃ .

Suppose this were not the case. Then there are distinct z, z′ ∈ A such that z is on the
path π = [a, z′] in T̃ , but z′P̃ z. If π is also a path in T , then we have zPz′, hence z = x
and z′ = ak+1, and in particular {x, ak+1} is an edge in T̃ , which is a contradiction. Hence,
π is not a path in T , and we can write π = [a1, aℓ] · {aℓ, ak+1} · [ak+1, z

′], where [a1, aℓ] and
[ak+1, z

′] are also paths in T . If z ∈ [ak+1, z
′] then z is on the path [a1, x] · {x, ak+1} · [ak+1, z

′]
in T , hence zPz′ and therefore zP̃ z′, a contradiction. Therefore, we have that z is on the
path [a1, aℓ] in T and T̃ , thus z ∈ {a1, . . . , ak}, and again zP̃ z′, a contradiction.

For a preference P ∈ L(A) and a number ℓ ∈ {1, . . . ,≤ |A|, let Bℓ(P ) ⊆ A denote the
set of the ℓ highest ranked alternatives according to P , i.e., if P = a1 · · · aℓaℓ+1 · · · a|A| then
Bℓ(P ) = {a1, . . . , aℓ}. A subset L ⊆ L(A) has the Exterior Property if for all P, P ′ ∈ L with
t(P ) 6= t(P ′) and all distinct x, y ∈ A with xPy and xP ′y, there are P 1, . . . , P k ∈ L, k ≥ 2,
such that P = P 1, P ′ = P k, and for every j = 1, . . . , k− 1 there is an ℓ ∈ {1, . . . ,≤ |A| such
that x ∈ Bℓ(P

j) = Bℓ(P
j+1) and y /∈ Bℓ(P

j).

Lemma A.2. Let G = (A,E) be a connected graph. Then S has the Exterior Property.

Proof. Let P, P ′ ∈ S with t(P ) = a 6= b = t(P ′) and distinct x, y ∈ A with xPy and xP ′y.
Let T be a spanning tree of G with respect to which P is single-peaked.

(i) First suppose that bPy. Let the path [a, b] in T consist of the sequence a, z1, . . . , zk, b,
hence aPz1 . . . P zkPb. Define P ′′ = bzk · · · z1a · · · such that zP ′′z′ ⇔ zPz′ for all z, z′ ∈
A \ {a, z1, . . . , zk, b}, and let ℓ = max{|U(b, P )|, |U(x, P )|}.

We show that P ′′ is single-peaked with respect to T . To this end, let [b · · · z · · · z′] be a
path in T . We show that zP ′′z′. If z, z′ ∈ {a, z1, . . . , zk, b}, say z = zi and z

′ = zj, then we
have i > j and ziP

′′zj, hence zP
′′z′. If z ∈ {a, z1, . . . , zk, b} and z

′ /∈ {a, z1, . . . , zk, b} then
zP ′′z′. If z /∈ {a, z1, . . . , zk, b} and z

′ ∈ {a, z1, . . . , zk, b} then [b · · · z · · · z′] · [z′ · · · b] contains
a cycle, a contradiction. If, finally, z, z′ /∈ {a, z1, . . . , zk, b} then there is a path [a · · · z · · · z′]
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in T , hence zPz′ and therefore zP ′′z′. This completes the proof of single-peakedness of P ′′

with respect to T .
Also, t(P ′′) = b, x ∈ Bℓ(P ) = Bℓ(P

′′), and y /∈ Bℓ(P ). The proof for this case is then
complete by constructing a sequence of adjacent preferences starting from P ′′ and ending in
P ′ by using the Interior Property (Lemma A.1).

(ii) Second suppose that yPb and y is not on the path [a, b] in T . Construct the preference
P̃ as follows. Let C = {z ∈ A : y is on the path [a, z] in T}. Then let z′P̃ z for all z ∈ C
and z′ ∈ A \ C, and zP̃ z′ ⇔ zPz′ for all z, z′ ∈ C and all z, z′ ∈ A \ C. Then P̃ is still
single-peaked with respect to T , and for ℓ = |U(x, P )| we have x ∈ Bℓ(P ) = Bℓ(P̃ ) and
y /∈ Bℓ(P ). Since b /∈ C and therefore bP̃ y we can complete the proof by applying the
arguments in (i) now starting from P̃ .

(iii) Third suppose that yPb and y is on the path [a, b] in T . Write a · · · a′y · · · b for the
path [a, b] in T . Let, similarly as above, C = {z ∈ A : y is on the path [a, z] in T}. Since
P ′ ∈ S there is a path π = [b, x] in G with y /∈ [b, x]. On this path let {c, d} be the first
edge with c ∈ C and d ∈ A \ C. Now first delete the edge {a′, y} from T ; next add the part
π′ = [b · · · cd] of π; and finally delete edges {v, w} with v, w ∈ C but {v, w} not in π′ such
that a spanning tree T̄ of G is obtained. Next construct a preference P̄ , single-peaked with
respect to T̄ , with zP̄ z′ for all z ∈ A \ C and z ∈ C, zP̄ z′ ⇔ zPz′ for all z, z′ ∈ A \ C,
x ∈ Bp(P ) = Bp(P̄ , and y /∈ Bp(P ), where p = |U(x, P )| = |U(x, P̄ )|. Then either bP̄ y, and
we are back in case (i), or yP̄b. In the latter case, since the path [a, b] in T̄ is of the form
[a · · · dc · · · b] where [dc · · · b] is the converse path of π′, y (∈ C) is not on this path, and we
are back in case (ii).

Lemma 2.6 now follows by applying Theorem 1 in Chatterji and Zeng (2018).
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