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Abstract 
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Tiivistelmä 
Aurinkoenergiaa hyödynnetään yhä enemmän ja sen kustannukset ympäri maailmaa ovat laskeneet viime vuosikymmenien aikana. Uusiutuvien ja vähäsaasteisten energiamuotojen kuten aurinkoenergian hyödyntäminen on lisääntynyt, kun eri maat ja kansainväliset organisaatiot ovat asettaneet kunnianhimoisia ilmastotavoitteita, luvaten vähentää päästöjä tai jopa pyrkiä päästöneutraalisuuteen. Myös Helsingin kaupungilla on oma ilmastostrategiansa, jossa tavoitellaan hiilineutraalisuutta vuoteen 2035 mennessä. Lisääntyneiden investointien myötä aurinkoenergia ja muut uusiutuvan energian muodot ovat paikoin jo kilpailukykyisempiä hintojen suhteen kuin perinteiset energiamuodot. Aurinkoenergiaan liittyy kuitenkin joitakin haasteita. Auringonsäteilyn vaihtelu sekä päivänsisäisesti että vuodenaikojen mukaan johtaa luonnollisesti siihen, että aurinkopaneelien tuottama energia vaihtelee myös päivästä ja vuodenajasta toiseen. Aurinkoenergian sähköverkkoon lisäämisen myötä tulee verkkoon lisätä järjestelmiä, jotka tasapainottavat sähkökuorman vaihtelua. Myös aurinkoenergiajärjestelmien sijainti on keskeinen kysymys investointipäätöksissä, koska auringonsäteilyn vaihtelu on huomattavaa eri alueiden välillä.  Spatiaaliseen päätöksentekoon kuten aurinkojärjestelmien sijainnin määrittelemiseen liittyy usein monia vastakkaisia kriteerejä ja suuri joukko mahdollisia vaihtoehtoja. Vaikka päätöksenteon menetelmät ja tavoitteet vaihtelevat, sen tukena käytetään usein paikkatietojärjestelmiä (GIS). Koska aurinkoenergiajärjestelmien sijainti on erityisen tärkeä niiden tuottavuuden kannalta, aurinkoenergiaa käsittelevässä tutkimuskirjallisuudessa on usein hyödynnetty spatiaalisen päätöksenteon menetelmiä. Tämän tutkimuksen tavoitteena on arvioida katoille sijoitettavien aurinkopaneelien hyödyntämisen potentiaalia Helsingissä. Tutkimusmuotoina toimivat sekä kirjallisuuskatsaus aurinkoenergiaan ja spatiaaliseen päätöksentekoon, että lineaarisen optimoinnin mallin luominen kattojen valintaan. Mallissa eri sähköntuoton tasoille muodostetaan optimoinnin avulla kattojen osajoukko, jonka vaatima pinta-ala minimoidaan. Mallin testaamisessa ja validoinnissa hyödynnetään tietoaineistoa Helsingin katoista ja niiden vuotuisista auringonsäteilykertymistä. Viimeiseksi arvioidaan kustannuksia, joita löydettyjen kattojen osajoukkojen käyttäminen aurinkoenergian tuottamiseen vaatisi. Vaikka täysin tarkkojen kustannusten arvioiminen ei ole mahdollista, suuntaa antavia viitearvoja voidaan käyttää hyväksi verratessa eri strategioita, joita Helsingin kaupungilla on käytössä sen pyrkiessä toteuttamaan ilmastostrategiaansa. 
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1 Introduction 
In recent years, climate change and specifically the role of humans in it has become 

a focus both in political discourse and scientific research all over the world. 

Unsustainable consumption has led to increasing energy usage and carbon 

emissions. Developments in energy generation and infrastructure are needed to 

combat climate change and move societies towards more sustainable consumption. 

Because of the global nature of the challenge, inter- and multinational organizations 

play a key part in this endeavor. 

A major international milestone in the fight against climate change was 

reached in 2015 with the adoption of the Paris Agreement by the parties of United 

Nations Framework Convention on Climate Change. The agreement entered into 

force on 4th of November 2016, and as of the writing of this thesis, 195 countries 

have signed the agreement while 189 of the signees have ratified it. (United Nations 

2020). 

The Paris Agreement (2015) outlines the collective effort of its parties to limit 

the 21st century’s temperature rise to 2.0 Co from the pre-industrial levels, preferably 

to 1.5 Co. The participant countries are expected to, to the best of their ability, put 

forth actions towards the common goal through nationally determined 

contributions. The parties also need to report on their progress regularly, and their 

aim should be to incrementally increase their efforts moving forward. 

On European level, the European Union aims to be the global leader towards 

a greener future. According to the European Green Deal, by 2030, the members of 

EU should collectively cut their emissions to 50% compared to the levels of 1990, 

and a net-neutrality of greenhouse emissions is to be reached by 2050. Important 

considerations include incentivizing green investments, policies guiding industry 

and consumer practices, increased energy efficiency across different sectors and 

sustainable mobility and transportation. (European Commission 2019a). 

 Finland, being an EU member and having ratified the Paris Agreement, has 

also policies and laws in place to combat climate change. The current climate law in 

Finland came into effect on 1st of June in 2015. It binds Finland to cut its emissions 

by 80% by 2050 compared to the levels of 1990. However, the current coalition led 

by prime minister Sanna Marin is currently revising the climate law so that Finland 

would reach carbon-neutrality by 2035. (Ympäristöministeriö 2020). 
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On a municipal setting, the city of Helsinki has already adopted a more 

ambitious climate strategy aiming to become carbon-neutral by 2035. Currently, 

over 50% of the emissions produced in Helsinki are from heating buildings, and 

further 15% are from general electricity usage. (Helsingin kaupunki 2018). While 

the emissions can be decreased by e.g. improving the heat retention of buildings or 

flat out decreasing general electricity usage, an important part of the city’s strategy 

is a push towards renewable energy sources. One notable way of a large-scale 

utilization of renewable energy sources would be the increased adoption of solar 

power.  

Solar power generation has leaped forward immensely in the last decade. 

While the world produced some 32 terawatt-hours (TWh) of solar photovoltaic 

energy in 2010, the amount produced in 2018 was already over 554 TWh 

(International Energy Agency 2020b.) Moreover, the International Energy Agency 

(IEA) (2020a) forecasts that solar photovoltaics generation will further increase its 

capacity by almost 700 gigawatts by 2024. At the same time, prices of photovoltaic 

modules have drastically decreased, nearly 90% since 2010, and electricity 

generated by photovoltaics has reached cost parity with wholesale market prices in 

California, China and parts of Europe (Financial Times 2019.) 

In Finland, solar power has been utilized successfully for example by grocery 

stores (Kauppalehti 2018.) As they require a lot of energy for refrigeration especially 

in summer, they can efficiently use solar panels for leveraging the peak power 

generation during summer months. Still, other businesses and households are also 

increasingly installing solar power systems. Although solar installations have 

traditionally been used in cottages and individual houses, in Helsinki they are 

becoming more widespread on the roofs of schools, commercial properties and 

apartment buildings (Helsingin Sanomat 2020.) 

For solar power to be viable in Helsinki, the location of the panels, the 

associated costs and power generation potential are of paramount importance. 

Thus, in this thesis I will specifically concentrate on the viability and cost-efficiency 

of solar energy on the roofs of Helsinki.  My research problems are:  

 

1. How should solar panels be allocated to the roofs of Helsinki to maximize 

their yield while minimizing the area required? 
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2. How cost-efficient is the optimized allocation compared to the current and 

future consumer electricity prices in Helsinki? 
 

 To answer the first research question, an optimization model is created with 

the goal of finding a group of roofs satisfying a given electricity production target 

while minimizing the required area. The model is then applied to an open spatial 

dataset created by Helsingin seudun ympäristöpalvelut (HSY 2015) to test and 

validate the model. To answer the second research question, the costs of the 

allocations obtained from the optimization model are estimated by using the 

offerings of a local solar panel provider. Combining the results from the two research 

questions should answer whether solar panels are a viable method of power 

generation on the roofs of Helsinki. Additionally, a literature review is performed to 

further give context and assess the viability of solar power in Helsinki.  

The aim of my thesis is twofold. Firstly, my goal is to provide actionable 

information to the city of Helsinki regarding the potential of solar panel allocation 

on the roofs of the city. Moreover, the model created could be used on other similar 

projects as well to gauge potential allocations in other areas/cities. Depending on 

the cost-efficiency of solar panels compared to alternative sources of power 

generation and the average prices of electricity in Finland, the city of Helsinki could 

either use my research as a starting point for a larger scale solar panel adoption or 

focus on other, more viable, options. Secondly, I aim to provide a new case study in 

the field of spatial optimization and demonstrate a working use case for combining 

geographical information systems and (multi-objective) linear programming. 

The structure of my thesis is as follows. Firstly, Sections 2 and 3 are dedicated 

to solar power and graphical information systems (GIS), respectively. I will conduct 

a literature review to highlight the changes surrounding these fields, as well as talk 

about notable implementations both in the literature and in practice. Moreover, the 

benefits and challenges inherent to solar power and spatial optimization are 

discussed. In Section 4, I will go through the modelling of the panel allocation 

problem. Furthermore, I will talk about the methods used in my thesis, and perhaps 

more importantly, why they were chosen. In Section 5, I will first discuss the data 

used with the model, and then the results of the optimization. Practical implications 

for both the city of Helsinki and individual citizens interested in solar panel 

adoption are discussed. Finally, Section 6 concludes my thesis by summarizing the 
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key points of this study, as well as its implications for future research in the fields of 

spatial optimization and solar power utilization.  
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2 Solar power 
Photovoltaic (PV) power generation, colloquially solar power, is based on the 

photovoltaic effect, i.e. a material’s property of generating an electric current when 

exposed to the photons of solar radiation (light). Solar panels are then a set of 

connected photovoltaic cells in a circuit. Notably, in contrast to alternating current 

(AC) in most electric grids, solar panels generate direct current (DC). Thus, for 

appliances requiring AC, solar panel systems require an inverter, which can change 

DC into AC. An inverter is also needed if the owner of a solar system wants to 

connect the systems to the electric grid, for example to sell surplus electricity to 

others. (Motiva 2020).  

However, solar PV panels are not the only method of utilizing sunlight. Solar 

irradiation can also be harnessed in via concentrated solar power (CSP) systems: 

using lenses and/or mirrors, sunlight is focused on a fluid which, once heated, is 

used in a heat engine to produce electricity (Jacobson & Delucchi 2011a.) While CSP 

plants are a viable method of solar power generation, they are left outside the scope 

of this thesis, instead the focus being on PV solar panels. 

In this section, I will go through the results of the literature review 

concentrating on solar power. Topics include the history of the specific technology, 

its current real-life applications, and the benefits and challenges it may entail.  The 

section is further divided into a global and Finnish perspective in Sections 2.1 and 

2.2, respectively.  

 

2.1 Solar power in the world 
While solar power (and other renewable energy sources) has gained traction 

especially in the recent decades following the increasing awareness surrounding 

climate change, the technology is by no standards new. Already in 1881, the first 

solar panel based on selenium was created by Charles Fritts. Still, the invention was 

overshadowed by the creation of the first coal-based electricity plant by Thomas 

Edison. (CleanTechnica 2014). 

Solar power has remained marginal compared to e.g. coal for much of its 

history, but some increase in utilization can be seen arising starting from the 

beginning of the 21st century. Figure 1 represents the changes in the quantity of 
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electricity produced worldwide from different sources over time. The three most 

prevalent sources of renewable energy, hydro power, solar photovoltaics (not 

including solar thermal systems such as CSPs) and wind power, are presented with 

the three most utilized sources of non-renewable energy, nuclear power, coal and 

natural gas. Additionally, the sum of the electricity generated from the three 

renewable sources is illustrated. 

 

 
Figure 1. World electicity generation by source (IEA 2020b.) 

 

As seen in Figure 1, all the renewable sources have increased their capacity, 

with hydro power leading as a more established source. Combined, the renewables 

have surpassed natural gas in the recent years while nuclear power’s capacity has 

remained steady. Still, coal remains the most utilized source and its capacity has 

grown by almost 70%. As the electricity consumption of the world has kept 

increasing, from ~14 160 TWh in 2000 to ~24 740 TWh in 2018 (IEA 2020b), the 

renewable sources still require greater investments if the ambitious climate goals of 

different treaties and international organizations are to be fulfilled. 

Jacobson & Delucchi (2011a) found that especially wind and solar PV are 

underutilized compared to their global potential, the current capacity being a 

fraction of the global maximum. Hydro power, instead, is an order of magnitude 

more utilized, while still having room for increase in its capacity. Most importantly, 
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the authors found that there seems to be no constraints due to material shortages 

for heavily increasing the capacities of wind and solar PV in the future. 

Still, however much there is underutilized capacity in renewable energy 

sources, costs play an important role in power generation decisions as with any 

consumer/investment decisions. Figure 2 summarizes the changes in levelized cost 

of electricity (LCOE) for new utility-scale PV investments in select countries (a) and 

the global average compared to on shore wind (b).  

 

a) 

 

b) 

 
Figure 2. LCOE of solar PV and wind (IRENA 2020.) 
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As seen in figure 2, solar PV costs have decreased and become somewhat 

comparable to the costs of onshore wind installations. The decrease in costs is 

mainly driven by cheaper solar module prices and lower balance-of-system costs 

(IRENA 2020.) While the costs in figure 2 are calculated from larger, utility-scale 

solar investments, the same advancements can reasonably be expected to reduce 

costs in smaller, individual-scale solar system investments. 

However, some caution should be used when dealing with LCOE, given by 

equation   

 𝐿𝐶𝑂𝐸 =  

∑
𝐼𝑡 + 𝑀𝑡 + 𝐹𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

∑
𝐸𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

, (1) 

 

where 𝐼𝑡  is investment cost, 𝑀𝑡
 the maintenance and operation cost, 𝐹𝑡  the fuel cost 

and 𝐸𝑡 the energy generation at time 𝑡. The interest rate is denoted as 𝑟 (the 

calculations of IRENA use interest rate of 7.5% for OECD countries and China, and 

10% for other countries.) As can be inferred from equation 1, the costs given may 

vary substantially depending on the discount rate (cost of capital 𝑟) used for a 

particular energy investment. Moreover, LCOE heavily favors energy sources that 

require less time between initial investment and power generation. Finally, LCOE 

does not account for the different functions individual energy generators may play 

within a grid. For example, a power plant might only be dispatched when demand 

spikes occur, thus inflating the LCOE of the plant. 

Still, looking at equation 1, some benefits of solar power can be identified. Solar 

panels need almost to maintenance (Motiva 2020), and they don’t require fuel for 

power generation. As the technology has matured, the initial investment costs have 

gone down, while the increased efficiency of newer panels have translated to more 

electricity generated. Finally, if carbon emissions are priced into the equation, solar 

power has next to none. The only emissions are associated with the manufacturing 

of the solar modules and panels, and they are negligible compared to those of, for 

example, coal, oil or natural gas (Engül & Theis 2011.) Solar power can thus be an 

attractive source of electricity especially in region with higher annual solar 

irradiation. 

On top of costs arising from individual solar systems, a large-scale adoption of 

solar power will entail also some integration costs from connecting individual 
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systems to the local power grid. According to Hirth et al. (2015), these integration 

costs can further be decomposed to balancing costs, grid-related costs and profile 

costs, arising from uncertainty of production and forecasting errors, the disparity 

between the location of production and demand, and the temporal variability of 

renewable energy generation, respectively. In the case of solar panels on the roofs 

of Helsinki, especially balancing and profile costs might be noteworthy, but their 

quantities might be hard to assess. Assuming the electricity generated from 

individual panels would primarily be used by the residents of the same buildings, 

the grid-related costs might be negligible.  

Regardless, all consumers might not be equally sensitive to price. Gadenne et 

al. (2011) found that individuals holding pro-environmental beliefs may be willing 

to pay a premium on green choices, but costs still constitute a barrier for 

environmentally conscious behavioral intentions. The adoption of solar panels in 

Helsinki cannot thus be assumed to be uniform based on costs only. Furthermore, 

in the study of Gadenne et al. (ibid.), social and community influence was 

determined to be positively correlated with environmental behavior attitudes, which 

in turn translate to environmental behavior. Thus, on top of the reduction in prices, 

the adoption of solar panels might benefit from a critical mass of consumers 

investing in them and contributing to the visibility of these kinds of systems in a 

community. 

Graziano and Gillingham’s (2015) study on the diffusion of solar PV systems 

in Connecticut seem to support the hypothesis that the so-called ‘peer effects’ (the 

prevalence of a given technology among individuals being contingent on neighbors, 

close-by peers) play an important role in the adoption of solar panels in a 

community. While the cost of electricity and a local incentivizing program were 

significant predictors of solar panel diffusion in Connecticut, the adoption of such 

systems followed localized clusters, i.e. households seemed to be more likely to 

invest in solar panels if they saw their neighbors doing the same. 

Still, the adoption of solar power is not without its challenges. As hinted by the 

discussion of integration costs earlier, one notable downside of solar panels is the 

inherent variability of solar radiation both by the time of day and the seasons of a 

year. This means that power grid operators need additional measures to balance the 

grid i.e. match the generation and demand, if the solar power is to be fed into the 

grid. Regarding short term variability in electricity generation, Jacobson and 
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Delucchi (2011b) identify seven distinct ways to address the problem in their model 

for a power system consisting entirely of renewable energy sources: 

 

1. using interconnected and spatially dispersed uncorrelated energy 

sources 

2. using constant energy sources to fill the gaps of variable electricity 

generation 

3. using different demand-response management methods to schedule 

electricity usage that is not time-sensitive to match variability 

4. storing surplus electricity for later use 

5. storing surplus electricity in electric-vehicle batteries 

6. increasing the capacity of variable sources, so that the times demand 

surpasses generation are fewer 

7. combining weather forecasting with power generation to minimize 

forecastable variation. 

 

What would this then mean for a possible large-scale adoption of solar panels 

in Helsinki? The system would need to be connected with for example a source like 

wind (1), since the covariance of the combined sources could be smaller than the 

variability of either one individually, and additionally hydro (2), so that the gaps in 

solar power generation might be covered by dispatchable hydro power. The system 

should also incorporate weather forecasting (7) and demand schedulers (3) with 

individual solar systems. Storage in batteries (4) by the solar panels and in the 

batteries of electric vehicles (5) could further balance the load of the grid on top of 

forecasting and schedulers. Finally, increasing the coverage of solar panels (6) 

would obviously increase the ratio of generation capacity to peak demand, thus 

decreasing the time the panels could not produce enough electricity. 

It is important to note that the variability of solar power generation can be 

further divided to the more deterministic variance arising from the position of the 

sun, based on the time of day and the season of year, and the more stochastic 

variance (Anvari et al. 2016), within individual hours arising from passing clouds. 

While the deterministic variance can generally be somewhat easily forecasted by e.g. 

using past data to infer patterns based on time of day and year, the stochastic 

variance can’t be. Looking at the strategies proposed by Jacobson and Delucchi 
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(2011b), one might hypothesize that strategies number 1, 4 and 5 could help address 

the stochastic variance, while numbers 4 and 5 could of course help with the 

deterministic variance as well.  

Indeed, Mills and Wiser (2010) found that the short-term stochastic variance 

can be effectively combatted by spatial dispersion. Studying data from the states of 

Kansas and Oklahoma in the U.S., Mills and Wiser concluded that geographic 

diversity of 20 kilometers between solar panel sites could bring the aggregate 

variance down, thus decreasing the efforts and costs of balancing the power grid, in 

the case that the individual solar panels are treated as a collective part of the grid. 

Of course, the deterministic variance of solar irradiance can also become a 

problem if forecasting is not accurate. Forecasts based on past data, e.g. time-series 

analysis or weather forecasts based on physical measurements can be accurate when 

local weather is relatively stable. However, when unexpected and abrupt weather 

changes occur, the aforementioned forecasting methods fall flat. To prepare for 

these situations, the conventional methods can be combined with machine learning 

based models with shorter term forecasting windows that have been successful, for 

example models based on neural networks. (Hossain et al. 2017). In any case, both 

the deterministic and stochastic variability of solar power would entail integration 

costs in any grid with notable solar system penetration. 

The inclusion of surplus electric storage could be beneficial when assessing the 

potential of solar power in Helsinki. Lim et al. (2020) found that in a residential 

setting, combining (stationary) batteries and solar systems both decreases the 

average electricity costs and reduces variance in a grid’s balance. Including demand 

scheduling for individual homes further decreased both statistics. Moreover, it was 

found that there were external benefits to even those homes that did not partake in 

the adoption of said systems, as smoother overall grid balance reduced the peak 

costs of electricity. On top of stationary batteries, energy storage in electric vehicles 

could also be beneficial for Helsinki, were enough coverage present. However, as of 

2019, electric vehicles (including hybrids) constituted less than 1 % of registered 

passenger cars in Finland (Tilastokeskus 2020b.) 

As can be inferred from the challenges of solar systems and solar power alone, 

the challenges become grid-level if and when solar panels (and other types of 

variable electricity supply) have a considerable share in the production capacity. 

Consequently, the power grids need to have enough flexibility in terms of supply-
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demand balancing to combat the variability of renewable energy sources. Lund et al. 

(2015) focused their study on the flexibility measures required in a power grid in the 

case of wide penetration of renewable energy sources. On top of the strategies 

identified by Jacobson and Delucchi (2011b), the authors also stress the importance 

of the grid infrastructure itself, with smart grids (all stakeholders connected via 

intelligent ICT), micro grids (smaller local grids servicing a small area) and super 

grids (high voltage lines for transmission from remote plants) as examples. In the 

case of Helsinki, the individual solar systems might be connected to a smart grid, 

where the sum of individual outputs and demands could be collectively balanced 

and redistributed to match spatial imbalances. 

Still, flexibility might be a feature power grids possess inherently. Simulating 

Europe’s electricity markets up to 2050, Bertsch et al. (2016) found that, following 

an exogenous increase in the share of renewable sources in the production mix, as 

imposed by current climate policies, investments would favor those conventional 

energy sources that are cost-efficient even with reduced uptime. These plants would 

lend the electricity system flexibility to combat the short-term variance in 

renewables. Additionally, some quickly dispatchable sources, such as gas-powered 

plants with carbon capture and storage capabilities would be invested in for the role 

of backup reserves in times of low renewable yield. Thus, the simulation provided 

evidence that the flexibility of the new mix of energy sources was a by-product of the 

competitive markets, meaning that policy makers would not necessarily need to 

offer additional incentives for investments in flexible sources. 

 
2.2 Solar power in Finland 
As a northern country, Finland’s geographic location presents some unique 

challenges to the utilization of solar power on top of the challenges discussed earlier. 

The seasonality of solar radiation becomes more extreme the further from the 

equator a country is located, and thus Finland receives notably less irradiation in 

winter compared to summer. The decrease is naturally higher in Northern Finland 

than in the southern parts of the country. Figure 3 illustrates the variance in total 

horizontal solar irradiation by month in Vantaa, in Southern Finland, and 

Sodankylä, in Northern Finland. It is also important to note that in order to 

maximize electricity production of solar panels, they should be optimally oriented 



Solar power 13  
 

 

both in terms of cardinal directions and panel inclination based on the geographic 

location. For example, the total annual yield in Vantaa with horizontal panels is 

~975 kWh while south-facing panels with a 45° inclination (the optimal) yield ~1205 

kWh (Ilmatieteenlaitos 2020.)  

 

 
Figure 3. Total Solar Irradiance in Finland by month (Ilmatieteenlaitos 2020.) 

 

As discussed before, heating is the number one source of pollution in Helsinki 

(Helsingin kaupunki 2018), and it is naturally concentrated on the winter months. 

With the minimal solar irradiation during winters, utilizing solar panels in Helsinki 

might not be the best way to decrease pollution and carbon emissions arising from 

heating buildings. Moreover, more than 90% of the buildings in Helsinki get their 

heating from a district heating network (Helen 2019), where the heat is produced in 

centralized power plants and then transported to buildings via heated water in 

underground pipes (Motiva 2017.) Thus, without a sizeable increase in electric 

heating with e.g. electric heat pumps, reducing the emissions associated with 

heating could be achieved by moving to more sustainable sources in the power 

plants. The electricity generated with solar panels could then be used to for other 

demand, such as powering general electrical appliances. 

Regardless, solar power has remained marginal in the electricity production in 

Finland (147 GWh in 2019 or 0.2% of total production), while the most prominent 

source in domestic electricity generation is nuclear with ~22.9 TWh of production 
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in 2019. Other notable domestic sources in 2019 were hydro power with 12.2 TWh 

and biofuels (mainly wood-based fuels) with 12.5 TWh of production. Fossil fuels, 

including e.g. coal, natural gas and peat, constituted combined 11.9 TWh of 

electricity production. Finland also imported ~20 TWh of electricity to satisfy the 

overall demand for electricity. (Tilastokeskus 2020a). 

In a study on the Finnish electricity markets, Salmela and Varho (2006) found 

several obstacles in consumers’ decision to purchase green electricity. Firstly, the 

interviewees lacked knowledge on the green electricity alternatives and were 

distrustful of the intentions and motives of the electricity suppliers. Secondly, the 

time and effort required to both research and then switch to the green alternatives 

were seen as notable barriers. Finally, economic reasons such as the higher cost of 

green electricity were important to the interviewees even though many of them had 

not actually looked up these prices. However, in accordance to the study of Gadenne 

et al. (2011) discussed in Section 2.1, some of the interviewees of Salmela and Varho 

expressed a willingness to pay a premium on green alternatives. 

It can be assumed that, following the attention climate change (and the role of 

carbon emissions in it) has gotten in recent years, Finnish consumers might 

nowadays be more aware of green electricity choices and in conjunction solar power. 

Additionally, as the prices of solar modules and the associated equipment have gone 

down, the cost barriers of solar adoption can be expected to diminish. Still, the time 

and effort required to both research potential solar system providers and actually 

implement them can be considerable. An important notion to consider is that, due 

to the mix of public and private buildings, and consequently, roofs in Helsinki, a 

large-scale adoption of solar power is not possible without incentivizing private 

citizens. The incentivizing methods are subject to policy makers’ preferences, but 

different schemes can of course have varying levels of success. 

Scarpa and Willis (2010) classify incentivizing schemes to awareness 

measures, command and control methods, (e.g. through building codes), and 

market-based instruments (e.g. investment subsidies or tax exemptions). Studying 

the preferences and willingness of consumers to pay for renewable alternatives in 

the U.K., Scarpa and Willis found that the initial capital costs were more important 

than ongoing electricity savings through household renewable electricity generation 

from for example solar panels. Of course, as discussed earlier in this thesis, the costs 

of solar systems have gone down in the recent years. Still, the success of a possible 
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optimal allocation of solar panels on the roofs of Helsinki is contingent on the 

willingness of households to invest in such systems. 

As of the time of writing this thesis, three kinds of market-based instruments 

exist in Finland that aim to accelerate the push towards greener energy 

infrastructure, presented in table 1 below.  

 

Table 1: Market-based incentives for renewable energy (Motiva 2020.) 

Instrument 
Private 
persons 

Apartment 
house 
companies, ARA 
organizations(1) 

Companies, 
municipalities, 
other 
organizations 

General tax credit for household expenses x     

ARA(2) investment subsidy x x   

Governmental investments subsidy(3)     x 
(1) Non-profit organizations focusing on public social housing 
(2) The Housing Finance and Development Centre of Finland, governmental agency 
(3) “Energy aid”, granted by The Finnish Ministry of Economic Affairs and Employment 

  

The general tax credit is based on the working costs in house improvement 

projects (including e.g. solar power systems). The credit is intended for private 

persons, and the percentage and maximum amount of work that can be deduced 

with the credit varies based on the year of the improvements. (Verohallinto 2020). 

The ARA investment subsidy can be granted for 10% of solar power investment 

costs, with a maximum of 4 000€ or 6 000€ based on the energy efficiency of the 

installation. However, an individual investment can only be subsidized either with 

the tax credit or an ARA subsidy. (ARA 2020). Finally, the governmental investment 

subsidy is calculated on a case-by-case basis. In contrast to the other instruments, 

the governmental subsidy is only granted to investments that would not be 

undertaken without the grant. Consequently, the subsidy must be applied for before 

the investment has been started. (Työ- ja elinkeinoministeriö 2020). 

In the case of solar panels in Helsinki, the possible subsidies available for 

individual installations would be contingent on the ownership of individual roofs 

(buildings). Thus, accurate cost reductions on the collective level are hard to assess 

without building-level information on the ownership status. On the other hand, all 

owners of individual solar systems have the option of selling surplus energy back to 

the grid. An appropriate contract with an electricity supplier is often required, 

though. For example, Helen (2020) buys surplus electricity on spot market prices 
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from homes with an electricity contract with the company and a solar installation 

with a maximum power of 100kW. Additionally, if the city of Helsinki wants to 

further incentivize private citizens to adopt solar systems, some awareness 

measures might be in order. These could help combat the perceived effort/burden 

of researching and implementing greener energy choices, as mentioned in the study 

of Salmela and Varho (2006) discussed earlier.  

Of course, incentivizing potential solar panel adopters is not only the goal of 

the city of Helsinki, but solar panel providers as well. Strupeit and Palm (2016) 

studied how these companies have combated the typical barriers of solar system 

adoption. The barriers include consumer inertia (1), high initial investment costs 

with long investment horizon (2), difficulties in planning and installation of the 

systems (3) and insufficient information and concerns about the technology (4). The 

strategies to overcome these barriers include for example: 

 

1. advertising, using existing sales channels, using non-commercial 

partners, peer-effects 

2. pay-per-use, support on loan programs, advice on governmental 

incentive schemes 

3. customized turnkey products, advice on planning and installations 

4. efficiency and product warranties, maintenance contracts, certifications 

on producers and installers. 

 

How do Finnish companies utilize the aforementioned strategies? Let’s take 

Helen as an example, an electricity company owned by the city of Helsinki. 

Naturally, Helen is able to leverage its existing electricity customers when selling 

solar installations, thus using existing sales channels. The company offers turnkey 

solar systems including planning and installations and offers financing for said 

systems. Helen also gives potential customers in-depth advice on the systems and 

governmental incentivizing programs, namely the general tax credit. Finally, Helen 

offers efficiency and product warranties for their solar installations. (Helen 2020). 

While the previous example was based on one company, the solar system 

providers in Finland have very similar offerings in general. Notably most of the 

largest electricity companies also provide solar installations. Still, there might be 

room for more partnering with public institutions if policy makers want to promote 
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solar power adoption. Especially in the case of Helsinki and its goals regarding 

carbon reduction, when the city already owns an electricity provider, a common 

advertising and marketing effort would undoubtedly increase the awareness and 

knowledge potential customers have on solar power and the associated installations. 
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3 Spatial decision making and Geographical Information Systems (GIS) 
According to Stone (1998, pp. 66) ‘Geographic Information Systems are hardware, 

software, and digital geospatial data combined to provide mapping capabilities, 

databases of geographic and feature information, and spatial analysis’. In other 

words, geographic information systems (GIS) are used to capture real-world objects, 

e.g. the coordinates of roads and buildings, and their features, e.g. area and size, in 

a computer-readable format. These digital geographic models can then be used in 

conjunction with analysis software to provide spatial analysis to support decision 

making. Thus, the field of GI systems is closely linked to the academic field of spatial 

decision making, the GI systems often being used to support spatial decision 

making. 

However, the abbreviation GIS can also refer to geographic information 

science. Whereas GI systems are concerned with the mapping of objects and their 

features, GI science concentrates on the conceptual frameworks on how these kinds 

of systems should be designed and implemented. Thus, the advances in GI science 

translate to better GI systems. (GISGeography 2020). Regardless, in this thesis GIS 

is used to refer to geographic information systems. 

The advances in computing power and the substantial decrease in the 

associated costs have made GIS applications more available to the public, and thus 

they are used as decision support systems in all kinds of planning processes. These 

processes include, for example, urban planning, transportation and logistics, and 

military planning. The ability of GIS applications to efficiently record geographic 

relations has made them a staple support system in spatial decision making. 

(Maliene et al. 2011). 

The rest of Section 3 is focused on the findings of a literature review conducted 

on spatial decision making. Topics include the developments, real-life applications 

and challenges in spatial decision making and spatial modelling. While GI science 

and the underlying principles in designing GI systems are of course important, the 

focus of this thesis is on the practical application of spatial data. Thus, the modelling 

of real-life decision problems is more relevant to the goal of creating a model for 

optimizing the allocation of solar panels and assessing the viability of solar power 

on the roofs of Helsinki. 
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3.1 Spatial Decision Making 
According to Malczewski (2006), spatial decision problems often have a large group 

of feasible alternatives and multiple assessing criteria that may be at odds with each 

other. At the same time, there may be many decision makers with different 

preferences. Following a literature review, Malczewski categorizes these kinds of 

GIS-based multicriteria decision problems based on six classifications, where the 

first three are mainly attributable to the characteristics of individual GIS 

applications and the latter to spatial decision making: 

 

1. raster vs. vector-based data 

2. implicitly vs. explicitly spatial criteria 

3. implicitly vs. explicitly spatial alternatives 

4. multi-attribute vs. multi-objective decision problems 

5. individual vs. group decision makers 

6. deterministic vs. uncertain decision environments. 

 

To give substance to these classifications, consider the problem of allocating 

solar panels on the roofs of Helsinki. The data is in the form of a shapefile, thus the 

coordinates and shape of individual roofs are depicted in vectors (1), while the 

attributes are in a separate file accompanying the shapefile. The criterion of 

electricity generation is implicitly spatial, as the yield is based on the location of 

individual roofs, whereas the criterion of area is explicitly spatial (2). The decision 

alternatives of the problem are subsets of roofs, and thus the alternatives are 

explicitly spatial (3). The problem has multiple objectives (4), namely cost/area 

minimization and yield maximization. Following the mixture of public and private 

properties of Helsinki, the problem ultimately has a large group of decision makers 

(5), consisting of the city, businesses and private citizens i.e. the owners of 

individual buildings/roofs. However, as it is impossible to infer individual 

preference/utility functions for all the decision makers, costs and yield are assumed 

to be the driving factors behind the value of solar systems. Thus, the problem of 

allocation is treated as having an individual decision maker, harmonizing the 

objective function to being equal for all. Finally, the decision environment is treated 

as deterministic (6), i.e. the electricity generation is assumed to be stable from year 
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to year. Of course, in practice, the annual yield of any one roof is uncertain. 

Additionally, the allocation cannot be enforced, thus making the adoption of solar 

panels also uncertain. Still, for practicality’s sake, the yield is assumed to be constant 

in this study. Because the goal is to assess the viability of large-scale solar panel 

utilization, different allocations are examples and do not necessarily reflect real-life 

adoption. 

In contrast to the vector-based data on the roofs of Helsinki, sometimes it’s 

more appropriate to use raster-based spatial data, i.e. treating the areas in focus on 

a grid-basis. A recent example from Finland is the pro gradu study of Sydänlammi 

(2019), where grid-based data on the population of Helsinki was used to optimize 

the school districts of the city. The motivation behind the optimization was to 

combat segregation between Helsinki’s areas, arising from the varying social 

compositions of students in different school districts.  

In the context of solar power, grid-based data might be used to find suitable 

locations for utility-scale solar plants, for example. Were Helsinki interested in 

investing in a CSP (see Section 2) plant, a grid of Helsinki with solar irradiation yield 

and availability of land as attributes of individual grid blocks might be used to gauge 

different possible sites for the plant. Continuing the example of a CSP plant, a siting 

problem of an individual solar plant would presumably have a finite and relatively 

small number of possible location alternatives due to the requirements of such 

plants. According to Malczewski (2006), these kinds of selection problems with 

limited decision alternatives but multiple attributes (of alternatives) are typical 

multi-attribute decision problems.  

Regarding multi-objective decision problems, a good example is the study 

performed by Christensen et al. (2009) on the optimization of protected 

(conservation) sea area placement, with competing criteria such as economic 

(fishers’ revenues), ecological (biodiversity) and social (jobs from fishing) 

objectives. The different objectives are compiled into a single objective function, 

where individual (weighted) objectives are summed together. The area under 

optimization is partitioned into cells, and the protected area was gradually increased 

by choosing cells that maximize the objective function until a given protection level 

is reached. Similar to the problem of solar panel allocation in this study, different 

levels of protection (adoption rates for solar panels) might be calculated to assess 

different scenarios. However, the problems differ in the nature of the area under 
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consideration, in the case of the roofs in Helsinki the area being naturally non-

continuous compared to the continuous sea are.  

Malczewski (2006) notes that multi-objective spatial problems are often 

solved by converting the objectives into a single objective problem, and then solving 

the acquired problem using basic linear programming methods. As there are only 

two principal components under consideration in this study, the area and yield of 

individual roofs, converting the competing objectives into a single objective should 

be feasible. The model would then be either maximizing electricity yield while 

having a constraint on the maximum area the allocation could take, or alternatively 

minimizing the area used for a given electricity production level.  

Due to the nature of solar power and its dependency on location, spatial 

optimization has often been utilized in the literature concerning solar installations. 

Azadeh et al. (2006) ranked potential solar plant locations using Data Envelopment 

Analysis (DEA), where, put simply, individual alternatives are compared by their 

efficiency of converting a set of inputs into outputs (where higher efficiency is of 

course better). The study had a hierarchical approach by first comparing 25 

individual cities in Iran, and further analyzing 6 different districts/regions within 

each city. Similar methods could be used in Helsinki as well, if the goal was to find, 

for example, the most suitable districts of Helsinki for solar power. One might use 

the availability of rooftop area and electricity yield as attributes of each district, and 

then rank them according to their efficiency between inputs (roof area) and outputs 

(electricity generation).  

Also concerning solar plants, Sanchez-Lozano et al. (2016) studied the best 

suitable locations for solar power in Spain. However, a much larger set of 66,845 

locations were assessed using both TOPSIS, a method where alternatives are ranked 

based on their distance from both positive (closer better) and negative (further 

better) ideal solution, and ELECTRE TRI, where alternative’s pair-wise 

comparisons regarding decision criteria are used to classify and rank alternatives 

into predefined categories.  

All the methods discussed above, DEA, TOPSIS and ELECTRE TRI, are used 

in ranking of alternatives when multiple attributes are present. Similar methods 

have been used to support decision making in other sustainable energy planning 

studies as well (Pohekar & Ramachandran 2004.) In the context of the roofs of 

Helsinki, the three methods might be used to find the best alternatives were more 
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than the area and yield of individual roofs considered. For example, there might be 

preference for roofs in some districts of Helsinki or buildings with worse energy 

efficiency might be prioritized. Still, without absolute control on the placement of 

solar panels on individual roofs, this kind of analysis would only serve as informative 

and raising awareness about the potential of solar power, were the analysis 

conducted on all of the roofs in Helsinki. On the other hand, the city of Helsinki 

could use these kinds of methods for assessing the roofs on the buildings it owns. 

Adding solar panels on publicly owned roofs might then be used to provide 

electricity for individual buildings, potentially offsetting electricity produced using 

carbon-intensive sources, such as coal or natural gas. 

On a larger scale, spatial decision analysis has also been used in in the context 

of planning renewable energy infrastructure. Lenzen et al. (2016) used simulation 

to assess the power infrastructure in Australia. The simulation was based both on 

hourly demand-supply matching during a year and a grid-based location 

optimization of proposed renewable energy plants. Additionally, the transmission 

network between generation and demand locations was optimized. The total costs 

of the resulting energy source mixes and locations were calculated with varying 

attribute levels, e.g. the price of carbon emissions and backup power capacity, to 

assess different possible scenarios. Similarly, a large-scale utilization of the roofs of 

Helsinki for solar power would merit a more comprehensive study on the effects of 

high renewable energy penetration on the power grid in Helsinki. While this kind of 

analysis is out of the scope of this study, future research could prove useful if/when 

variable renewable energy sources become more wide-spread. 

While there is a lot of literature concerning the placement of individual solar 

farms i.e. larger utility-scale plants, there seems to be relatively little literature on 

the spatial optimization of a large-scale rooftop solar panel adoption. While many 

researchers study rooftop solar systems and acknowledge their merits (see e.g. 

Graziano & Gillingham 2015, Jacobson & Delucchi 2011a discussed in Section 2), 

the approaches in these studies have been more descriptive and normative rather 

than prescriptive in the sense of practical adoption suggestions. One possible 

explanation could be that there might not be roof-level data in many areas and 

countries, while solar irradiation maps on a grid-basis are found for most of the 

world. 
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A recent example concerning rooftop solar systems was the study of Zhong and 

Tong (2020), where the objective was to cover a suitable roof with solar panels as 

efficiently as possible. The authors used LiDAR (3D imaging with laser light) to first 

identify the suitable areas of a single rooftop and then optimized the allocation of 

panels to minimize the suitable area not covered by panels. While the scope of the 

study was of course different from assessing all the roofs of Helsinki, similar imaging 

techniques might be used in Finland as well, for example to supplement the dataset 

used in this study when new buildings are built in Helsinki. 
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4 Methodology and modelling 
The problem of panel allocation has ultimately a large group of decision makers, as 

discussed in Section 3.1. The sheer size of the group makes it impractical to assess 

different preferences the decision makers might have, or whether they hold 

environmental attitudes that would make them more inclined to adopt solar power. 

Consequently, the individual utility functions can’t be inferred. Thus, for 

practicality’s sake, it is assumed that the cost of solar systems is the defining factor 

for individuals’ utility from solar panels and driving their adoption, i.e. individuals 

would invest in solar systems if they can save money utilizing them.  

The cost function for an individual roof is modelled in the form of regular 

linear equation  

 
 𝑐𝑜𝑠𝑡𝑖 =  𝑏 + 𝑐𝑎𝑖 , 𝑖 = 1,2, . . . , 𝑚, (2) 

 

where 𝑐𝑜𝑠𝑡𝑖 is the cost and 𝑎𝑖 the area associated with the 𝑖:th roof, while 𝑏 and 𝑐 are 

constants. The exact cost function was derived using linear regression from data on 

the offerings of Lumo (2020), a Finish electricity company, yielding values 𝑏 =

2666.38 and 𝑐 = 165.89. The costs are based on a turnkey service, meaning that they 

include all the necessary equipment and installations for the customers, but no extra 

services, such as production tracking systems. The area of an installation seems to 

be a very good estimator on the price, as the regression has an R2 statistic of 

~99.52%, and both the area and intercept are statistically significant at a p-value of 

0.001. The full statistics from the linear regression are reported in Appendix B. The 

company was chosen due to the relatively wide range of offerings and the availability 

of data. Note that the prices include Value Added Tax, which companies can 

typically deduct in their taxation. The cost function relates to a solar panel with a 

reported power of 280 watts and an efficiency rating of 0.172, manufactured by 

Green Energy Finland (GEF 2019.) Moreover, the panels have a linear efficiency 

guarantee for 25 years, meaning that at after 10 years the panels should produce at 

least ~90% of the expected yield, and at year 25 still ~80%. 

As for the optimization model itself, the goal is to efficiently allocate solar 

panels on available roofs. Decision variables 𝑥𝑖  𝑖𝑛 [0,1], 𝑖 = 1,2, . . . , 𝑚 are introduced 

denoting the share of 𝑖:th roof that is used for solar panels. The allocation has two 
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competing objectives: on the other hand, we would like to produce as much 

electricity from our resources (roofs) as possible, while also minimizing the costs of 

the electricity produced. Still, as the allocation cannot be forced on individual roofs, 

it is more relevant to assess the optimal allocations given varying (hypothetical) 

production levels. The problem then becomes a linear programming problem with 

an objective of minimizing cost. As the cost of an individual solar system is highly 

reliant on its area, the objective function then becomes  

 

 
 𝑚𝑖𝑛 ∑ 𝑥𝑖𝑎𝑖

𝑚

𝑖=1

,  (3) 
 
where 𝑎𝑖 is the size of the suitable area of roof 𝑖. The objective function is 

constrained by 
 ∑ 𝑥𝑖 𝑒𝑖

𝑚

𝑖=1

≥  𝑇, (4) 
  

where 𝑒𝑖 is the electricity production of roof 𝑖, and 𝑇 is the target level of production, 

expressed as an absolute value. Setting the modeling problem in the aforementioned 

way should ensure that for each target level 𝑇, the model finds the subset of roofs 

that minimizes the needed area. Thus, pareto optimal solutions in terms of 

electricity yield and costs are expected to be found. The modelling was done using 

Python and an API for Gurobi optimizer. Gurobi optimizer is a commercial software 

package which can be used for a wide range of different optimization problems. A 

free limited-time academic license was used during the modelling. The source code 

for the model is presented in Appendix A.  
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5 Applying the model to the roofs of Helsinki 
The open dataset used with the allocation model created in this study is provided by 

Helsingin seudun ympäristöpalvelut (HSY), and it was first published in 2015. The 

data contains information on the roofs of Helsinki, mainly the area suitable for solar 

panel installations, and the expected annual electricity yield of individual rooftops. 

The data has two layers, a raster of suitable roof area, and a vector-based layer 

depicting all the roofs in Helsinki with their suitable area size and electricity yield 

as attributes. 

When determining the suitable sections of individual roofs for the raster layer, 

three criteria were used by HSY. Firstly, the section should get at least 847 kWh/m2 

of solar irradiation per year. Secondly, the suitable section of an individual roof 

should have an area of 5 m2 at minimum. Lastly, the section should leave a free area 

of at least 0.5 meters wide from the edge of the roof. When calculating the electricity 

yield, it was assumed that the panels fully cover the suitable area and that they are 

installed parallel to the roofs, regardless of the roofs’ inclination. The efficiency 

coefficient used for the panels was 0.15. The original vector data contains 87 837 

roofs. Some roofs may have parts that satisfy the solar irradiation and free-area-

from-edge criteria, but the roof might not have a total suitable area of 5 m2. 

Nonetheless, the vector data includes these roofs and has the suitable area as an 

attribute for each roof. Upon initial inspection, 50 917 roofs were found to contain 

no suitable area for solar panels, leaving a set of 36 920 individual roofs under 

consideration. If using the 5 m2 criterion, 35 586 roofs remain.  

 

5.1 Results of the optimization 
To illustrate different production scenarios, the roof allocation model was run with 

different target levels of solar power generation in mind. Additionally, the model 

was run both treating the roofs as binary variables and continuous in range [0,1]. 

The minimum viable area the roofs might need to have, 5 m2 as determined by HSY, 

was also considered. Tables 2 and 3 summarize some key statistics obtained with 

the optimization, differing in the variable type used for the roofs and the presence 

of a minimum viable area constraint. Note that the electricity generation in the 

tables is calculated with the original efficiency rating of 0.15. The “area used” ration 
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compares the combined area of an allocation to the total suitable area available on 

the roofs of Helsinki. The “roofs used” ratio compares the count of chosen roofs in a 

particular allocation to all the roofs in Helsinki, thus including even the roofs 

without any suitable area for solar panels. 

Table 2: Production scenarios without minimun viable area, continous roofs 

Target production 
(%) 

Electricity produced 
(GWh) 

Area used  
(%) 

Roofs used  
(%) 

0.1 79.4 0.095 0.069 

0.2 158.8 0.192 0.105 

0.3 238.2 0.291 0.122 

0.4 317.6 0.389 0.142 

0.5 397.0 0.489 0.163 

0.6 476.4 0.589 0.185 

0.7 555.8 0.689 0.216 

0.8 635.2 0.791 0.250 

0.9 714.6 0.894 0.303 

1.0 794.0 1.000 0.420 
 

Table 3: Production scenarios with minimum viable area = 5m2, binary roofs 

Target production 
(%) 

Electricity produced 
(GWh) 

Area used  
(%) 

Roofs used 
(%) 

0.1 79.4 0.095 0.067 

0.2 158.7 0.192 0.100 

0.3 238.1 0.291 0.118 

0.4 317.5 0.389 0.137 

0.5 396.8 0.489 0.157 

0.6 476.2 0.589 0.179 

0.7 555.6 0.689 0.208 

0.8 634.9 0.791 0.242 

0.9 714.3 0.894 0.293 

1.0 793.7 1.000 0.405 
 

 

Looking at the results of the optimization, there seems to be little variance 

between the different approaches for modelling the roofs. Most notably, the 

optimization seems to offer limited benefits at first glance, as the total areas of 

different optimal allocations seem to be only marginally smaller than the respective 

production levels. This would imply that while individual roofs differ in size and 

thus electricity yield, the ratio between the yield and area seems to be relatively 

constant across the roofs. Were there large discrepancies between e.g. the districts 

of Helsinki, we would likely see much smaller area ratios for the lower production 
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levels, and then progressively higher ratios for the larger production levels. 

Yield/area ratios were calculated to gain additional insight on the usefulness of the 

roof allocation model. Figure 4 presents the ditribution of yield/area ratios for roofs 

that have at least some suitable area for solar panels, i.e. 𝑎𝑖 > 0. 

 

 
Figure 4. Variation of yield/area ratio between roofs 

 

There is indeed some variation between the individual roofs, and the 

optimization model can be expected to choose the roofs that have higher ratios, i.e. 

the ones towards right in the figure. The minimum of the ratios was 95.920, the 

maximum 121.431, the mean of the ratios was 107.520 and the standard deviation 

4.915.  

To further assess the optimization model, a random order allocation was 

calculated as a base line, depicting non-optimal solar system adoption. The base line 

model randomly chooses subsets of roofs for solar panel adoption, i.e. roofs are 

chosen one by one until a production target level is reached. The roofs used for the 

base line model were those having a suitable area of at least 5m2. The model was run 

100 times for each target level, and a mean total area was calculated for each 

production level. The source code for the baseline model is presented in Appendix 

C. Looking at the “area used” ratios of the base line random choice model in table 4, 

the optimization seems to offer at least some benefits. The ratios are higher with the 
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random adoption model across all the production levels compared to the optimal 

allocations.  

 

Table 4: Area ratios of the random adoption model 

Target production (%) Area used (%) 

0.1 0.1001 

0.2 0.2002 

0.3 0.3001 

0.4 0.4001 

0.5 0.5002 

0.6 0.6001 

0.7 0.7001 

0.8 0.8001 

0.9 0.9001 

1 1 
 

 

What about geographic dispersion then? Figures 5, 6 and 7 depict the optimal 

allocations of solar panels in Helsinki on various production levels. There seems to 

be no notable preference in the allocation of roofs between different areas in 

Helsinki. For each target level, the allocation seems to follow only the physical 

number of buildings in the different subareas/districts of Helsinki. Consequently, 

the subareas become more densely populated with solar panels as the target 

production level increases. This further demonstrates that the ratio between 

electricity production and the suitable area size is relatively constant across 

Helsinki. While there exists variance between the yield/area ratio between roofs, the 

variance seems to be somewhat uniform across Helsinki. For example, were an area 

much more suitable for solar power in Helsinki, we could expect the area to be fully 

utilized already on lower production target levels. 
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Figure 5. Solar panel allocation with 25% target level 

 

 
Figure 6. Solar panel allocation with 50% target level 
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Figure 7. Solar panel allocation with 75% target level 

 

 

QGIS was used to visualize the different allocations. QGIS is an opensource GI 

system, allowing conditional representation of vectors. Thus, the original data on 

the suitable areas of individual roofs can be combined with the output of the model 

(decision variables mapped to roof ids), and different production levels can be easily 

visualized. 

Of course, any level of solar adoption is unlikely to happen if the cost of the 

electricity produced is not competitive with the consumer prices offered by local 

electricity providers. The combinations of roofs selected by the model were assessed 

using levelized cost of electricity (LCOE), given by equation 1. As discussed in 

Section 2.1, using LCOE has some caveats and drawbacks, but as it is widely used 

and relatively simple, calculating the levelized cost of various solar panel adoption 

levels makes comparison with other projects and local electricity prices in Helsinki 

possible. When calculating the energy production of individual years, a linear 
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reduction in yields was assumed in accordance with the efficiency guarantees of the 

panel provider GEF, so that at 𝑡 =  1 years the yield is 100% and at 𝑡 =  25 years 

the yield is 80% of the initial year. Furthermore, the electricity yields were adjusted 

to reflect the slightly higher efficiency rating 0.172 of the GEF panels compared to 

the rating (0.15) used in the base data. The investment horizon was assumed to be 

25 years with no salvage value at the end of the period. In accordance to the 

calculations of IRENA (2020), the interest rate used for OECD countries can be 

either 7.5% for utility scale systems or 5% for residential installations. The rate is 

smaller for residential systems because it is assumed that their owners tend to use 

the generated electricity themselves, thus requiring smaller rate of return on their 

investment. The initial investment cost is assumed to take place at 𝑡 =  0 years.  

The LCOE is also highly dependent on the operation and maintenance costs 

𝑀𝑡 used. For example, European Commission (2019b) has used an estimate of 3% 

for the operating and maintenance costs of photovoltaic systems, in terms of 

percentage of the initial capital expenditures. In this study the same level of 3% was 

used. The operating and maintenance costs include for example cleaning the panels, 

the expected one-time replacement of the installations’ inverters (Motiva 2020) and 

any damaged cabling. Finally, the LCOE was calculated from the allocations 

obtained when treating the roofs as binary variables and considering only the roofs 

with suitable area of at least 5m2. The exclusion of smaller roofs can be expected to 

give a more realistic estimate for the LCOE as small installations might be hard to 

implement in practice. Table 5 presents the LCOEs calculated on various target 

levels, and with the different interest rates. The costs are relatively similar between 

different target levels within both interest rates, but naturally with the higher 

discounting rate the costs are higher when the initial investment is given more 

weight. 
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Table 5: LCOE of the allocations 

Target LCOE (cent(€)/kWh) 

r = 0.05 r = 0.075 

0.1 15.70 18.43 

0.2 15.45 18.15 

0.3 15.26 17.91 

0.4 15.19 17.83 

0.5 15.17 17.81 

0.6 15.18 17.82 

0.7 15.23 17.88 

0.8 15.30 17.96 

0.9 15.43 18.12 

Mean 15.32 17.99 
 

 

The mean values were then compared to the historical data of consumer 

electricity prices in Finland. Figure 8 depicts monthly total consumer prices starting 

from January 1997 and ending in November 2019, with the calculated mean LCOEs. 

The total prices include the cost of electricity, the transfer fee and the energy tax. 

The prices of individual months were calculated as the average of different typical 

consumer groups, such as apartments (both residents and e.g. small businesses), 

small residential buildings and agriculture. The prices exclude manufacturing and 

similar industries. Note that the cost of electricity is based on a price that is 

guaranteed to consumers, so electricity companies may have offerings with lower 

prices from time to time. 
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Figure 8. Consumer eletricity prices in Finland (Energiavirasto 2019.) 

 
As the consumer prices of electricity have increased over the time period, solar 

power seems to have become a cost-efficient and viable method of electricity 

production in Helsinki. Especially, if the overall price trend continues in the future, 

it would be reasonable to assume that the adoption of solar panels could increase in 

the coming years. By investing in rooftop solar systems, residents can potentially 

reduce their overall cost of electricity consumption, something few would refuse. 

Especially buildings on the higher side of the yield/area ratio distribution could 

benefit from solar power adoption in the form of rooftop solar panels. 

 

5.2 Discussion 
While rooftop solar power could be an attractive investment based on the results of 

the optimization and the comparative electricity costs, it is good to understand the 

limitations of this study. Firstly, the costs of individual rooftop solar systems 

calculated in this study are just estimates of the true costs associated with the panel 

allocations. In practice, different factors such as the inclination of roofs, the height 

of the roofs and how difficult they are to reach would undoubtedly influence the 

costs arising from solar system installations. Additionally, no distinction was made 

between the ownership of individual roofs: private citizens could take advantage of 
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the general tax credit or the subsidies of ARA, thus lowering their individual 

investment costs, whereas companies and/or the city of Helsinki might apply for the 

governmental energy subsidy, bringing their costs down as well.  

Moreover, only one provider was used in inferring the installation costs. This 

was mainly due to the availability of public data on the offerings of different 

companies. Were multiple companies included in the linear regression, there would 

be need for controlling the differences in the panels used by different providers and 

thus additional variables would have to be introduced to the regression. When some 

of the providers considered had only few price examples and offerings, the reliability 

of the regression would quickly falter when many additional variables would be 

introduced with only few more observations.  

Additionally, the nature of the data used raises some problems to consider 

when estimating costs. Firstly, when all the roofs with even a little suitable area are 

included in the model, some roofs might obviously be too small to cover with panels 

in real life. Secondly, even with a minimum area of 5 m2, the shape of the suitable 

sections of some roofs might be such that they could not actually be fully covered 

with solar panels, usually manufactured in the shape of a rectangular. Regardless, 

in the model the roofs were treated as continuous objects and their suitable sections 

as fully realizable. 

Another limitation to keep in mind is associated with the electricity yields of 

individual roofs. While the yields are assumed to be constant while calculating the 

LCOEs of the different target production levels, the electricity generation from solar 

panels is bound to vary from year to year due to the nature of solar power and its 

variability. The yields of individual buildings are also calculated assuming that the 

panels would be installed parallel to the roofs, regardless of inclination. As 

mentioned in Section 2.2, the differences in electricity production can be quite 

notable with optimal installation in terms of cardinal directions and inclination.  

Finally, as stated before, using LCOE as the measure of cost has its limitations. 

As seen in the results, the mean prices obtained in this study are sensitive to the 

discount rate used, and in conjunction the interest rate 𝑟. Of course, as the costs of 

individual roofs are estimates, the LCOE as well becomes more an estimator than 

actual in-practice cost of the electricity produced. There is also the question what 

the actual level of maintenance costs 𝑀𝑡
 is, and how the costs may differ widely 

between locations. Some locations and systems might require only slight 
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maintenance, thus the associated costs being less than the 3% used in this study, 

while in some areas where there is e.g. a lot of road dust the installations might need 

additional maintenance. The LCOEs calculated were also based on the optimal 

allocations of panels in Helsinki. A more likely scenario is a somewhat random 

adoption, where the optimality between the area used and electricity produced is 

not present.  

Regardless, this study has some practical implications both for individual 

citizens and the city of Helsinki and can be used as a starting point for potential solar 

panel investments in Helsinki. For the city of Helsinki, a similar optimization model 

could be used with data on the publicly owned buildings and roofs, with the benefit 

of the city having an absolute say on the actual implementation of any allocation 

obtained from the optimization. Helsinki could then choose a desirable level of solar 

power generation and employ the model to find the most cost-efficient allocations 

possible. Additionally, if Helsinki wanted to further incentivize private citizens to 

adopt solar systems, similar LCOE calculations might be used to assess how 

different (monetary) incentive schemes might affect the price of electricity 

generated from typical solar installations.  

For individuals, this study may raise awareness on the increasing cost-

efficiency of solar power compared to the rising electricity prices. Similar 

calculations for the LCOE of individual solar systems could be used to assess the 

potential of citizens’ own buildings or homes for solar power generation. Moreover, 

the data on the roofs of Helsinki used with the optimization model is readily 

available in map format through the website of HSY (2015). Simply calculating the 

expected yield/area ratio can act as a preliminary assessment whether a particular 

roof could be profitable with solar panels. If the ratio is on the higher side of the 

range discussed in Section 5.1, the roof would most likely produce cost savings 

during its investment cycle. Additionally, individuals might use the methods 

described in this study to assess the offerings of different providers, when exact 

quotations for solar systems are given.  
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6 Conclusion 
This thesis focused on assessing whether solar panels on the roofs of Helsinki might 

be a viable power source, were a large-scale adoption to take place. A model for the 

optimization of panel allocation was created, where, given a production target level, 

an optimal set of roofs is chosen minimizing the area the panels require. The costs 

of individual rooftop solar installations were estimated based on the offerings of a 

local electricity and solar systems provider. Finally, levelized costs of electricity 

(LCOE) were calculated for the varying allocations and production levels. It was 

found that following an upward trend in the average consumer electricity prices in 

Finland, the levelized costs of the electricity produced by the optimal panel 

allocations have become competitive with the market prices. Especially private 

consumers who mainly use the generated electricity themselves can benefit from 

rooftop solar systems. 

As solar power seems to be a viable source of energy on the roofs of Helsinki, 

the city should critically assess the potential of adding it to the current energy source 

mix. A good starting point would be to use the optimization model created in this 

study with the public rooftops in Helsinki, which could potentially decrease the 

current level of carbon emissions produced by the city. Given the ambitious goals of 

carbon-neutrality by 2035, Helsinki might also consider further incentivizing 

investments and raising awareness on the potential of solar power for private 

citizens and companies. 

Regarding implications for the scientific literature, this study can be used as 

the starting point for future research on the viability of residential rooftop solar 

power. Provided that similar data is available on a particular area’s roofs, a similar 

model could be employed to first allocate solar panels efficiently to the roofs and 

then assess the costs associated with the allocation. Of course, the availability of data 

may be a restricting factor in many locations, especially if the area under 

consideration is small i.e. the set of roofs is small. Still, projects utilizing for example 

LiDAR might be used in the future to gather datasets even in smaller areas, as 

discussed in Section 3.1. Additionally, it would be beneficial to understand how the 

costs and electricity yield of large-scale solar adoption would change if the 

installations on rooftops were both inclined and faced optimally. As discussed in 

Section 2.2, at least the yield would potentially increase notably. Still, the cost-
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efficiency of the systems could also decrease if the additional mounting and 

installation costs would outweigh the increased electricity generation. 

Finally, introducing a noteworthy share of variable energy sources to any 

power grid will likely affect the grids’ balancing and flexibility, and the electricity 

market prices as well. Future research should focus on the ability of Helsinki’s local 

power grid to accommodate such an increase in variable power generation and how 

the electricity markets would react in terms of electricity prices of different sources. 

Furthermore, studying the integration costs arising from rooftop solar systems not 

considered in this study could provide additional information on the viability of a 

large-scale variable renewable energy source additions to the production mix of 

Helsinki’s electricity infrastructure. 
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Appendix A: The optimized allocation model 

 

Figure A1: Python souce code for the optimization model  
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Appendix B: Regression statistics on the cost function 

 

Figure A2: Regression statistics on the cost of individual solar installations  

 

Appendix C: The random adoption model 

 

Figure A3: Python souce code for the random adoption model  

 
 


