Aalto University
School of Science
Master’s Programme in Computer, Communication and Information Sciences

Aleksandr Kurbatov

Design and implementation of secure
communication between microservices

Master’s Thesis
Espoo, December 31, 2020

Supervisor: Professor Tuomas Aura
Advisor: Antti Jaakkola, M.Sc. (Tech.)

A' Aalto University
]
Aalto University
School of Science

Master’s Programme in Computer, Communication and ABSTRACT OF

Information Sciences MASTER’S THESIS
Author: Aleksandr Kurbatov
Title:
Design and implementation of secure communication between microservices
Date: December 31, 2020 Pages: 50
Major: Computer Science Code: SCI3042
Supervisor: Professor Tuomas Aura
Advisor: Antti Jaakkola, M.Sc. (Tech.)

The demand for the microservice architecture is rapidly growing by every day,
and so is the problem of its security. The objective of the study was to analyze
threats against the Kubernetes threats and find a solution for how to address
these threats without degrading system performance and overcomplicating the
deployment process.

The thesis concentrates on the following researching questions: (1) What are the
solutions that exist for? (2) What are the requirements for the solution design?
(3) How to develop and evaluate such a method?

The study reviews the multiple available service mesh solutions and chooses to
utilize the Istio product for the solution implementation. Based on the composite
threat model, we defined a set of requirements for the solution design. The
designed method constitutes a script for the automated deployment of Istio service
mesh and secure connection establishment.

From the acquired results it can be concluded that the designed method has been
able to prevent and mitigate most of the discovered threats and comply with the
security and performance requirements.

Keywords: cloud computing, Kubernetes, Istio, Linkerd, Consul, service
mesh, network security

Language: English

Acknowledgements

I would like to express my gratitude to my thesis supervisor Tuomas Aura
and Alisa Vorobeeva for directing the research and giving helpful recom-
mendations. I also want to thank my advisor Antti Jaakkola and Adam
Peltoniemi for helping both on the technical and formal sides of the thesis.
Special thanks to Lauri Salmio for being so attentive and respectful to me
during my internship at Ericsson.

In addition, I want to thank my family and friends who have been support-
ing me throughout my Aalto studies even being in a thousands of kilometers
away from me.

Espoo, December 31, 2020

Aleksandr Kurbatov

Contents

1 Introduction

2 Background

2.1 Cloud computing
2.2 Docker and Kubernetes
2.3 Service Mesh
231 Istio
2.3.2 Linkerd
233 Consul
2.3.4 Service Mesh comparison
2.4 Network security
3 System architecture
4 Requirements
4.1 Attacker model
4.2 Threat model
4.3 Secure communication
4.4 Certificate life-cycle management
4.5 Encryption Lo
4.6 Automation
4.7 Scalability
4.8 Performance
5 Implementation
5.1 Solution architecture
5.2 Deployment
6 Evaluation
6.1 Requirement analysis L.
6.1.1 Secure communication

10
11
11
11
12
12

14

17
17
18
20
20
20
21
21
21

23
23
27

6.1.2
6.1.3
6.1.4
6.1.5
6.1.6

Encryption oo oo
Certificate life-cycle management
Automation
Scalability o
Performance L.

6.2 Threat solvingo

7 Conclusions

A The automation script

B The TCPDump response

C The decrypted certificates

40

45

47

49

Chapter 1

Introduction

Recently, cloud computing has become an essential component in the func-
tioning of any large business. Thousands of companies lease and rent cloud
servers to efficiently process user data and provide their services to millions
of users. However, complex cloud products often require precise communi-
cation between a large number of microservices. Container orchestrators,
such as Kubernetes, effectively addresses this problem. Kubernetes runs and
coordinates containerized applications across a cluster of machines. It is a
platform designed to completely manage the life cycle of containerized ap-
plications and services and successfully build and deploy reliable, scalable,
and distributed systems [20]. Nevertheless, with new technology coming,
vulnerabilities also appear.

At this moment, the data life circle on the internet and local networks
is sufficiently secured. Right now we have HT'TPS and TLS protocols, Vir-
tual Private Networks, authentication protocols as OAuth2 and SAML, and
much more for secure communication. However, Kubernetes focusing more
on workload orchestration and does not support most of the security mea-
sures for communication between microservices that are working inside of
Kubernetes environment. Developers that use the Kubernetes environment
for their business applications and want to implement more advanced secu-
rity measures will have to do it by themselves. In order to do this, developers
should manually configure the whole system and, probably, interfere into the
code of most microservices. As the result, developers could spend a signif-
icant amount of time finding the proper solution. Moreover, the scalability
of such a solution may not be guaranteed.

To address the problem of the security of microservices communication,
a service mesh can be used. A service mesh can be described as an infras-
tructure layer that is responsible for the communication between services.
It deploys special sidecar proxies throughout the working environment that

CHAPTER 1. INTRODUCTION 7

intercepts all network communication between microservices. The service
mesh configures and manages the communication, including traffic control,
certificate management, and access control policy configuration.

Kubernetes environment and service mesh are still new and developing
technologies, the security issues of which are relevant and demand more re-
search. Thus, it is a relevant and challenging task to explore the usage of the
service mesh technology in the Kubernetes environment in order to improve
its security state and decrease the number of possible threats.

The goal of this thesis is to decrease the number of threats, do not sig-
nificantly degrade the system’s performance, and substantially simplify the
deployment process. This thesis will consider and analyze the Istio service
mesh.

The tasks of the thesis are:

a. Review and analysis of literary sources and existing solutions in the field
of existing options for ensuring the safety of microservice communication.

b. Development of requirements for implementation in a corporate system of
a method for ensuring the safety of microservice communications.

c. Development of a method for securing microservice communications within
a Kubernetes virtual environment.

d. Conduct experimental studies to evaluate the effectiveness of the devel-
oped method.

This thesis focuses on communication security between microservices in
a service mesh. It will try to present how a service mesh can improve the
security of the Kubernetes environment, how to deploy service mesh and
answer if it is a sufficient enough solution. Service mesh has a lot of other
functions and opportunities, but they are not relevant to this thesis because
we are concentrating on the security point of view.

The rest of the thesis is structured as follows: Chapter 2 presents the
concepts of Kubernetes, microservices, service meshes, and possible attacks
on microservices. Chapter 3 introduces a threat model. Chapter 4 describes
the requirements for the solution. Chapter 5 illustrates the system’s architec-
ture design and describes the method design details, while chapter 6 shows
the evaluation of the proposed solution. Finally, the thesis is concluded with
chapter 7.

Chapter 2

Background

2.1 Cloud computing

Cloud computing already became a commonness and almost every business in
the information technology sphere faced or works with it. Moreover, almost
everyone has used at least once the products based on a cloud computing
model, like Google Docs, Netflix, or Spotify [31]. The definition of cloud
computing term was officially introduced by the National Institute of Stan-
dards and Technology (NIST) in 2011 [28]. It refers to cloud computing as a
model that provides on-demand, ubiquitous, and available access to different
manageable computer resources with the expeditious provision and effortless
management.

The utilization of the cloud computing model brought a lot of benefits.
For example, it decreased cost and energy-saving of servers maintaining,
made the deployment of applications scalable and agile, improved the effi-
ciency of resource management, and much more.

Cloud computing has different service delivery models. The services,
which are represented in Figure 2.1, are classified into three categories: soft-
ware as a service (SaaS), platform as a service (PaaS), and infrastructure as
a service (laaS) [9].

Software as a service model allows a provider to manage and supply appli-
cations and services for outer clients and developers. These applications can
be utilized through web services or web browsers. The client does not need
to know about the application structure and its management. To maintain
Saas, service level agreements are used. For example, Google Maps is the ap-
plication provided by the Saas model. Summarizing, the Saas model provides
server mobility, service migration, and hosting, so a user could effortlessly
utilize an application.

CHAPTER 2. BACKGROUND 9

Cloud CoTputing
[1
On-Premises Infrastructure Platform Software
(as a Service) - (as a Service) (as a Service)
- I —
A=
B N _
c 2
|- = w
: , e —_
g » 2
3 ! 2 S
g Vitualization |, Vinvalization =3 Virualization | £
1] =3
= - 2
| e | (|
i] =N
el BT L
<
7 Networking -3 Networking Networking
Figure 2.1: Service delivery model (source: http://mural.

maynoothuniversity.ie/2970/1/GC_Intro_Cloud.pdf)

Platform as a service allows users to implement their applications on the
provider cloud infrastructure. Instead of supplying services, the providers
supply libraries and tools in order to deploy the application itself. Applica-
tions are executed on the virtual platform in a transparent manner, similar
to the Google Apps Engine and Morph Labs. The platform layer provides
value-added services from both a technical and a business perspective, for
example, Salesforce and xRM enables the whole application life cycle for the
development, deployment, and management of tailored business applications.

Infrastructure as a service model provides data store, networking, and
computing resources as services and allows to users manage the virtual in-
frastructure. The users are served with the provider’s resources using a multi-
tenant model. This model helps to dynamically manage virtual and physical
resources as well as assign and reassign them for client’s needs. As an exam-
ple of the PaaS model is Google Bigtable and Amazon Dynamo. OpenFlow
and Google FS are also offering IaaS, however, on a smaller scale [9].

2.2 Docker and Kubernetes

Docker is an open-source platform that provides developing, shipping, and
running application by providing software virtualization with a namespace,
filesystem, and processes isolation on the same operating system of the bare-
metal or virtual machine. Docker helps effortlessly and reliably manage con-

http://mural.maynoothuniversity.ie /2970/1/GC_Intro_Cloud.pdf
http://mural.maynoothuniversity.ie /2970/1/GC_Intro_Cloud.pdf

CHAPTER 2. BACKGROUND 10

tainerized applications. This also led to the birth of smaller services being
packed as independent software units [24].

Kubernetes is an open-source platform for containerized applications man-
agement within PaaS cloud models. Kubernetes is frequently called a con-
tainer orchestration platform that helps to optimize the process of managing,
scaling, and deploying containerized applications. The Kubernetes manage-
ment system is realized through "pods” a groups of containers. Pods could
be dynamically scaled depending on the amount of workload.

With significant interest in supporting cloud native applications (CNA),
Kubernetes provides a useful approach to achieve this. One of the key re-
quirements for CNA is support for scalability and resilience of the deployed
application, making more effective use of on-demand provisioning and elastic-
ity of cloud platforms. Containers provide the most appropriate mechanism
for CNA, enabling rapid spawning and termination compared to Virtual Ma-
chines (VMs). The process management origin of container-based systems
also aligns more [27].

2.3 Service Mesh

A service mesh can be described as a specific infrastructure layer that man-
ages communication between the services of a containerized system via load
balancing, routing, authentication, encryption, and monitoring. Service mesh
allows a developer to configure the network conduct, traffic flow, and node
identities through policy enforcement.

It can be looked upon as a networking model that sits at a layer of ab-
straction above the transport layer of the Open System Interconnection (OSI)
model (e.g., Transport Control Protocol/Internet Protocol (TCP/IP)) and
addresses the service’s session layer (Layer 5 of the OSI model) concerns.
However, a fine-grained authorization may still need to be performed at the
microservice since that is the only entity that has the full knowledge of the
business logic. A service mesh conceptually has two modulesathe data plane
and the control plane. The data plane carries the application request traf-
fic between service instances through service-specific proxies. The control
plane configures the data plane, provides a point of aggregation for teleme-
try, and provides APIs for modifying the behavior of the network through
various features, such as load balancing, circuit breaking, or rate-limiting.
Service meshes create a small proxy server instance for each service within
a microservices application. This specialized proxy car is sometimes called
a "sidecar proxy” in service mesh parlance. The sidecar proxy forms the
data plane, while the runtime operations needed for enforcing security (ac-

CHAPTER 2. BACKGROUND 11

cess control, communication-related) are enabled by injecting policies (e.g.,
access control policies) into the sidecar proxy from the control plane. This
also provides the flexibility to dynamically change policies without modifying
the microservices code [10].

2.3.1 Istio

Istio is an open-source service mesh solution that manages the communi-
cation between microservices. Istio can be effortlessly integrated due to its
integral API. The Istio project was build by Google and IBM with using of
Envoy technologies of Lyft. Istio is used as a default service mesh solution
by companies like Microsoft, Google, and IBM. Istio is a Kubernetes-based
solution and does not support other platforms.

Istio was the first service mesh that implemented the support of additional
features, such as deep-dive analytics.

Istio separates the data management on data and control planes. It is
achieved via the implementation of proxy sidecars which allows to cache data,
preventing the back data flow to the control plane for every call [24]. The
control planes are pods that also run in the Kubernetes cluster, allowing for
better resilience in the event that there is a failure of a single pod in any part
of the service mesh.

2.3.2 Linkerd

Linkerd is arguably the second most popular service mesh on Kubernetes
and, due to its rewrite in v2, its architecture mirrors Istio’s closely, with an
initial focus on simplicity instead of flexibility [24]. This fact, along with
it being a Kubernetes-only solution, results in fewer moving pieces, which
means that Linkerd has less complexity overall. While Linkerd v1.x is still
supported, and it supports more container platforms than Kubernetes; new
features (like blue/green deployments) are focused on v2. primarily.

Linkerd is unique in that it is part of the Cloud Native Foundation
(CNCF), which is the organization responsible for Kubernetes. No other
service mesh is backed by an independent foundation.

2.3.3 Consul

Consul is a full-feature service management framework, and the addition of
Connect in v1.2 gives it service discovery capabilities which make it a full
Service Mesh. Consul is part of HashiCorp’s suite of infrastructure manage-
ment products; it started as a way to manage services running on Nomad and

CHAPTER 2. BACKGROUND 12

Properties Istio Linkerd Consul

mTLS Yes Yes Yes

Certificate Management Yes Yes Yes

Authentication and Authoriza- | Yes Yes Yes

tion

TCP Yes Yes Yes

Traffic Rate Limiting Yes No Yes

Traffic testing Yes Limited No

Monitoring Yes, with | Yes, with | Yes, with
Prometheus | Prometheus | Prometheus

Distributed Tracing Yes Some Yes

Multicluster support Yes No Yes

Installation Helm and | Helm Helm
Operator

Table 2.1: Service Mesh Comparison

has grown to support multiple other data center and container management
platforms including Kubernetes.

Consul Connect uses an agent installed on every node as a DaemonSet
which communicates with the Envoy sidecar proxies that handle routing for-
warding of traffic.

2.3.4 Service Mesh comparison

Finally, after a brief description of each service mesh technology, we will
analyze the comparison of service mesh characteristics. The results of the
comparison are represented by Table 2.1.

As we can see, the Istio is the most effective service mesh at the moment.
Therefore, it was decided to utilize the Istio service mesh for our solution.
However, currently, Istio technology is quite complex and not friendly to
developers who just started to work with it. To overcome this problem, our
solution will include the deployment script, allowing us to automate and
facilitate the installation and usage of Istio service mesh.

2.4 Network security

Transport Layer Security (TLS) is a network security protocol that provides
privacy and data integrity during network communication. The protocol
includes the Record and Handshake layer [14].

CHAPTER 2. BACKGROUND 13

The TLS Record Protocol provides connection security that has two basic
properties:

e The privacy of the connection. It is guaranteed by using symmetric
encryption protocols, such as AES, RC4, and more. For each connec-
tion, the protocol uniquely generates the keys using the secret provided
by the TLS Handshake protocol. However, the Record protocol can be
also used without any encryption.

e The reliability of the connection. It is achieving through a message
integrity check using the message authentication code. A message au-
thentication code (MAC) is the code that helps to confirm the authen-
ticity and integrity of a whole message. MAC is using a secure hash
function, such as SHA-1, and a key-value to encrypt the user’s identity
information. To verify the massage’s authenticity and integrity, the
recipient also generates the MAC and compares them.

The mTLS protocol is an optional modification for regular TLS protocol
that allows authenticating two parties instead of one at the same time.

By default, the TLS protocol only proves the identity of the server to
the client using X.509 certificate, and the authentication of the client to
the server is left to the application layer [14]. TLS also offers client-to-
server authentication using client-side X.509 authentication. As it requires
provisioning of the certificates to the clients and involves a less user-friendly
experience, it’s rarely used in end-user applications.

Mutual TLS authentication (mTLS) is much more widespread in business-
to-business (B2B) applications, where a limited number of programmatic and
homogeneous clients are connecting to specific web services, the operational
burden is limited, and security requirements are usually much higher as com-
pared to consumer environments.

Most Mutual authentication is machine-to-machine, leaving it up to chance
whether users will notice (or care) when the remote authentication fails (e.g.
a red address bar browser padlock, or a wrong domain name). Non-technical
mutual-authentication also exists to mitigate this problem, requiring users to
complete a challenge, effectively forcing them to notice, and blocking them
from authenticating with false endpoints.

Chapter 3

System architecture

Before we start our solution design, we need to define the environment and
application where it will be deployed. This section represents host machine
characteristics, Kubernetes environment, and integrative application details.

First, our solution will be deployed on the virtual machine (VM) with
Ubuntu 16.04 operating system. The VM has the following characteristics:

e 20 Gb of free disk space
e RAM: 16 Gb
e Processor frequency: 2.0 GHz

e 8 CPUs

To simulate the Kubernetes environment locally we will utilize the Minikube
v.1.9.2. Minikube is an open-source software solution that helps efficiently
and simply simulate a local Kubernetes cluster on any operating system.
Due to Minikube already being installed on the VM, it does not require the
deploying of a cluster in any container or virtual machine manager.

To integrate and test our solution, we also need to deploy some applica-
tions on top of our cluster. To keep the application environment simple for
the thesis work, we will utilize a demo application. Therefore, it was decided
to implement the Bookinfo application.

The Bookinfo is a simple application intended for keeping and displaying
the information about a book, such as description, number of pages, ISBN,
and its reviews [2].

The Bookinfo application consists of 4 different microservices:

e Productpage: The productpage service requests the reviews and
details services for page population

14

CHAPTER 3. SYSTEM ARCHITECTURE 15

e Details: The Details microservice keeps information about the books.

e Reviews: The reviews service stores the book reviews and requests
the ratings service.

e Ratings: The ratings service stores the book rating score that also
showed in a book review.

The review service has three following versions:

e First version (reviews-v1): the service version which does not requests
the ratings service.

e Second version (reviews-v2): shows the ratings as 1 to 5 black stars
and requests the ratings service.

e Third version (reviews-v3): shows the ratings as 1 to 5 red stars and
requests the ratings service.

The Figure 3.1 shows the end-to-end architecture of the Bookinfo appli-
cation.

Producipage

Productpage

Reviews

Details

Details Reviews-vl Reviews-v2 Reviews-v3

| // \A
I
Details I / Details l Details
I
I
I
I
I
\

Productpage

Figure 3.1: Bookinfo Application architecture

The Bookinfo application contains microservices that are written in differ-
ent programming languages. This is presenting the interesting service mesh

CHAPTER 3. SYSTEM ARCHITECTURE 16

example, particularly because of the multitude of services, languages, and
versions for the reviews service.

For collecting and analyzing of the system information was installed
Prometheus v.2.8. Prometheus is a standalone open-source project, de-
signed for system monitoring and alerting. Prometheus allows collecting all
required information about cluster components and the Kubernetes system
in general. We utilize Prometheus to get information about such system
parameters as CPU usage, memory usage, and filesystem usage.

To visualize the gathered by Prometheus data, we also used the Grafana
v.7.0 application. Grafana is an open-source project, designed to visualize,
alert, and query on metrics and logs of the system. Grafana is perfectly
compatible with Kubernetes and Prometheus, which allows effectively and
effortlessly to collect the data and represent the state of the system.

Chapter 4

Requirements

Before we design the solution, we should thoroughly analyze the threats of
the system and describe the necessary requirements that the solution should
suffice. At first, we will formulate the attacker model. Secondly, based on
the attacker model the threat model will be developed. Finally, the section
will present the list of requirements for the solution design.

4.1 Attacker model

The attacker model defines malicious actors and helps to determine which
protections, if any, are necessary to mitigate or remediate a threat. The
actors of the attacker model will be used in the threat model. The attacker
model also will describe actors of the system, who may be impacted by, or
enticed to undertake an attack. The devised attacker model is based on
the Threat Actors model from the Kubernetes Threat model study made by
Cloud Native Computing Foundation in 2019 [17].

The Cloud Native Computing Foundation (CNCF) is a rapidly growing
organization that is interested in fostering and building sustainable environ-
ments such as a public, private and hybrid cloud. Currently, CNCF comprises
150,000 members, includes over 140 top companies and startups, including
Microsoft, Apple, Amazon, and graduates open-source projects like Kuber-
netes, Helm, Envoy, and much more. In 2019, the CNCF published a major
study on Kubernetes security [1]. This study includes the Kubernetes Secu-
rity Review, Attacking and Defending Kubernetes Installations, Whitepaper,
and Threat Model. As the basis of our attacker model, we consider the Threat
Actors model of the Kubernetes Threat model [17]. The attacker model is
presented in Table 4.1.

17

CHAPTER 4. REQUIREMENTS 18

Attacker Description

Malicious Inter- | A user, such as an administrator or developer, who uses

nal User their privileged position maliciously against the system,
or stolen credentials used for the same.

Internal actor An attacker who had transited one or more trust bound-
aries, such as an attacker with container access.

External actor An attacker who is external to the cluster and is authen-
ticated.

Administrator An actual administrator of the system, tasked with op-
erating and maintaining the cluster as a whole.

Developer An application developer who is deploying an applica-
tion to a cluster, either directly or via another user (such
as an Administrator).

End User An external user of an application hosted by a cluster.

Table 4.1: Attacker model

4.2 Threat model

The formulation of threat modeling is an important and crucial part of this
thesis. The threat model defines the list of the system’s relevant threats
and vulnerabilities. Usually, the creation of the threat model is based on a
methodology. There are numerous threat modeling methodologies that can
be implemented such as STRIDE, P.A.S.T.A, Trike, VAST, etc. Despite a
large number of existing methodologies, just a small part of them can be
implemented for Kubernetes threat modeling.

The development of our threat model was based on the CNCF Kubernetes
Threat model [17] and Microsoft’s Threat matrix for Kubernetes [37].

In April 2020, Yossi Weizman, the Security Research Software Engineer
in Azure Security Center, published his study on Kubernetes threat mod-
eling [37]. The model is based on the MITRE ATTCK framework [11] and
includes numerous Kubernetes threats and vulnerabilities, which in the paper
are represented as tactics and techniques respectively.

Based on the above threat modeling methodologies, we developed the
threat model in the scope of the security of Kubernetes microservices com-
munication, which is represented in Table 4.2.

ternal traffic

User, Internal actor,
or External actor
that got privileges of
an Internal actor

CHAPTER 4. REQUIREMENTS 19
Threat Attacker Description
Man-in- Malicious Internal | By default, non-system
the-Middle User, Internal actor, | components have unverified
attack be- | or External actor | connections, which make them
tween cluster | that got privileges of | vulnerable for Man-in-the-
components | an Internal actor Middle attacks
Sniffing of in- | Malicious Internal | Attacker can intercept the in-

ternal traffic using sniffing pro-
grams and get the sensitive in-
formation from different mi-
croservices

Unauthorized | External actor, Inter- | If the attacker could compro-
connection nal actor mise a cluster’s container, he
to another will be able to gain access to
pods and other containers, since the de-
applications fault Kubernetes network set-
API ting allows to reach any other
container
Exploiting Malicious Internal | Kubelet is the node agent

the access to
Kubelet API

User, Internal actor,
or External actor
that got privileges of
an Internal actor

that is executed on each node
to control its pods efficiency.
Kubelet utilizes the read-only
API service and does not re-
quire authentication of TCP
port (10255). If the attacker
has a compromised host, he
can request Kubelet API to
acquire the information about
running pods or node parame-
ters, like memory and CPU us-
age.

Network External actor Attackers may scan the Kuber-

scanning netes network for cluster data,
such as running workloads, or
known vulnerabilities. Since,
initially Kubernetes does not
restrict the services commu-
nication, attackers with com-
promised container can try to
probe the network

Changing the | Malicious Internal | If the attacker could get access

VM settings | User, Internal actor, | to a root role inside of compro-

through or FExternal actor | mised container, he will be able

compromised | that got privileges of | to change VM settings, using

container an Internal actor OS libraries or procfiles

with root

privileges

Table 4.2: Threat model

CHAPTER 4. REQUIREMENTS 20

4.3 Secure communication

Concluding from the devised threat model above, we infer secure communi-
cation is still a very challenging problem. In environments like Kubernetes
commonly use TLS protocol for communication between services. The TLS
protocol allows confirmation of one side of the authentication process. Usu-
ally, it is the client-side.

However, when it comes to communicating between microservices, it is
very important to authenticate both sides to avoid attacks like Man-in-the-
Middle. In this case, the mutual TLS protocol can be implemented. Mutual
TLS is the variation of the regular TLS protocol, while it also can authenti-
cate both sides during the authorization process. It is a very useful and effec-
tive method to secure communications in the Kubernetes network. Moreover,
mutual TLS also provides transparent encryption and applies certificates for
signatures.

Thus, we set a requirement that secure communications between microser-
vices in Kubernetes should be implemented via the mutual Transport Layer
Security (mTLS) protocol. In order to properly comply with this require-
ment, we should set a couple of other requirements, like certificate manage-
ment and encryption provision.

4.4 Certificate life-cycle management

In order to properly maintain mTLS protocol, the solution should implement
a reliable and flexible certificate management system. It should operate with
X.509 certificates. X.509 is a well-known standard that specifies the format
of public-key certificates. It is commonly used in TLS and SSL protocols,
which allows the implementation of HT'TPS for secure web browsing.

Such a certificate system should be able to create certificates, sign them
with its own Certificate Authority, distribute them between all services, and
maintain their life cycle (regular checking, revoking, recreating, etc.). Thus,
we set a requirement for our solution to provide a robust certificate manage-
ment system.

4.5 Encryption

In order to protect the sensitive traffic from disclosure by the third party,
the circulating in system information should be encrypted. In the case of
communication through TLS, the data is encrypted symmetrically. It is

CHAPTER 4. REQUIREMENTS 21

achieved through generating keys uniquely for each connection and using the
shared secret, that was set during the TLS handshake. The secret sharing is
secured from eavesdropping and modifications from external attackers.

Thus, we set the requirement for the designed solution that has to im-
plement reliable transparent TLS encryption for securing of traffic between
microservices.

4.6 Automation

As we mentioned in the previous section, some technologies, like Istio, could
be quite complex for implementation. Istio is a relatively new product, trying
to provide more secure and advanced service mesh technology. However,
it causes the complexity of managing and configuring such a system, thus
confusing inexperienced developers.

In that case, we should specify the following requirement: the solution
should be automated for deployment and not cause any problems during its
installation.

4.7 Scalability

Kubernetes system is complex and dynamic. It allows to effortlessly control
the load balancing and number of workloads. The property of a system,
that allows controlling the number of used resources in accordance with the
increasing workload is called scalability. Scalability is a very important prop-
erty of the Kubernetes environment. It always maintains the required number
of pods for continuous service execution and proper allocation of the working
load. The designed solution should fit into a dynamic and scalable system of
Kubernetes and provide secure communication to any number of services.

Thus, we set the requirement, that the designed solution should be scal-
able and consistently support any number of working pods, without any
interception into the application’s code.

4.8 Performance

Kubernetes is a broad and complex environment that can adapt to a high
amount of work and control the workloads over all services accordingly. De-
ployment of new technology, such as service mesh, into the Kubernetes en-
vironment, will affect the whole system. Thus, it is vital to ensure that
additional solutions will not degrade the system’s performance. Thus, the

CHAPTER 4. REQUIREMENTS 22

designed solution should not degrade the performance of the system and do
not conflict with any components of the basic environment.

Chapter 5

Implementation

5.1

Solution architecture

Based on the previously discussed system’s characteristics and requirements,
the Istio service mesh was chosen for our solution design.

Istio service mesh allows the facilitation and organization of a set of de-
ployed services with monitoring, load balancing, service-to-service commu-
nication, and more, without any changing of application code. Istio creates
proxy sidecars and deploys them into services all over the cluster. These
sidecars in turn intercept all traffic between containers. In order to control
and manage the system, Istio fulfills the following functionalities:

Management of retries, fault injections, failovers and routing for traffic
behavior control.

Robust authentication and authorization of microservices based on the
identity concept to provide protected communication between them.

Monitoring of traffic, metrics, and logs all over the cluster.

Optimized load balancing of different types of traffic, such as HT'TP,
gRPC, WebSocket, and TCP.

Evaluation of quotas and system limits by additional API configuration
and policy layer.

Figure 5.1 shows the simplified structure of how Istio works. Istio sup-
ports the system’s extensibility of deployment demands by intercepting and
configuring mesh traffic.

In terms of security, Istio maintains encryption, authentication, and au-
thorization of service communication and establishes the underlying safe

23

CHAPTER 5. IMPLEMENTATION 24

Istio Mesh

Service A | | ([service B

.’ .
[Data A
| plane |
: |

1 |
Ingress | l': :;]"I'l | Egress
e | | waffic
Proxy Proxy !
T - |
| N w4 :
: A A !
: | Discovery | |
| | Configuration I :
| L Certificates 1 |
et o e
| Control | |
| plu I |
|
i I |
! . |
| istiod !
|
H |
/

| Pilot H Citadel || Galley |

Figure 5.1: Istio architecture

communication channel. To provide these and more security features, Is-
tio implements the following elements:

e Envoy proxies for telemetry management and auditing

The configuration API server distributes to the proxies:

— secure naming information
— authentication policies

— authorization policies

A Certificate Authority (CA) for key and certificate management

Sidecar and perimeter proxies work as Policy Enforcement Points (PEPs)
to secure communication between clients and servers.

Before we proceed to the description of related security details, we need to
introduce the concept of identity in Istio’s service mesh. Before any external
and internal services’ communication, Istio requests identities of both sides to
establish authentication. On the client-side, Istio is checking the information
about the client’s secure naming to check for its authorization. On the server-
side, Istio checks authorization policies, analyzes the access journal, monitors
what workloads the clients are using, and denies the client’s access if the
payment for access to the workloads fails. In other words, identity is Istio’s

CHAPTER 5. IMPLEMENTATION 25

model for the determination of the request’s origin. It represents a human
user, an individual workload, or a group of workloads.

Istio provides X.509 certificates for every workload identity. Inside every
Istio proxy sidecar, the Istio agents communicate with istiod, one of the core
Istio’s components, to distribute certificates and keys for all over the mesh.
Figure 5.2 represents the scheme of certificate distribution by Istio service
mesh.

[stiar mwcsh

- -

. Pad
Service A)

Certifbcate and privais key

Proxy sidecar

) Bignexd certificute
C5R

T
|
I
i
1
|
i
| |
|
1
i
¥

istiod

Figure 5.2: Certificate distribution scheme

The simplified key and certificate distribution process works as follows.
Initially, the service’s Istio agent sends to istiod’s certification authority (CA)
the proxy’s certificate and key through the certificate signing request (CSR).
Secondly, the CA signs the received CSR and generates the new certificate,
and sends it back to the Istio agent. Finally, the Istio agent sends the new
certificate and private key back to the Envoy proxy sidecar. The outlined
above process is continuously repeating for key and certificate rotation for
all services.

CHAPTER 5. IMPLEMENTATION 26

Generally, Istio provides two types of authentication: the peer authenti-
cation service-to-service authentication; and request authentication for end-
user authentication. Since our goal is to provide secure communication be-
tween services, we will investigate only peer authentication.

The peer authentication implies the realization of mutual Transport Layer
Security protocol (mTLS) for services authentication. It also includes the
provision of strong identities, key and certificate management systems for
each service, and secure service-to-service communication. The latter func-
tion is maintained through Envoy proxies. Every time when a service receives
or sends traffic, it is intercepted by the Envoy proxy sidecar. The proxy side-
car initializes the mTLS handshake, during which it verifies the requested
service permissions in the server certificate. If the handshake succeeds, the
traffic becomes encrypted with the transparent TLS encryption protocol and
Istio continues the mTLS connection by forwarding the traffic between proxy
sidecars.

The peer authentication is controlled with self-titled policies. The peer
authentication policies define the mTLS rules that Istio compels to work-
loads. The policies support three modes:

e PERMISSIVE: the policy allows the receiving of regular text traffic, as
well as mTLS traffic.

e STRICT: policy allows to receive only mTLS traffic.
e DISABLE: policy disables mTLS on the workload.

The permissive mode is set on all Envoy sidecars by default.

The automation part of our solution is represented by a script, which
allows automating the service mesh installation, the injection of the proxy
sidecars, and the creation of authentication policies. The implemented code
is made in the regular Linux bash scripting language and is entirely presented
in Appendix A. The devised code includes three major functions:

1. The automated installation. The install command launches the se-
quence of commands for downloading and setting the required soft-
ware, libraries, and variables, installing the Istio service mesh into the
system, and preparing it for subsequent work.

2. The automated injection. The inject command is responsible for the
integration of Istio’s proxy sidecars into the specified services. It is
a vital part of establishing secure communication between microser-
vices. Before Istio can start to work with the traffic, the proxy sidecars

CHAPTER 5. IMPLEMENTATION 27

should be deployed into each pod that needs to be secure. The pro-
cess of such deployment is called injection. Only after the injection is
finished and sidecar proxies are deployed into all required pods, Istio
can finally initiate the interception and securing of incoming and out-
coming service traffic. After the input of the inject command, the user
should specify the particular Kubernetes namespace. It allows inject-
ing the Istio sidecars into every pod of the specified namespace. The
user can also specify the name of the specific deployment after speci-
fying the namespace, which allows integrating the proxy sidecar not in
the whole namespace but only in the specific deployment of the spec-
ified namespace. If the user did not specify any namespace, the script
will inject the default namespace. After the injection is finished, all
involved pods will be restarted in order to launch the proxy sidecars.

3. The automated enabling of mTLS. After all required pods are injected
with the Envoy proxy sidecars, the user can initialize the setup of au-
thentication rules of injected pods to enable the mTLS communication.
The secure command creates the Peer Authentication policy for speci-
fied pods or namespaces in order to establish the type of secure mTLS
connection for them. Users are able to choose if they want to secure a
namespace or the whole Kubernetes system. To achieve this, the user
should enter the namespace name or the system command respectively
after having entered the secure command. As in the case of the in-
ject command, users can specify the pod name after the name of the
namespace, to secure the specified pod.

5.2 Deployment

As we mentioned in chapter 3 3, we simulate our Kubernetes environment
via Minikube, which already has installed Prometheus, Grafana, and the
Bookinfo application. First of all, we will check if all components of our
system work correctly. To ensure this, we will launch the following command:
kubectl get pods -all-namespaces. Thus, we will see the status of the
application and monitoring system pods. Figure 5.3 shows the result of the
command.

CHAPTER 5. IMPLEMENTATION

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

monitoring

NAME
details-v1-6fc55d65c9-15d2t

coredns-66bff467+8-
etcd-dev-kvm
kube-apiserver-dev-kvm
kube-controller-manager-dev-kvm
kube-proxy rqt

kube-s dev-kvm
metrics-ser 7bcbd759
nginx-ing controlle
storage-provisioner
gratana-7757d5f45d-g2x4t
prometheus-alertman 5
prometheus-kube-state
prometheus-node

prometheus-push
prometheus-server-8f95bd494 -cfw8d

28

RESTARTS
[

Running

Figure 5.3: The initially running pods

We can see that all components of Kubernetes, Bookinfo, Prometheus,

and Grafana are running and working properly.

Now, to deploy and set our solution, we will use our designed script called
auto-istio.sh. First, to install Istio service mesh into our system, we will
use the install command of the script. So, the command will look like this:
./auto-istio.sh install. After the installation process is completed, we
should check if the service mesh components are working properly. Once
again, we will use the kubectl get pods -all-namespaces command. The
result can be seen in Figure 5.4.

CHAPTER 5. IMPLEMENTATION

NAMESPACE
default
default
default
default

monitoring
monitoring
monitoring
monitoring
monitoring

NAME
details-v1-6fc55d65c9-15d2t
productpage-v1-7f44c4d57c-htpén
ratings-v1-6f855c5ff

prometheus-node-exp
prometheus-pushgatewa
prometheus-server-8f95bd494-cfwsd

29

STATUS RESTARTS
e

Runn
Runn
Runn

Running
Running
Running
Running

Runn
Runn
Runn
Runn
Runn

Figure 5.4: All pods, including Istio service mesh

Now, we can see that Istio-system namespace have appeared with a bunch
of service mesh system pods and are efficiently running. Secondly, we will
inject the Istio sidecars into the Bookinfo application pods. For this purpose
we will use the inject command of our auto-istio.sh script. After the
inject command we should specify the required namespace, in our case the
default one. Accordingly, the command looks like this: ./auto-istio.sh
inject default. Figure 5.5 represents the state of the default namespace

after injection.

root@dev-KVM:~# kubectl get pods -1 app=productpage

NAME

productpage-vl1-7f44c4d57c-bc26]
productpage-v1-7f44c4d57c-bgq8hw
productpage-v1-7f44c4d57c-db2zh
productpage-vl1-7f44c4d57c-hghhh

productpage-vl1-7f44c4d57c-1v4bqg
productpage-v1-7f44c4d57c-mggx5
productpage-v1-7f44c4d57c-mpghl
productpage-v1-7f44c4d57c-p44n2
productpage-v1-7f44c4d57c-qb92b
productpage-v1-7f44c4d57c-x8g9w

READY
2/2
2/2
2/2
2/2
2/2
2/2
2/2
2/2
2/2
2/2

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

200000000 ®

Figure 5.5: The application pods after Istio injection

Now, we can see that every application’s pod is running two containers.

CHAPTER 5. IMPLEMENTATION 30

Istio just embedded the Istio-proxy sidecar inside of every pod of the default
namespace.

Finally, we will finish the solution deployment by setting the peer authen-
tication rule for our application. To accomplish this, we will use the secure
command of our auto-istio.sh script. As in the case of injection, we should
also specify the namespace for the rule creation. Accordingly, the command
looks like this: ./auto-istio.sh secure default. To check the status
of the created rule we will use the following command kubectl -n default
describe peerauthentication. Figure 5.6 illustrates the description of the
just created authentication rule.

Namespace: default
Labels: <none>
s: API Version: security.istio.io/vlbetal
PeerAuthentication

on Timestamp: 2020-05-29T17:
Generation: 1
Managed Fields:
APT Vers : security.istio.io/vlbetal
Fields Type: Fieldsvl
fieldsvi:
f:metadata:
f:annotations:

f:kubectl.kubernetes.io/last-applied-configuration
f:spec:

f:mtls:

mode:

tal/namespaces/default/peerauthentications/default
5/ 8

55

Events: <none>

Figure 5.6: The peer authentication rule description

We can observe that the authentication rule is successfully created and
set in STRICT mode, which compels the pod to receive only an mTLS traffic.

CHAPTER 5. IMPLEMENTATION 31

Therefore, we have effortlessly deployed and configured the Istio service
mesh for secure communication between microservices of the Bookinfo appli-
cation. Compared with the initial architecture of the application, represented
by Figure 3.1, the current architecture after of our solution implementation
is presented in Figure 5.7.

Requests

Productpage

Envoy sidecar

Productpage

/ Details «L Details

I
|
|
i Envoy sidecar Envoy sidecar
|
|
I
|}

Reviews

Details Details

Envoy sidecar Envoy sidecar

Details Reviews-v1 Reviews-v2 \ Reviews-v3

¥ Ratings

Envoy sidecar

Productpage

Figure 5.7: The peer authentication rule description

As we can see, the structure of the application components and service
communication became different. The communication between services now
is handled through Istio sidecars, while all external incoming requests are
passing through the Istio ingress gateway. Thus, Istio service mesh controls
internal and external traffic via Envoy sidecars and Ingress/Egress policies.

Chapter 6

Evaluation

In the previous section 5, we showed the deployment process of our solution
and configured it for secure mTLS communication. This section will analyze
the deployed solution for conformity with requirements developed in section
1.3. We will analyze them in more detail in the following subsections. The
chapter will be concluded with the revised relevance of threats, taking into
consideration the deployed and analyzed solution.

6.1 Requirement analysis

6.1.1 Secure communication

As we mentioned in previous sections, Istio service mesh implements the mu-
tual TLS protocol to secure communications between microservices. This
means that throughout the whole Kubernetes network, secured with mTLS
pods will not be able to communicate with any other pods. The following
example will help to prove this. It contains useful and efficient diagnostic
tools for TLS and SSL analysis. To confirm that our communications indeed
are realized through mTLS, we will use the openssl to connect to product-
page:9080 address from the istio-proxy container of any application service.
To perform this, we will use the following command:

kubectl exec -it $(kubectl get pod -1 app=ratings -o jsonpath
=’ .items [0] .metadata.name’)" -c istio-proxy -- openssl s_client

-connect productpage:9080 > productpage-ope nssl.txt

As the result, we will receive the openssl report about the TLS connection,
including certificates, signature algorithms, TLS version, key characteristics,

32

CHAPTER 6. EVALUATION 33

etc. The openssl report shows that communication is indeed secure with
TLSv1.3, uses 2048 bit public key, and the chain of certificates. The full
output of the request is represented in Appendix B.

Additionally, we will check the availability of service with enabled and
disabled mTLS mode. For example, we will send to the Productpage service
a simple API request from the Ratings service via the following command:

root@dev-KVM: /home/eearklu# kubectl exec $(kubectl get
pod -1 app=ratings -n default -o jsonpath={.items..meta
data.name}) -c¢ ratings -n default -- curl productpage:9

080/productpage -s -o /dev/null -w "%{http_code}\n"
200

Figure 6.1: The command for API request with OK respond

As we can see on the Figure 6.1, the service responded with the code
200, which means that the request was successful. Now, we will create
a peer authentication rule for Productpage service that will disable the
mTLS support on it, with the following code:

cat <<EOF | kubectl apply -n default -f -
apiVersion: "security.istio.io/vibetal"
kind: "PeerAuthentication"
metadata:
name: "productpage"
namespace: "default"
spec:
selector:
matchLabels:
app: productpage
mtls:
mode: DISABLE
EQF

Now, when the peer authentication rule disabled the mTLS support, the
Productpage service should be unable to communicate with the rest of the
Bookinfo services. To confirm this, we again will send the API request from
the Ratings to the Productpage service.

Figure 6.2 shows that the request failed with the Service Unavailable 503
code. Thus, we just proved that our services are protected and will not accept
any requests without the mTLS protocol.

CHAPTER 6. EVALUATION 34

root@dev-KVM:~# kubectl exec $(kubectl get pod -1 app=r
atings -n default -o jsonpath={.items..metadata.name})

-c ratings -n default -- curl productpage:908@/productp
age -s -o /dev/null -w "%{http_code}\n"
563

Figure 6.2: The command for API request with Service Unavailable respond

In order to properly provide the communication by mTLS, Istio uses
transparent encryption and certificate management system. Following sub-
sections will ensure that encryption and certificate distribution are imple-
mented and efficiently works.

6.1.2 Encryption

To ensure that the traffic is indeed encrypted we will the request from one
service to another and verify the traffic via tcpdump program. To perform it
we will access the productpage container and execute there the tcpdump to
listen the 9080 port for traffic. Afterward, in the other terminal, we will send
the API request to the Productpage service. When the request is sent, we
can observe the received by productpage traffic in the previous terminal.
The result of this implementation process is illustrated in Figure 6.3.

Figure 6.3: The result of receiving of the encrypted traffic

The Figure points to the conclusion that Productpage indeed received
the encrypted traffic. Thus, we can safely state that the Istio service mesh
provides efficient encryption of the mTLS traffic.

CHAPTER 6. EVALUATION 35

6.1.3 Certificate life-cycle management

To ensure that the Istio certificate management system efficiently create and
distribute robust certificates, we will try to reach them through the Istio
proxy containers via openssl software.

For example, we can access the Productpage service via API request
and observe if the response will return the certificate chain. In this case, we
can send the API request to the productpage:9080 from any other service
pod. Since we have already sent such a request in the Section 5.2, we can find
the encrypted certificate chain in Appendix B as well. To decrypt certificates,
we will use the commands illustrated in Figure 6.4.

.pem
root@dev-KVM:/tmp/certs# awk "BEGIN {counter=8;} /BEGIN CERT/{counter++} {
print > "proxy-cert-" counter ".pem"}' < certs.pem

root@dev-KVM: /tmp/certs#

root@dev-KVM: /tmp/certs# openssl x589 -in ./proxy-cert-1.pem -text -noout >
./pod-cert-1.crt.txt

root@dev-KVM: /tmp/certs# openssl x589 -in ./proxy-cert-2.pem -text -noout >
./pod-cert-2.crt.txt

Figure 6.4: The certificate decryption commands

The sed command is a Linux stream editor. In our case, sed allows us
to parse the certificates into a separate certs.pem file by a provided tem-
plate. Then we use the awk utility to separate certificates into different files.
Finally, we read each certificate with openssl and save the decrypted cer-
tificates into proxy-cert-1.pem and proxy-cert-2.pem respectively. The
decrypted certificates are presented in Appendix C. As the result, we observe
that decrypted certificates are robust and properly managed.

6.1.4 Automation

To automate our solution we created the script, the deployment process of
which was represented in the previous section. To measure the execution
speed of it, we will repeat the deployment process via the Linux time utility.
The results are represented in Figure 6.5.

The sum of the script execution time results is 82.025 seconds. During
this time the script installed Istio service mesh into the system injected the
application pods with Istio sidecars and secured the communication between
them by creating a peer authentication rule. It is a considerable result,
which shows that a developer without a deep understanding of a service

CHAPTER 6. EVALUATION 36

Installation successfully completed!|The pods of default namespace were updated!

on émdd .710s
o5 B0 6mo. 180s
om s SYS Ome. 0605

(D @)

Peerfuth rule was successfully created!

real omd.475s
user omd.292s
sys emo_.120s

(€]

Figure 6.5: The execution results of the following script commands:
(1) - install, (2) - inject, (3) - secure

mesh technology can rapidly deploy the solution and secure the microservices
communication of the Kubernetes environment.

6.1.5 Scalability

The Istio service mesh allows to label a namespace in order to attach an
Istio sidecar to every pod inside of such namespace. During the Deployment
section implementation, we already labeled the default namespace with the
Istio label for automatic injection via the following command:

kubectl label namespace default istio-injection=enabled

Thus, the default namespace is already configured for a scalable sidecar
injection. To confirm the solution’s scalability, we will create replicas of our
application services. To generate the 9 more Productpage pod replicas, we
will execute the following Kubernetes command:

kubectl scale deployments/productpage-vl --replicas=10

Figure 6.6 presents the result of the Productpage pod scaling.

The figure point to a conclusion that all appeared replicas of the Pro-
ductpage pod have two containers inside, which are the application con-
tainer and the Istio sidecar.

Thus, Istio provides high scalability by dynamically injecting sidecars

CHAPTER 6. EVALUATION 37

root@dev-KVM:~# kubectl get pods -1 app=productpage
NAME READY STATUS RESTARTS
productpage-vl1-7f44c4d57c-bc26] 2/2 Running
productpage-v1-7f44c4d57c-bg8hw 2/2 Running
productpage-v1-7f44c4d57c-db2zh 2/2 Running
productpage-v1-7f44c4d57c-hghhh 2/2 Running

productpage-vl-7f44c4d57c-1vdbg 2/2 Running
productpage-v1-7f44c4d57c-mggx5 2/2 Running
productpage-v1-7f44c4d57c-mpghl 2/2 Running
productpage-v1-7f44c4d57c-p44n2 2/2 Running
productpage-v1-7f44c4d57c-qb92b 2/2 Running
productpage-v1-7f44c4d57c-x8q9%w 2/2 Running

® 00000000 ®

Figure 6.6: The set of the Productpage replicas

into any number of pods. The injected sidecars are deployed as a new con-
tainer, thereby providing secure communication without any changes to the
application code.

6.1.6 Performance

To analyze the system performance parameters, we used the Prometheus
software for the data collection and Grafana software for the data represen-
tation. The state of the system before the solution deployment is represented
with Grafana and shown on the Figure 6.7.

8.49 GiB 15.67 GiB 37.29GiB 54.96 GiB

Figure 6.7: The system performance indicators before the solution imple-
mentation

The resource usage characteristics are adequate and expected accordingly
to our machine attributes. It is not using too much CPU and memory for
idle work and the filesystem usage is also proper due to the machine had 20
Gb of free space before the working environment installation.

The Figure 6.7 displays the system performance after the solution deploy-
ment.

CHAPTER 6. EVALUATION 38

15.67 GiB 38.49GiB 54.96 GiB

Figure 6.8: The system performance indicators after the solution implemen-
tation

Compared with the initial state, the system usage is slightly increased.
The CPU usage rose on 1.63%, the memory usage on 2%, and filesystem
usage increased on 2.85%. This insignificant increment will not affect dra-
matically on the system, especially on a scale of large company equipment.

6.2 Threat solving

As we mentioned in Section 4.2, the devised Kubernetes threat model consists
of 6 security threats in the scope of internal communication of microservices.
Based on the above solution analysis results, we can infer what threats are
addressed by our designed method. Table 6.1 represents the threats and
countermeasures provided by our solution.

The threat of a Man-in-the-Middle attack implies the interception of an
authentication request by an external attacker in order to impersonate the
recipient and get the sensitive data that was intended for the true recipient.
The implementation of a certificate management system allows for distribut-
ing reliable certificates for every service. Therefore, when a service wants
to share data with another service, it can confirm the recipient’s identity
by its certificate as the recipient can confirm the identity of the sender by
its certificate. Such certificate sharing is part of the mutual TLS handshake
process, which occurs when services share information for the first time.

During the sniffing attack, the transmitting data can be intercepted and
disclosed by an external attacker. In terms of Kubernetes, sniffing can be
executed both on a network and application level. On the network level,
data could be sniffed during the data transmission between nodes or clus-
ters. On the application level, the internal traffic between services can be
intercepted from a compromised container. In order to save data confiden-
tiality, Istio encrypts all transmitting data between sidecars by transparent

CHAPTER 6. EVALUATION 39
Threat Solution Effect
Man-in-the-Middle attack | Certificate management | Prevented
between cluster components | system
Sniffing of internal traffic Transparent TLS encryp- | Prevented

tion
Unauthorized connection to | Service mesh Envoy side- | Mitigated
another pods and applica- | car with egress policies
tions API
Exploiting the access to | Secure communication | Mitigated
Kubelet API through mutual TLS
Network scanning Service mesh Envoy side- | Mitigated
car with egress policies
Changing the VM settings | No Not pre-
through compromised con- vented
tainer with root privileges

Table 6.1: Threat model

TLS encryption.

If an attacker compromised a pod, he can try to connect and compromise
other pods. As with network scanning situation, if the communication be-
tween services is not restricted, the attacker could access any service through
the compromised one. However, the Istio service mesh architecture allows
to set restrictions between services via policies, thereby significantly compli-
cate the compromising of other services and limiting the attack area of the
compromised pod. Such a solution also helps to restrict the requesting of
applications API and API of some system components, such as kubelet.

The threat network scanning does not harm to confidentiality, availability,
or integrity of a system and is even not considered as a threat. However, the
network scan can give an attacker a great advantage and help to prepare for
a real attack. An attacker can scan a network for services and pods names,
IP addresses, and ports and devise its next attack more accurately. The
Envoy proxy sidecars can restrict outgoing service requests via extended by
Istio egress policies, thereby preventing the request dispatch to restricted
services.

However, not all threats could be prevented or mitigated by the service
mesh solution. If an attacker could compromise a container with root priv-
ileges he could try to reach the host machine and change the VM settings.
Thus, he could disrupt the work of this VM and all pods that are running
there. This threat is poorly explored and difficult to realize, however it can
significantly harm the Kubernetes structure.

Chapter 7

Conclusions

Currently, scientific progress is becoming faster year by year. In recent years,
the monolithic architecture of applications has been gradually replacing with
microservice architecture. Microservices decompose an application into a set
of manageable services that are much faster to develop, and much easier to
understand and maintain. In 2015, Google presents the Kubernetes open-
source platform, which allows to manage containers and services and define
configuration and automation. However, parallelly with the progress of IT
technologies, the security issue is also progressing. New technologies require
new security mechanisms, as with Kubernetes release. Despite the extensive
and complex Kubernetes security mechanisms, some security issues, as the
lack of internal communication security, are still relevant.

The goal of the thesis, which is to decrease the number of threats, do not
significantly degrade the system’s performance, and substantially simplify
the deployment process, was achieved.

Were reached the following thesis tasks:

a. Review and analysis of literary sources and existing solutions in the field
of existing options for ensuring the safety of microservice communication

b. Development of requirements for implementation in a corporate system of
a method for ensuring the safety of microservice communications.

c. Development of a method for securing microservice communications within
a Kubernetes virtual environment.

d. Conduct experimental studies to evaluate the effectiveness of the devel-
oped method

40

Bibliography

[1] ANISZCZYK, C. Open sourcing the kubernetes se-
curity audit. https://www.cncf.io/blog/2019/08/06/
open-sourcing-the-kubernetes-security-audit/. Accessed
01.06.2020.

[2] AUTHORS, I. Bookinfo application. https://istio.io/docs/examples/
bookinfo/. Accessed 01.06.2020.

[3] AuTHORS, I. The official documentation of istio software. https://
istio.io/docs/concepts/. Accessed 01.06.2020.

[4] AuTHORS, L. The official documentation of linkerd software. https:
//linkerd.io/2/overview/. Accessed 01.06.2020.

[5] AuTHORS, T. K. The official documentation of kubernetes software.
https://kubernetes.io/docs/concepts/. Accessed 01.06.2020.

(6] BERNSTEIN, D. Containers and cloud: From Ixc to docker to kuber-
netes. IEEE Cloud Computing 1, 3 (2014), 81-84.

[7] BoyLg, J. M., MaiwaLD, E. S.; AND Snow, D. W. Apparatus
and method for providing network security, Aug. 17 1999. US Patent
5,940,591.

[8] Burns, B., GRANT, B., OPPENHEIMER, D., BREWER, E., AND
WILKES, J. Borg, omega, and kubernetes. Queue 14, 1 (2016), 70—
93.

[9] CARRETERO, J., AND Bras, J. G. Introduction to cloud computing:
platforms and solutions. Cluster computing 17, 4 (2014), 1225-1229.

[10] CHANDRAMOULI, R. Security strategies for microservices-based appli-
cation systems. Tech. rep., 2019.

41

https://www.cncf.io/blog/2019/08/06/open-sourcing -the-kubernetes-security-audit/
https://www.cncf.io/blog/2019/08/06/open-sourcing -the-kubernetes-security-audit/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/concepts/
https://istio.io/docs/concepts/
https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://kubernetes.io/docs/concepts/

BIBLIOGRAPHY 42

[11]

[12]

[13]

[18]

[19]

[20]

CORPORATION, T. M. Open sourcing the kubernetes security

audit. https://attack.mitre.org/matrices/enterprise/. Accessed
01.06.2020.

Das, M. L., AND SAMDARIA, N. On the security of ssl/tls-enabled
applications. Applied Computing and informatics 10, 1-2 (2014), 68-81.

DeEwi, L. P., NOERTJAHYANA, A., PaLiT, H. N., AND YEDUTUN,
K. Server scalability using kubernetes. In 2019 jth Technology Inno-
vation Management and Engineering Science International Conference

(TIMES-iCON) (2019), IEEE, pp. 1-4.

DIERKS, T., AND RESCORLA, E. The transport layer security (tls)
protocol version 1.2.

DiLron, T., Wu, C., AND CHANG, E. Cloud computing: issues and
challenges. In 2010 24th IEEE international conference on advanced
information networking and applications (2010), leee, pp. 27-33.

DRrAGONI, N., GIALLORENZO, S., LAFUENTE, A. L., MAZZARA, M.,
MonNTESI, F., MUSTAFIN, R., AND SAFINA, L. Microservices: yester-

day, today, and tomorrow. In Present and ulterior software engineering.
Springer, 2017, pp. 195-216.

EpwArDS, S. Threat model. https://github.com/kubernetes/
community/blob/master/wg-security-audit/findings/Kubernetes},
20Threat%20Model.pdf. Accessed 01.06.2020.

EsprosiTo, C., CASTIGLIONE, A., AND CHOO, K.-K. R. Challenges in

delivering software in the cloud as microservices. IEEE Cloud Computing
3,5 (2016), 10-14.

GROBAUER, B., WALLOSCHEK, T., AND STOCKER, E. Understanding
cloud computing vulnerabilities. IEEE Security & privacy 9, 2 (2010),
50-57.

HicHTOWER, K., BURNS, B., AND BEDA, J. Kubernetes: up and

running: dive into the future of infrastructure. 7 O’Reilly Media, Inc.”,
2017.

Hussain, F., L1, W., NOYE, B., SHARIEH, S., AND FERWORN, A.
Intelligent service mesh framework for api security and management. In
2019 IEEFE 10th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON) (2019), IEEE, pp. 0735-0742.

https://attack.mitre.org/matrices/enterprise/
https://github.com/kubernetes/community/blob /master/wg-security-audit/findings/Kubernetes%20Threat%20Model.pdf
https://github.com/kubernetes/community/blob /master/wg-security-audit/findings/Kubernetes%20Threat%20Model.pdf
https://github.com/kubernetes/community/blob /master/wg-security-audit/findings/Kubernetes%20Threat%20Model.pdf

BIBLIOGRAPHY 43

22]

23]

[25]

[26]

[27]

28]
[29]

[30]

[31]

InukorLLUu, V. N., ARSI, S., AND RAVURI, S. R. Security issues
associated with big data in cloud computing. International Journal of
Network Security € Its Applications 6, 3 (2014), 45.

Kana, M., SHIN, J.-S., AND KiM, J. Protected coordination of service
mesh for container-based 3-tier service traffic. In 2019 International
Conference on Information Networking (ICOIN) (2019), IEEE, pp. 427—
429.

KHATRI, A., KHATRI, V., NIRMAL, D., PIRAHESH, H., AND HER-
NESS, E. Mastering Service Mesh: Enhance, secure, and observe
cloud-native applications with Istio, Linkerd, and Consul. Packt Pub-
lishing, 2020. https://books.google.fi/books?id=Mg3aDwAAQBAJ/. Ac-
cessed 01.06.2020.

L1, W., LEMIEUX, Y., GAO, J., ZHAO, Z., AND HAN, Y. Service
mesh: Challenges, state of the art, and future research opportunities. In
2019 IEEFE International Conference on Service-Oriented System FEngi-
neering (SOSE) (2019), IEEE, pp. 122-1225.

Manu, A., PateL, J. K., AKHTAR, S., AGRAWAL, V., AND
MurtHY, K. B. S. Docker container security via heuristics-based mul-
tilateral security-conceptual and pragmatic study. In 2016 International
Conference on Circuit, Power and Computing Technologies (ICCPCT)
(2016), IEEE, pp. 1-14.

MEDEL, V., RANA, O., BANARES, J. A., AND ARRONATEGUI, U.
Modelling performance & resource management in kubernetes. In Pro-
ceedings of the 9th International Conference on Utility and Cloud Com-
puting (2016), pp. 257-262.

MELL, P., GRANCE, T., ET AL. The nist definition of cloud computing.

MoDAK, A., CHAUDHARY, S., PAYGUDE, P., AND LDATE, S. Tech-
niques to secure data on cloud: Docker swarm or kubernetes? In

2018 Second International Conference on Inventive Communication and
Computational Technologies (ICICCT) (2018), IEEE, pp. 7-12.

NaMIOT, D., AND SNEPS-SNEPPE, M. On micro-services architecture.
International Journal of Open Information Technologies 2, 9 (2014),
24-27.

PRINCE, J. D. Introduction to cloud computing. Journal of Electronic
Resources in Medical Libraries 8, 4 (2011), 449-458.

https://books.google.fi/books?id=Mg3aDwAAQBAJ/

BIBLIOGRAPHY 44

32]
33]

[34]

[35]

SAYFAN, G. Mastering kubernetes. Packt Publishing Ltd, 2017.

SHEIKH, O., DIKALEH, S., MisTRY, D., PAPE, D., aAND FELIX, C.
Modernize digital applications with microservices management using the
istio service mesh. In Proceedings of the 28th Annual International Con-
ference on Computer Science and Software Engineering (2018), pp. 359—
360.

SUN, Y., NANDA, S., AND JAEGER, T. Security-as-a-service for
microservices-based cloud applications. In 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom)
(2015), IEEE, pp. 50-57.

TorRKURA, K. A., SUKMANA, M. I., AND MEINEL, C. Integrating
continuous security assessments in microservices and cloud native appli-
cations. In Proceedings of thelOth International Conference on Utility

and Cloud Computing (2017), pp. 171-180.

VAYGHAN, L. A., Saiep, M. A., TOEROE, M., AND KHENDEK, F.
Deploying microservice based applications with kubernetes: experiments
and lessons learned. In 2018 IEEFE 11th international conference on
cloud computing (CLOUD) (2018), IEEE, pp. 970-973.

WEIZMAN, Y. Threat matrix for kubernetes. https://www.microsoft.
com/security/blog/2020/04/02/attack-matrix-kubernetes/. Accessed
01.06.2020.

Wu, H., DING, Y., WINER, C., AND YAO, L. Network security for
virtual machine in cloud computing. In 5th International Conference

on Computer Sciences and Convergence Information Technology (2010),
IEEE, pp. 18-21.

YARYGINA, T., AND BAGGE, A. H. Overcoming security challenges

in microservice architectures. In 2018 IEEE Symposium on Service-
Oriented System Engineering (SOSE) (2018), IEEE, pp. 11-20.

Zissis, D., AND LEKKAS, D. Addressing cloud computing security
issues. Future Generation computer systems 28, 3 (2012), 583-592.

https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

Appendix A

The automation script

#!/bin /bash
Istio Deployment script

Setting variables
operation="$1"
namespace="$2"
deployment="$3"

case $operation in
install)
Downloading and extracting the latest release
echo —e 7\ nDownloading and extracting the latest release...\n”
curl —L https://istio.io/downloadIstio | ISTIO_.VERSION=1.5.2 sh
if [7$? 70”]; then
echo —e 7\ nFiles downloaded successfully!\n”

else

echo —e ”\nDownlading error. Interrupting deploying\n”
exit 1

fi

Adding the istioctl client to the environmental variable PATH
echo —e ”\nAdding the istioctl
export PATH=$PWD/istio —1.5.2/bin :$PATH

if [78?77 ”70”]; then
echo —e 7\nPATH variable updated!\n”

else
echo —e 7\ nDeclaration error. Interrupting deploying\n”
exit 1

fi

Installing Istio with the demo configuration profile

client to the environmental variable PATH...\n”

echo —e 7\ nlInstalling Istio with the demo configuration profile...\n”
istioctl manifest apply —set profile=demo
if [7$?” = ”0”]; then
echo —e 7\ nlstio was deployed successfully!\n”
else
echo —e ”\nDeployment error. Interrupting deploying\n”
exit 1
fi

echo —e ”\n\nlnstallation successfully completed!\n\n”
53
inject)

if [—z $namespace]; then
echo ”Please specify the namespace!”
else

if [—z $deployment]; then

echo —e ”Deployment was not provided\n”

Injectin sidecar into the user’s namespace
J g P

echo —e "\ nAutomatizing sidecar injection in the $namespace
\ n”

kubectl label namespace $name istio—injection=enabled
if [78?” = 70”]; then

echo —e "\ nLabel was added successfully!”
else

45

namespace

APPENDIX A. THE AUTOMATION SCRIPT

echo —e 7\ nDeployment error. Interrupting deploying\n”

exit 1
fi
else
Injecting sidecar into the user’s deployment

46

echo —e 7\ nAutomatizing sidecar injection in the $deployment deployment

of the $namespace namespace...\n”
kubectl get deployment $namespace —o yaml | istioctl kube—inject
kubectl apply —f —
fi
fi
53
secure)
echo —e "\ nVerifying the peer authentication policies in the system...\n”
kubectl get peerauthentication ——all —namespaces

—f

echo —e 7\ nVerifying the destination rules for services in all namespaces...\n”
kubectl get destinationrules.networking.istio.io ——all—namespaces —o yaml | grep
”host :”
if [”$?” = 707]; then
echo —e 7\nFound existing authentication policies.”
echo —e ”Please, be careful.”
else
echo —e 7\nNo destination rules was found.\n”
fi
if [—z $namespace]; then
echo —e ”Please specify the namespace or ’system’ entity!\n”
else
if [”$namespace” = ”system” |; then
echo —e 7\ nSetting Peer Authentication Rule for the whole cluster...\n”
kubectl apply —n istio —system —f — <<EOF
apiVersion: "security.istio.io/vlbetal”
kind: ”PeerAuthentication”
metadata :
name: ”system”
spec:
mtls:
mode: STRICT
EOF
if [7$?” = ”0”]; then
echo —e ”\nPeerAuth rule was successfully created!\n”
else
echo —e ”\nPeerAuth rule creation error\n”
fi
else
echo —e 7\ nSetting Peer Authentication Rule for the $namespace namespace
..\ n”
kubectl apply —n $namespace —f — <<EOF
apiVersion: "security.istio.io/vlbetal”
kind: ”PeerAuthentication”
metadata :
name: ”$namespace”
spec:
mtls:
mode: STRICT
EOF
if [”$?” = 707]; then
echo —e ”\nPeerAuth rule was successfully created!\n”
else
echo —e ”\nPeerAuth rule creation error\n”
fi
fi
fi
53
*)
echo —e "\ nPlease, enter any operation (install, inject, secure)\n”

Appendix B

The TCPDump response

CONNECTED(00000005)
depth=1 O = cluster .local
verify error:num=19:self signed certificate in certificate chain
Certificate chain

0 s:
i:O0 = cluster.local
77777 BEGIN CERTIFICATE——
MIIDLDCCAhSgAwIBAgIQWssp4xizwokpfLxEzCE4KzANBgkqhkiGO9wOBAQsFADAY
MRYwWFAYDVQQKEw1jbHVzdGVyLmxvY2FsMB4XDTIwMDUyODA3MzEwN1oXDTIwMDUy
OTA3MzEwN1owADCCASIwDQY JKoZIhveNAQEBBQADggEPADCCAQoCggEBALMM{gOM
AmzxTkRAGmZNFoiLWNzSdkzb0zjH7RrOZDWt7AbYrNO/0U3zNiUrjEOnAFelrloA
6Ry9agqNY+EvVAIAE+ZXqwHOKIM39i2IPW1Mq7YRIp6EOvAsjSONKh90ilxX9xbBPa
htZ9MUjj01orRIABRHGRoxV7R1cbQrYIhMmEZcjhBua5McmSrcWuQFQDvyi6 /gE3
C3ivECILqzyjkdPsvtfVOqtMKVeOgJ2XWoSoxOhunNnZB63bmdKwvls+Of/p+Bwc
N0JCq4Cq3mdu/sQNcbP4vkWBgj+ZbvCkZyQO01Qj6 YO8dTIiWfoYilU4wZ+fH7fc7
F04jT9IDN801sX7TMCAwWEAAaOBIiTCBhjAOBgNVHQ8BASEBAMCBaAwHQYDVROIBBYw
FAYIKwYBBQUHAwWEGCCsGAQUFBWMCMAwGA1UdEWEB /wQCMAAwWRwWYDVRORAQH/BDOw
04Y5c3BpZmZl0i8vY2x1c3RI1ci5sb2NhbC9ucy9kZWZhdWx0L3NhL2Jvb2tpbmZv
LXByb2R1Y3RwYWdAIMAOGCSqGSIb3ADQEBCwUAA4IBAQAthXUvhieZYUYraafyl2gW
EYA2aohZ/BjpkY TluwPXMMgLPcRUP / Oz+k+b+iTKgt24GKryizQENKUkKZJdkNtbA
6Nms8NACnwXda2aN /KCRrb/fbFabfaVolGVMOMQog5JAfS97Z7VULNVGIFv6pY5Y
L24+M40oR6QmHxgul Y XinXrF8+HWG12Mg5bwnuw7sn74B7tDKhptLh2ajlOIMYj/xN
uejXYplw7TuWPRZKNPTZqli+JKzRy4BPOAjDhtdS6P3PiFGzZor8sAe7SWEOxpcsu
alFM2CuSWrF4vaZl /VO5DBIU+pBFhvinFD4+pQ6LryxCg8MtpfQZyqlhUcOnat01p2

1 s:0 = cluster .local
i:O0 = cluster.local

77777 BEGIN CERTIFICATE———
MIIC3jCCAcagAwIBAgIRAP+uRdSyUv0ih6XJHDjJuZwwDQY JKoZIhvcNAQELBQAw
GDEWMBQGA1UEChMNY2x1c3RIci5sb2NhbDAeFwOyMDA1MjcxODUONTVaFw0zMDA1
MjUxODUONTVaMBgxFjAUBgNVBAoTDWNsdXN0ZXIubG9jY WwwggEiMA0GCSqGSIb3
DQEBAQUAA4IBDwAwggEKAoIBAQDKbalkMRtp/v//QfiQ7TnWwQ1no4lDQB82cwq0j
wld/ysJYY8CVNjtiAsJRPipuUzVxwNIR3nufDMjzL5KsvBA1nIpSUODAKB /TAxRok
F3ravVCsOpIEOEXBQcD+0HIJAhCMpqWQ4j3KfbikyDQDn7qyVepjplMmCddSEgX
H64++kBPDkd15/aGqf7qN /RtSs73CulCwGdQsl1U+bPsEXHOCvIlaAgeTntwAmUWEF
pHxLOUDLAdpEVJZvPCo5NTtpSkDSn6+R4SQpkZsSDN4G X gShzFGCunZImf7Dy1PD
AzwgEMXDUS5N4+-XnA06lkxkWYzGAdIKWmr3K /00X4/nqqavtrAgMBAAGjIzAhMA4G
A1UdDwWEB /wQEAwWICBDAPBgNVHRMBAREBTADAQH/MAO0GCSqGSIb3DQEBCwUAA4IB
AQDCaeBLLAcY2ZtB /ZhnHHz3IM /sMGzrlcLEZVNuAYbzFIEKE90JtZ5pY pjt+L5C
R6t0OdYfcZaXYxFXqYqfte+iOdLevOcRAXxEbV1z0XfwZ5laVXbPr2CfvOOVPGubr
tMGYWG2RfLVIfpcdU/eSWiablDO0Onzd /Dx59FLfMoSqKrzqiyUKmVaKm9V2+40LZzm
1cPkqJmkbb6vAyGRj+qnFOeLnkVycld4+B4n9xcTdSNpjExcG8fm2QIlRnda8Vrsw
x44SYeGDZiTQWaFiPOcInl0Z+LZspZK81T+2YgqjPyUNvcJlaUtMWHHZY VBrqZ6Q
ttpAWPEOONjSALHqJ7TKXfTSR
77777 END CERTIFICATE———
Server certificate
subject=

issuer=0 = cluster.local
Acceptable client certificate CA names
O = cluster.local

Requested Signature Algorithms: ECDSA4+SHA256:RSA—PSS+SHA256: RSA4+SHA256 : ECDSA4+SHA384 : RSA—
PSS+SHA384 : RSA+SHA384 : RSA—PSS+SHA512: RSA+SHA512 : RSA+SHA1

47

APPENDIX B. THE TCPDUMP RESPONSE 48

Shared Requested Signature Algorithms: ECDSA+SHA256: RSA-PSS+SHA256 : RSA+SHA256 : ECDSA+
SHA384 : RSA—PSS+SHA384 : RSA+SHA384 : RSA—PSS+SHA512 : RSA+SHA512

Peer signing digest: SHA256

Peer signature type: RSA—PSS

Server Temp Key: X25519, 253 bits

SSL handshake has read 2114 bytes and written 423 bytes

Verification error: self signed certificate in certificate chain

New, TLSvl1l.3, Cipher is TLS_AES_256_GCM_SHA384

Server public key is 2048 bit

Secure Renegotiation IS NOT supported

Compression: NONE

Expansion: NONE

No ALPN negotiated

Early data was not sent

Verify return code: 19 (self signed certificate in certificate chain)

139963402621376: error:1409445C:SSL routines:ssl3_read_bytes:tlsvl3 alert certificate
required :../ ssl/record/rec_layer_s3.c:1528: SSL alert number 116

Appendix C

The decrypted certificates

Certificate 1:
Certificate :
Data:
Version: 3 (0x2)
Serial Number:
5a:¢b:29:e3:18:b3:¢2:89:29:7c:bc:44:¢cc:21:38:2b
Signature Algorithm: sha256WithRSAEncryption
Issuer: O=cluster.local
Validity
Not Before: May 28 07:31:07 2020 GMT
Not After : May 29 07:31:07 2020 GMT
Subject:
Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public—Key: (2048 bit)

Modulus:
00:b3:0c:7e:03:8c:02:6c:fl:4e:44:40:1a:66:4d:
16:88:8b:58:dc:d2:76:4c:db:d3:38:c7:ed:la:ce:
64:35:ad:ec:06:d8:ac:d3:bf:d1:4d:f3:36:25:2b:
8c:4d:27:00:57:88:ac:8a:00:e9:1c:bd:6a:a3:58:
f8:4b:c0:88:01:3e€:65:7Ta:b0:1c:e2:9f:33:7f:62:
d8:83:d6:d4:ca:bb:61:19:69:e8:4d:2f:02:c8:d2:
d0:d2:al1:f6:88:a5:¢5:7f:71:6c:13:da:86:d6:7d:
31:48:e3:d3:5a2:2b:47:d0:01:44:71:91:a83:15:7b:
47:57:1b:42:b6:08:84:¢c9:84:65:c8:e1:06:e6:b9:
31:¢c9:92:ad:cb5:ae:40:54:03: bf:28:ba:fe:01:37:
Ob:78:af:10:29:4b:ab:3c:a3:91:d3:ec:be:d7:d5:
3a:ab:4c:29:57:8e:80:9d:97:5a:84:a8:c4:e8:6e:
9¢:d9:d9:07:ad:db:99:d2:b0:be:5b:3e:39: ff:e9:
f8:1c:1¢:37:42:42:ab:80:aa:de:67:6e:fe:c4:0d:
71:b3:f8:be:45:81:82:31f:99:6e:f0:a24:67:24:34:
95:08:fa:60:ef:1d:4c:88:96:7e:86:22:21:4e:30:
67:e7:c7:ed:f7:3b:17:4e:23:4f:d0:cd:f2:8d:6¢:
5f:b3

Exponent: 65537 (0x10001)

X509v3 extensions:
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Authentication
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Subject Alternative Name: critical
URI: spiffe://cluster.local/ns/default/sa/bookinfo—productpage
Signature Algorithm: sha256WithRSAEncryption
2d:85:75:21:86:27:99:61:46:2b:69:a7:f2:97:68:16:11:80:
36:6a:88:59:fc:18:€9:91:84:e5:bb:03:d7:30:¢c8:0b:3d:c4:
54:3f:f3:b3:fa:4f:9b:fa:24:ca:82:dd:b8:18:aa:f2:8b:34:
04:34:25:24:64:97:64:36:d6:c0:e8:d9:ac:f0:d0:02:9f:05:
dd:6b:66:8d:fc:a0:91:ad:bf:df:6c:56:9b:7d:a5:68:d4:65:
4c:d0:¢c4:28:83:92:40:7d:2f:7b:67:b5:54:2c:d5:46:7c:5b:
fa:a5:8€:58:2f:6f:8c:e2:84:7a:42:61:f1:82:e2:18:5e:29:
d7:ac:5f:3e:1d:61:b5:d8:¢c8:39:6f:09:ee:c3:bb:27:ef:80:
7Tb:b4:32:al:a6:d2:el1:d9:a8:e5:3a:53:18:8f:fc:4d:b9:e8:
d7:62:99:70:ee:e5:8f:45:92:8d:3d:36:6a:d6:2f:89:2b:34:
72:€0:13:f4:02:30:el1:b5:d4:ba:3f:73:e2:14:6c:d9:a2:bf:
2c:01:ee:d2:58:4d:31:ab:cb:2e:6a:51:4c:d8:2b:92:5a:bl:

49

APPENDIX C. THE DECRYPTED CERTIFICATES

78:bd:a6:65:fd:53:b9:0¢:19:54:fa:90:45:86:f9:85:0f:ea:
50:e8:ba:f2:¢c4:28:3c:32:da:5f:41:9c:aa:96:15:1c:3a:76:
ad:d3:5a:76

Certificate 2:
Certificate:
Data :
Version: 3 (0x2)
Serial Number:
ff:ae:45:d4:b2:52:fd:22:87:a5:¢c9:1¢:38:¢c9:b9:9¢
Signature Algorithm: sha256WithRSAEncryption
Issuer: O=cluster.local
Validity
Not Before: May 27 18:54:55 2020 GMT
Not After : May 25 18:54:55 2030 GMT
Subject: O=cluster.local
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public—Key: (2048 bit)
Modulus :
00:ca:6d:a2:24:31:1b:69:fe: ff:ff:41:f8:d0:ee:
75:b0:43:59:e8:€2:50:d0:07:cd:9c:c2:ad:23:¢0:
87:7f:ca:¢c2:58:63:¢c0:95:36:3b:62:02:c2:51:3e:
2a:6€:53:35:71:¢c0:d9:51:de:7b:9f:0c:c8:f3:2f:
92:ac:bc:10:35:9¢:8a:52:50:e0:e1:07:f4:c0:c5:
la:24:17:7a:da:bd:50:ac:d2:92:04:38:45:¢c1:41:
cO:fe:8b:41:¢c8:24:08:42:32:9a2:96:43:88:17:29:
f6:€2:93:20:d0:0e:7e:ea:c9:57:a9:8e€:99:4¢:98:
27:5d:48:48:17:1f:af:be:90:13:¢3:91:dd:79:fd:
al:aa:7f:ba:8d:fd:1b:52:b3:bd:c2:ba:50:b0:19:
d4:2¢:97:55:3e:6c:fb:04:5¢c:7d:02:bc:89:5a:02:
a7:93:9e:dc:00:99:45:85:a4:7c:4b:f5:40:cb:f9:
da:44:54:96:6f:3¢c:2a:39:35:3b:69:4a:40:d2:9f:
af:91:e€1:24:29:91:9b:12:0c:de:06:5e:04:al:cc:
51:82:ba:76:48:99:fe:c3:¢cb:53:¢3:03:3c:2a:10:
c5:¢c3:52:ce:4d:f9:79:¢c0:d3:a9:64:¢c6:45:98:cc:
60:1d:f4:a5:a6:af:72: bf:d0:e5:f8:fe:7a:aa:6a:
fb:6b
Exponent: 65537 (0x10001)
X509v3 extensions:
X509v3 Key Usage: critical
Certificate Sign
X509v3 Basic Constraints: critical
CA:TRUE
Signature Algorithm: sha256WithRSAEncryption
c2:69:e0:4b:2f:e7:18:d9:9b:41:fd:98:67:1c:7c:f7:20:cf:
ec:30:6c:eb:95:¢c2:¢c4:65:53:6e¢:01:86:f3:14:81:0a:13:dd:
09:b5:9e¢:69:62:98:ed:f8:be:42:47:ab:4e:75:87:dc:65:ab:
d8:c4:55:ea:62:a7:ed:7b:e8:8e:74:b7:af:dl1:c4:40:5f:11:
1b:57:5c:f4:5d:fc:19:e6:56:95:5d:b3:eb:d8:27:ef:d0:e5:
4f:1la:ee:6b:b4:¢c1:98:58:6d:91:7¢c:b5:48:7e€:97:1d:53:17:
92:5a2:26:9b:94:3d:27:cd:df:¢3:¢7:9f:45:2d:f3:28:4a:a2:
ab:ce:a8:b2:50:29:95:68:a9:bd:57:6f:b4:2d:9c:e6:d5:c3:
e4:28:99:a4:6d:be:af:03:21:91:8f:ea:a7:14:e7:8b:9e:45:
72:73:57:78:1f8:1e€:27:f7:17:13:75:23:69:8c:4c:5c:1b:c7:
€6:d9:09:51:9d:d6:bc:56:be:70:¢c7:8e:12:61:e1:83:66:24:
d0:59:21:62:3c:e7:25:9¢:8d:19:f8:b6:6c:a5:92:bc:95:31f:
b6:62:0a:a3:3f:25:0d:bd:¢c2:65:69:4b:4¢:58:71:d9:61:50:
6b:a9:9e¢:90:b6:da:40:58:f1:34:d0:d8:d2:00:bl:ea:27:b2:
97:7d:3f:11

	Cover page
	Contents
	1 Introduction
	2 Background
	2.1 Cloud computing
	2.2 Docker and Kubernetes
	2.3 Service Mesh
	2.3.1 Istio
	2.3.2 Linkerd
	2.3.3 Consul
	2.3.4 Service Mesh comparison

	2.4 Network security

	3 System architecture
	4 Requirements
	4.1 Attacker model
	4.2 Threat model
	4.3 Secure communication
	4.4 Certificate life-cycle management
	4.5 Encryption
	4.6 Automation
	4.7 Scalability
	4.8 Performance

	5 Implementation
	5.1 Solution architecture
	5.2 Deployment

	6 Evaluation
	6.1 Requirement analysis
	6.1.1 Secure communication
	6.1.2 Encryption
	6.1.3 Certificate life-cycle management
	6.1.4 Automation
	6.1.5 Scalability
	6.1.6 Performance

	6.2 Threat solving

	7 Conclusions
	A The automation script
	B The TCPDump response
	C The decrypted certificates

