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ABSTRACT 
 
The emergence of collaborative virtual world applications that run 
over the Internet has presented Virtual Reality (VR) application 
designers with new challenges. In an environment where the 
public internet streams multimedia data and is constantly under 
pressure to deliver over widely heterogeneous user-platforms, 
there has been a growing need that distributed virtual world 
applications be aware of and adapt to frequent variations in their 
context of execution. In this paper, we argue that in contrast to 
research efforts targeted at improvement of scalability, persistence 
and responsiveness capabilities, much less attempts have been 
aimed at addressing the flexibility, maintainability and 
extensibility requirements in contemporary Distributed VR 
applications. We propose the use of structural reflection as an 
approach that not only addresses these requirements but also 
offers added value in the form of providing a framework for 
scalability, persistence and responsiveness that is itself flexible, 
maintainable and extensible. 
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INTRODUCTION 
 

Multi-participant shared virtual world applications are real-time 
distributed simulations in which users navigate and interact within 
a two or three-dimensional virtual environment. These 
applications range from non-persistent, short-duration sessions 
with few users and limited data (e.g. racing online games, virtual 
shopping applications) to persistent, long duration sessions with 
many users and voluminous shared data (e.g. virtual communities, 

multi-participant virtual museums, online role-playing games and  

collaborative design applications). 

Recent research has been aimed at developing distributed 
platforms that can support DVE applications running on the 
public internet. This has proved extremely challenging, 
particularly in massively multi-participant applications where 
thousands of users potentially interact in real-time with each other 
and with thousands of autonomous entities using uncontrolled 
network and local (processor, memory) resources. In an effort to 
better address these challenges, researchers have identified 
various capabilities that a DVE system should offer.  

Such systems have requirements which include the following: 
 
• Scalability: the ability to continue functioning satisfactorily 

• 

• 

• 
 

• 

• 
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architectures. Others maintain centralised databases that regularly 
maintain versions of object states. For example, in Open 
Community (OC), a Persistence server writes out a disk based 
version of objects on a regular basis so that if the server has to be 
terminated then restarted, the disk file is used to regenerate the 
original set of objects. 
To provide support for real-time interaction, researchers in DVE 
systems have attempted to implement fully distributed 
architectures together with multicast grouping of clients, e.g. 
DIVE [3]. Others, e.g. Virtual Society [11], attempt to improve 
robustness and reduce packet/message delays inherent in single-
server architectures by incorporating multicast grouping together 
with multiple servers each of which provides a specific data set.   
(A detailed analysis of techniques used in DVEs can be accessed 
in [12]). 
In contrast, there has been much less effort on addressing the 
flexibility, maintainability and extensibility requirements of 
contemporary DVEs. We propose the use of structural reflection 
as an approach that not only addresses these requirements but also 
offers added value in the form of providing a framework for 
scalability, persistence and responsiveness that is itself flexible, 
maintainable and extensible. 
This paper is structured as follows: 
Section 2 presents a background on reflection. It defines, justifies 
and details different types of reflection. Section 3 then provides an 
insight into our overall approach while a description of our 

 

2. BACKGROUND ON REFLECTION 

2.1 Definition of Reflection 

 

2.2 Why Reflection? 

The motivation for all reflective systems could broadly be 
considered to stem from two concerns. These are: 
1.  [2],[10]. The classical 

view in software design is to handle complexity by the use of 
abstraction (from simple to high level) to hide 
implementation details from the users. This black-box 
approach to design promotes re-use of components but it is 
not always desirable to hide all implementation details from 
the user. This is because hiding implementation details 
necessitates making implementation decisions on behalf of 
the application regardless of how essential the information 
the application has on the use of a particular module is. The 

ultimate objective of open implementation is to overcome 
this problem by exposing the implementation details of the 
system. This must however be achieved in such a way that 
there is a principled division between the functionality they 
provide and the underlying implementation. In this context, 
the former can be thought of as the base interface of a 
module and the latter as a meta-interface whose purpose is to 
provide access to the meta-level of the system. This approach 
is captured by Rao [14]: 

 

                Meta interface (offers a MOP) 

 
 
 
                                           Service interface 

 
 

Figure I An Open implementation 
 

It is important to note that in object-oriented systems, this 
meta-level interface is often referred to as the meta-object 
protocol for the object (or MOP) [9]. The Common Lisp 
Object System (CLOS) MOP for instance creates a reflective 
object system, using its own mechanisms to create an object-
oriented representation of its behaviour.  

2. 

. The ability to access the underlying implementation 
mechanism of a system could be useful in two main aspects: 
Inspection: Reflection can be used to inspect the internal 
structural behaviour of a language or system. Exposing the 

 

 

2.3 Types of Reflection 



• Structural Reflection: enables the inspection, addition, 
removal or modification of the encapsulated features of base-
level entities, such as functionality (operations, methods) or 
state (variables, attributes and constants). 

• Behavioural Reflection: concerns computation about the 
interpreter (the virtual machine). It exposes the execution 
environment and enables one to reason about the way the 
base-level program is executed.  

A reflective language or system can provide both types of 
reflective facilities. It is desirable, however, that the Meta-Object 
Protocol provides a uniform way to do both kinds of reflective 
computation, perhaps using two distinct interfaces which (ideally) 
employ the same syntactic and semantic conventions. 
 

3. OVERALL APPROACH 

Our conviction is that conventional DVE platform architectures 
are unable to cope effectively with their inherent flexibility, 
maintainability and extensibility requirements as a result of two 
reasons: 
• Firstly, as discussed above, their black-box nature inevitably 

creates a bias in the performance of the resulting 
implementation since the platform designers have to decide 
before-hand and make a choice on the implementation, then 
lock that decision inside the black-box. 

• Secondly, even in instances where access to the platform 
implementation is enabled, their highly coupled nature makes 
implementation choices of certain services hard-coded in the 
implementation of others. This intertwining of code 
inevitably reduces the platforms to monolithic pieces of 
system software. This makes dynamic adaptability apriori an 
impossibility.  

The above two reasons provide the drive for our use of reflection 
and more specifically structural reflection coupled with an object 
oriented approach in our implementation. 
As stated earlier, the motivation for this work is to incorporate 
flexibility, maintainability and extensibility into DVEs. The next 
section provides details of our design.  
 

4. SYSTEM DESIGN 
 

4.1 The Object Model 
 

Reflection per se does not support flexibility, incrementality or 
ease of use as this only comes about through the additional 
application of object-orientation.  
This view is supported by Kiczales et al [9] who points out an 
important synergy between reflection and object-oriented 
computing thus: 

This provides the inspiration for our use of an object-oriented 
approach in our design. 

In our object model, an object consists of: 

• a set of accessible attributes, 

• a set of methods to get and set these attributes (collectively 
forming the interface of the object), 

• a set of associated behaviours, 

• one or more renderings of the object. 

Active objects (e.g. avatars) possess all the four elements while 
passive objects (e.g. components of the DVE terrain) contain all 
elements except the set of behaviours.  

4.2 The Role of Behaviour 

The design of DVEs seeks to model VR applications around 
various interpretations of reality. Real life artefacts exercise their 
behaviour to perpetuate their significant subsistence. For example, 

 

They could also be considered to arise from a 
corresponding set of four basic types of objects

of objects that exhibit them

 
Desk  
  
 
Fan 
 Door 

unpredictable goals, 
are therefore non-deterministic. 
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Figure II Object Behaviour Classification 
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• Platform (deep) behaviours: are system level and exist at the 
application level as representations of middleware services or 
mechanisms. For example, a particular consistency policy 
that implements a receive-order sequence of events is a 
platform behaviour.  

• Hybrid (shallow-deep) behaviours: these are application-
system level with an implementation that causally cuts across 
the entire DVE. For instance, an event channelling protocol 
that has application-level input in form of packet loss 
detection is a hybrid behaviour.  

  

4.3 The Meta-model 
 
We adopt the object model earlier described in sub-section 4.1 
and use techniques that allow the above three categories of 
behaviour to be encoded and subsequently be evolved and 
adapted at run-time. 
In particular, we define a meta-interface (Meta-Object Protocol) 
which essentially offers structural reflective capabilities on 
application objects with operations that: 

• discover the internal details of an object in terms of 
attributes, behaviours etc, 

• insert a new attribute, behaviour or rendering, 

• delete an existing attribute, behaviour or rendering or 

• replace an existing attribute, behaviour or rendering. 

 

The diagram below provides a simplified representation of the 
meta-interface. 
 

MetaBehaviours 

 

 

      
      
      
      
      
      
      

   <<call>>     manages Behaviours 

 

 

 

 

                   Figure III Design of the Meta-interface 

This MOP can then be used for adaptation over the object model 
described earlier. 
Adaptation is essentially the alteration of the underlying 
implementation of a system in order to suit the needs of its 
fluctuating execution environment. These fluctuations range from 

• 

• 

• 

• 

 

5. IMPLEMENTATION 

5.1 Overall Architecture 
 

design

1

mechanisms include Concurrency, Replication, Interest 
Management, Persistence, Consistency Event Channelling
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                 Figure IV Architectural Design 
 
The rationale for the architecture above has a basis on the earlier 
identified need for incorporation of flexibility and run-time 
adaptation in contemporary DVEs. This must be considered over 
a set of services and mechanisms with policies defined to manage 
their dynamic configuration over an execution kernel. 
At the Object and Event Management Layer, five service bundles 
present run-time pluggable or unpluggable mechanisms as 
detailed below:  
• Concurrency comprising: 

 [standard or predictive] with normal change of 
mastership and subsequent transfer of locks between nodes versus 
predictive anticipation of mastership by nodes hence transfer of 
locks to implement entity ownership.
• Replication consisting of: 

[standard, high or low] with provision of multiple instances 
of the same object at different nodes varying such that it can be set 
at run-time.  
• Persistence constituting: 

type [in-memory or in-disk] with processor and memory 
resources determining circumstances under which there should be 
switches.  

[low, standard or high] with snap-shot taking of 
the simulation state set as a variable that can be altered 
dynamically. 
• Consistency comprising: 

[receive-order, priority-order or total-order] with 
receive-order using simple FIFO event ordering in satisfactory 
network conditions and when weak consistency is not an issue, 
priority-

• 

Application Layer

high latency

Communication Layer

2
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Attributes (BAs). We define a Behavioural Attribute (BA) as a 
separable part of the behaviour of an object. Considering motion 
in a DVE, InertiaSlave (an algorithm that models the 
deterministic Inertia behaviour at the slave simulations) is a BA 
of the behaviour Inertia.  It encapsulates a reactive program and 
can be configured or reconfigured individually using 
properties/methods/events. A reactive program describes a 
behaviour (or Behavioural Attribute) and its associated state. 
We use a reactive programming approach to avail a flexible 
paradigm for encoding reactive systems, especially those which 
are dynamic since it provides application programmers with a fine 
control over concurrency, event broadcast and several primitives 
for gaining fine control over program execution. More 
specifically, we use a tool called Junior (Jr). The next section 
explains the reactive programming paradigm. 
 

5.2 Reactive Programming 
 

Reactive programming is a process which involves the encoding 
of reactive instructions. Since active objects have their own 
specific behaviour and react continuously to events occurring in 
their environment (interactions with other objects or time 
progression), programming active objects (e.g. avatars) in a shared 
virtual world is essentially a form of reactive programming. 
Junior is a Java-based kernel model for reactive programming that 
defines concurrent reactive instructions communicating using 
broadcast events [7]. Our choice of Junior is influenced by the 
fact that its reactive approach avails a flexible paradigm used for 
programming reactive systems especially those that are dynamic 
(i.e. the number of components and their connections change 
during execution). 
Programming in Jr is essentially a four-stage process that 
involves: 
 

1. declaring a reactive machine 

 
import junior.*; 

 

public class Behaviour 

{ 

public static void main(String[] args){ 

Machine machine1 = 
Jr.Machine3(Jr.Loop(Jr.Seq(Jr.Atom(new 
ReceiveOrderBA()),Jr.Stop()2))); 

machine.react()4; 

} 

} 

 

Receive-OrderBA
Receive-

OrderBA()

5.3 Adaptation Management 
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• 
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                      Figure V 

rem(oldService)              init(newService) 

untick(oldSevice)            put(newService) 



 
The Application Layer models both application behaviours and 
also a representation of system behaviours, thus providing a 
common metaphor for adapting the system. Run-time adaptation 
of the application-specific behaviours occurs within this layer 
while the more generic system behaviours adapt via configuration 
and reconfiguration of platform services. In both cases, though 
this is modeled as changes in behavioural attributes. To support 
this, the meta-interface offers operations to discover, insert, delete 
and replace both application and system behaviours via such 
constructs as addBA(), getBA() etc. 
The Services Layer

Figure IV.    

 meta-interface offers. 
Hence invoking these operations at the  triggers 

6. EXPERIMENTS AND EVALUATION 

at run- 
time

Figure VI 

 

6.1 Expt. 1 
 
Aim: To enable dynamic addition/removal of deterministic and 
non-deterministic application BAs that impact on system 
resources.
Implementation: The experiment is designed such that 
GravityBA is added or removed at run-time. The system can also 
self-adapt by using a set policy to add/remove GravityBA by 
continuously monitoring a feed-back loop on local system load. 
Another policy selects one amongst a pre-defined set of local 

InertiaBA
BounceBA

GravityChannPolicy.java
Gravity

MetaBehaviours robotMeta = 
(MetaBehaviours)env.linkedObject(); 
Robot robot = 
(Robot)((ReactiveSimObject)robotMeta).getEntityPee
r();

if (robotMeta.getBA("Gravity")!=null){ 
   robotMeta.removeBA("Gravity"); 
   robot.setIconFileName(images[1]);             

 
Results: When the system executes, there is observable dynamic 
configuration (replacement, dropping, picking) of Behavioural 
Attributes depending on local & external load for the best 
visualization in dealing with Local Client Delay (LCD) at the 
graphics and rendering level.  
Various models of the deterministic BA Inertia are applied 
depending on replication rates and this causally tweaks smoothing 
and prediction algorithms in force at any one time to mask Client-
Client-Delay. 
Evaluation: 

expression above show the 
simplicity and expressiveness with which application-level 
behaviours are configurable. 
 
 
 



 
 
 

6.2 Experiment 2  
 

6.2.1 Consistency Service 

Aim: To drive run-time causal addition/removal of the 
Consistency service algorithms: Receive-order, Priority-order and 
Total-order.
Implementation: Receive-orderBA uses simple FIFO event 
ordering and as such is good enough in satisfactory network 
conditions. Priority-orderBA is used whenever network 
conditions (monitored via disparities in Master and Slave object 
positioning) are unsatisfactory.  
The system adjusts to the increase in system load by sacrificing 
strict event ordering (that is activated by Priority-orderBA). 
Conversely, the system fine-tunes itself to a decrease in system 
load by activating strict event ordering at the platform.  
Total-  use is not illustrated in this experiment but it is 

Result:  Priority-
orderBA

InertiaSlaveSimpleBA
Receive-orderBA 

InertiaSlaveComplexBA

Evaluation: 

6.2.2 Event Channelling Service 

Aim: 

Implementation: 

GravityBA

GravityBA
Result: GravityBA

eliableEventChannelBA
GravityBA

GravityBA
EventChannelBA

. 
Evaluation: 

6.3 Expt. 3  

6.3.1  Replication Service 

Aim: To drive dynamic configuration of the rate at which peers in 
the DVE replicate their states to one another. 
Implementation: The application designer can either decrease or 
increase replication rates at will by activation of the 
ForceSynchroBA to suit a range of network and system resource 
availability conditions. 
Result: The slave (receiving) peers adjust to increase/decrease in 
replication rates by the Master replica which causally triggers a 
switch between the Consistency BAs: Receive-orderBA and 
Priority-orderBA. 
Evaluation: This illustrates fine-grained adaptation by the system 
in which functions are provided outside an application object, by 
the user. It shows two instances of adaptation incorporated in the 
framework; one in which the DVE designer gains total control of 
the replication rate to peers and another in which receiving peers 
adjust dynamically to changes in rates at which updates are 
received. 

6.3.2 Event Channelling Service 
 

Aim: To enable dynamic causal addition/removal of the ALF 
Event Channelling protocol. 
Implementation: While the system executes, an application 
switch to GravityBA causally activates a switch by the Event 
Channelling service bundle to UnreliableEventChannelBA such 
that the underlying platform makes up for the additional load at 
the Application Layer. Conversely, whenever GravityBA is 
disabled, ALFEventChannBA is activated to exploit the 
information that the application has on the game. 
Result: This experiment shows that the DVE adapts to the 
increase in system load by sacrificing application-

 
Evaluation:

 

6.4 Expt. 4 
 
This experiment evaluates the performance overhead that is 
directly attributed to the additional code used to realise reflection 
hence run-time adaptation within the framework. It involved the 



use of Intel PIII PCs with 128 MB 

Aim:  

Implementation: 

Result: 

The 
contribution this makes towards attainment of the recommended 
threshold for effective end-to-end lag in propagation of 
multimedia data (100 
Below is a graphical representation of loading time (ms) against 
Behaviours (N) at start-up. 
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Figure VII Execution time for configuration of Platform Services 
and application-specific BAs at Start-up. 
 
Evaluation: The figures above give credence to the fact that at 
just about 1% (of the total execution time) as an overhead 

incurred by the framework, incorporation of run-time adaptation 
through structural reflection offers tangible benefits. 
The fact that as many as 10 Behavioural Attributes (BAs) are 
configured at the same instant (at start-up or during execution) 
without an exponential increase in execution time proves that the 
approach taken fully meets scalability demands in next generation 
DVEs. 

6.5 Overall Evaluation 
 
In summary, the experiments above: 
• 

• 

• 

• 

• 

 
 

7. Related Work 
 

7.1 MASSIVE-1,2 

third party 
objects 
 

7.2 DIVE 

  



nodes are guaranteed to have seen the same sequence of events, 
which while good for system integrity, provides limits on 
scalability for instance in DIVE where an upper limit of ten peers 
was set. On the other hand, in the absence of the ISIS toolkit, 
consistency guarantees which inevitably improve interactive 
manipulation especially in environments with high network 
latencies are non-existent. 
 

7.3 CONTINUUM 

Continuum [5] is a research project carried out at France Telecom 
R&D that targets the design of an open and adaptable platform to 
support large-scale virtual worlds with emphasis on real-time 
distributed simulations, multi-player online games and 
collaborative (design or engineering) applications on the public 
internet. The framework prototype is based on a flexible Java-
based middleware called Jonathan [4] with which RMI and 
CORBA compliant platforms can be built using appropriate 
binding techniques. New services can be made available at any 
time and used in existing applications since application semantics 
is transparent to infrastructure components. Continuum offers an 
array of service options but these are essentially compile-time and 
do not come with an interface or execution kernel that supports 
run-time adaptation of mechanisms. 
 

7.4 CAVE 

 

8. CONCLUSION 
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