
The Role of Structural Reflection in Distributed Virtual
Reality

Paul Okanda
Distributed Multimedia Research Group,

Computing Department,
Lancaster University,
Lancaster, LA1 4YR.

+ 44 (0) 1524 593315

okanda@comp.lancs.ac.uk

Gordon Blair
Distributed Multimedia Research Group,

Computing Department,
Lancaster University,
Lancaster, LA1 4YR.

+ 44 (0) 1524 593809

gordon@comp.lancs.ac.uk

ABSTRACT

The emergence of collaborative virtual world applications that run
over the Internet has presented Virtual Reality (VR) application
designers with new challenges. In an environment where the
public internet streams multimedia data and is constantly under
pressure to deliver over widely heterogeneous user-platforms,
there has been a growing need that distributed virtual world
applications be aware of and adapt to frequent variations in their
context of execution. In this paper, we argue that in contrast to
research efforts targeted at improvement of scalability, persistence
and responsiveness capabilities, much less attempts have been
aimed at addressing the flexibility, maintainability and
extensibility requirements in contemporary Distributed VR
applications. We propose the use of structural reflection as an
approach that not only addresses these requirements but also
offers added value in the form of providing a framework for
scalability, persistence and responsiveness that is itself flexible,
maintainable and extensible.

Keywords

Distributed Virtual Environment (DVE), Virtual Reality (VR),
Reflection, Object Behaviour, Adaptation.

INTRODUCTION

Multi-participant shared virtual world applications are real-time
distributed simulations in which users navigate and interact within
a two or three-dimensional virtual environment. These
applications range from non-persistent, short-duration sessions
with few users and limited data (e.g. racing online games, virtual
shopping applications) to persistent, long duration sessions with
many users and voluminous shared data (e.g. virtual communities,

multi-participant virtual museums, online role-playing games and

collaborative design applications).

Recent research has been aimed at developing distributed
platforms that can support DVE applications running on the
public internet. This has proved extremely challenging,
particularly in massively multi-participant applications where
thousands of users potentially interact in real-time with each other
and with thousands of autonomous entities using uncontrolled
network and local (processor, memory) resources. In an effort to
better address these challenges, researchers have identified
various capabilities that a DVE system should offer.

Such systems have requirements which include the following:

• Scalability: the ability to continue functioning satisfactorily

•

•

•

•

•

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-

architectures. Others maintain centralised databases that regularly
maintain versions of object states. For example, in Open
Community (OC), a Persistence server writes out a disk based
version of objects on a regular basis so that if the server has to be
terminated then restarted, the disk file is used to regenerate the
original set of objects.
To provide support for real-time interaction, researchers in DVE
systems have attempted to implement fully distributed
architectures together with multicast grouping of clients, e.g.
DIVE [3]. Others, e.g. Virtual Society [11], attempt to improve
robustness and reduce packet/message delays inherent in single-
server architectures by incorporating multicast grouping together
with multiple servers each of which provides a specific data set.
(A detailed analysis of techniques used in DVEs can be accessed
in [12]).
In contrast, there has been much less effort on addressing the
flexibility, maintainability and extensibility requirements of
contemporary DVEs. We propose the use of structural reflection
as an approach that not only addresses these requirements but also
offers added value in the form of providing a framework for
scalability, persistence and responsiveness that is itself flexible,
maintainable and extensible.
This paper is structured as follows:
Section 2 presents a background on reflection. It defines, justifies
and details different types of reflection. Section 3 then provides an
insight into our overall approach while a description of our

2. BACKGROUND ON REFLECTION

2.1 Definition of Reflection

2.2 Why Reflection?

The motivation for all reflective systems could broadly be
considered to stem from two concerns. These are:
1. [2],[10]. The classical

view in software design is to handle complexity by the use of
abstraction (from simple to high level) to hide
implementation details from the users. This black-box
approach to design promotes re-use of components but it is
not always desirable to hide all implementation details from
the user. This is because hiding implementation details
necessitates making implementation decisions on behalf of
the application regardless of how essential the information
the application has on the use of a particular module is. The

ultimate objective of open implementation is to overcome
this problem by exposing the implementation details of the
system. This must however be achieved in such a way that
there is a principled division between the functionality they
provide and the underlying implementation. In this context,
the former can be thought of as the base interface of a
module and the latter as a meta-interface whose purpose is to
provide access to the meta-level of the system. This approach
is captured by Rao [14]:

 Meta interface (offers a MOP)

 Service interface

Figure I An Open implementation

It is important to note that in object-oriented systems, this
meta-level interface is often referred to as the meta-object
protocol for the object (or MOP) [9]. The Common Lisp
Object System (CLOS) MOP for instance creates a reflective
object system, using its own mechanisms to create an object-
oriented representation of its behaviour.

2.

. The ability to access the underlying implementation
mechanism of a system could be useful in two main aspects:
Inspection: Reflection can be used to inspect the internal
structural behaviour of a language or system. Exposing the

2.3 Types of Reflection

• Structural Reflection: enables the inspection, addition,
removal or modification of the encapsulated features of base-
level entities, such as functionality (operations, methods) or
state (variables, attributes and constants).

• Behavioural Reflection: concerns computation about the
interpreter (the virtual machine). It exposes the execution
environment and enables one to reason about the way the
base-level program is executed.

A reflective language or system can provide both types of
reflective facilities. It is desirable, however, that the Meta-Object
Protocol provides a uniform way to do both kinds of reflective
computation, perhaps using two distinct interfaces which (ideally)
employ the same syntactic and semantic conventions.

3. OVERALL APPROACH

Our conviction is that conventional DVE platform architectures
are unable to cope effectively with their inherent flexibility,
maintainability and extensibility requirements as a result of two
reasons:
• Firstly, as discussed above, their black-box nature inevitably

creates a bias in the performance of the resulting
implementation since the platform designers have to decide
before-hand and make a choice on the implementation, then
lock that decision inside the black-box.

• Secondly, even in instances where access to the platform
implementation is enabled, their highly coupled nature makes
implementation choices of certain services hard-coded in the
implementation of others. This intertwining of code
inevitably reduces the platforms to monolithic pieces of
system software. This makes dynamic adaptability apriori an
impossibility.

The above two reasons provide the drive for our use of reflection
and more specifically structural reflection coupled with an object
oriented approach in our implementation.
As stated earlier, the motivation for this work is to incorporate
flexibility, maintainability and extensibility into DVEs. The next
section provides details of our design.

4. SYSTEM DESIGN

4.1 The Object Model

Reflection per se does not support flexibility, incrementality or
ease of use as this only comes about through the additional
application of object-orientation.
This view is supported by Kiczales et al [9] who points out an
important synergy between reflection and object-oriented
computing thus:

This provides the inspiration for our use of an object-oriented
approach in our design.

In our object model, an object consists of:

• a set of accessible attributes,

• a set of methods to get and set these attributes (collectively
forming the interface of the object),

• a set of associated behaviours,

• one or more renderings of the object.

Active objects (e.g. avatars) possess all the four elements while
passive objects (e.g. components of the DVE terrain) contain all
elements except the set of behaviours.

4.2 The Role of Behaviour

The design of DVEs seeks to model VR applications around
various interpretations of reality. Real life artefacts exercise their
behaviour to perpetuate their significant subsistence. For example,

They could also be considered to arise from a
corresponding set of four basic types of objects

of objects that exhibit them

Desk

Fan
 Door

unpredictable goals,
are therefore non-deterministic.

Human
beings

Figure II Object Behaviour Classification

•

• Platform (deep) behaviours: are system level and exist at the
application level as representations of middleware services or
mechanisms. For example, a particular consistency policy
that implements a receive-order sequence of events is a
platform behaviour.

• Hybrid (shallow-deep) behaviours: these are application-
system level with an implementation that causally cuts across
the entire DVE. For instance, an event channelling protocol
that has application-level input in form of packet loss
detection is a hybrid behaviour.

4.3 The Meta-model

We adopt the object model earlier described in sub-section 4.1
and use techniques that allow the above three categories of
behaviour to be encoded and subsequently be evolved and
adapted at run-time.
In particular, we define a meta-interface (Meta-Object Protocol)
which essentially offers structural reflective capabilities on
application objects with operations that:

• discover the internal details of an object in terms of
attributes, behaviours etc,

• insert a new attribute, behaviour or rendering,

• delete an existing attribute, behaviour or rendering or

• replace an existing attribute, behaviour or rendering.

The diagram below provides a simplified representation of the
meta-interface.

MetaBehaviours

 <<call>> manages Behaviours

 Figure III Design of the Meta-interface

This MOP can then be used for adaptation over the object model
described earlier.
Adaptation is essentially the alteration of the underlying
implementation of a system in order to suit the needs of its
fluctuating execution environment. These fluctuations range from

•

•

•

•

5. IMPLEMENTATION

5.1 Overall Architecture

design

1

mechanisms include Concurrency, Replication, Interest
Management, Persistence, Consistency Event Channelling

1 P
I N G

An App. Object

MetaBehavioursSupport

add
remove

get

get

addBeh.Listener(..)

remBeh.Listener(..)

GravityBehaviour

 Figure IV Architectural Design

The rationale for the architecture above has a basis on the earlier
identified need for incorporation of flexibility and run-time
adaptation in contemporary DVEs. This must be considered over
a set of services and mechanisms with policies defined to manage
their dynamic configuration over an execution kernel.
At the Object and Event Management Layer, five service bundles
present run-time pluggable or unpluggable mechanisms as
detailed below:
• Concurrency comprising:

 [standard or predictive] with normal change of
mastership and subsequent transfer of locks between nodes versus
predictive anticipation of mastership by nodes hence transfer of
locks to implement entity ownership.
• Replication consisting of:

[standard, high or low] with provision of multiple instances
of the same object at different nodes varying such that it can be set
at run-time.
• Persistence constituting:

type [in-memory or in-disk] with processor and memory
resources determining circumstances under which there should be
switches.

[low, standard or high] with snap-shot taking of
the simulation state set as a variable that can be altered
dynamically.
• Consistency comprising:

[receive-order, priority-order or total-order] with
receive-order using simple FIFO event ordering in satisfactory
network conditions and when weak consistency is not an issue,
priority-

•

Application Layer

high latency

Communication Layer

2

2

s

Attributes (BAs). We define a Behavioural Attribute (BA) as a
separable part of the behaviour of an object. Considering motion
in a DVE, InertiaSlave (an algorithm that models the
deterministic Inertia behaviour at the slave simulations) is a BA
of the behaviour Inertia. It encapsulates a reactive program and
can be configured or reconfigured individually using
properties/methods/events. A reactive program describes a
behaviour (or Behavioural Attribute) and its associated state.
We use a reactive programming approach to avail a flexible
paradigm for encoding reactive systems, especially those which
are dynamic since it provides application programmers with a fine
control over concurrency, event broadcast and several primitives
for gaining fine control over program execution. More
specifically, we use a tool called Junior (Jr). The next section
explains the reactive programming paradigm.

5.2 Reactive Programming

Reactive programming is a process which involves the encoding
of reactive instructions. Since active objects have their own
specific behaviour and react continuously to events occurring in
their environment (interactions with other objects or time
progression), programming active objects (e.g. avatars) in a shared
virtual world is essentially a form of reactive programming.
Junior is a Java-based kernel model for reactive programming that
defines concurrent reactive instructions communicating using
broadcast events [7]. Our choice of Junior is influenced by the
fact that its reactive approach avails a flexible paradigm used for
programming reactive systems especially those that are dynamic
(i.e. the number of components and their connections change
during execution).
Programming in Jr is essentially a four-stage process that
involves:

1. declaring a reactive machine

import junior.*;

public class Behaviour

{

public static void main(String[] args){

Machine machine1 =
Jr.Machine3(Jr.Loop(Jr.Seq(Jr.Atom(new
ReceiveOrderBA()),Jr.Stop()2)));

machine.react()4;

}

}

Receive-OrderBA
Receive-

OrderBA()

5.3 Adaptation Management

•

•

 App.
 Layer

 Figure V

rem(oldService) init(newService)

untick(oldSevice) put(newService)

The Application Layer models both application behaviours and
also a representation of system behaviours, thus providing a
common metaphor for adapting the system. Run-time adaptation
of the application-specific behaviours occurs within this layer
while the more generic system behaviours adapt via configuration
and reconfiguration of platform services. In both cases, though
this is modeled as changes in behavioural attributes. To support
this, the meta-interface offers operations to discover, insert, delete
and replace both application and system behaviours via such
constructs as addBA(), getBA() etc.
The Services Layer

Figure IV.

 meta-interface offers.
Hence invoking these operations at the triggers

6. EXPERIMENTS AND EVALUATION

at run-
time

Figure VI

6.1 Expt. 1

Aim: To enable dynamic addition/removal of deterministic and
non-deterministic application BAs that impact on system
resources.
Implementation: The experiment is designed such that
GravityBA is added or removed at run-time. The system can also
self-adapt by using a set policy to add/remove GravityBA by
continuously monitoring a feed-back loop on local system load.
Another policy selects one amongst a pre-defined set of local

InertiaBA
BounceBA

GravityChannPolicy.java
Gravity

MetaBehaviours robotMeta =
(MetaBehaviours)env.linkedObject();
Robot robot =
(Robot)((ReactiveSimObject)robotMeta).getEntityPee
r();

if (robotMeta.getBA("Gravity")!=null){
 robotMeta.removeBA("Gravity");
 robot.setIconFileName(images[1]);

Results: When the system executes, there is observable dynamic
configuration (replacement, dropping, picking) of Behavioural
Attributes depending on local & external load for the best
visualization in dealing with Local Client Delay (LCD) at the
graphics and rendering level.
Various models of the deterministic BA Inertia are applied
depending on replication rates and this causally tweaks smoothing
and prediction algorithms in force at any one time to mask Client-
Client-Delay.
Evaluation:

expression above show the
simplicity and expressiveness with which application-level
behaviours are configurable.

6.2 Experiment 2

6.2.1 Consistency Service

Aim: To drive run-time causal addition/removal of the
Consistency service algorithms: Receive-order, Priority-order and
Total-order.
Implementation: Receive-orderBA uses simple FIFO event
ordering and as such is good enough in satisfactory network
conditions. Priority-orderBA is used whenever network
conditions (monitored via disparities in Master and Slave object
positioning) are unsatisfactory.
The system adjusts to the increase in system load by sacrificing
strict event ordering (that is activated by Priority-orderBA).
Conversely, the system fine-tunes itself to a decrease in system
load by activating strict event ordering at the platform.
Total- use is not illustrated in this experiment but it is

Result: Priority-
orderBA

InertiaSlaveSimpleBA
Receive-orderBA

InertiaSlaveComplexBA

Evaluation:

6.2.2 Event Channelling Service

Aim:

Implementation:

GravityBA

GravityBA
Result: GravityBA

eliableEventChannelBA
GravityBA

GravityBA
EventChannelBA

.
Evaluation:

6.3 Expt. 3

6.3.1 Replication Service

Aim: To drive dynamic configuration of the rate at which peers in
the DVE replicate their states to one another.
Implementation: The application designer can either decrease or
increase replication rates at will by activation of the
ForceSynchroBA to suit a range of network and system resource
availability conditions.
Result: The slave (receiving) peers adjust to increase/decrease in
replication rates by the Master replica which causally triggers a
switch between the Consistency BAs: Receive-orderBA and
Priority-orderBA.
Evaluation: This illustrates fine-grained adaptation by the system
in which functions are provided outside an application object, by
the user. It shows two instances of adaptation incorporated in the
framework; one in which the DVE designer gains total control of
the replication rate to peers and another in which receiving peers
adjust dynamically to changes in rates at which updates are
received.

6.3.2 Event Channelling Service

Aim: To enable dynamic causal addition/removal of the ALF
Event Channelling protocol.
Implementation: While the system executes, an application
switch to GravityBA causally activates a switch by the Event
Channelling service bundle to UnreliableEventChannelBA such
that the underlying platform makes up for the additional load at
the Application Layer. Conversely, whenever GravityBA is
disabled, ALFEventChannBA is activated to exploit the
information that the application has on the game.
Result: This experiment shows that the DVE adapts to the
increase in system load by sacrificing application-

Evaluation:

6.4 Expt. 4

This experiment evaluates the performance overhead that is
directly attributed to the additional code used to realise reflection
hence run-time adaptation within the framework. It involved the

use of Intel PIII PCs with 128 MB

Aim:

Implementation:

Result:

The
contribution this makes towards attainment of the recommended
threshold for effective end-to-end lag in propagation of
multimedia data (100
Below is a graphical representation of loading time (ms) against
Behaviours (N) at start-up.

Performance Metrics

1730

1735

1740

1745

1750

1755

1760

1765

1770

0 5 10 15

Number of Behaviours (N)

Applicat ion Behaviours Plat f orm & Hybr id Behaviours

Figure VII Execution time for configuration of Platform Services
and application-specific BAs at Start-up.

Evaluation: The figures above give credence to the fact that at
just about 1% (of the total execution time) as an overhead

incurred by the framework, incorporation of run-time adaptation
through structural reflection offers tangible benefits.
The fact that as many as 10 Behavioural Attributes (BAs) are
configured at the same instant (at start-up or during execution)
without an exponential increase in execution time proves that the
approach taken fully meets scalability demands in next generation
DVEs.

6.5 Overall Evaluation

In summary, the experiments above:
•

•

•

•

•

7. Related Work

7.1 MASSIVE-1,2

third party
objects

7.2 DIVE

nodes are guaranteed to have seen the same sequence of events,
which while good for system integrity, provides limits on
scalability for instance in DIVE where an upper limit of ten peers
was set. On the other hand, in the absence of the ISIS toolkit,
consistency guarantees which inevitably improve interactive
manipulation especially in environments with high network
latencies are non-existent.

7.3 CONTINUUM

Continuum [5] is a research project carried out at France Telecom
R&D that targets the design of an open and adaptable platform to
support large-scale virtual worlds with emphasis on real-time
distributed simulations, multi-player online games and
collaborative (design or engineering) applications on the public
internet. The framework prototype is based on a flexible Java-
based middleware called Jonathan [4] with which RMI and
CORBA compliant platforms can be built using appropriate
binding techniques. New services can be made available at any
time and used in existing applications since application semantics
is transparent to infrastructure components. Continuum offers an
array of service options but these are essentially compile-time and
do not come with an interface or execution kernel that supports
run-time adaptation of mechanisms.

7.4 CAVE

8. CONCLUSION

 platform

8. REFERENCES

, Cornell University, September
1990.

,

Distributed Systems Engineering, 5(3), pp 91-100, 1998.

[4] Frederic Dang Tran, B. Dumant, F. Horn, J.B. Stefani,
,

,
Springer-Verlag, In Proceedings of the 6th International Euro-Par
Conference, Munich, Germany, September 2000.
[6] Greenhalgh C., Benford S.,

, 15th IEEE
International Conference on Distributed Computing Systems

, Research Report, CNET/INRIA RR-
3732, July 1999.
[8] ITU90,

, International Telecommunications Union (ITU) SG12,
February 1990.
[9] Kiczales, G., J. des Rivieres, D.G. Bobrow,

, MIT Press, 1991.
[10] Kiczales, G.,

 In Pro

rd

, Internal Report No. MPG-02-
01, Computing Department, Lancaster University, November
2002.
[13] Purbick James,

, PhD. Thesis submission, Nottingham University,

 PhD Thesis, MIT, Available as MIT Laboratory of

Computer Science Technical Report 272, Cambridge, Mass.,
1982.

