Training for Speech Recognition on Co-processors

. *
Sebastian Baunsgaard
Graz University of Technology

baunsgaard@tugraz.at

Sebastian Benjamin
Wrede

Know-Center

Pinar Tézln
IT University of Copenhagen

pito@itu.dk

swrede@know-center.at

ABSTRACT

Automatic Speech Recognition (ASR) has increased in pop-
ularity in recent years. The evolution of processor and stor-
age technologies has enabled more advanced ASR mecha-
nisms, fueling the development of virtual assistants such as
Amazon Alexa, Apple Siri, Microsoft Cortana, and Google
Home. The interest in such assistants, in turn, has amplified
the novel developments in ASR research.

However, despite this popularity, there has not been a de-
tailed training efficiency analysis of modern ASR systems.
This mainly stems from: the proprietary nature of many
modern applications that depend on ASR; the relatively
expensive co-processor hardware that is used to accelerate
ASR by big vendors to enable such applications; and the
absence of well-established benchmarks. The goal of this
paper is to address the latter two of these challenges.

The paper first describes an ASR model, based on a deep
neural network inspired by recent work, and our experiences
building it. Then we evaluate this model on three CPU-GPU
co-processor platforms that represent different budget cate-
gories. Our results demonstrate that utilizing hardware ac-
celeration yields good results even without high-end equip-
ment. While the most expensive platform (10X price of the
least expensive one) converges to the initial accuracy target
10-30% and 60-70% faster than the other two, the differences
among the platforms almost disappear at slightly higher ac-
curacy targets. In addition, our results further highlight
both the difficulty of evaluating ASR systems due to the
complex, long, and resource-intensive nature of the model
training in this domain, and the importance of establishing
benchmarks for ASR.

1. INTRODUCTION

Automatic Speech Recognition (ASR) has been an active
research area for decades [51, 18, 40, 17]. Its popularity and
complexity keep increasing as a result of the popularity of

*First two authors did this work while at IT University of
Copenhagen. They equally contributed to the paper.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and ADMS 2019.
11th International Workshop on Accelerating Analytics and Data Manage-
ment Systems (ADMSa720), August 31, 2020, Tokyo, Japan.

various virtual assistants [45, 7, 34, 22]. Earlier approaches
to ASR were based on statistical models such as the Gaus-
sian Mixture Model - Hidden Markov Model (GMM-HMM)
[51, p. 19]. However, in recent years, the emergence of neu-
ral networks has also influenced ASR [26, 6, 11].

The computational requirements for the training and in-
ference of such neural networks are immense [19, 43]. Most
calculations in neural network models are independent ma-
trix operations. Therefore, they are a natural fit for hard-
ware acceleration on specialized multithreaded hardware such
as GPUs [46, 39]. Any performance improvement through
such hardware acceleration is significant for data scientists
trying to enhance their machine learning models as they
have to experiment with different hyperparameters before
deciding on the final set of parameters.

Our goal in this paper is to have a more in-depth under-
standing of ASR by focusing on the ASR task of converting
speech to text and utilization of CPU-GPU co-processors
while training a neural network model for this task. Our
contributions are as follows:

e We discuss our experience with building a well-established
acoustic model that converts speech to text based on a
deep neural network inspired by recent work [26, 6, 11].
We use the training of this model as a benchmarking tool
while analyzing acoustic model training behavior on dif-
ferent types of hardware platforms.

e We evaluate three CPU-GPU co-processor platforms that
represent three budget categories for training this model:
a low-budget platform built by us via repurposing a crypto
mining rig, and two more expensive platforms that repre-
sent different generations of commodity co-processor server
hardware (a recent previous generation and a modern
high-end one).

e We take Time-to-Accuracy as the primary metric in this
evaluation to emphasize both training efficiency and model
accuracy. The results demonstrate that utilizing hardware
acceleration yields good results even without high-end co-
processors. The most expensive platform (10X price of
the least expensive one) converges to the initial accuracy
target 10-30% faster than the platform that is 2X the
price of the least expensive one and 60-70% faster than
the least expensive one. However, the differences among
the platforms almost disappear at slightly higher accuracy
targets, which take roughly a couple of days to reach.

Our experience highlights the difficulty of establishing ASR
models that both achieve good accuracy and are hardware-
conscious while training. ASR differs from other established

oN g

—> | Feature | o~ | Acoustic | —~ | _

Extraction Model —

Figure 1: Process of converting speech to text.

machine learning benchmark domains due to its require-
ment of a more complex model training and larger space
consumption of the dataset and the model. In addition,
our results emphasize that price/performance ratio for neu-
ral network training on high-end co-processors can indeed be
very poor in practice, especially for ASR models. Therefore,
it is highly important to have well-established benchmarks
in this domain and other similarly complex domains to char-
acterize the performance of both high-end and low-budget
platforms.

The rest of the paper is organized as follows. Section 2 in-
troduces terminology related to ASR and gives an overview
of our end-to-end system that converts speech to text. Sec-
tion 3 surveys related work that inspired this system and
recent work on benchmarking machine learning models. Sec-
tion 4 presents the experimental setup, including model pa-
rameters and methodology, as well as the implementation
details for efficient model training using the TensorFlow
framework. Section 5 discusses the results of the experi-
mental evaluation on three co-processors. Finally, Section 6
concludes the paper with a discussion of results.

2. SPEECH-TO-TEXT

The process of converting speech to text is composed of
two broad components as Figure 1 illustrates [51, p. 4]: Fea-
ture Extraction (FE) and Acoustic Model (AM). Extracting
features from audio in FE before training the acoustic model
enables performance optimizations in AM. One can also add
a Language Model (LM) trained separately on text data to
improve the output of AM [26, 6, 11, 13, 25, 32]. Among
these components, AM takes the longest time in an end-
to-end system since it contains the training of the machine
learning model. On the hardware platforms used in this pa-
per (Section 4.2), FE takes a few hours, whereas training the
AM takes several days. Therefore, the rest of this section
provides details about the AM component in our system,
even though we have the whole end-to-end system built.*

The Acoustic Model (AM) takes the features from FE
as input and generates a probability distribution over the
dictionary [51, p. 4]. In recent years, AM has been based on
neural networks and several combinations of neural network
layers have been explored [51, 26, 6, 13, 11]. The commonly
used layers are Feed-Forward Neural Network (FFNN), Con-
volutional Neural Network (CNN), and Long Short-Term
Memory (LSTM). The model used in this paper is inspired
by Baidu Research’s Deep Speech 2 system [6], which uses
1-3 CNNs as the first layers followed by 1-7 LSTM layers,
and ending with a single FFNN. Figure 2 gives an overview
of the model this paper uses, where the number of CNN,
LSTM, and FFNN layers are 1, 5, and 1, respectively.

An FFNN can be seen as a directed acyclic graph, where
the nodes are functions and the output of each function is
a directed edge. The nodes are organized in layers, where
each layer represents a matrix multiplication of the input

"https://github.com/ITU-PITLab/s2asrCode

Input 5x Character
Features_>{ Cu N LSTM J‘ L ’_»Probabilities

Figure 2: Overview of the layers of our AM.

with a weight matrix for that layer. This weight matrix is
also called a kernel. FFNN used in this paper is based on
TensorFlow’s tf.contrib.slim.fully_connected.

A CNN slides a kernel over the input doing matrix mul-
tiplications for each step. A CNN depends on the kernel
width, which is the number of input elements included in
each computation step, and stride, which is the number of
inputs the kernel is slided over between each step. A CNN
can be used to do computations on values from different time
steps. The convolution used in this paper is tf.nn.convid
from TensorFlow, which conducts a one-dimensional con-
volution on a three-dimensional input. This means that a
convolution is done on the time-dimension of an input con-
sisting of features, time, and batch.

An LSTM applies a function to all elements of an input
sequence of arbitrary length while transferring information
from one time-step to the next. This property makes it ideal
for processing time series data such as audio. The size of
an LSTM refers to the number of hidden states transferred
between the time-steps. Increasing the size of an LSTM in-
creases the capacity of the internal state, which improves the
model’s ability to fit to the training dataset. The LSTM in
this paper is based on tf.nn.rnn_cell.LSTMCell, combined
with tf.nn.dynamic_rnn from TensorFlow.

The weights of the layers are initialized using Xavier Ini-
tialization [20], tf.contrib.layers.xavier_initializer of
TensorFlow, which scales all weights to a uniform distribu-
tion within a range.

The output of the FFNN is processed differently during
training and evaluation. During training, a loss value has to
be calculated for each element of the batch to determine how
to fit the model to the training data. During evaluation, the
model has already been adapted to the training data and the
output of the FFNN should instead be converted to specific
characters representing the output sentence of the model.

The loss function used depends on the problem domain.
Connectionist Temporal Classification (CTC) is common for
ASR [23, 21, 6, 11]. CTC converts the output of the FENN
to probabilities over the alphabet and aligns it to the label
sequence. Given the input sequence of probabilities gener-
ated by the CTC denoted Y and the label sequence I, the
CTC loss is the sum of the probability of different align-
ments of [in the probability sequence Y.

When evaluating a model, output probabilities should be
calculated efficiently to produce the characters of the out-
put sentence. This is done with Beam Search, which is a
modified Breadth First Search (BFS) with a specified search
width that limits the search through the tree. Beam Search
is not guaranteed to find an optimal solution, but it is more
efficient than BFS. The efficiency depends on the search
width. Beam Search can be improved by combining it with a
Prefix Tree and a Language Model [41, 42], which constrains
its search to words in a dictionary while simultaneously al-
lowing arbitrary non-word characters between words in the
dictionary. We adopt this and build the dictionary using the
words in our training dataset. This limits the variation of
words in the dictionary compared to the alternative, which

is to build the dictionary from a separate dataset with a
greater variation of words.

An optimization algorithm defines how to adapt the
model weights to reduce the loss of the model for the given
training set. We use tf.train.AdadeltaOptimizer from
TensorFlow for this. AdaDelta [52] is able to both increase
and decrease the learning rate during training. This prop-
erty also implicitly removes the need of specifying initial
learning rates.

A model needs to not only fit to the training dataset, but
also generalize to previously unseen data. The error cal-
culated on the training set is training error and the error
calculated on the test set is test error or generalization er-
ror. Regularization aims to reduce the gap between the
training and test error [21, pp. 107-108]. One of the most
important regularization strategies is dropout, where some
of the units in the neural network are randomly dropped
during training [44]. We use this strategy in all of the layers
of our model since it reduces the test error, which improves
accuracy.

Finally, Batch Normalization is applied between each
layer of the model [28] [21, pp. 313-317]. This technique
helps the layers train more efficiently and independently of
each other.

3. RELATED WORK

‘We mention related work throughout the paper wherever
it is necessary. This section, in particular, details the work
that inspired the system described in Section 2, and recent
efforts on establishing benchmarks and analyzing machine
learning models.

Speech to Text Models Based on Neural Networks.
Baidu Research’s Silicon Valley Al Lab is a large research
group that among other fields also does research on building
end-to-end deep learning models for speech recognition [26,
6, 11]. Deep Speech 1 [26], is one of the preliminary works
that uses neural networks for the whole speech to text learn-
ing pipeline in contrast to prior work that used neural net-
works in a limited part of the whole pipeline. Deep Speech 1
is also the foundation of Mozilla’s open-source TensorFlow
speech recognition implementation [35].

Deep Speech 2 [6] is a follow-up to Deep Speech 1. It
experiments with several convolution layers and up to 7 lay-
ers of LSTM and bidirectional LSTM. Furthermore, it intro-
duces GPU-optimized implementations of CTC loss and effi-
cient gradient sharing among GPUs, which improves latency
and throughput. However, the impact of these optimizations
on the training time are not based on time-to-accuracy, but
on the time to go through an epoch and the time spent on
individual operations such as their implementation of the
all-reduce algorithm. This approach to evaluating perfor-
mance has been criticized in DawnBench [16], because it
does not make a strong link across end-to-end training effi-
ciency, hardware utilization, and statistical performance.

Another follow-up work from the same research group [11]
investigates the impact of different transducers on the ASR
systems. The models presented in Deep Speech 1 & 2 are
based on CTC, and this work compares these approaches
to an RNN-Transducer and an attention model. The con-
clusion is that both RNN-Transducers and attention models
outperform the CTC-based model if the models are allowed
to look at the entire input (meaning both forward and back-
ward model parts). The paper also shows that the CTC

forward-only models have better results than their forward-
only RNN-transducer and attention models. We choose to
work with a CTC-based model instead of RNN-Transducers
and attention models to avoid the need for the entire input
for one classification.

While the main inspiration for our acoustic model comes
from the work of Baidu Research mentioned above, there
have been other proposals for neural network models for
speech recognition, which we also take influence from, such
as LAS from Google [13, 25].

Benchmarking Machine Learning Models. There
have been several benchmarking studies in the recent years
focusing on machine learning and deep learning. Shi et al.
[43] analyze popular deep learning frameworks, such as Ten-
sorFlow and Torch. They take training time per mini-batch
as the main metric. As mentioned earlier, this is problem-
atic as it does not account for the total training time of the
model in different frameworks. DawnBench [16] treats train-
ing time per mini-batch as a prozy metric rather than a main
one. Instead, DawnBench measures end-to-end performance
of training and inference. It focuses on the time-to-accuracy
and throughput of models as mini-batch size, optimization
algorithm, number of GPUs, etc. varies. These metrics
are also adopted by MLPerf [3], which is the most popular
benchmarking framework for machine learning today. Liu et
al. [31] also adopts the metrics from DawnBench and experi-
ment with image recognition models with the default config-
urations of the different deep learning frameworks. However,
none of these works have focused on ASR.

MLPerf [3] has very recently added ASR in its benchmark
mix. The reference implementations are based on the work
from Baidu Research surveyed above. QuTiBench [12] and
DeepBench [1] describe benchmarks for different deep neu-
ral network training domains including ASR. DeepBench fo-
cuses on individual operations rather than end-to-end train-
ing, while QuTiBench focuses on end-to-end training. These
are complementary to our work.

4. EXPERIMENTAL METHODOLOGY

Our goal in this paper is to analyze the behavior of train-
ing a state-of-the-art acoustic model for ASR on different
types of co-processor hardware that reflect different price
points. We focus on the acoustic model as its training is the
major component in an end-to-end system for ASR (Sec-
tion 2). We target CPU-GPU co-processors since training of
neural network models is a natural fit for hardware accelera-
tion on GPUs because of the independent matrix operations
that are embarrassingly parallel, and such co-processors are
heavily used for this purpose today [19, 46, 39].

To achieve our goal, we choose metrics to assess different
aspects of the acoustic model and hardware platforms (Sec-
tion 4.1), establish three CPU-GPU co-processors that rep-
resent different budget categories (Section 4.2), use a dataset
with difficult characteristics (Section 4.3), and optimize the
training setup to be fair to each hardware platform and avoid
misleading conclusions (Section 4.4).

4.1 Metrics

Accuracy is measured in Word Error Rate (WER) and
Character Error Rate (CER). While evaluating our trained
acoustic model, the input is sound files with speech and the
output is the text version of what is being said in those sound

PCle3
PCle3 16x Tox - PCle3 16x
RTX 2070 GTX 1080TI €——>| CPU2 <_I_> DDR3 CPU 2
16 GB DDR4 6 Core oY > 12Core 4—> 96GB DDR4
GTX 1080TI €—p 26GHz 3.0 GHz
RTX 2070 fiole2 . 64 GB
1x QP QP
GEU GTX 1080TI 1 DDR3 Te%'g (;’E‘;OO <-|) 96 GB DDR4
4‘?008;-?2 GTX 1080TI €1y,] CPU 1
RTX 2070 6 Core 12 Core
2.6 GHz 3.0 GHz
1 HDD Shared € I f t I >
RTX 2070 SATA3 el Shared G Ethor SATA3 Storage e
Storage B SATA3
(a) Sys1$ (b) Sys2$ (c) Sys10$

Figure 3: Overview of the co-processors used (left to right, from least expensive to most expensive).

files. The accuracy refers to the accuracy of this output.

e(z,y) I+D+S (1)

W w
As Equation (1) shows, WER is based on edit distance or,
more specifically, Levenshtein distance e(z,y). It is the sum
of insertions I, deletions D, and substitutions S needed to
convert the output sentence x to the target sentence y. An
insertion is a word added to the output. A deletion is a word
removed from the output. A substitution is a word replaced
with another word. W refers to the number of words in the
target sentence y. We use the Python package Jiwer [49] to
calculate WER.

WER =

e(:C? y) (2)

CER = —"“—
max(|z, y[)

As Equation (2) shows, the definition of CER is similar to
WER, where the denominator is the maximum number of
characters in either the output sentence x or the target sen-
tence y.

Time-to-Accuracy (TTA) is the primary metric in this
evaluation since it covers both the accuracy and efficiency
of training. (as also used by [15, 30]). TTA is the time it
takes to train a model to a target median accuracy over the
last t epochs. An epoch is an iteration of the entire train-
ing dataset during the training phase of the model. The
accuracy of a single epoch is the accuracy of a single iter-
ation over the entire wvalidation dataset during the evalua-
tion phase of the model after that particular epoch. The
median accuracy is the middle value in the sorted list of ac-
curacies from the last ¢ epochs. The reason for considering
the accuracy of several epochs in TTA is to make sure that
the accuracy reached is persistent. To calculate TT A(a, e),
where a is the median accuracy target and e is the number
of epochs, a and e needs to be determined. We set e to three
and a to different values depending on the specific accuracy
metric used (WER or CER). The TT A(a, €) is measured in
minutes from the creation of the model until the accuracy
target is reached.

Throughput is defined as elements processed per second
Eps. If t is the time it takes for a batch to be processed in
seconds, and b is the number of elements processed in that
batch, then E,s = b/t.

Utilization measures the active usage of CPUs and GPUs
while training the model. The CPU utilization is measured
based on the average percentage utilization over 0.03 sec-
onds using the top command of linux. The GPU utilization
is measured through The NVIDIA System Management In-
terface (nvidia-smi) [36].

4.2 Hardware

We use three hardware platforms for this study: Sys1$,
Sys2$, Sys10$. They represent three budget categories in
terms of co-processor hardware. Table 1 gives the cost break-
down for these co-processors, and Figure 3 illustrates their
topology. We name them based on their relative total costs,
i.e., Sys2$ and Sys10$ are roughly 2X and 10X the cost of
Sys1$, respectively.

Sys1$ is a low-cost CPU-GPU co-processor designed to
minimize the cost of a multi-GPU platform. It has 4 Nvidia
RTX 2070 at 1.7GHz with 8 GB memory each, an Intel i7
6700k desktop processor with 4 cores (8 logical cores with
hyperthreading) at 4 GHz with 16GB memory, and a low-
cost crypto mining rig motherboard ASRock H110 Pro BTC+
[8]. The storage device, which keeps the datasets, model
checkpoints, and OS (Ubuntu 18.04 LTS), is a Micron M600
512GB SATA SSD connected through SATA3. The limi-
tation of this platform is mainly twofold. (1) It has sig-
nificantly smaller CPU and GPU memory compared to the
other platforms. (2) Three of the GPUs are connected using
PClIe 2.0 x1 to the CPU, while the other one is connected
using PClIe 3.0 x16. This creates an asymmetry across the
GPUs. This particular platform is built by us. Our goal
was to build a low-cost platform inspired by cryptocurrency
mining specifically repurposed for machine learning, and un-
derstand the relative effectiveness of such a hardware plat-
form in comparison to more expensive hardware utilized by
cloud providers.

Sys28$ has 4 Nvidia GTX 1080 Ti with 11GB memory
each and two 6-core (12 logical cores with hyperthreading)
Intel Xeon E5-2630 v2 processors clocked at 2.6 GHz and
128GB RAM in total. Each processor has two GPUs at-
tached via PCle 3.0 x16. The OS is Centos 7 and installed
on a locally-attached HDD, whereas the rest of the stor-
age needs (the model checkpoints and datasets) are handled
via shared storage connected through 1G ethernet. This
increases the startup time by a few seconds when a previ-
ous model has to be loaded, but has insignificant impact
on the active training phase. One can view Sys2$ as repre-
sentative of the previous generation’s high-end commodity
co-processor. The hardware components are modern but
slightly older, i.e., Intel’s Ivy Bridge and Nvidia’s Pascal
microarchitectures.

Sys10$ has 2 Nvidia Tesla V100 GPUs with 32GB mem-
ory each and two 12-core (24 logical cores with hyperthread-
ing) Intel Xeon Gold 6136 processors at 3.0 GHz and 192GB
RAM in total. The storage is split between a locally-attached
SSD and shared storage connected via InfiniBand. The OS is

Platform Total GPUs only CPU Only
Sys1$ 2,605.29$ 1,980.00$ 354.25%
Sys2$ 5,699.95$ 3,599.97$ 97.98%
Sys10% 25,999.008 17,956.00% 5,422.20%

Table 1: Costs of hardware platforms estimated based on
prices from amazon.com in October 2019. The total cost
is composed of CPU, GPU, RAM, PCle riser card, chassis,
and motherboard costs (not including storage).

Centos 7 and is on locally-attached SSD, and the rest of the
storage needs (the model checkpoints and datasets) are kept
on shared storage. Unlike Sys2$, the remote storage does
not cause a slow down during initialization thanks to Infini-
Band. Sys10$ represents the modern high-end co-processor,
i.e., Intel’s Skylake and Nvidia’s Volta microarchitectures.

4.3 Data

We use the LibriSpeech dataset [38, 37], which contains
continuous speech that uses a large vocabulary with differ-
ent styles of speech and a large number of speakers. It is
created from the LibriVox project, which is a collection of
audiobooks read by different speakers [2]. LibriSpeech con-
tains 1000 hours of speech and is split into multiple parts.
The training data is split into three parts: 100 and 360
hours of clean speech, and 500 hours of other speech that
is more noisy. We train on the combination of these three
parts. Both the walidation and test sets are split into two
parts, a clean and other set, with each combination contain-
ing around 5 hours speech. For all experiments, we remove
all elements above 16700 ms, since the time duration of the
files greatly impacts the time it takes for an inference. This
results in usage of 95% of the validation and test data, and
99% of the training data. This is reasonable since our aim
is not to compete in accuracy, but to have enough data to
verify generalization of the models.

4.4 Training

Framework and Parameters. The training of the acous-
tic model is done using TensorFlow version 1.14 following
TensorFlow’s guides for efficient training [47]. First, we ex-
tract features from the original sound files and store them in
compressed TFRecord files before training [48]. Extracting
the features into intermediate files reduces the number of
redundant computations while training, thereby shortening
the training time.

The movement of data is based on TensorFlow’s abstrac-
tion called tf.data.Dataset. This abstraction creates par-
allel readers that read records from local disk or shared
storage. The readers shuffle, batch and pad elements to
supply a buffer. The elements are padded to a fixed length
of 1670 samples, which gives a maximum training sample
sound length of 16.7 seconds. The loader fills a buffer con-
taining batches ready to train on.

The parameters for batch, buffer sizes, and the number of
readers are set to the identified optimal parameters based on
preliminary experiments, which Table 2 displays. The buffer
and batch sizes are different for the three platforms because
of the varying memory capacities. The main memory con-
sumption during model training increases proportionally to
the batch and buffer sizes. Therefore, this limits the values

Platform , Total Batch Readers Buffer
Batch per GPU

Sys1$ 96 24 8 40

Sys2$ 240 60 16 100

Sys10$ 300 150 16 100

Table 2: Default parameters for batch size (number of el-
ements), number of readers, and buffer size (number of
batches) for each hardware platform.

for batch and buffer sizes on Sys1$, which has smaller mem-
ory both on CPU and GPUs. The number of parallel readers
was increased until there was no throughput improvements.

The training was conducted using Synchronous Stochastic
Gradient Descent (S-SGD) similar to the related work [26,
6, 13, 14, 10] using the AdaDelta optimizer [52].

Each element in the buffer is an entire batch comprised of
multiple elements. The batch is split into subsets depending
on the number of GPUs in use to exploit data parallelism,
e.g. a batch of ten elements is split into two subsets of five
elements when using two GPUs. The subsets are each an
input to a distinct GPU that contains a copy of the acoustic
model described in Section 2.

The model parameters are located on the first GPU, from
which they are also updated and distributed. Due to the
main memory constraints on Sysl$, it is better to allocate
the model’s parameters directly on a GPU rather than in
main memory of the CPU. This is fair to all platforms since
all of them have similar PCle 3 16x connection to the first
GPU. This also enables better utilization of the potential
direct connections among the GPUs on the platforms instead
of always communication with the CPU.

The model parameters are with floating-point 32-bit pre-
cision. It is possible for both Sys1$ and Sysl0$, to take
advantage of 16-bit precision because of their newer GPU
microarchitecture. Using 16-bit or mixed precision [33] in-
crease arithmetic operation efficiency and reduce memory
footprint on the GPUs, thereby reducing the training time.
This is not done because Sys2$ does not support this op-
timization, and would default to 32-bit precision. Further
work would be to explore the gains of 16-bit precision, and
potentially going even further with quantized neural net-
works [27] that utilize 8-bit values which have recently shown
great promise without significant loss in accuracies [12].

States of Training. The training is conducted while
monitoring loss, CER, WER, and output sentences. Calcu-
lating the loss, CER, and WER requires evaluation of the
model using the validation set, which means simultaneous
training and evaluation.

Figure 4 illustrates the training process in the form of a
state machine. The transition between the states includes
the iteration interval that triggers the state transition. The
initial state is training, where the model is fitted to the train-
ing data by continuously iterating through different batches.
Once the training iterates through 50 batches, we switch to a
new state that generates sentences from the training dataset
based on the current model with a beam width of one. Ev-
ery 250th batch iteration, a checkpoint of the model is saved.
The checkpoint is used when running evaluation. It can also
be used to restart the training in case the training has been
interrupted. The model is evaluated every epoch by running

Generating every 250t iteration | Saving
Sentences J "1 Checkpoint
A

dqne every 50t done
generating iteration saving
A 4 P
- S
Trainin .
[&) start
.. A
training every
model epoch .
created v evaluation

S i | model created .
Ml\,;]gg;?g < ™| Evaluating

done evaluating

Figure 4: States during training.

the model on the validation set. To do this, the training
model needs to be removed from the GPUs and the evalua-
tion model needs to be loaded. Swapping Model represents
this action, which has significant influence on throughput
(Section 5.2).

There are alternatives to avoid model swapping during
the training process. An alternative is to always allocate
memory on the GPUs for a process that evaluates the model
whenever a checkpoint is saved (as adopted by Mozilla Deep
Speech implementation [35]). The drawback of this ap-
proach is that allocating memory for the evaluation limits
the available memory for the model training. Another alter-
native is to avoid the interleaving of the training and eval-
uation on the same platform by training and evaluating on
separate machines. This would require more complex and
expensive hardware setup in addition to the more compli-
cated management of the dataflow across machines.

For the evaluation phase, there is a tradeoff between the
beam width selected for decoding the resulting sentence (Sec-
tion 2) and accuracy. Based on our preliminary experiments,
we set beam width to 256 since increasing it further leads
to diminishing returns in accuracy while increasing the time
for evaluation phase.

The Model. The model has the same parameters for the
different platforms except the differences listed in Table 2.
The model is smaller and simpler compared to related work
(Section 3), but still contains the same building blocks and
overall topology (Figure 2).

The input features are 93-dimensional per 10 ms time-
step. The CNN has a kernel size of 11 x 93 x 600, takes
all the input features in 11 consecutive time-steps, and pro-
duces a 600-dimensional output feature. The CNN is applied
with a stride of 2, and is only applied to valid inputs. This
means that the model cannot take inputs shorter than 11
time-steps.

The first LSTM layer takes the 600-dimensional input and
all subsequent layers take the 800-dimensional output from
the previous LSTM layer. The output of the fifth layer is
passed to a feed-forward layer that transforms the output to
character probability distributions of dimension 30, which
represent {space, a, b, ... , z, ’, separation character, blank
character}. The separation character is used in cases where
the word contains double letters, such as the word ”cool”,
having the output ”co_ol”, where ”_” is used to represent the
separation character. Between each layer, batch normaliza-
tion and a dropout of 5% are applied.

TTA CER WER
Sys 10.0 8.0 7.0 |22.0 20.2 19.2
(Sysl$_ | 820 1641 2450 | 1908 2174 2725
(Sys28 | 672 1118 2429 | 1251 1980 2834
Sysi0$ 5117 974 ~ NA | 1143 28400 ~ NA

Table 3: TTA values expressed in minutes.

5. RESULTS

This section splits the results into three parts: (1) loss
values, accuracy, and TTA, (2) hardware utilization and
throughput, and (3) a comparison of the platforms with the
same batch size.

5.1 Loss, Accuracy, & TTA

Figure 5a has the CTC loss values over time for the
three hardware setups. The CTC loss axis is logarithmic
to better represent the nuances over time. The loss val-
ues are smoothed by applying a 1-dimensional Gaussian fil-
ter from SciPy with a kernel standard deviation of 10 since
the actual loss value oscillates throughout training. We can
observe that the training loss is reduced over time, which
means that the model is able to adapt to the training data.
Sys10$ has the fastest and Sysl$ has the slowest conver-
gence. The results correspond to the costs of the platforms
with Sys10$ having the highest cost and Sysl$ the lowest
one. All three executions stay above a loss value of 10, and
they are stopped within approximately 3400 minutes, which
is equivalent to 2 days and 8 hours.

The accuracy of the clean validation set over time is
shown in Figure 5b and Figure 5c. The figures also have
a logarithmic y-axis. The TTA levels chosen for CER are
10, 8, and 7, and for WER are 22, 20.2, and 19.2. All TTA
levels are marked with horizontal lines to indicate when they
are reached. Table 3 reports the specific TTA values, where
N A represents the case, where the specified accuracy level
is not reached.

The initial 1000 minutes of the CER has a development
similar to the training loss, where Sys10$ converges quicker
than Sys2$, which in turn converges quicker than Sys1$.
This situation is in effect at both TTA(10) and TTA(8). Af-
terward, the trends change. Sys2$ surpasses Sys10$, and it
is later surpassed by Sys1$. Sys2$ and Sys1$ reach TTA(7)
approximately at the same time step, while Sys10$ never
reaches this CER, which is denoted by N A in Table 3. This
demonstrates the effect of large batch sizes. The large batch
size of Sys10$ improves the pace of the convergence initially,
but ends up impeding the accuracy of the model. Similar re-
sults of reduced statistical efficiency with larger batch sizes
were also identified in [30]. The reduced statistical efficiency
stems from the higher generalization error of models trained
with large batch sizes, which is a problem known for many
years [21].

Figure 5c has similar trends to Figure 5b: Sys10$ reach-
ing TTA(22) first, and the other two platforms reaching
TTA(20.2) and TTA(19.2) first.

The accuracies described above are calculated on the val-
idation dataset, the actual accuracy of the model has to be
calculated on the separate test dataset. Table 4 reports the
accuracies with the test dataset. The evaluation is done on
both the clean and the other dataset and the table also in-

..... Sysl$ e mm m Sys)$ e Sys10$ sanan Sysl$ e mm m Sys)$ e Sys10$ sanan Sysl$ e mm m Sys)$ e Sys10$

CTC Loss

TTA(22)

TTA(20.2)

TTA(19.2) N \

*omng

R A=

0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500
Time (Minutes)

Time (Minutes)

(a) Smoothed loss of training set over

time with logarithmic y-axis. logarithmic y-axis.

(b) CER of validation set over time with

2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

Time (Minutes)

(c) WER of validation set over time with
logarithmic y-axis.

Figure 5: Loss, Character Error Rate (CER), and Word Error Rate (WER) over time to measure Time-To-Accuracy (TTA).

Clean Other
System Val Test Val Test
Sys1$ 17.90 17.32 | 41.85 45.04
Sys2$ 18.50 18.68 | 44.31 48.15
Sys10% 19.86 19.45 | 45.86 49.43

Related Work

Deep Speech 2 [6] NA 5.5 NA 12.73
Liischer et al. [32] | 1.90 230 | 4.50 5.00

Table 4: Final WER of trained model with beam width 512.

cludes the accuracy results of the validation set, which is
referred to as Val. The accuracies reported in related work
is also included in the table for comparison. We include the
results from Deep Speech 2 [6] because the model is similar
to our work, and the results from Liischer et al. [32] because
it represents the state-of-the-art accuracy for our dataset.

The model in our work is similar to Deep Speech 2, but
it diverges in two ways, which results in shorter training
time and lower accuracy: (1) CNN output size is 600 in our
system and 1280 in Deep Speech 2, and (2) LSTM size is
800 in our system and 1510 in Deep Speech 2. By reducing
the sizes of the model layers, accuracy is traded for faster
computation. In addition, quoting their paper [6] " Training
a single model at these scales requires tens of exaFLOPs
that would require 3-6 weeks to execute on a single GPU.”
This was in late 2015 and their model was trained on 8-
16 unspecified GPUs that are older GPU versions than the
Nvidia Tesla V100 GPUs used by Sys10$ in this project.

Liischer et al. [32] achieves better accuracy than both us
and Deep Speech 2. The difference is their model is based on
the attention-based architecture, which is also found in [13]
and originates from [9]. The attention-based model clearly
performs better, but it requires even longer training time,
especially with the model parameters used for the specific
solution in [32]. An analysis with a scaled down version
of an attention-based model could be an alternative to the
analysis done in this paper.

5.2 Utilization & Throughput

Figure 6 shows the utilization of the three platforms over
a 25 second interval. The solid line represents the utilization
of the CPU, while the dashed lines are the GPUs’ utilization.

The horizontal axis is time in seconds, and the vertical axis
is the utilization percentage of the corresponding GPU and
CPU. The CPU utilization is the average across all cores for
the specific training process.

Figure 6¢ highlights three repetitive phases of utilization
during a single batch processing for Sys10$. The first phase
is represented by a spike on the CPU when the training data
and model is transferred to the GPU. These spikes are most
visible in Figure 6¢ at 4, 8, and 17 seconds, but are also
present at 13 and 23 seconds. The second phase happens on
the GPUs when they are using the acoustic model to infer
results from the input data. This is seen in Figure 6¢c, where
the GPUs are capped at 100% utilization just after the CPU
spikes. The last phase is where the model is collected, gra-
dients are summed, and the model is updated. This is seen
as a small bump on the CPU utilization after the utilization
of the GPUs are reduced.

Sys2$’s utilization is shown in Figure 6b. The spikes
are wider indicating a longer startup for each iteration, as
expected due to the slower CPU and main memory (Sec-
tion 4.2). This gives a clearer view of the 0% utilization of
the GPUs while transferring the data. This 0% utilization
is also present in Figure 6¢, but less visible thanks to the
shorter duration. Figure 6b shows that the GPU utilization
is capped at around 75%. The model and batch size use
all of the available memory on the GPUs, but the cores are
not fully utilized. This means that neither the model size
nor the batch size can be further increased to fully utilize
the cores because the allocated memory would exceed the
memory limit.

Figure 6a has a slightly different pattern than the utiliza-
tion phases in Figure 6¢ and Figure 6b. GPU 1 is connected
using PCle 3 x16 and the rest of the GPUs are connected
with PCle 2 x1, which is a characteristic of the motherboard.
GPU 1 is highly utilized in the beginning of each batch it-
eration, but then its utilization quickly drops. On the other
hand, GPU 2, 3, and 4 have moderate utilization before be-
ing fully utilized around the time GPU 1 is done with its
batch. This utilization difference is caused by the different
connection types between the graphics cards. When GPU 1
finishes earlier, it waits for the three other GPUs to finish,
where it goes down to almost 0% utilization. CPU utiliza-
tion is also slightly different for Sys1$. The CPU has fewer
logical cores compared to the CPUs in other platforms. This
means that the CPU is generally highly utilized, which leads

801

Utilization Percentage
Utilization Percentage

804

m
3

Utilization Percentage
I
8

N
S

o

10 15
Time (Seconds)

(a) Sys1$

25

Figure 6: Hardware utilization over time on three co-processors.

visualization. The utilization trends are stable over time.

Sys10$

60 1

501

}1111:1’
I e

e,

i o o o

s
3
o

Throughput (Elements per Second)
S =
v ——-—————

500 1000 1500 2000

Time (Minutes)

2500 3000 3500

Figure 7: Processing throughput during training.

to less drastic spikes.

The throughput values in Figure 7 follows the same pat-
tern as the utilization figures. Sys10$ has better utilization
and throughput than Sys2$, which has better utilization and
throughput than Sys1$. Throughput oscillates, but the min-
imum and maximum values are stable over time for the re-
spective systems. Every time the training model is swapped
by the evaluation model (Figure 4), throughput is reduced
by 30-50% on all platforms.

Comparing the utilization and throughput trends to the
accuracy in Figure 5, demonstrates that the highly utilized,
high throughput systems may achieve lower accuracy even-
tually. The throughput and utilization analyses represent
the hardware efficiency, whereas Figure 5b and Figure 5c
represent the training efficiency. This means that Sys10$ has
high hardware efficiency but low training efficiency, and
Sys1$ has low hardware efficiency but high training effi-
ciency. This highlights that when training models, one can-
not purely focus on one type of efficiency over the other as
both are highly important for a sustainable machine learning
evolution.

5.3 Impact of Batch Size

To confirm that the accuracy Sys1$ achieves can be achieved

on the other platforms, we apply the parameters used when
training on Sysl$ to the training on Sysl10$ and Sys2$.
The total batch size is reduced to the same value. Since
Sys10$ has two GPUs, the total batch is split into two,

(b) Sys2$

10 15
Time (Seconds)

10 15
Time (Seconds)

(c) Sys10%

The figure focuses on a 25 second interval for ease of

TTA CER WER
Sys 100 80 7.0 |22.0 20.0 19.0
(Sysi8_ | 771 1201 2322 | 1806 2322 2322
(Sys28 | 791 1571 2001 | 1571 2091 2352
Sys108 479 7879 71600 | 1197 ~ 1600 2078

Table 5: TTA values expressed in minutes with reduced

batch sizes.

unlike Sys1$ and Sys2$ that have four. We also chose to
reduce the beam width to 64 while evaluating thereby re-
ducing overall training time. The change in beam width
only reduces accuracy without effecting the convergence.

The reduction in batch size impedes throughput. Through-
put is halved on both Sys10$ and Sys2$ compared to their
throughput in Figure 7. The utilization of the GPUs on
Sys10$ is also reduced, from 76% to 67% on average. Sys2$ and
Sysl$ have similar throughput in this case, and therefore
converge similarly, while Sys10$ converges faster than the
other two systems due to its higher throughput.

Table 5 reports the TTA values achieved with the reduced
batch size. Models trained on all platforms reach the same
accuracy levels in this case, with a better TTA on Sys108$.
However, the price/performance discrepancy across the plat-
forms remains.

6. SUMMARY & CONCLUSION

This paper studied the behavior of the training of an
acoustic model for ASR on different types of CPU-GPU co-
processor hardware that fall into different price categories.
The acoustic model was based on state-of-the-art proposals
that use deep neural networks for this purpose. Our goal
was to observe the impact of higher-end processors in com-
parison with lower-end ones in this problem domain. By fo-
cusing on time-to-accuracy as the main metric, we observed
that utilizing hardware acceleration yields good results even
without high-end equipment.

The latest generations of co-processor hardware, such as
the one evaluated as Sys10$, offer a huge computation and
acceleration power. Such co-processors are becoming more
and more widely available to the end-users. The embar-
rassingly parallel nature of most neural network tasks make

them great for exploiting these types of hardware. How-
ever, there is no free lunch, especially for the more complex
application domains like ASR. One has to pay attention to
design both a statistically accurate model and a hardware-
conscious one in order to avoid wasting hardware resources
and create a more sustainable machine learning ecosystem.

Going forward, we have various options to investigate.
There are already well-established frameworks (TensorFlow,
PyTorch, etc.) for crafting neural networks and hardware-
conscious libraries for data scientists [4, 5]. We need to
invest further in these frameworks and libraries, and under-
stand their behavior on different types of processing units in
more detail. It is unreasonable to expect every data scien-
tist crafting models based on neural networks for a specific
problem to be hardware gurus. However, it is also unrea-
sonable to underutilize extremely powerful hardware. Fur-
thermore, similarly to the research on co-locating different
tasks on cloud, we should also investigate ways to co-locate
different types of model training (such as [24, 29, 50]) to
exploit idle-sitting hardware resources without breaking the
performance of individual training processes.

7. REFERENCES

[1] DeepBench.
https://github.com/baidu-research/DeepBench,
2018.

[2] LibriVox: Free Public Domain Audiobooks.
https://librivox.org, 2019.

[3] MLPerf. www.mlperf.org, 2019.

[4] PYNQ: Python Productivity For ZYNQ.
http://wuw.pynq.io, 2019.

[5] Rapids - Open GPU Data Science.
https://rapids.ai, 2019.

[6] D. Amodei, S. Ananthanarayanan, R. Anubhai,

Bai, E. Battenberg, C. Case, J. Casper,

. Catanzaro, Q. Cheng, G. Chen, J. Chen, J. Chen,

Chen, M. Chrzanowski, A. Coates, G. Diamos,

. Ding, N. Du, E. Elsen, J. Engel, W. Fang, L. Fan,

. Fougner, L. Gao, C. Gong, A. Hannun, T. Han,

V. Johannes, B. Jiang, C. Ju, B. Jun, P. LeGresley,

Lin, J. Liu, Y. Liu, W. Li, X. Li, D. Ma, S. Narang,

. Ng, S. Ozair, Y. Peng, R. Prenger, S. Qian,

Quan, J. Raiman, V. Rao, S. Satheesh,

. Seetapun, S. Sengupta, K. Srinet, A. Sriram,

. Tang, L. Tang, C. Wang, J. Wang, K. Wang,

Y. Wang, Z. Wang, Z. Wang, S. Wu, L. Wei, B. Xiao,
W. Xie, Y. Xie, D. Yogatama, B. Yuan, J. Zhan, and
Z. Zhu. Deep Speech 2: End-to-end Speech
Recognition in English and Mandarin. In
International Conference on Machine Learning
(ICML), pages 173-182, 2016.

[7] Apple. Siri. https://www.apple.com/siri/, 2019.

[8] AsRock. AsRock H110 Pro BTC+ Motherboard.
https://www.asrock.com/mb/Intel/H110\%20Pro\%
20BTC+/index.asp, 2019.

[9] D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine
Translation by Jointly Learning to Align and
Translate. In International Conference on Learning
Representations (ICLR), 2015.

[10] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel,
and Y. Bengio. End-to-end attention-based large
vocabulary speech recognition. In IEEE International

HONPCEQRND —

Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4945-4949, 2016.

[11] E. Battenberg, J. Chen, R. Child, A. Coates, Y. G. Y.
Li, H. Liu, S. Satheesh, A. Sriram, and Z. Zhu.
Exploring neural transducers for end-to-end speech
recognition. In IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pages
206-213, 2017.

[12] M. Blott, L. Halder, M. Leeser, and L. Doyle.
QuTiBench: Benchmarking Neural Networks on
Heterogeneous Hardware. ACM Journal on Emerging
Technologies in Computing Systems, 15(4), 2019.

[13] W. Chan, N. Jaitly, Q. Le, and O. Vinyals. Listen,
attend and spell: A neural network for large
vocabulary conversational speech recognition. In IEFEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 49604964, 2016.

[14] C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar,

P. Nguyen, Z. Chen, A. Kannan, R. J. Weiss, K. Rao,
E. Gonina, N. Jaitly, B. Li, J. Chorowski, and

M. Bacchiani. State-of-the-Art Speech Recognition
with Sequence-to-Sequence Models. In IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 4774-4778, 2018.

[15] C. Coleman, D. Kang, D. Narayanan, L. Nardi,

T. Zhao, J. Zhang, P. Bailis, K. Olukotun, C. Ré, and
M. Zaharia. Analysis of DAWNBench, a
Time-to-Accuracy Machine Learning Performance
Benchmark. Operating Systems Review, 53(1):14-25,
2019.

[16] C. A. Coleman, D. Narayanan, D. Kang, T. Zhao,

J. Zhang, L. Nardi, P. Bailis, K. Olukotun, C. Ré, and
M. Zaharia. DAWNBench: An End-to-End Deep
Learning Benchmark and Competition. In NIPS ML
Systems Workshop, 2017.

[17] K. Davis, R. Biddulph, and S. Balashek. Automatic
Recognition of Spoken Digits. Journal of the
Acoustical Society of America, 24(6):637-642, 1952.

[18] S. Davis and P. Mermelstein. Comparison of
parametric representations for monosyllabic word
recognition in continuously spoken sentences. IEEE
Transactions on Acoustics, Speech, and Signal
Processing, 28(4):357-366, 1980.

[19] J. Dean, D. Patterson, and C. Young. A New Golden
Age in Computer Architecture: Empowering the
Machine-Learning Revolution. IEEE Micro,
38(2):21-29, 2018

[20] X. Glorot and Y. Bengio. Understanding the difficulty
of training deep feedforward neural networks. In
International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 9, pages 249-256, 2010.

[21] 1. J. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.

[22] Google. Google Assistant.
https://assistant.google.com/, 2019.

[23] A. Graves, S. Fernéndez, F. Gomez, and
J. Schmidhuber. Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks. In International
Conference on Machine Learning (ICML), pages
369-376, 2006.

[24] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,

[25]

J. Qian, H. Liu, and C. Guo. Tiresias: A GPU Cluster
Manager for Distributed Deep Learning. In NSDI,
pages 485-500, 2019.

J. Guo, T. N. Sainath, and R. J. Weiss. A Spelling
Correction Model for End-to-end Speech Recognition.
In IEEFE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
5651-5655, 2019.

A.Y. Hannun, C. Case, J. Casper, B. Catanzaro,

G. Diamos, E. Elsen, R. Prenger, S. Satheesh,

S. Sengupta, A. Coates, and A. Y. Ng. Deep Speech:
Scaling up end-to-end speech recognition. CoRR, 2014.
1. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv,
and Y. Bengio. Quantized Neural Networks: Training
Neural Networks with Low Precision Weights and
Activations. J. Mach. Learn. Res., 18(1):6869-6898,
2017.

S. Ioffe and C. Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing
Internal Covariate Shift. CoRR, abs/1502.03167, 2015.
M. Jeon, S. Venkataraman, A. Phanishayee, u. Qian,
W. Xiao, and F. Yang. Analysis of Large-Scale
Multi-Tenant GPU Clusters for DNN Training
Workloads. In USENIX ATC, page 947-960, 2019.

A. Koliousis, P. Watcharapichat, M. Weidlich, L. Mai,
P. Costa, and P. Pietzuch. Crossbow: Scaling Deep
Learning with Small Batch Sizes on multi-GPU
Servers. Proceedings of the VLDB Endowment,
12(11):1399-1412, 2019.

L. Liu, Y. Wu, W. Wei, W. Cao, S. Sahin, and

Q. Zhang. Benchmarking deep learning frameworks:
Design considerations, metrics and beyond. In IEEE
International Conference on Distributed Computing
Systems (ICDCS), pages 1258-1269, 2018.

C. Liischer, E. Beck, K. Irie, M. Kitza, W. Michel,

A. Zeyer, R. Schliter, and H. Ney. RWTH ASR
Systems for LibriSpeech: Hybrid vs Attention. In
Proc. Interspeech 2019, pages 231-235, 2019.

P. Micikevicius, S. Narang, J. Alben, G. Diamos,

E. Elsen, D. Garcia, B. Ginsburg, M. Houston,

O. Kuchaiev, G. Venkatesh, and H. Wu. Mixed
Precision Training. In International Conference on
Learning Representations, 2018.

Microsoft. Cortana.
https://www.microsoft.com/en-us/cortana, 2019.
Mozilla. A TensorFlow implementation of Baidu’s
DeepSpeech architecture.
https://github.com/mozilla/DeepSpeech, 2019.
Nvidia. Nvidia System Management Interface.
https://developer.nvidia.com/nvidia-system-man
agement-interface, 2019.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur.
Librispeech: An ASR corpus based on public domain
audio books. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 5206-5210, April 2015.

V. Panayotov and D. Povey. LibriSpeech ASR Corpus.
http://wuw.openslr.org/12, 2019.

R. Raina, A. Madhavan, and A. Y. Ng. Large-scale
Deep Unsupervised Learning Using Graphics
Processors. pages 873-880, 2009.

10

(40]

(41]

42]

(45]

[51]

[52]

T. Sakai and S. Doshita. The Automatic Speech
Recognition System for Conversational Sound. IEEFE
Transactions on Electronic Computers, (6):835-846,
1963.

H. Scheidl. CTC Word Beam Search Decoding
Algorithm. https:
//github.com/githubharald/CTCWordBeamSearch,
2019.

H. Scheidl, S. Fiel, and R. Sablatnig. Word Beam
Search: A Connectionist Temporal Classification
Decoding Algorithm. In International Conference on
Frontiers in Handwriting Recognition, pages 253258,
2018.

S. Shi, Q. Wang, P. Xu, and X. Chu. Benchmarking
State-of-the-Art Deep Learning Software Tools. In
International Conference on Cloud Computing and
Big Data (CCBD), pages 99-104, 2016.

N. Srivastava, G. E. Hinton, A. Krizhevsky,

I. Sutskever, and R. Salakhutdinov. Dropout: A
Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research,
15(1):1929-1958, 2014.

D. O. Staff. New ways alexa makes life simpler and
more convenient.
https://blog.aboutamazon.com/devices/new-ways-
alexa-makes-life-simpler-and-more-convenient,
2019.

D. Steinkraus, I. Buck, and P. Y. Simard. Using GPUs
for machine learning algorithms. In International
Conference on Document Analysis and Recognition
(ICDAR), pages 1115-1120, 2005.

TensorFlow. Data Input Pipeline Performance.
https://www.tensorflow.org/guide/performance/d
atasets, 2019.

TensorFlow. TensorFlow: TFRecord and tf.Example.
https://www.tensorflow.org/tutorials/load data/
tfrecord, 2019.

N. Vaessen. Word Error Rate for Automatic Speech
Recognition. https://pypi.org/project/jiwer/,
2019.

W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,

N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao,

Q. Zhang, F. Yang, and L. Zhou. Gandiva:
Introspective Cluster Scheduling for Deep Learning. In
OSDI, pages 595-610, 2018.

D. Yu and L. Deng. Automatic Speech Recognition: A
Deep Learning Approach (Signals and Communication
Technology). Springer, 2015.

M. D. Zeiler. ADADELTA: An Adaptive Learning
Rate Method. CoRR, 2012.

