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Abstract

Facial composites are graphical representations of an eyewit-
ness’s memory of a face. Many digital systems are available
for the creation of such composites but are either unable to
reproduce features unless previously designed or do not al-
low holistic changes to the image. In this paper, we improve
the efficiency of composite creation by removing the reliance
on expert knowledge and letting the system learn to represent
faces from examples. The novel approach, Composite Gener-
ating GAN (CG-GAN), applies generative and evolutionary
computation to allow casual users to easily create facial com-
posites. Specifically, CG-GAN utilizes the generator network
of a pg-GAN to create high-resolution human faces. Users are
provided with several functions to interactively breed and edit
faces. CG-GAN offers a novel way of generating and han-
dling static and animated photo-realistic facial composites,
with the possibility of combining multiple representations of
the same perpetrator, generated by different eyewitnesses.

Figure 1: Example composite built using CG-GAN.

Introduction
Facial composites are portrait sketches of unknown indi-
viduals used in criminal investigation to identify a per-
son. Two cognitive abilities are applied in the process: re-
call and recognition. Recall is the recollection of informa-
tion for the composite construction. Recognition is the abil-
ity to recognize someone seen before, used during line-
ups (Zahradnkov, Duchoviov, and Schreiber 2016; Man-
cusi 2014). Compared to recall, recognition is an easier and
stronger task, therefore most courts of law consider lineup
identification as good evidence (Mancusi 2014).
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Originally composites were drawn by forensic artists
in consultation with victims and eyewitnesses, relying on
detailed descriptions of their memories. More recent ap-
proaches involved mechanical and digital systems to im-
prove the process and the resulting recognition rate.

There exist two major modern creation techniques. Sim-
ple systems merge single features (drawn or picked from a
feature set) into a portrait. Others let the witnesses concen-
trate on the entire face, by selecting individuals as in a line-
up (Zahradnikova, Sutova, and Schreiber 2017). This holis-
tic approach is the result of psychological research suggest-
ing that describing individual features causes lower identifi-
cation rates (Zahradnikova, Sutova, and Schreiber 2017).

CG-GAN is designed to make the process artist-free to
avoid communication issues and potentially lower retention
time, and is empowered by the usage of recent machine
learning techniques. In more detail, the approach is based on
the Latent Variable Evolution (LVE) approach (Bontrager,
Togelius, and Memon 2017), in which a Generative and Ad-
versarial Network (GAN) is trained on a specific dataset and
the space of images encoded by the GAN is then searched
through an evolutionary computation approach. LVE has
been applied to diverse domains such as the generation of
fingerprints (Bontrager, Togelius, and Memon 2017), image
generation (Bontrager and others 2018) and even the cre-
ation of Mario levels (Volz et al. 2018).

Bontrager and others (2018) showed that LVE can enable
users to guide the search through a process known as inter-
active evolution (Takagi 2001). However, evolving towards a
specific target image, which is a prerequisite for facial com-
posite generation, has shown challenging (Bontrager and
others 2018). This work goes beyond the previous state-of-
the-art by extending LVE with the ability to freeze certain
features discovered during the search, enabling a more con-
trolled user-recreation of target images. The system exploits
advantages of both constructive and holistic techniques. Fig-
ure 1 shows an example of a composite session that has been
carried out with the usage of CG-GAN.

Related work
Facial Composite Generation
Police agencies are already using software for the creation of
facial composites, such as Faces 4.0, which allows adding
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and editing features (IQ Biometrix 2003). However, this
kind of software is not capable of reproducing facial features
that have not been previously designed, is not holistic and re-
quires the user to explore a vast feature database to construct
a face. Other programs such as EvoFit (Frowd, Hancock, and
Carson 2004) and EFIT-V (George et al. 2008) are based
on an interactive evolutionary algorithm. These systems can
produce high-quality composites but require complex math-
ematical functions to create the face. Every aspect that is not
planned a priori can therefore not be produced.

Interactive evolutionary computation (IEC) is a particu-
lar form of AI-assisted creation, in which a human functions
as the fitness function of an evolutionary algorithm. IEC is
often used in subjective domains which are hard to define
mathematically, such as in evolving two-dimensional images
(Secretan et al. 2011), three-dimensional forms (Clune and
Lipson 2011), musical compositions (Hoover et al. 2012), or
agent behaviors (González de Prado Salas and Risi 2017).
In an iterative fashion, the system presents a number of ar-
tifacts for the experimenter to evaluate; the user, in turn, re-
sponds by indicating which of these artifact(s) is preferred.
The next generation of artifacts is produced through muta-
tions and/or crossover to the underlying representation, from
which the user selects their favorite artifact(s), again forming
the basis for the next generation. While the conceptual idea
of IEC is intriguing, there are several challenges hamper-
ing the practical usefulness of the technique. Often a large
number of evaluations are needed to find the desired arti-
fact, an issue known as user fatigue. Additionally, it can be
difficult to find a particular artifact a user has in mind. Part of
the problem can be traced back to the underlying represen-
tation, i.e. the employed genotype-to-phenotype mapping,
which might thread the wrong balance between generality
and domain specificity.

Generative models
Generative models are a branch of machine learning tech-
niques, in which the objective is to generate content (LeCun,
Bengio, and Hinton 2015). They include diverse image-
related application areas such as completion, correction,
production of variations, denoising, up-scaling, etc. In the
work presented here, we employ Generative Adversarial
Networks (GANs) (Goodfellow and others 2014), which are
a class of ML algorithms that are trained in an unsupervised
way. GANs make use of two neural networks (NN) to si-
multaneously train two models: a generator G estimates the
data distribution while a discriminative model D estimates
if samples are from the training set or synthetic. During
training, the goal of G is to maximize the probability of D
misclassifying samples, like in a minimax two-player game.
Eventually, G recovers the data distribution and D becomes
unable to distinguish generated content.

Many extensions have been proposed, such as Deep
Convolutional Generative Adversarial Networks (DC-
GANs) (Radford, Metz, and Chintala 2016), a class of
Convolutional Neural Networks (CNNs); Auto-Encoder
Generative Adversarial Networks (AE-GANs) (Makhzani
et al. 2016); and Plug and Play Generative Networks
(PPGNs) (Nguyen et al. 2016). This paper employs a recent

Figure 2: Latent variable evolution results from (Bontrager
and others 2018).

extension to GANs called Progressive Growing of GANs
(pg-GAN) (Karras and others 2017), which is a training
methodology for GANs that allows generator and discrim-
inator to grow progressively: Starting with low (4 × 4) spa-
tial resolution, new layers are added as the training proceeds
to model increasingly fine details (Karras and others 2017).
This speeds up and stabilizes training, allowing the creation
of high-quality images.

In this paper, we employ a pg-GAN1 pre-trained on
the CelebFaces Attributes Dataset (Liu and others 2015),
which contains 200,000 images of celebrity faces, anno-
tated with 40 binary attributes. The dataset (or its HQ ver-
sion; Karras and others, 2017) can be used for learning
both the creation of facial images (Karras and others 2017;
Karras, Laine, and Aila 2018; Guan 2018) and assigning at-
tributes to face images (Guan 2018).

Latent Variable Evolution
The approach in this paper is based on latent variable evolu-
tion (LVE); the basic idea is shown in Figure 3. First a GAN
is trained in an unsupervised way to generate specific tar-
get content. In the second phase, the space of content can be
searched by applying evolutionary techniques to the latent
vector fed into the GAN’s generator. The first LVE approach
was introduced by Bontrager, Togelius, and Memon (2017).
In their work, the authors train a GAN on a set of real fin-
gerprint images and then apply evolutionary search to find
a latent vector that matches with as many subjects in the
dataset as possible.

In another paper Bontrager and others (2018) present an
interactive LVE system, in which users can evolve the la-
tent vectors for a GAN trained on different classes of ob-
jects such as faces or shoes (an approach also employed
by the popular Ganbreeder app (Simon 2018)). Because the
GAN is trained on a specific target domain, it becomes a
compact and robust genotype-to-phenotype mapping (i.e.
most produced phenotypes do resemble valid domain arti-

1https://github.com/tkarras/progressive growing of gans



Figure 3: Latent Variable Evolution. Starting from a pre-
trained GAN (left), the latent vector space (right) can be
searched to create images with certain properties.

facts) and users were able to guide evolution towards im-
ages that sometimes resembled given target images. Such
target-based evolution has been shown to be challenging
with other generative representations (Woolley and Stanley
2011). However, the approach introduced by Bontrager and
others (2018) does not allow to freeze discovered facial fea-
tures, which limits the amount of control the user has during
the search (Figure 2). For example, once a facial feature such
as the beard looks just right and the user would only like
to tweak the eyes, subsequent mutations to the latent vector
will likely change both of these features.

Approach: CG-GAN
CG-GAN combines GANs with interactive evolution and
additional features for fine-grained control (Figure 4).
Through IEC users are able to explore solutions and con-
trol the input (i.e. the latent vector) of a pre-trained GAN’s
generator. Similarly to previous work by Bontrager and oth-
ers (2018), this approach limits user fatigue by restricting
the search space to the learned genotype-to-phenotype of
the generator. While the approach by Bontrager and oth-
ers (2018) implements a simple interface to visualize and
select individuals, with a slider acting on the standard de-
viation of the mutation’s noise, the approach introduced in
this paper gives users fine-grained control. This advance en-
ables the evolution of accurate composite sketches and is
realized through an intuitive user interface and two essential
approach additions: feature extraction and smart locks.

Feature extraction. One challenge with GANs is the con-
trol of the output: although the synthetic content can have
remarkable quality, it depends on the random noise that is
fed into the generator. To gain precise control of individual
composite features, our approach includes a method called
Transparent Latent Space GANs (TL-GAN) (Guan 2018),
which consists in training a classifier CNN to correlate the
changes in the input space to the changes in the output. Here
facial features are measurable and representable characteris-
tics of human faces. Facial features represent the major mean
for communicating the traits recalled by eyewitnesses and
for comparing and describing differences. Moreover, such
features are essential for manually editing faces and can also
enable a more controlled evolutionary process. Indeed, fea-
tures can be interpreted as axes along which any face can
be modified, both manually or automatically, to edit specific
traits of a given face. The approach, based on TL-GAN, con-
sists in discovering feature axes in a trained generator’s la-
tent space so that a vector can move along an axes to morph

Figure 4: CG-GAN overview. The approach starts by pre-
senting the user with a selection of varied images by initially
inputting random latent vectors in a pg-GAN generator. Next
the user can evolve faces interactively, manually edit, or lock
features. The process is repeated for a number of generation,
until the desired composite is created.

an image’s feature. This is achieved by finding correlations
between noise vectors and image features, through super-
vised learning (Guan 2018). For CG-GAN, we re-created
our own models and feature axes.

Feature locks and smart locks. An issue with edit-
ing feature axes is that one change can potentially modify
other correlated features (e.g. decreasing beard makes the
face more female-like). As in TL-GAN, we disentangle fea-
tures (i.e. axis in multidimensional space) by orthogonal-
izing axes, using their projections over different directions
(Guan 2018). In other words, components that interfere with
that axis are subtracted, which creates a new axis that is
somewhat similar to the non-orthogonalized one. CG-GAN
allows users to lock features: when a feature gets locked all
the other ones are re-calculated by subtracting their projec-
tion over locked axes, thus avoiding their interference with
any of the currently locked ones. CG-GAN also introduces
smart locks to assist the user by locking sets of features
based on their correlation. In more detail, the cosine simi-
larity is computed for each pair of axes and when a feature
is smart-locked both that feature and all the ones strongly
correlated to it (here defined as exceeding a cosine simi-
larity threshold of ±0.5) are locked/unlocked. This addition
allows users to modify traits without overwriting others that
are likely to change. As an example, by smart-locking the
gender attribute, also beard, moustache, hair length, makeup
are locked, among others.



CG-GAN User Interface

+ beard, moustache,
  goatee
 - eyes size

+ beard, moustache, goatee,
  skin tone, nose size

Figure 5: Shown is an example of a user session, including
the employed user actions across generations. Given a tar-
get (Chris Hemsworth), CG-GAN was used to construct the
composite in 46 generations, taking approximately 35 min-
utes. The user employed randomization, evolution and man-
ual edits. Generations skipped between adjacent rows indi-
cate the same functionality has been used multiple times.

A session starts with nine random faces that resemble
gender and age chosen in a start-up panel (Figure 6). The
user can select images to evolve them, lock them to preserve
them, create new random faces or choose to manually edit
them. Selected images are kept and used as parents for the
next generation. Locked images are only kept unvaried. The
first free image (not locked nor selected) is replaced by the
crossover-generated offspring, which is the exact average of
the selected faces’ latent vectors. All the remaining free im-
ages are replaced with images created by mutating their un-
derlying latent vectors.

Three mutation types are available: random changes,
one unlocked feature and every unlocked features. Random
changes adds Gaussian noise to the latent generator input,
causing random changes in the faces proportionally to the
chosen amount of noise that can be adjusted using a slider.
The same applies to all other mutation types. The random

Figure 6: The main UI supports (1) randomization, (2) three
kinds of mutation, (3) to lock and unlock features, and (4) to
lock, select and manually edit faces. Next to the feature locks
are also the smart locks. Features are changed according to
the selected mutation type and a slider controller the amount
of change.

changes mutation does not differentiate what aspects of the
faces are changed. One unlocked feature and every unlocked
features act on specific traits. The user can choose fea-
tures that should or should not change. One unlocked fea-
ture changes exactly one feature by a certain amount. Ev-
ery unlocked feature changes all the unlocked features by a
lower amount, which is proportional to the desired changes
amount and inversely proportional to the number of features
that are being changed. The amount depends on a Gaussian
distribution with µ and σ defined as:

µ =
20× desired changes amount

F
σ =

µ

3
(1)

where F is set to 1 in case of one unlocked feature and
F = min(max(1, (0.8 × #unlocked features)), 8), in case
of every unlocked feature. The specific values were fine-
tuned through prior experimentation.

As an example, let’s assume all features are locked but
three: beard, hair length, hair color. One unlocked feature
will select one of them so that the output face will have ei-
ther a different beard, hair length or color. Every unlocked
feature instead will change all those by a lower amount, so
that the output has both slightly different beards, hair length,
and colors.

Advanced editing. At any time, the user can manually
edit a face, by accessing the dedicated panel. The changes
amount slider and feature locking system work analogously
to the ones in the Main panel. The additional functionality
is the possibility of acting over single feature axes, using
a - and + button. A preview is updated at each modifica-
tion and presets can be saved and loaded. The user can save



the changes to overwrite the selected individual in the Main
panel, which can be further edited or evolved.

Exporting results. When the user is satisfied with the pro-
duced results, the session can be concluded and results ex-
ported by selecting finish after having selected one or more
images. In case of multiple selections, an animation that in-
terpolates between them is created. Figure 7 shows a sprite-
sheet portion of such an animated GIF. The user can navi-
gate through the frames and export the whole animation or
any frame. In the case of our user study we create a single
image out of an animation, which is the average of all the
selected latent vectors (Figure 8).

Figure 7: Sequence of frames of an animated composite.

Figure 8: A merged session showing four composites (left)
and their merged composite (right). The merge composite is
generated by taking the average of all latent vectors.

Merging multiple witnesses’ sessions. If more witnesses
create composites, it can be useful to present a combined
composite to the public (Davis et al. 2010). CG-GAN al-
lows to load all data of a case with multiple witnesses,
and the combined composite is computed based on a sim-
ple or weighted average of the underlying latent vectors. If
weighted, composites can be assigned weights based on the
type of witness2 that created them. This feature was not ex-
tensively evaluated here but offers an exciting opportunity
for future work in composite sketch generation.

Experiments
A preliminary testing phase was performed, which aimed
at understanding how non-experts interact with the system.
The study involved a diverse group of users and allowed us
to fine-tune the interface; some results are shown in Figure 9.

For the final user test, participants were divided in two
groups: 13 constructors created composites and 55 evalu-
ators evaluated them3. Participants were recruited among
friends, family and students in order to ensure variation in
age, habits and skills.

2Witness types are defined as Active, Passive and Inactive ac-
cording to The Police Composite Sketch (Mancusi 2014).

3Names constructor and evaluator are inherited from the gold-
standard protocol for laboratory evaluation (Frowd et al. 2005).

Figure 9: Some results from a preliminary testing session.
On top are the targets, on the bottom the built composites.

Regarding the construction of the composites, recall is-
sues were avoided by letting users check the target over the
whole duration of the test session. This choice is driven by
our goal of evaluating the potential of a novel approach,
rather than evaluating a realistic usage. Indeed a realistic us-
age scenario would involve factors that could bias the evalu-
ation; it would be harder to pinpoint if a failure of the system
is due to the CG-GAN not being capable to create a compos-
ite, or to the user having difficulty in remembering the face.

Target images for the user to recreate were generated us-
ing the GAN’s generator: Latent vectors were randomized
to export four faces not containing graphical imperfections
(Figure 11). Strict rules were set on the timing: every user
had 15 minutes to try the software before starting. The ses-
sions lasted up to 30 minutes and data was collected every
10 minutes, to compare different phases of the process.

Testers filled in a survey after every test session. The ques-
tions aimed at determining which functions were used, the
level of understanding of such functions and the users’ sat-
isfaction with their result. The questionnaire, its results, a
demo and the code for the experiments in this paper can be
found at: https://github.com/LuisaZurlo/CG-GAN.

Evaluation metrics
The objective evaluation of the system is a complex task as
it depends on subjective recognition abilities (Zahradnkov,
Duchoviov, and Schreiber 2016). To overcome this issue we
use two separated evaluation metrics:

Similarity score: 27 evaluators assigned a similarity
score from 0 to 100 to each composite. We emphasized that
the score is meant to represent how likely the images are to
depict the target person.

Recognition Rate: This measure tests the real purpose of
the composites. Each tester (28 total) was given four sets of
images. Each set composed of one composite and a lineup
of five suspects (Figure 10). The users ranked the suspects
based on their similarity to the composite. Since the con-
text needs accurate predictions, we only considered the first
choice, using the ranking to calculate a recognition rate r:

r =
#Rank 1
#Votes

× 100 (2)

It is important to note the potential bias of the metric, as it
depends on the shown lineup and the user’s subjective per-
ception. To mitigate this bias, the target images (Figure 10)



were generated to look reasonably different by taking the
original GAN-generated image and producing four varia-
tions of it by adding a fixed amount of Gaussian noise to
the original latent vector. These reasonably different faces
share the majority of common traits, but are distinguishable
from each other. We discarded images that only differ based
on light, exposure, pose, or a too limited set of traits.

Figure 10: Different faces shown to users in the recognition
experiment. Each row represents a line-up, composed of a
target and four variations.

Results
Figure 11 shows the 16 composites generated by the dif-
ferent users for the four selected target samples. Scores are
shown in Figure 12. Overall the results were promising, with
10 out of 16 composites recognized by at least 50% of all
users, and 7 out of 16 composites recognized by at least 75%
of all users. The average similarity score was 47.51%.

Comparing the results directly to the previous baseline by
Bontrager and others (2018) is difficult since they did not
include any recognition test in their experiments. However,
users in their study reported a relatively low score in their
ability to reproduce a given target face (an average score of
2.2 out of 5). Also, because the users could not freeze any
features, they had to find less efficient workaround strategies
that might have lead to some frustration. Visually, the qual-
ity of the resulting faces is also less convincing (Figure 2),
while the fine-grained control of CG-GAN allowed users to
create face composites matching the target image to a higher
degree. Overall, users rated their experience with our system
with a score of 7.31 (out of 10) and reported a score of 7.18
when asked how confident they were with the different avail-
able functions in the system. Users rated the accuracy of the
resulting composite with 6.81.

Overall we noticed that after some generations users
started to find traits that, according to their perception, re-
sembled the target. Interestingly, the four targets have no-
ticeably different scores. Images resembling target 1 are in
general much more similar to the target compared to the ones
representing targets 3 and 4 (Figure 11). These results were
mirrored by the results from the questionnaire, in which
users noted that some targets are easier to recreate than oth-
ers. Very high variance on votes for the same composites

Figure 11: Target samples (left) and the relative composites
built by constructor testers (right).

proves that the similarity evaluation is very dependent on
the particular person and focuses on different facial aspects,
a factor well known from police sketching (Mancusi 2014).

Analyzing the overall similarity scores given by the users
(Figure 13) suggests that voters tended to assign scores that
were either low or high instead of following the expected
normal distribution; they are almost equally divided with the
only exception for very low values (range [0,9]). The sur-
prising trend of user-assigned scores motivated a separate
test to prove users’ consistency over time. After 72 hours,
six evaluators repeated the score assignment. Interestingly,
most votes were similar but some were completely different
(50+ difference), with an average difference of above 20.

Constructors who created the composites assigned higher
scores than evaluators in 75% of the cases, and for the
remaining 25% the difference is marginal. Since the high
scores assigned by constructors are also assigned by some
evaluators, those people possibly perceived some aspects
differently than other users. This suggests that low scores
may be due to constructors perception rather than a defi-
ciency of the system. In other words, they did not produce a
better composite because they were already satisfied. Simi-
lar cases were found while testing DeepIE, indeed authors
often disagreed with the users’ choice of the best results
(Bontrager and others 2018).

It was expected from expert users – the authors – to
achieve the best results, mirroring previous experiments in
IEC (Löwe and Risi 2016). Surprisingly, the best compos-
ites were generated by novice users, and not all of them even
familiar with using complex software (Figure 12).

Discussion and Future Work
The promising results could be improved further by training
a GAN with a more extensive and diverse training set. For
example, if no celebrities have scars, GANs will probably
not become capable of representing scars. The same applies
to any unique or not widespread feature.

Feature limitations. Additionally, obtaining feature axes
via supervised learning requires significant training data.
The lack of labeled face images prevented possible improve-



ID TARGET COMPOSITE EXPERT
USER

AVG SIMILARITY
SCORE

RECOGNITION 
RATE
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N 55.56 42.86
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Y 30.52 14.29
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N
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N 22.89 42.86
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N
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0

N 44 42.86
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A

N
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N 16.11 57.14
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A

N
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N 63.11 57.14

G
A

N
_9

_S
Z_

30

N 61.85 85.71

G
A

N
_9

_L
Z_

30

Y 37.96 42.86

AVERAGE 47.51 66.07

Figure 12: Each row shows the target image and composite
together with an indication if it was created by an expert
user. The next column shows the average similarity scores
given by the evaluators, followed by the percentage of users
that recognized the particular composite correctly.

Figure 13: Histogram showing the distribution of similarity
scores given by all users for all 16 result composites.

ments and additional axes to be learned. Some workarounds
have been attempted to bypass the problem: manual feature
research and overlays. In the first case, we tried to infer axes
via trial-and-error, with no remarkable results. The second
approach involved overlays for altering colors over specific
areas, e.g. colored ellipses over the eyes. Their downside is
the missing relation with the genotype, so the modifications
could not be translated into a latent vector change and re-
evolved.

Environmental factors. Forensic artists take into con-
sideration conditions that may affect the perception such as
lighting, location and time (Mancusi 2014). It may be useful
to train GANs on specific environment-dependent datasets,
to further improve our results.

Feature axes improvements. The CelebA (Liu and oth-
ers 2015) dataset served the purpose of learning 40 fea-
tures. However, some were marginally relevant and addi-
tional ones would be helpful. Some useful additions could
be dimensionalities of the face (width, length, distance be-
tween eyes) or its shape (oval, round, square). An interesting
improvement would be to learn feature axes from computed
measures rather than a labeled dataset, e.g. through the us-
age of facial recognition tools. Measures may include eyes
color, emotions, or pose.

Perceptual impact of external features For a similar ap-
plication, it was demonstrated that blurring external features
such as hair with Gaussian filters allows maintaining con-
text while concentrating on more important inner features
(Frowd, Bruce, and Hancock 2008). Implementing a similar
technique in the CG-GAN system would probably improve
its naming rate as for other systems.

Conclusion
The presented composite creation approach suggests the
promising involvement of generative techniques in this area.
Current composite creation systems mostly belong to two
main categories. Some rely on datasets of drawn features
that are arranged, moved and stretched to build a face (IQ
Biometrix 2003), which are not holistic and only work with
pre-defined features. Others evolve parameters to be used
by mathematical functions to create a face (Zahradnkov,
Duchoviov, and Schreiber 2016; Frowd, Hancock, and Car-
son 2004; George et al. 2008) but can only create traits
that these functions are designed for through expert knowl-
edge. CG-GAN, on the other hand, learns to generate whole
faces rather than assembling them from sets of components
or mathematical rules. Expert knowledge is not necessary



and high-quality colored animated composites are produced
by directly learning from pictures. Our results suggest that
even inexpert users can produce good composites in a lim-
ited time. Most issues appear promisingly simple to solve,
granting a likely accuracy improvement. The applied pre-
trained generator network is used as is, however it could be
re-trained on a more diverse database or different domains.
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