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Abstract
System families (Software Product Lines) are becoming omnipresent in appli-
cation areas ranging from embedded system domains to system-level software
and communication protocols. Software Product Line methods and architec-
tures allow effective building many custom variants of a software system in
these domains. In many of the applications, their rigorous verification and
quality assurance are of paramount importance. Lifted model checking for sys-
tem families is capable of verifying all their variants simultaneously in a single
run by exploiting the similarities between the variants. The computational
cost of lifted model checking still greatly depends on the number of variants
(the size of configuration space), which is often huge. Variability abstractions
have successfully addressed this configuration space explosion problem, giving
rise to smaller abstract variability models with fewer abstract configurations.
Abstract variability models are given as modal transition systems, which con-
tain may (over-approximating) and must (under-approximating) transitions.
Thus, they preserve both universal and existential CTL properties.

In this work, we bring two main contributions. First, we define a novel
game-based approach for variability-specific abstraction and refinement for
lifted model checking of the full CTL, interpreted over 3-valued semantics.
We propose a direct algorithm for solving a 3-valued (abstract) lifted model
checking game. In case the result of model checking an abstract variability
model is indefinite, we suggest a new notion of refinement, which eliminates
indefinite results. This provides an iterative incremental variability-specific
abstraction and refinement framework, where refinement is applied only
where indefinite results exist and definite results from previous iterations
are reused. Second, we propose a new generalized definition of abstract
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variability models, given as so-called generalized modal transition systems, by
introducing the notion of (must) hyper-transitions. This results in more precise
abstract models in which more CTL formulae can be proved or disproved.
We integrate the newly defined generalized abstract variability models in
the existing abstraction-refinement framework for game-based lifted model
checking of CTL. Finally, we evaluate the practicality of this approach on
several system families.
Keywords: Lifted Model Checking, Game-based Model Checking, Variability
Abstractions, Automatic Abstraction Refinement

1. Introduction

The strong trend for customization in modern economy leads to construction
of many system families. Software Product Line Engineering (SPLE) [1, 2]
represents an efficient method to achieve customization of systems by designing
families of related systems, known as variants or family members, from a
common code base. Each variant is specified in terms of features (static
configuration options) selected for that particular variant. The reuse of code
common to multiple variants is maximized. SPLs are particularly popular
among the embedded and critical systems (e.g. cars, phones, avionics) [3].

Lifted model checking is an efficient approach for verifying temporal
properties of system families. Variability models of system families (SPLs) are
given as featured transition systems (FTSs) [4, 5], which represent a widely
accepted formalism for specifying the behaviour of all variants of an SPL in a
single compact model. Each behaviour in an FTS is associated with the set of
variants able to produce it. Given an FTS and a property, a specialized lifted
model checking algorithm verifies all variants simultaneously in a single run,
and returns precise conclusive results for all individual variants. However,
the computational cost of lifted model checking still depends on the number
of variants (configurations), which is exponential in the number of features.
This is referred as configuration space explosion problem.

One of the most successful approaches to fighting the configuration space
explosion are so-called variability abstractions [6, 7, 8, 9, 10]. They hide
some of the configuration details, so that many of the concrete configurations
become indistinguishable and can be collapsed into a single abstract config-
uration (variant). This results in smaller abstract variability models with
fewer abstract configurations. However, the over-approximating variability
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abstractions introduced in [6, 7, 8] support only the verification of universal
LTL properties. CTL [11] is an important branching temporal logic that
allows the expression of both universal and existential properties. More
importantly, it is a logic for which efficient model checking algorithms exist.
Therefore, it is important to devise a technique for efficient lifted model
checking of CTL properties. In order to be conservative with respect to the
full CTL temporal logic, the abstractions of variability models are given as
modal transition systems (MTSs) [9, 10]. They have two types of transitions:
may-transitions which represent possible transitions in the concrete (FTS)
variability model (they occur in some variants), and must-transitions which
represent the definite transitions in the concrete (FTS) variability model (they
occur in all variants). May- and must-transitions correspond to over- and
under-approximations, and are needed in order to preserve universal and exis-
tential CTL properties, respectively. We consider here the 3-valued semantics
for interpreting CTL formulae over abstract variability models (MTSs). This
semantics evaluates a formula on an abstract model to either true, false, or
indefinite. Abstract variability models are designed to be conservative for
both true and false. However, the indefinite answer gives no information on
the value of the formula on the concrete model. In this case, a refinement is
needed in order to make the abstract models more precise.

In this work, we propose the first variability-specific abstraction-refinement
procedure for automatically verifying arbitrary formulae of CTL. To achieve
this aim, model checking games [12, 13, 14] represent the most suitable
framework for defining the refinement. In this way, we establish a brand new
connection between games and lifted (SPL) model checking. The refinement
is defined by finding the reason for the indefinite result of an algorithm that
solves the corresponding model checking game, which is played by two players:
Player ∀ and Player ∃. The goal of Player ∀ is either to refute the formula Φ on
an abstract modelM or to prevent Player∃ from verifying it. Similarly, the
goal of Player ∃ is either to verify Φ onM or to prevent Player∀ from refuting
it. The game is played on a game board, which consists of configurations of the
form (s,Φ′) where s is a state of the abstract modelM and Φ′ is a subformula
of Φ, such that the value of Φ′ in s is relevant for determining the final model
checking result. The players make moves between configurations in which they
try to verify or refute Φ′ in s. All possible plays of a game are captured in a
game-graph, whose nodes are the elements of the game board and whose edges
are the possible moves of the players. The model checking game is solved via a
coloring algorithm which colors each node (s,Φ′) in the game-graph by T , F ,
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or ? iff the value of Φ′ in s is true, false, or indefinite iff the winning strategy
at (s,Φ′) has Player ∀, Player ∃, or none of the players, respectively. In case
the initial node is colored by ?, the game results in a tie with an indefinite
answer, and we want to refine the abstract model. We can find the reason
for the tie by examining the part of the game-graph which has indefinite
results. We choose a refinement criterion, which splits abstract configurations
so that the new, refined abstract configurations represent smaller subsets of
concrete configurations. The game-based model checking algorithm is then
used to evaluate the new, refined abstract models, which correspond to the
refined abstract configurations. The refinement is applied only to parts of the
game-graph from which a tie is possible. Nodes from which there is a winning
strategy for one of the players are not changed. Thus, the game-graph of
refined abstract models do not grow unnecessarily.

Moreover, in this work we also generalize the definition of abstract variabil-
ity models [15], so that we obtain more precise abstract models in which more
CTL formulae can be proved or disproved. Hence, there are less CTL formulae
with indefinite answers. Inspired by Shoham and Grumberg [16] and Larsen
and Liu [17], we define an abstract variability model as a generalized MTS
(GMTS) in which must-transitions are replaced by must hyper-transitions,
which connect a single state s to a set of states A. A GMTS contains a must
hyper-transition s −→ A, iff for valid variants, there exists a state s′ ∈ A
such that s −→ s′ is a transition in that variant. This weakens the standard
(under-approximating) condition for must-transitions (they occur in all vari-
ants) by allowing the resulting state to be “splitted” in several states (from
a set A). In effect, we obtain a more precise abstract model in which more
CTL formulae have a definite result (true or false). We suggest an automatic
construction of an initial GMTS and its successive refined abstract models.
We adjust for GMTSs the game-based model checking algorithm [13, 14, 15]
for checking CTL formulae with 3-valued semantics. If the model checking
results in an indefinite value, we find a reason for this result and derive from
it how to do the refinement. In this way, we obtain an automatic generalized
abstraction-refinement framework that is suitable for both verification and
falsification of CTL properties on system families (SPLs).

Finally, we experimentally compare the performances of three approaches
for verifying CTL properties of several system families: (1) the generalized
abstraction-refinement approach; (2) the regular abstraction-refinement ap-
proach (with no hyper-transitions); and (3) the standard CTL lifted model
checking algorithm (used as a baseline) [18], which uses no abstraction and is
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based on an extended version of NuSMV model checker that is specifically
tailored for handling system families.

Let us summarize the contributions of this paper:

• An automatic abstraction-refinement procedure for CTL lifted model
checking, which relies on game-based model checking algorithm as well
as partitioning and abstracting the variability model until a point when
precise conclusive results are found for all variants.

• A proof of correctness and termination of the above procedure when
applied to variability models with finite configuration spaces.

• A generalized definition of abstract variability models by introducing
the notion of must hyper-transitions.

• An automatic generalized abstraction-refinement procedure for CTL lifted
model checking, which uses generalized abstract variability models.

• Experimental evaluation of the above abstraction-refinement procedures
for CTL lifted model checking, which shows scalability gains against
the traditional unabstracted CTL lifted model checking based on an
extended version of NuSMV model checker [18].

• Extension of the above abstraction-refinement procedures to handle
µ-calculus properties.

This work is an extended and revised version of [15]. We make the following
extensions here: (1) We generalize the definition of abstract variability mod-
els, thus obtaining more precise abstract models; (2) We integrate the newly
defined generalized abstract variability models into an abstraction-refinement
procedure for CTL lifted model checking; (3) We provide additional expla-
nations and formal proofs for all main results in the work, the old and new
alike; (4) We expand and elaborate the examples as well as the discussion on
how this approach works; (5) We expand the evaluation of this approach by
implementing the new generalized abstraction-refinement procedure, consider-
ing more properties, and extending the performance results; (6) We show how
our abstraction-refinement procedure can be extended to handle µ-calculus.

The paper is organized as follows. The basics of CTL lifted model checking
as well as CTL abstract lifted model checking are explained in Section 2.
In Section 3 we define the game-based CTL abstract lifted model checking,
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while in Section 4 we integrate this algorithm into an abstraction-refinement
framework by defining a suitable notion of refinement. In Section 5 we
define the generalized abstract variability models, while in Section 6 we
integrate them into a generalized abstraction-refinement framework. The
implementation and evaluation are presented in Section 7. We extend our
approach with µ-calculus properties in Section 8. Finally, we discuss the
related work and conclude.

2. Background

In this section, we present the background for variability models used to
represent system families, for their abstractions, and for semantics of CTL.

2.1. System Families
Definition. Let F = {A1, . . . , An} be a finite set of Boolean variables repre-
senting the features available in a system family. A specific subset of features,
k ⊆ F, known as configuration, specifies a variant of a system family. We
assume that only a subset K ⊆ 2F of configurations are valid. An alternative
representation of configurations is based upon propositional formulae. Each
configuration k ∈ K can be represented by a formula: k(A1) ∧ . . . ∧ k(An),
where k(Ai) = Ai if Ai ∈ k, and k(Ai) = ¬Ai if Ai /∈ k for 1 ≤ i ≤ n. We
will use both representations interchangeably.

We use transition systems (TS) to describe behaviors of single systems.
A transition system is a tuple T = (S, I, trans, AP, L), where S is a set of
states; I ⊆ S is a set of initial states; trans ⊆ S × S is a transition relation
which is total, so that for each state there is an outgoing transition; AP
is a set of atomic propositions; and L : S → 2AP is a labelling function
specifying which atomic propositions hold in a state. We write s1 −→ s2
whenever (s1, s2) ∈ trans. A path (behaviour) of a TS T is an infinite sequence
ρ = s0s1s2 . . . with s0 ∈ I such that si −→ si+1 for all i ≥ 0. The semantics
of the TS T , denoted as [[T ]]TS, is the set of its paths.

A featured transition system (FTS) represents a compact model, which
describes the behavior of a whole family of systems in a single monolithic
description. Their transitions are guarded by a presence condition that
identifies the variants they belong to. The presence conditions ψ are drawn
from the set of feature expressions, FeatExp(F), which are propositional logic
formulae over F:

ψ ::= true | A ∈ F | ¬ψ | ψ1 ∧ ψ2
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We write [[ψ]] for the set of configurations that satisfy ψ, i.e. k ∈ [[ψ]] iff k |= ψ.
A featured transition system (FTS) is a tuple F=(S,I,trans, AP, L,F,K, δ),

where (S, I, trans, AP, L) form a TS; F is a set of available features; K is a
set of valid configurations; and δ : trans→ FeatExp(F) is a total function
decorating transitions with presence conditions (feature expressions). The
projection of an FTS F to a configuration k ∈ K, denoted as πk(F), is the
TS (S, I, trans′, AP, L), where trans′ = {t ∈ trans | k |= δ(t)}. We lift the
definition of projection to sets of configurations K′⊆K, denoted as πK′(F), by
keeping the transitions admitted by at least one of the configurations in K′.
That is, πK′(F), is the FTS (S, I, trans′, AP, L,F,K′, δ′), where trans′ = {t ∈
trans | ∃k ∈ K′.k |= δ(t)} and δ′ = δ|trans′ is the restriction of δ to trans′. The
semantics of an FTS F , denoted as [[F ]]FTS, is the union of paths (behaviours)
of the projections on all valid variants k ∈ K, i.e. [[F ]]FTS = ∪k∈K[[πk(F)]]TS.
Moreover, we have [[πK′(F)]]FTS = ∪k∈K′ [[πk(F)]]TS.

Example 1. Throughout this paper, we will use a beverage vending machine
as a running example [4]. Figure 1 shows the FTS F1, which has two features
and each of them is assigned an identifying letter and a color. The features
are: CancelPurchase (c, in brown), for canceling a purchase after a coin is
entered; and FreeDrinks (f , in blue) for offering free drinks. Each transition
is labeled by a feature expression. For instance, the transition s0

f−→ s2 is
included in variants where the feature f is enabled. For clarity, we omit to write
the presence condition true in transitions. There are two atomic propositions
a, r ∈ AP , such that a, r ∈ L(s2) and r ∈ L(s1), whereas a, r 6∈ L(s0). Note
that proposition r holds in states where a purchase is ordered in the machine,
whereas proposition a holds in states where a drink is served by the machine.

By combining various features, a number of variants of F1 can be obtained.
The set of valid configurations is: K1 ={∅, {c}, {f}, {c, f}} (or, equivalently
K1 ={¬c ∧¬f, c ∧¬f,¬c ∧f, c ∧f}). Figure 2 shows a basic version of F1,
described by the configuration: ∅ (or, as formula ¬c ∧¬f). This machine
takes a coin, serves a drink, and then waits for another order again.

CTL Properties. For specifying system properties, we consider the logic
CTL (e.g., see [11, 19, 10]). CTL state formulae Φ are defined by:

Φ ::= true | false | l | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | Aφ | Eφ
φ ::=©Φ | Φ1UΦ2 | Φ1VΦ2

where l ∈ Lit = AP ∪ {¬a | a ∈ AP} and φ is a CTL path formulae. The
path formula©Φ can be read as “from the next state Φ”, Φ1UΦ2 can be read
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as “Φ1 until Φ2”, whereas Φ1VΦ2 can be read as “Φ2 while not Φ1” (where
Φ1 may never hold).

Note that CTL state formulae Φ are given in negation normal form (¬
is applied only to atomic propositions). This facilitates the definition of
universal and existential subsets of CTL in which the only allowed path
quantifiers are A (always) and E (exists), respectively. Given Φ ∈ CTL, we
consider ¬Φ to be the equivalent CTL formula given in negation normal form.
To ensure that every CTL formula is equivalent to a formula in negation
normal form, for each operator the corresponding dual operator is necessary.
We have that ∧ and ∨ are dual, © is dual to itself, U and V are dual. For
example, we have the duality law: ¬∀© Φ ≡ ∃©¬Φ.

The concrete semantics of CTL over TSs is standard [19, 10]. We write
[T , s |= Φ] = tt (resp.,ff) to denote that the CTL state formula Φ is true
(resp., false) in the state s of T , whereas [T , ρ |= φ] = tt (resp.,ff) has the
same meaning for the CTL path formula φ over the path ρ of T . [T , s |= Φ]
is defined as:

(1) [T , s |= a] = tt iff a ∈ L(s), [T , s |= ¬a] = tt iff a 6∈ L(s)

(2) [T , s |= Φ1 ∧ Φ2] = tt iff [T , s |= Φ1] = tt and [T , s |= Φ2] = tt,
[T , s |= Φ1 ∨ Φ2] = tt iff [T , s |= Φ1] = tt or [T , s |= Φ2] = tt

(3) [T , s |= Aφ] = tt iff ∀ρ ∈ [[T ]]sTS. [T , ρ |= φ] = tt;
[T , s |= Eφ] = tt iff ∃ρ ∈ [[T ]]sTS. [T , ρ |= φ] = tt

where [[T ]]sTS denotes the set of all paths starting in state s. [T , ρ |= φ] is:

(4) [T , ρ |=©Φ] = tt iff [T , ρ1 |= Φ],
[T , ρ |= (Φ1UΦ2)] = tt iff ∃i≥0.

(
[T , ρi |= Φ2] = tt∧ (∀0≤j<i. [T , ρj |=

Φ1] = tt)
)
,

[T , ρ |= (Φ1VΦ2)] = tt iff ∀i ≥ 0.
(
∀0 ≤ j < i. [T , ρj |= Φ1] = ff =⇒

[T , ρi |= Φ2] = tt
)

where ρi = si denotes the i-th state of the path ρ = s0s1s2 . . ..
We say that T satisfies a CTL formula Φ, denoted [T |= Φ] = tt, iff

∀s0 ∈ I.[T , s0 |= Φ] = tt. Otherwise, T refutes Φ, denoted [T |= Φ] = ff.
We say that an FTS F satisfies a CTL formula Φ, written [F |= Φ] = tt,

iff all its valid variants satisfy the formula, i.e. ∀k ∈ K. [πk(F) |= Φ] = tt.
Otherwise, we say F does not satisfy Φ, written [F |= Φ] = ff. In this case,
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Figure 1: FTS F1.
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Figure 2: TS π¬c∧¬f (F1)
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Figure 3: MTS αjoin(F1)

we also want to determine the non-empty set of violating variants K′ ⊆ K,
such that ∀k′∈K′. [πk′(F) |= Φ] = ff and ∀k∈K\K′. [πk(F) |= Φ] = tt.

Example 2. Recall FTS F1 from Fig. 1. Consider the property Φ1 =
A(¬aUa), which states that from the initial state, every path will eventu-
ally reach the state where a holds. Note that [F1 |= Φ1] = ff. E.g., if feature c
is enabled and f is disabled, a counter-example where the state s2 that satisfies
a is never reached is: s0 → s1 → s0 → . . .. However, [π[[¬c∨f ]](F1) |= Φ1] = tt.

Consider the property Φ2 = E(¬rUr), which describes a situation where
in the initial state there exists a path that will eventually reach s1 or s2 that
satisfy r. Note that [F1 |= Φ2] = tt, since for all variants there is a path from
the state s0 to either s1 or s2.

2.2. Abstraction
Definition. We use modal transition systems (MTSs) [20] to represent ab-
stract variability models of FTSs that preserve full CTL. A modal transition
system is a tuple M = (S, I, transmay, transmust, AP, L), where transmay ⊆
S × S describes may transitions ofM; and transmust ⊆ S × S describes must
transitions ofM, such that transmay is total and transmust ⊆ transmay. The
intuition behind the inclusion transmust ⊆ transmay is that transitions that
are necessarily true (transmust) are also possibly true (transmay). A may-path
inM is a path with all its transitions in transmay; whereas a must-path inM
is a maximal sequence with all its transitions in transmust, which cannot be
extended with any other transition from transmust. Note that since transmust

is not necessarily total, must-paths can be finite. We use [[M]]may
MTS (resp.,

[[M]]must
MTS) to denote the set of all may-paths (resp., must-paths) inM.

CTL Properties. We define the 3-valued semantics of CTL over an MTSs
M [21] slightly differently from the 2-valued semantics for TSs. We define
[M, s |=3 Φ] for CTL state formulae Φ, and similarly [M, ρ |=3 φ] for CTL
path formulae φ. Intuitively, we examine the truth of a formula of the form
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Aφ along all may-paths, whereas its falsity is shown by a single must path.
On the other hand, for a formula of the form Eφ the opposite is done: its
truth is shown by a single must-path, whereas its falsity along all may-paths.
More formally, we have (M is omitted when clear from context):

(1) [s |=3 a] =

tt, if a ∈ L(s)
ff, if a 6∈ L(s)

, [s |=3 ¬a] =

tt, if a 6∈ L(s)
ff, if a ∈ L(s)

(2) [s |=3 Φ1 ∧ Φ2] =


tt, if [s |=3 Φ1]= tt ∧ [s |=3 Φ2]= tt
ff, if [s |=3 Φ1]=ff ∨ [s |=3 Φ2]=ff
⊥, otherwise

(3) [s |=3 Aφ] =


tt, if ∀ρ ∈ [[M]]may,s

MTS . [ρ |=3 φ] = tt
ff, if ∃ρ ∈ [[M]]must,s

MTS . [ρ |=3 φ] = ff
⊥, otherwise

[s |=3 Eφ] =


tt, if ∃ρ ∈ [[M]]must,s

MTS . [ρ |=3 φ] = tt
ff, if ∀ρ ∈ [[M]]may,s

MTS . [ρ |=3 φ] = ff
⊥, otherwise

(4) [ρ |=3 ©Φ] =

[ρ1 |=3 Φ], if |ρ| > 1
⊥, otherwise

[ρ |=3 (Φ1UΦ2)]=



tt, if ∃i≤|ρ|.
(
[ρi |=3 Φ2]= tt∧(∀j<i.[ρj |=3 Φ1]= tt)

)
ff, if

∀i≤|ρ|.
(
∀j<i.[ρj |=3 Φ1] 6=ff⇒ [ρi |=3 Φ2]=ff

)
∧ ∀i≥0.[ρi |=3 Φ1] 6=ff⇒|ρ| =∞

⊥, otherwise

[ρ |=3 (Φ1VΦ2)]=


tt, if

∀0≤ i≤|ρ|.
(
∀j<i.[ρj |=3 Φ1] 6= tt=⇒ [ρi |=3 Φ2]= tt

)
∧ ∀i≥0.[ρi |=3 Φ1] 6= tt =⇒ |ρ| =∞

ff, if ∃i≥0.
(
[ρi |=3 Φ2] = ff ∧ (∀j<i. [ρj |=3 Φ1] = ff)

)
⊥, otherwise

where [[M]]may,s
MTS (resp., [[M]]must,s

MTS ) denotes the set of all may-paths (must-
paths) starting in the state s, and |ρ| denotes the length of ρ.

10



Construction of an Abstract Model. We start working with Galois
connections [22, 7, 9] between Boolean complete lattices of feature expressions,
and then induce a notion of abstraction of FTSs. The Boolean complete lattice
of feature expressions (propositional formulae over F) is: (FeatExp(F)/≡, |=
,∨,∧, true, false,¬), where the elements of the domain FeatExp(F)/≡ are
equivalence classes of propositional formulae ψ ∈ FeatExp(F) obtained by
quotienting by the semantic equivalence ≡.

The (over-approximating) join abstraction, αjoin, replaces each feature
expression ψ with true if there exists at least one configuration from K that
satisfies ψ. The abstract set of features is empty: αjoin(F) = ∅, and abstract
set of configurations is a singleton: αjoin(K) = {true}. The abstraction and
concretization functions between FeatExp(F) and FeatExp(∅) are:

αjoin(ψ)=

true if ∃k ∈ K.k |= ψ

false otherwise
γjoin(ψ)=

true if ψ is true∨
k∈2F\K k if ψ is false

which form a Galois connection [7]. In this way, we obtain a single abstract
model (variant) that includes all transitions occurring in some concrete
variants. The information about which transitions are associated with which
variants is lost, thus causing a precision loss in the abstract model.

The (under-approximating) dual join abstraction, α̃join, replaces each
feature expression ψ with true if all configurations from K satisfy ψ. The
abstraction and concretization functions between FeatExp(F) and FeatExp(∅),
forming a Galois connection [9], are defined as follows [22]: α̃join = ¬◦αjoin◦¬
and γ̃join = ¬ ◦ γjoin ◦ ¬, so:

α̃join(ψ) =

true if ∀k ∈ K.k |= ψ

false otherwise
γ̃join(ψ)=


∧
k∈2F\K(¬k) if ψ is true

false if ψ is false

In this way, we obtain a single abstract model (variant) that includes only
those transitions that occur in all concrete variants.

Given the FTS F = (S, I, trans, AP, L,F,K, δ), we define MTS αjoin(F) =
(S, I, transmay, transmust, AP, L) to be its abstraction, where transmay = {t ∈
trans | αjoin(δ(t))= true}, transmust ={t∈ trans | α̃join(δ(t))= true}. Note that
may transitions describe the behaviour that is possible in some variant of the
concrete FTS F , but not need be realized in the other variants; whereas must
transitions describe behaviour that has to be present in all variants of F .
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Example 3. Recall FTS F1 of Fig. 1. Figure 3 shows the MTS αjoin(F1),
where must-transitions are denoted by solid lines, while may-transitions by
dashed lines. The allowed (may) part of the behavior of αjoin(F1) includes
transitions that are associated with the optional features c and f in F1, and
the required (must) part includes transitions with presence condition true.

The 3-valued CTL semantics of MTS αjoin(F) is sound in the sense that
it preserves both satisfaction (tt) and refutation (ff) of a formula from the
abstract model αjoin(F) to the concrete one F . However, if the truth value of
a formula in the abstract model is ⊥, then its value over the concrete model
is not known. We use Lemma 4 from [9] to prove soundness (Theorem 5).

Lemma 4 ([9]). (i) Let k ∈ K and ρ ∈ [[πk(F)]]TS. Then, ρ ∈ [[αjoin(F)]]may
MTS.

(ii) Let ρ ∈ [[αjoin(F)]]must
MTS. Then, ρ ∈ [[πk(F)]]TS for all k ∈ K.

Theorem 5 (Preservation results). For every Φ ∈ CTL, we have:

(1) [αjoin(F) |=3 Φ]= tt =⇒ [F |= Φ]= tt, and ∀k ∈ K.[πk(F) |= Φ]= tt.

(2) [αjoin(F) |=3 Φ]=ff =⇒ [F |= Φ]=ff, and ∀k ∈ K.[πk(F) |= Φ]=ff.

Proof. By induction on the structure of Φ. All cases except A and E quanti-
fiers are straightforward.
Consider (1): [αjoin(F) |=3 Φ] = tt =⇒ [F |= Φ] = tt.

Case Φ = Aφ. To prove (1), we proceed by contraposition. Assume
that [F |= Aφ] 6= tt. Then, there exists a configuration k ∈ K and a path
ρ ∈ [[πk(F)]]TS, such that [πk(F), ρ |= φ] 6= tt, i.e. [πk(F), ρ |= ¬φ] = tt. By
Lemma 4(i), we have that ρ ∈ [[αjoin(F)]]may

MTS. Thus, [αjoin(F), ρ |=3 φ] 6= tt,
and so [αjoin(F) |=3 Aφ] 6= tt by definition.

Case Φ = Eφ. To prove (1), we assume [αjoin(F) |=3 Eφ] = tt. This
means that there exists a path ρ ∈ [[αjoin(F)]]must

MTS such that [αjoin(F), ρ |=3

φ] = tt. By Lemma 4(ii), we have that for all k ∈ K, it holds ρ ∈ [[πk(F)]]TS.
Therefore, [πk(F) |= Eφ] = tt for all k ∈ K, and so [F |= Eφ] = tt.

Consider (2): [αjoin(F) |=3 Φ] = ff =⇒ [F |= Φ] = ff.
Case Φ = Aφ. To prove (2), we assume [αjoin(F) |=3 Aφ] = ff. This

means that there exists a path ρ ∈ [[αjoin(F)]]must
MTS such that [αjoin(F), ρ |=3

φ] = ff. By Lemma 4(ii), we have that for all k ∈ K, it holds ρ ∈ [[πk(F)]]TS.
Therefore, [πk(F) |= Aφ] = ff for all k ∈ K, and so [F |= Aφ] = ff.
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Case Φ = Eφ. To prove (2), we proceed by contraposition. Assume
that [F |= Eφ] 6= ff. Then, there exists a configuration k ∈ K and a path
ρ ∈ [[πk(F)]]TS, such that [πk(F), ρ |= φ] 6= ff, i.e. [πk(F), ρ |= φ] = tt. By
Lemma 4(i), we have that ρ ∈ [[αjoin(F)]]may

MTS. Thus, [αjoin(F), ρ |=3 φ] 6= ff,
and so [αjoin(F) |=3 Eφ] 6= ff by definition.

The problem of evaluating [F |= Φ] can be reduced to a number of
smaller problems by partitioning the configuration space K. Let the subsets
K1,K2, . . . ,Kn form a partition of K. Then, [F |= Φ]= tt iff [πKi(F) |= Φ]= tt
for all i = 1,. . ., n. Also, [F |= Φ]=ff iff [πKj(F) |= Φ]=ff for some 1 ≤j≤ n.

Corollary 6. Let K1,K2, . . . ,Kn form a partition of K.

(1) If [αjoin(πK1(F)) |= Φ] = tt ∧ . . . ∧ [αjoin(πKn(F)) |= Φ] = tt, then
[F |= Φ]= tt.

(2) If [αjoin(πKj(F)) |= Φ] = ff for some 1 ≤ j ≤ n, then [F |= Φ] = ff.
Moreover, it holds [πk(F) |= Φ]=ff for all k ∈ Kj.

Example 7. Recall FTS F1 of Fig. 1 and MTS αjoin(F1) of Fig. 3. Consider
the properties Φ1 = A(¬aUa) and Φ2 = E(¬rUr) introduced in Example 2.
We have [αjoin(F1) |=3 Φ1] = ⊥, since (1) there is a may-path in αjoin(F1)
where s2 is never reached: s0 → s1 → s0 → . . ., and (2) there is no must-path
that violates Φ1. We also have [αjoin(F1) |=3 Φ2] = ⊥, since (1) there is
no must-path in αjoin(F1) that reaches s2 or s1 from s0, and (2) there is a
may-path that satisfies Φ2. So we cannot conclude whether Φ1 and Φ2 are
satisfied or not by F1, using the abstract model αjoin(F1).

In summary, abstract variability models are conservative for definite (tt
and ff ) verdicts. Whenever an “indefinite” (⊥) verdict occurs as in Example 7,
a refinement is needed to make abstract models more precise until a definite
verdict is obtained. In the following sections we will define such refinement.

3. Abstract lifted model checking

The 3-valued model checking game on an MTS M with state set S, a
state s ∈ S, and a CTL formula Φ, as introduced in [13, 14], is played by
Player ∀ and Player ∃ in order to evaluate Φ in the state s ofM. The goal
of Player ∀ is either to refute Φ onM or to prevent Player ∃ from verifying
it. The goal of Player ∃ is either to verify Φ onM or to prevent Player ∀
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from refuting it. The game is played on a game board, which is the Cartesian
product S×sub(Φ) of the sets of states S and subformulae of Φ, where sub(Φ)
is defined as:

if Φ∈{true, false, l}, then sub(Φ)={Φ};
if Φ∈{Æ©Φ1}, then sub(Φ)={Φ}∪sub(Φ1)
if Φ∈{Φ1∧Φ2,Φ1∨Φ2}, then sub(Φ) = {Φ}∪sub(Φ1)∪sub(Φ2)
if Φ∈{Æ(Φ1UΦ2),Æ(Φ1VΦ2)}, then sub(Φ) = exp(Φ) ∪ sub(Φ1) ∪ sub(Φ2)

where Æ ranges over both A and E. As a result of expansion equivalence laws
[19]: Æ(Φ1UΦ2) ≡ Φ2 ∨ (Φ1 ∧Æ© Φ) and Æ(Φ1VΦ2) ≡ Φ2 ∧ (Φ1 ∨Æ© Φ),
the expansion exp(Φ) is defined as: if Φ = Æ(Φ1UΦ2), then exp(Φ) =
{Φ,Φ2 ∨ (Φ1 ∧ Æ © Φ),Φ1 ∧ Æ © Φ,Æ © Φ}; if Φ = Æ(Φ1VΦ2), then
exp(Φ) = {Φ,Φ2 ∧ (Φ1 ∨Æ© Φ),Φ1 ∨Æ© Φ,Æ© Φ}.

We can define formally any play of a game using the notion of a configura-
tion. Intuitively, a configuration contains a complete description of the current
state of a play, and it is given as an element of the game board S × sub(Φ).
A single play from a configuration (s,Φ) is a possibly infinite sequence of con-
figurations C0 →p0 C1 →p1 C2 →p2 . . ., where C0 = (s,Φ), Ci ∈ S × sub(Φ),
pi ∈ {Player ∀,Player ∃}. The subformula in Ci determines which player pi
makes the next move. The possible moves at each configuration are:

(1) Ci = (s, false), Ci = (s, true), Ci = (s, l): the play is finished. Such
configurations are called terminal.

(2) if Ci = (s, A© Φ), Player ∀ chooses a must-transition s −→ s′ (for
refutation) or a may-transition s −→ s′ ofM (to prevent satisfaction),
and Ci+1 =(s′,Φ).

(3) if Ci = (s, E © Φ), Player ∃ chooses a must-transition s −→ s′ (for
satisfaction) or a may-transition s −→ s′ ofM (to prevent refutation),
and Ci+1 =(s′,Φ).

(4) if Ci = (s,Φ1 ∧ Φ2), then Player ∀ chooses j ∈ {1, 2} and Ci+1 = (s,Φj).

(5) if Ci = (s,Φ1 ∨ Φ2), then Player ∃ chooses j ∈ {1, 2} and Ci+1 = (s,Φj).

(6),(7) if Ci = (s,Æ(Φ1UΦ2)), then Ci+1 = (s,Φ2 ∨ (Φ1 ∧Æ©Æ(Φ1UΦ2))).

(8),(9) if Ci = (s,Æ(Φ1VΦ2)), then Ci+1 = (s,Φ2 ∧ (Φ1 ∨Æ©Æ(Φ1VΦ2))).
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The moves (6)− (9) are deterministic, thus any player can make them.
A play is a maximal play if it is infinite or ends in a terminal configuration.

A play is infinite [12] if there is exactly one subformula of the form AU, AV,
EU, or EV that occurs infinitely often in the play. Such a subformula is called
a witness. We have the following winning criteria:

• Player ∀ wins a (maximal) play iff in each configuration of the form
Ci = (s, A©Φ), Player ∀ chooses a move based on must-transitions and
one of the following holds: (1) the play is finite and ends in a terminal
configuration of the form Ci = (s, false) or Ci = (s, a) where a 6∈ L(s)
or Ci = (s,¬a) where a ∈ L(s); (2) the play is infinite and the witness
is of the form AU or EU.

• Player ∃ wins a (maximal) play iff in each configuration of the form
Ci = (s, E©Φ), Player ∃ chooses a move based on must-transitions and
one of the following holds: (1) the play is finite and ends in a terminal
configuration of the form Ci = (s, true) or Ci = (s, a) where a ∈ L(s)
or Ci = (s,¬a) where a 6∈ L(s); (2) the play is infinite and the witness
is of the form AV or EV.

• Otherwise, the play ends in a tie.

A (memoryless) strategy is a set of rules for a player, telling the player
which move to choose in the current configuration. A winning strategy from
(s,Φ) is a set of rules allowing the player to win every play that starts at
(s,Φ) if he plays by the rules. It was shown [13, 14] that the model checking
problem of evaluating [M, s |=3 Φ] can be reduced to the problem of finding
which player has a winning strategy from (s,Φ).

The algorithm for solving the given 3-valued model checking game [13, 14]
consists of two parts. First, it constructs a game-graph, then it runs an
algorithm for coloring the game-graph. The game-graph is GM×Φ = (N,E)
where N ⊆ S × sub(Φ) is the set of nodes and E ⊆ N × N is the set of
edges. N contains a node for each configuration that was reached during the
construction of the game-graph that starts from initial configurations I×{Φ}
in a BFS manner, and E contains an edge for each possible move that was
applied. The nodes of the game-graph can be classified as: terminal nodes,
∧-nodes, ∨-nodes, A©-nodes, and E©-nodes. Similarly, the edges can be
classified as: progress edges, which originate in A© or E© nodes and reflect
real transitions of the MTSM; and auxiliary edges, which are all other edges.
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We distinguish two types of progress edges, two types of children, and two
types of SCCs (Strongly Connected Components) 1. Must-edges (may-edges)
are progress edges based on must-transitions (may-transitions) of MTSs. A
node n′ is a must-child (may-child) of the node n if there exists a must-edge
(may-edge) (n, n′). A must-SCC (may-SCC ) is an SCC in which all progress
edges are must-edges (may-edges).

Example 8. The game-graph for MTS αjoin(F1) and Φ1 = A(¬aUa) is
shown in Fig. 4, whereas the game-graph for MTS αjoin(F1) and Φ2 =
E(¬rUr) is shown in Fig. 5. The model αjoin(F1) has a single initial state
s0, thus Gαjoin(F1)×Φ1 and Gαjoin(F1)×Φ2 have single initial nodes (s0, A(¬aUa))
and (s0, E(¬rUr)), respectively. The set of formulae appearing in the non-
trivial SCCs of Gαjoin(F1)×Φ1 and Gαjoin(F1)×Φ2 are exactly exp(A(¬aUa)) and
exp(E(¬rUr)), respectively.

The game-graph is partitioned into its may-Maximal SCCs (may-MSCCs),
denoted Qi’s. This partition induces a partial order ≤ on the Qi’s, such that
edges go out of a set Qi only to itself or to a smaller set Qj . The partial order
is extended to a total order ≤ arbitrarily. The coloring algorithm processes
the Qi’s according to ≤, bottom-up. Let Qi be the smallest set that is not
fully colored. The nodes of Qi are colored in two phases, as follows.
Phase 1. Apply these rules to all nodes in Qi until none of them is applicable.

• A terminal node C is colored: by T if Player ∃ wins in it (when
C = (s, true) or C = (s, a) with a ∈ L(s) or C = (s,¬a) with a 6∈ L(s));
and by F if Player ∀ wins in it (when C = (s, false) or C = (s, a) with
a 6∈ L(s) or C = (s,¬a) with a ∈ L(s)).

• An A© node is colored: by T if all its may-children are colored by T ;
by F if it has a must-child colored by F ; by ? if all its must-children
are colored by T or ?, and it has a may-child colored by F or ?.

• An E© node is colored: by T if it has a must-child colored by T ; by
F if all its may-children are colored by F ; by ? if it has a may-child
colored by T or ?, and all its must-children are colored by F or ?.

1SCCs of a graph are the equivalence classes of nodes under the “are mutually reachable”
relation.
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• An ∧-node (∨-node) is colored: by T (F ) if both its children are colored
by T (F ); by F (T ) if it has a child that is colored by F (T ); by ? if it
has a child colored by ? and the other child is colored by ? or T (F ).

Phase 2. If after propagation of the rules of Phase 1, there are still nodes in
Qi that remain uncolored, then Qi must be a non-trivial may-MSCC that has
exactly one witness that occurs infinitely often in a play. We consider two
cases for the witness: Case U and its dual Case V.

Case U. The witness is of the form A(Φ1UΦ2) or E(Φ1UΦ2).
Phase 2a. Repeatedly color by ? each node in Qi that satisfies one of
the following conditions, until there is no change:
(1) An A© node such that all its must-children are colored by T or
?; (2) An E© node that has a may-child colored by T or ?; (3) An ∧
node that both its children are colored T or ?; (4) An ∨ node that has
a child colored by T or ?.
In fact, each node for which the F option is no longer possible according
to the rules of Phase 1 is colored by ?.
Phase 2b. Color the remaining nodes in Qi by F .

Case V. The witness is of the form A(Φ1VΦ2) or E(Φ1VΦ2).
Phase 2a. Repeatedly color by ? each node in Qi that satisfies one of
the following conditions, until there is no change.
(1) An A© node that has a may-child colored by F or ?; (2) An E©
node such that all its must-children are colored by F or ?; (3) An ∧
node that has a child colored F or ?; (4) An ∨ node that both its
children are colored F or ?.
In fact, each node for which the T option is no longer possible according
to the rules of Phase 1 is colored by ?.
Phase 2b. Color the remaining nodes in Qi by T .

The result of the coloring algorithm is a 3-valued coloring function χ : N →
{T, F, ?}, which reflects the 3-valued semantics of CTL.

Theorem 9 ([13]). LetM be an MTS and Φ be a CTL formula. For each
n = (s,Φ′) ∈ GM×Φ:

(1) [M, s |=3 Φ′] = tt iff χ(n) = T iff Player ∃ has a winning strategy at n.

(2) [M, s |=3 Φ′] = ff iff χ(n) = F iff Player ∀ has a winning strategy at n.
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(s0, A(¬aUa))

(s0, a ∨ (¬a ∧ A© A(¬aUa)))

(s0, a)

Q1

(s0,¬a ∧ A© A(¬aUa))

(s0,¬a)Q2 (s0, A© A(¬aUa))

(s1, A(¬aUa))

(s1, a ∨ (¬a ∧ A© A(¬aUa)))

(s1, a)

Q3

(s1,¬a ∧ A© A(¬aUa))

(s1,¬a)

Q4

(s1, A© A(¬aUa))

failure node

(s2, A(¬aUa))

(s2, a ∨ (¬a ∧ A© A(¬aUa)))

(s2, a)

Q5

(s2,¬a ∧ A© A(¬aUa))

(s2,¬a)

Q6

(s2, A© A(¬aUa))

Figure 4: The colored Gαjoin(F1)×Φ1 .

(3) [M, s |=3 Φ′]=⊥ iff χ(n)=? iff none of the players has a winning strategy
at n.

By Theorem 5 and Theorem 9, we can use the colored game-graph of the
MTS αjoin(F) and Φ to evaluate [F |= Φ]. If all initial nodes of Gαjoin(F)×Φ
are colored by T then [αjoin(F) |=3 Φ] = tt and so [F |= Φ] = tt; if at least
one of them is colored by F then [αjoin(F) |=3 Φ] = ff and so [F |= Φ] = ff.
Otherwise, [αjoin(F) |=3 Φ] = ⊥ and so we do not know the value of [F |= Φ].

Corollary 10. Let Gαjoin(F)×Φ be a game-graph and χ be its coloring function.

(1) [F |= Φ] = tt iff ∀s0 ∈ I.χ((s0,Φ)) = T .

(2) [F |= Φ] = ff iff ∃s0 ∈ I.χ((s0,Φ)) = F .

Example 11. Consider the colored game-graph for MTS αjoin(F1) and Φ1 =
A(¬aUa) shown in Fig. 4. Green, red (with dashed borders), and white nodes
denote nodes colored by T , F , and ?, respectively. The partitions from Q1 to
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(s0, E(¬rUr))

(s0, r ∨ (¬r ∧ E© E(¬rUr)))

(s0, r)

Q1

(s0,¬r ∧ E© E(¬rUr))

(s0,¬r)Q2 (s0, E© E(¬rUr))

failure node

(s1, E(¬rUr))

(s1, r ∨ (¬r ∧ E© E(¬rUr)))

(s1, r)

Q3

(s1,¬r ∧ E© E(¬rUr))

(s1,¬r)

Q4

(s1, A© E(¬rUr))

(s2, E(¬rUr))

(s2, r ∨ (¬r ∧ E© E(¬rUr)))

(s2, r)

Q5

(s2,¬r ∧ E© E(¬rUr))

(s2,¬r)

Q6

(s2, E© E(¬rUr))

Figure 5: The colored Gαjoin(F1)×Φ2 .

Q6 consist of a single node shown in Fig. 4, while Q7 contains all the other
nodes. The initial node (s0,Φ1) is colored by ?, so we obtain an indefinite
answer and we cannot conclude any relation between F1 and Φ1.

Consider the colored game-graph for MTS αjoin(F1) and Φ2 = E(¬rUr)
shown in Fig. 5. The initial node (s0,Φ2) is colored by ?, so we again obtain
an indefinite answer.

4. Abstraction-refinement framework

Given an FTS F with a configuration set K, we show how to exploit the
game-graph of the abstract MTS αjoin(F) in order to do refinement in case
that the model checking resulted in an indefinite answer. The refinement
consists of two parts. First, we use the information gained by the coloring
algorithm of Gαjoin(F)×Φ in order to split the single abstract configuration
true ∈ αjoin(K) that represents the whole concrete configuration set K, so
that the new, refined abstract configurations represent smaller subsets of
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concrete configurations. We then construct refined abstract models, using the
refined abstract configurations.

There are a failure node and a failure reason associated with an indefinite
answer. The goal in the refinement is to find and eliminate the failure reason.

Definition 12. A node n is a failure node if it is colored by ?, whereas
none of its children was colored by ? at the time n got colored by the coloring
algorithm.

Such failure node can be seen as the point where the loss of information
occurred, so we can use it in the refinement step to change the final model
checking result to a definite one.

Lemma 13 ([13]). A failure node is one of the following.

• An A©-node (E©-node) that has a may-child colored by F (T ).

• An A©-node (E©-node) that was colored during Phase 2a based on an
AU (AV) witness, and has a may-child colored by ?.

Given a failure node n = (s,Φ), suppose that its may-child is n′ = (s′,Φ′1)
as identified in Lemma 13. Then the may-edge from n to n′ is considered as the
failure reason. Thus, we guide the refinement to discard the cause for failure
in the hope of changing the model checking result to a definite one. Since the
failure reason is a may-transition in the abstract MTS αjoin(F), it needs to
be refined in order to result either in a must transition or no transition at all.
Let s ψ−−→s′ be the transition in the concrete model F corresponding to the
above (failure) may-transition. We split the configuration space K into [[ψ]]
and [[¬ψ]] subsets, and we partition F in π[[ψ]](F) and π[[¬ψ]](F). Then, we
repeat the verification process based on abstract models αjoin(π[[ψ]](F)) and
αjoin(π[[¬ψ]](F)). Note that, in the former, αjoin(π[[ψ]](F)), s −→ s′ becomes a
must-transition, while in the latter, αjoin(π[[¬ψ]](F)), s −→ s′ is removed. The
complete abstraction-refinement procedure is shown in Algorithm 1.

Theorem 14. The procedure Verify(F ,K,Φ) terminates and is correct.

Proof. At the end of an iteration, Verify(F ,K,Φ) either terminates with
answers ‘tt’ or ’ff’, or an indefinite result is returned. In the latter case, let ψ be
the feature expression guarding the transition in F that is found as the reason
for failure. This (failure) transition occurs as a may-transition in αjoin(F).
We generate F1 = π[[ψ]](F) and K1 = K ∩ [[ψ]], as well as F2 = π[[¬ψ]](F)
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Algorithm 1: Verify(F ,K,Φ)
Input: An FTS F , a configuration set K, and a CTL formula Φ
Output: The value of [πk(F) |= Φ] for all k ∈ K

1 Check by game-based model checking algorithm [αjoin(F) |=3 Φ]?;
2 If the result is tt, then return [πk(F) |= Φ] = tt for all k ∈ K
If the result is ff, then return [πk(F) |= Φ] = ff for all k ∈ K;

3 Otherwise, an indefinite result is obtained in Step (1). Let the
may-edge from n = (s,Φ1) to n′ = (s′,Φ′1) be a failure reason, and
let ψ be the feature expression guarding the transition from s to s′
in F . We generate F1 = π[[ψ]](F) and F2 = π[[¬ψ]](F). Return
Verify(F1,K ∩ [[ψ]],Φ) ] Verify(F2,K ∩ [[¬ψ]],Φ).

and K2 = K ∩ [[¬ψ]]. In the next iteration, we call Verify(F1,K1,Φ) and
Verify(F2,K2,Φ). We have that K1 ⊆ K, K2 ⊆ K, and αjoin(F1) contains
the (failure) may-transition as a must-transition, while αjoin(F2) does not
contain the (failure) may-transition at all. In this way, we have eliminated
the reason for failure in the previous iteration, since only may-transitions
can be failure reasons according to Lemma 13. Given that the number of
possible updates of the configuration space and the number of may-transitions
in abstract models are finite, the number of iterations is also finite.

If Verify(πK′(F),K′,Φ) terminates with answer ‘tt’ that a property is
satisfied (resp., ‘ff’ that a property is violated) for the variants k ∈ K′, then
the answer is correct by Theorem 5, case (1) (resp., case (2)).

Example 15. We can do a failure analysis on the game-graph Gαjoin(F1)×Φ1 in
Fig. 4. The failure node is (s1, A©A(¬aUa)) and the reason is the may-edge
(s1, A© A(¬aUa)) −→ (s0, A(¬aUa)). The corresponding concrete transition
in F1 is s1

c−→s0. So, we partition the configuration set K1 into subsets [[c]]
and [[¬c]], and in the next iteration we consider FTSs π[[c]](F1) and π[[¬c]](F1).

The failure node for the game-graph Gαjoin(F1)×Φ2 given in Fig. 5 is
(s0, E © E(¬rUr)) and the reason is the may-edge (s0, E © E(¬rUr)) −→
(s1, E(¬rUr)). The corresponding concrete transition in F1 is s0

¬f−→s1. So,
we partition the configuration space K1 into subsets [[f ]] and [[¬f ]], and in the
next second iteration we consider FTSs π[[f ]](F1) and π[[¬f ]](F1).

The game-based model checking algorithm provides us with a convenient
framework to use results from previous iterations and avoid unnecessary
calculations. At the end of the i-th iteration of abstraction-refinement, we
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Figure 6:αjoin(π[[c]](F1))
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{r}

s2

{a,r}

Figure 7:αjoin(π[[¬c]](F1))
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{r}
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{a,r}

Figure 8:αjoin(π[[f]](F1))
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{}

s1

{r}
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{a,r}

Figure 9:αjoin(π[[¬f]](F1))

(s0, A(¬rUa))

(s0, a ∨ (¬a ∧ A© A(¬aUa)))

(s0, a)Q1 (s0,¬a ∧ A© A(¬aUa))

(s0,¬a)Q2 (s0, A© A(¬aUa))

failure node

(s1, A(¬aUa))

(s1, a ∨ (¬a ∧ A© A(¬aUa)))

(s1, a)

Q3

(s1,¬a ∧ A© A(¬aUa))

(s1,¬a)

Q4

(s1, A© A(¬aUa))

(s2, A(¬aUa))

Figure 10: Gαjoin(π[[c]](F1))×Φ1 .

(s0, A(¬aUa))

(s0, a ∨ (¬a ∧ A© A(¬aUa)))

(s0, a)Q1 (s0,¬a ∧ A© A(¬aUa))

(s0,¬a)Q2 (s0, A© A(¬aUa))

(s1, A(¬aUa))

(s1, a ∨ (¬a ∧ A© A(¬aUa)))

(s1, r)Q3 (s1,¬a ∧ A© A(¬aUa))

(s1,¬a)Q4 (s1, A© A(¬aUa))

(s2, A(¬aUa))

Figure 11: Gαjoin(π[[¬c]](F1))×Φ1 .

remember those nodes of the game-graph that were colored by definite colors.
Let D denote the set of such nodes. Let χD : D → {T, F} be the coloring
function that maps each node in D to its definite color. The incremental
approach uses this information both in the construction of the game-graph
and its coloring in the next iterations. During the construction of a new
refined game-graph performed in a BFS manner in the next i+ 1-th iteration,
we prune the game-graph in nodes that are from D. When a node n ∈ D is
encountered, we add n to the game-graph and do not continue to construct
the game-graph from n onwards. That is, n ∈ D is considered as terminal
node and colored by its previous color. As a result of this pruning, only the
reachable sub-graph that was previously colored by ? is refined.

Example 16. The property Φ1 holds for π[[¬c]](F1). We show the model
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Figure 12: π[[c∧¬f ]](F1)

s0
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s1

{r}

s2

{a,r}

Figure 13: π[[c∧f ]](F1)

αjoin(π[[¬c]](F1)) and the game-graph Gαjoin(π[[¬c]](F1))×Φ1 in Fig. 7 and Fig. 11
respectively, where the initial node is colored by T . Compare the node
(s0, A © A(¬aUa)) in Gαjoin(π[[¬c]](F1))×Φ1 (Fig. 11) and (s0, E © E(¬rUr))
in Gαjoin(F1)×Φ2 (Fig. 5). All may-children of both nodes are colored by T .
However, the former node is an A©-node so it will be colored by T , whereas
the latter is an E©-node so it will be colored by ?.

On the other hand, we obtain an indefinite answer for π[[c]](F1). The
model αjoin(π[[c]](F1)) is shown in Fig. 6, whereas the final colored game-graph
Gαjoin(π[[c]](F1))×Φ1 is given in Fig. 10. The failure node is (s0, A© A(¬aUa)),
and the reason is the may-edge (s0, A© A(¬aUa)) −→ (s1, A(¬aUa)). The
corresponding concrete transition in π[[c]](F1) is s0

¬f−→s1. So, in the next third
iteration we consider FTSs π[[c∧¬f ]](F1) and π[[c∧f ]](F1), which are shown in
Fig 12 and Fig 13 respectively. Note that π[[c∧¬f ]](F1) and π[[c∧f ]](F1) are in
fact TSs, so no further variability abstraction can be applied on them. The
colored game-graphs Gπ[[c∧¬f ]](F1)×Φ1 and Gπ[[c∧f ]](F1)×Φ1 are shown in Fig. 14
and Fig. 15, respectively. The initial node of Gπ[[c∧¬f ]](F1)×Φ1 is colored by F in
Phase 2b, whereas the initial node of Gπ[[c∧f ]](F1)×Φ1 is colored by T . Therefore,
we conclude that Φ1 is satisfied by the variants {¬c ∧ ¬f,¬c ∧ f, c ∧ f}, and
Φ1 is violated by the variant {c ∧ ¬f}.

We need two iterations to conclude that Φ2 = E(¬rUr) is satisfied by all
variants in K1. We show the abstract models αjoin(π[[f ]](F1)) and αjoin(π[[¬f ]](F1))
in Fig. 8 and Fig. 9 respectively. The game-graphs Gαjoin(π[[f ]](F1))×Φ2 and
Gαjoin(π[[¬f ]](F1))×Φ2 are shown in Fig. 16 and Fig. 17 respectively, where the
initial nodes are colored by T .

5. Generalized abstract models

We now define generalized MTSs which can be used as abstract models of
FTSs that preserve CTL. They allow better precision of the abstract models,
so that the validation or refutation of more CTL formulae can be established.
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Figure 14: Gπ[[c∧¬f]](F1)×Φ1

(s0, A(¬aUa))

(s0, a ∨ (¬a ∧ A© A(¬aUa)))
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Figure 15: Gπ[[c∧f]](F1)×Φ1
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Figure 16: Gαjoin(π[[f]](F1))×Φ2 .
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Figure 17: Gαjoin(π[[¬f]](F1))×Φ2 .
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5.1. Generalized MTSs
The reason why the regular abstract model αjoin(F1) in Fig. 3 does not

satisfy Φ2 = E(¬rUr) (see the evaluation in Fig. 5) comes from the current
definition of must-transitions which is too restrictive, so that both s0

¬f−→s1 and
s0

f−→s2 in αjoin(F1) are may-transitions. Hence, although both may-children
(s1, E(¬rUr)) and (s2, E(¬rUr)) are colored by T , their parent E©-node is
colored by ?. Our goal is to suggest an alternative generalized definition of
must-transitions that will weaken the previous (regular) definition. Inspired by
[16, 17], we suggest the use of hyper-transitions to describe must-transitions.

Definition 17. Given a set of states S, a hyper-transition is a pair (s, A),
denoted s −→ A, where s ∈ S and A ⊆ S is a non-empty set of states.

Given an FTS F with the set of configurations K, recall that t = s −→ s′ is
a must-transition in the regular abstract model αjoin(F) only if the transition
t is present in all concrete variants πk(F) for k ∈ K, that is k |= δ(t) for
all k ∈ K (or, α̃join(δ(t)) = true). The generalization aims to allow such a
transition to exist from s to some state from A in all concrete variants πk(F)
for k ∈ K. This is achieved by using a must hyper-transition s −→ A.

Definition 18. A generalized modal transition system (GMTS) is a tu-
ple Mgen = (S, I, transmay, transmust, AP, L), where transmay ⊆ S × S and
transmust ⊆ S × 2S, such that for every (s, A) ∈ transmust and s′ ∈ A, we have
(s, s′)∈ transmay.

An MTS can be seen as a GMTS where every must hyper-transition is a
regular must-transition s −→ {s′}, so its target state is a singleton.

As before, a may-path in Mgen is an infinite path in Mgen. However,
instead of a must-path we now have a must hyper-path. Let Π be a set of
paths, then prefi(Π) denotes the set of all prefixes of length i of paths in Π.

Definition 19. A must hyper-path from a state s is a non-empty set Π of
paths from s, such that for every i ≥ 0:

prefi+1(Π) =
⋃

ρi∈prefi(Π)
{ρi · s′ | s′ ∈ Aρi}

where for ρi = s · s1 . . . · si ∈ prefi(Π), the set Aρi ∈ 2s is either such that
(si, Aρi) ∈ transmust or empty set if there is no must hyper-transition exiting
si. Hence, a must hyper-path can include finite paths since Aρi can be empty.
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We use [[Mgen]]may
GMTS (resp., [[Mgen]]must

GMTS) to denote the set of all may-
paths (resp., must hyper-paths) inMgen starting in an initial state.

We generalize the 3-valued CTL semantics for GMTSs. The semantics
is defined similarly to the regular 3-valued CTL semantics for MTSs, except
that the use of must-paths is replaced by must hyper-paths. More specifically,
for a path formula φ and a must hyper-path Π, we define:

• [Mgen,Π |=3 φ] = tt (ff) iff for every ρ ∈ Π, we have that [(Mgen, ρ) |=3

φ] = tt (ff).

• otherwise, [Mgen,Π |=3 φ] = ⊥.

We now describe how to construct abstract GMTSs. Informally, a must
hyper-transition s→ A exists if in all valid variants πk(F) for k ∈ K there is
a transition from s to some state s′ from A.

Definition 20. Given the FTS F = (S, I, trans, AP, L,F,K, δ), we define its
abstraction to be the GMTS αgen-join(F) = (S, I, transmay, transmust, AP, L),
where transmay ={t∈ trans | αjoin(δ(t))= true}, and we have that transmust =
{(s, A) | α̃join(∨s′∈A,t=(s,s′)∈transδ(t))= true}.

The preservation of full CTL is generalized from MTSs (see Theorem 5)
to GMTSs as well.

Lemma 21. Let Π ∈ [[αgen-join(F)]]mustGMTS. Then, for all k ∈ K, there exists
ρ ∈ Π, such that ρ ∈ [[πk(F)]]TS .

Proof. Let Π ∈ [[αgen-join(F)]]mustGMTS. We claim:

∀i ≥ 0,∀k ∈ K,∃ρi ∈ prefi(Π), s.t. ρi ∈ prefi([[πk(F)]]TS) (∗)

We prove the claim (*) by mathematical induction. For i = 0, (*) holds
trivially. Assume that (*) holds for i. For i + 1, we have prefi+1(Π) =⋃
ρi∈prefi(Π){ρi ·s′ | s′ ∈ Aρi}, where ρi = s0 ·s1 · . . . ·si and (si, Aρi) ∈ transmust.

From IH, for all k ∈ K, there exists ρi ∈ prefi(Π), s.t. ρi ∈ prefi([[πk(F)]]TS).
Since (si, Aρi) ∈ transmust, we have α̃join(∨s′∈Aρiδ((si, s

′))) = true. This
means that for all k ∈ K, there exists s′ ∈ Aρi s.t. k |= δ(si, s′), and so
ρi · s′ ∈ prefi+1([[πk(F)]]TS). Thus, we conclude that (*) holds for i+ 1. The
proof follows from (*), when we consider all maximal paths in Π.

Theorem 22 (Preservation results). For every Φ ∈ CTL, we have:
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(1) [αgen-join(F) |=3 Φ]= tt =⇒ [F |= Φ]= tt and ∀k ∈ K.[πk(F) |=Φ]= tt.

(2) [αgen-join(F) |=3 Φ]=ff =⇒ [F |= Φ]=ff and ∀k ∈ K.[πk(F) |=Φ]=ff.
Proof. By induction on the structure of Φ. All cases except A and E quanti-
fiers are straightforward.
Consider the case (1): [αgen-join(F) |=3 Φ] = tt =⇒ [F |= Φ] = tt.

Case Φ = Aφ. The proof is analogous to the respective case in Theor. 5.
Case Φ = Eφ. To prove (1), we assume [αgen-join(F) |=3 Eφ] = tt. This

means that there exists a must hyper-path Π ∈ [[αgen-join(F)]]must
GMTS such that

[αgen-join(F),Π |=3 φ] = tt. By Lemma 21, we have that for all k ∈ K, there
exists ρ ∈ Π s.t. ρ ∈ [[πk(F)]]TS. Therefore, [πk(F) |= Eφ] = tt for all k ∈ K,
and so [F |= Eφ] = tt.

Consider the case (2): [αgen-join(F) |=3 Φ] = ff =⇒ [F |= Φ] = ff.
Case Φ = Aφ. To prove (2), we assume [αgen-join(F) |=3 Aφ] = ff. This

means that there exists a must hyper-path Π ∈ [[αgen-join(F)]]must
GMTS such that

[αgen-join(F),Π |=3 φ] = ff. By Lemma 21, we have that for all k ∈ K, there
exists ρ ∈ Π s.t. ρ ∈ [[πk(F)]]TS. Therefore, [πk(F) |= Aφ] = ff for all k ∈ K,
and so [F |= Aφ] = ff.

Case Φ = Eφ. The proof is analogous to the respective case in Theor.5.
The use of GMTSs allows construction of abstract models αgen-join(F)

that are more precise than regular abstract models αjoin(F) described as
MTSs. This is shown by making more efficient the abstraction-refinement
procedure for verifying [F1 |= Φ2] in Examples 11, 15, 16.
Example 23. Given the FTS F1 in Fig. 1, the constructed generalized abstract
model αgen-join(F1) is shown in Fig. 19. There exists one must hyper-transition
s0 −→ {s1, s2} in αgen-join(F1). We can see that [αgen-join(F1) |=3 Φ2] = tt,
since there exists a must hyper-path {s0s1 . . . , s0s2 . . .} that satisfies Φ2 =
E(¬rUr). Therefore, we conclude that all variants of F1 satisfy Φ2 in the first
iteration, so there is no need to refine the initial abstract model. In contrast,
note that s0 −→ s1 and s0 −→ s2 are may-transitions in αjoin(F1), and so
[αjoin(F1) |=3 Φ2] = ⊥ as shown in Example 11.

Any abstract GMTS can be reduced without damaging its precision, based
on the following observation. Given two must hyper-transitions s −→ A and
s −→ A′, where A ⊆ A′, the transition s −→ A′ can be discarded without
sacrificing the precision of the GMTS. Therefore, a possible optimization
would be to use only minimal hyper-transitions where A′ is minimal.
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(s0, E(¬rUr))

(s0, r ∨ (¬r ∧ E© E(¬rUr)))
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(s0,¬r)Q2 (s0, E© E(¬rUr))

(s1, E(¬rUr)) (s2, E(¬rUr))

Figure 18: Gαgen-join(F1)×Φ2 .
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Figure 19: GMTS αgen-join(F1).

6. Generalized abstraction-refinement framework

We show how GMTSs can be used in practice within an abstraction-
refinement framework. Given a concrete FTS F with the set of configurations
K, we compute the abstract GMTS αgen-join(F) as follows:

• We first construct an abstract model αjoin(F), which includes its may-
transitions and its regular must-transitions.

• For every state, add a must hyper-transition targeting the set of all
target states of its outgoing may-transitions such that the disjunction
of all feature expressions guarding those transitions in F is K.

• discard any must hyper-transition s −→ A that is not minimal, which
means that there is s −→ A′ where A′ ⊆ A.

We now complete the generalized abstraction-refinement framework by
providing a model checking algorithm that evaluates CTL formulae over
GMTSs and a suitable refinement mechanism.

As a model checking algorithm we suggest a simple generalization of the
game-based algorithm presented in Section 3. The only change is in the
definition of must-children as well as in the part of the coloring algorithm
that depends on must-children. Must hyper-edges are edges based on must
hyper-transitions of GMTSs. Nodes of a set A are a must hyper-child of the
node n if there exists a must hyper-edge (n,A). In the coloring algorithm,
we add the following cases:
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• An A© node is colored by F if it has a must hyper-child colored by F .

• An E© node is colored by T if it has a must hyper-child colored by T .

As for the refinement mechanism, we can use Algorithm 1 suggested in
Section 4 in order to find a failure state, analyze the failure, and decide how
to split the abstract configuration. This is due to the fact that the refinement
is based on may-transitions only. Therefore, no additional change is needed.

Theorem 24. The generalized abstraction-refinement procedure, denoted as
Gen-Verify(F ,K,Φ), is guaranteed to terminate and is correct.

Proof. The proof for termination is analogous to the corresponding proof
for Verify(F ,K,Φ) (see Theorem 14). This is due to the fact that failure
reasons are may-transitions, which are treated in the same way in both cases.

The proof for correctness follows from Theorem 22, so that case (1) handles
the case when Gen-Verify(F ,K,Φ) returns answer “tt”, while case (2) when
Gen-Verify(F ,K,Φ) returns answer “ff”.

Example 25. We now show how to evaluate [αgen-join(F1) |=3 Φ2] using the
generalized game-based model checking algorithm. The graph Gαgen-join(F1)×Φ2 is
shown in Fig. 18. In this case, the node (s0, E©E(¬rUr)) has a must hyper-
child {(s1, E(¬rUr)), (s2, E(¬rUr))} which is colored by T . Hence, (s0, E©
E(¬rUr)) will be colored by T , which makes the initial node colored by T as
well. Thus, we obtain that [αgen-join(F1) |=3 Φ2] = tt. Note that in Fig. 18, for
readability we do not draw the subgraphs of (s1, E(¬rUr)) and (s2, E(¬rUr)),
but they are the same as in Fig. 5.

To conclude, Gen-Verify(F1,K1,Φ2) needs one iteration and one colored
game-graph to evaluate [F1 |= Φ2], whereas Verify(F1,K1,Φ2) needs two
iterations and three colored game-graphs to evaluate [F1 |= Φ2].

7. Evaluation

We evaluate our abstraction-refinement procedures for verifying CTL
properties of reactive system families. They consist of generating initial
abstract models, then verifying CTL properties on them using the game-based
model checking algorithm. In case of indefinite results, refined abstract models
are generated and the whole procedure is repeated on them. The evaluation
aims to show that we can efficiently verify some interesting CTL properties
of different system families using our abstraction-refinement approaches.
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7.1. Experimental setup
To evaluate our approach, we consider two case studies and a dozen of CTL

properties. We use a synthetic example to demonstrate specific characteristics
of our approach, and the Elevator model which is often used as benchmark
in the SPL community [23, 24, 18, 9].

We have implemented the game-based model checking algorithm as well
as its generalized extension in Java. They are used as basis to implement
our abstraction-refinement procedures. We compare (1) our abstraction-
refinement procedure Verify vs. (2) our generalized abstraction-refinement
procedure Gen-Verify vs. (3) the plain lifted model checking algorithm
implemented by the lifted (extended) version of NuSMV model checker,
denoted fNuSMV [18]. fNuSMV uses symbolic algorithms to model check
variational systems over CTL properties at once. It uses a feature-oriented
extension of the NuSMV language [23] as input, which is shown to be a
high-level representation of FTSs [18]. In contrast to Verify and Gen-Verify,
fNuSMV uses no abstractions.

The BDD model checker NuSMV (version 2.5.4) is run with the parameter
-df -dynamic, which ensures that the BDD package reorders the variables
during verification in case the BDD size grows beyond a certain threshold.
The reported performance numbers constitute the average runtime of five
independent executions. For each experiment, we measure Time to perform
an analysis task, and Call which is the number of times an approach calls
the model checking engine. We say that a task is infeasible when it is taking
more time than the given timeout threshold, which we set on two hours.

All experiments were executed on a 64-bit IntelrCoreTM i5-3337U CPU
running at 1.80 GHz with 8 GB memory. The implementation, benchmarks,
and all results obtained from our experiments are available from: https:
//aleksdimovski.github.io/automatic-ctl.html.

7.2. Synthetic example
First, we have tested the limits of the lifted model checking as implemented

in fNuSMV. Although fNuSMV symbolically analyzes variability models
in a single run, it still greatly depends on the size of configuration space
|K|. Combinatorially, |K| grows exponentially with the number of features
|F|. Consequently, for variability models with large |F|, analysis may become
impractically slow or infeasible. In those cases, we can use abstraction-
refinement procedures, Verify and Gen-Verify, to reduce the configuration
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Figure 25: GMTS αgen-join(M2)

space and thus obtain feasible lifted verification of such highly-configurable
variability models.

In order to confirm the above statement, we have constructed FTSs Mn

(where n > 0), which consist of n features A1, . . . , An and an integer data
variable x, such that the set AP consists of all evaluations of x which assign
integer values to x. The set of valid configurations is Kn = 2{A1,...,An}. The
FTS Mn has a tree-like structure. The root is the initial state with x = 0.
Each level k (k ≥ 1) contains two states reachable with two transitions leading
from a state from a previous level. One transition is allowable for variants
with feature Ak enabled, so that in the target state the variable’s value is
x+ 2k−1 where x is its value in the source state, whereas the other transition
is allowable for variants with feature Ak disabled, so that the values of x are
the same in the source and target states. For example, FTSs M1 and M2 are
shown in Fig. 20 and Fig. 23 respectively, where in each state we show the
current value of x. The abstract models αjoin(M1) and αjoin(M2) are given
in Fig. 21 and Fig. 24, while the generalized abstract models αgen-join(M1)
and αgen-join(M2) are given in Fig. 22 and Fig. 25. Note that there is a must
hyper-transition from a state to the two states in the next level since one of
those two states can be reached in all valid variants.

We consider four properties: Φ1 = A(trueU(x≥0)), Φ2 = A(trueU(x≥1)),
Φ3 = E© E(trueU(x≥1)), and Φ4 = A(trueU(x<0)). We have verified Mn
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Φ1 Φ2 Φ3 Φ4
n fNuSMVVerifyGen-Ver fNuSMVVerifyGen-Ver. fNuSMVVerifyGen-Ver fNuSMV Verify Gen-Ver

2 0.04 0.47 0.51 0.03 1.18 1.21 0.03 0.67 0.48 0.03 1.70 0.73
7 0.08 0.97 0.97 0.10 5.20 5.39 0.08 1.22 1.00 0.09 124.92 8.84
10 141.4 3.76 3.90 150.0 11.51 11.46 297.1 4.11 3.87 316.3 932.2 66.7
11 timeout 6.89 6.90 timeout 16.11 16.22 timeout 7.28 7.05 timeout timeout 133.1
15 timeout 103.2 103.9 timeout 124.5 125.1 timeout 101.9 99.6 timeout timeout 2511

Figure 26: Verifying Mn (sec) using lifted fNuSMVvs. Verify vs. Gen-Verify.

against Φ1, Φ2, Φ3, and Φ4 using fNuSMV(e.g. see fNuSMVmodels for M1
and M2 in [25, Appendix E]), as well as using our Verify and Gen-Verify.

The property Φ1 = A(trueU(x ≥ 0)) is satisfied by all variants in Kn.
Verify and Gen-Verify terminate in one iteration since αjoin(Mn) satisfies
Φ1. See the colored game-graph Gαjoin(M1)×Φ1 in Fig. 27.

The property Φ2 = A(trueU(x≥1)) is violated only by one configuration
¬A1∧. . .∧¬An (where all features are disabled, so there is a single path in
that variant where all states have x = 0). Verify and Gen-Verify need
n+ 1 iterations. First, an indefinite result is reported for αjoin(Mn), e.g. see
Gαjoin(M1)×Φ2 in Fig. 28, and the configuration space is split into [[¬A1]] and
[[A1]] subsets. For the latter, π[[A1]](Mn), we obtain an affirmative answer,
whereas for the former, π[[¬A1]](Mn), we obtain an indefinite result with the
refinement based on [[¬A2]]. The refinement procedure proceeds in this way
until we obtain definite results for all variants.

The property Φ3 = E©E(trueU(x≥0)) is satisfied by all variants in Kn.
Verify needs 2 iterations to terminate, such that in the first iteration the
result is ? and the configuration space is split into [[A1]] and [[¬A1]]. This is
due to the fact that an E©-node is colored ? if it has a may-child colored T .
Gen-Verify needs only one iteration to terminate since αgen-join(Mn) satisfies
Φ4. This is due to the fact that an E©-node is colored T if it has a must
hyper-child colored T . Therefore, Gen-Verify will always slightly outperform
Verify on Φ3.

The property Φ4 = A(trueU(x < 0)) is violated by all variants in Kn.
Verify needs n iterations to terminate, such that in the first iteration the
configuration space is split into [[An]] and [[¬An]], in the second iteration into
[[An−1 ∧ An]], [[An−1 ∧ ¬An]], [[¬An−1 ∧ An]] and [[¬An−1 ∧ ¬An]], and so on
until the (n+ 1)-th iteration when we consider in the brute-force fashion all
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Figure 27: Gαjoin(M1)×Φ1 .
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Figure 28: Gαjoin(M1)×Φ2 .

variants. For example, see the colored game-graph Gαjoin(M1)×Φ4 in Fig. 29.
The initial node is colored ? due to the fact that an A©-node is colored ? if
it has a may-child colored F . On the other hand, Gen-Verify terminates in
only one iteration since αgen-join(Mn) satisfies Φ4. The colored game-graph
Gαgen-join(M1)×Φ4 is shown in Fig. 30. Note that, in this case an A©-node will
be colored F since its must hyper-child is colored by F . Hence, Φ4 represents
the worst case for Verify and the best case for Gen-Verify.

The performance results are shown in Fig. 26. Notice that fNuSMV
reports all results in only one iteration. Yet, for n = 11 (for which |K| = 211),
it timeouts after 2 hours. The state space of models Mn generated by
fNuSMV grows exponentially with the number of features, n = |F|. Thus,
for Mn with larger n, verification tasks quickly become very prohibitive. On
the other hand, Verify and Gen-Verify are feasible and very efficient even
for large values of n. Verify and Gen-Verify run within the same time for
Φ1 and Φ2. However, Gen-Verify is more efficient than Verify for Φ3 and
Φ4, since it terminates in only one iteration for them. This is especially visible
for Φ4, which represents the worst case for Verify. In this case, all variants
are verified in a brute force fashion plus the overhead for refinements.

7.3. Elevator
We have experimented with the Elevator model with four floors, de-

signed by Plath and Ryan [23]. The model contains about 300 LOC of
fNuSMV code and 9 independent optional features that modify the basic
behaviour of the elevator, thus yielding 29 = 512 variants. The features
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(s0,Φ4)

(s0, (x<0) ∨ (tt∧A©Φ4))

(s0, x<0) (s0, tt∧A©Φ4)

(s0, tt) (s0, A©Φ4)

(s1,Φ3)

(s1, (x<0) ∨ (tt∧A©Φ4))

(s1, x<0) (s1,tt∧A©Φ4)

(s1, tt) (s1,A©Φ4)

(s2,Φ4)

(s2, x∨(tt∧A©Φ4))

(s2,x<0)) (s2,tt∧A©Φ4)

(s2,tt) (s2,A©Φ4)

Figure 29: Gαjoin(M1)×Φ4 .

(s0,Φ4)

(s0, (x<0) ∨ (tt∧A©Φ4))

(s0, x<0) (s0, tt∧A©Φ4)

(s0, tt) (s0, A©Φ4)

(s1,Φ4)

(s1, (x<0) ∨ (tt∧A©Φ4))

(s1,x<0)) (s1,tt∧A©Φ4)

(s1,tt) (s1,A©Φ4)

(s2,Φ4)

(s2, x∨(tt∧A©Φ4))

(s2,x<0) (s2, tt∧A©Φ4)

(s2,tt) (s2, A©Φ4)

Figure 30: Gαgen-join(M1)×Φ4 .

are: Antiprunk, Empty, Exec, OpenIfIdle, Overload, Park, QuickClose,
Shuttle, and TTFull. To use our Verify and Gen-Verify procedures, we
have manually translated the fNuSMV model into an FTS and then we have
called Verify and Gen-Verify on it. The basic Elevator system consists
of a single lift that travels between four floors. There are four platform
buttons and a single lift, which declares variables floor, door, direction, and
a further four cabin buttons. The lift will always serve all requests in its
current direction before it stops and changes direction. When serving a floor,
the lift door opens and closes again.

We consider four properties. The property “Φ1 = E(ttU(floor = 1 ∧
idle ∧ door = closed))” states that there exists a path containing a state
where the lift is on the first floor, idle, and the door is closed, whereas
“Φ2 = A(ttU(floor = 1 ∧ idle ∧ door = closed))” claims that the above
state exists on all possible paths. The property “Φ3 = E(ttU((floor =
3 ∧ ¬liftBut3.pressed ∧ direction=up) =⇒ door=closed))” is that, there
exists a path which contains a state such that if the lift is on the third floor,
the lift button is pressed and the direction is up, then the lift door is closed.
The property “Φ4 = E(ttU(A© (door=closed))” is that, there exists a path
on which eventually there is a state such that in all its next states the lift
door is closed. The performance results are shown in Fig. 31. The properties
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prop. fNuSMV Verify Gen-Verify Improvement
Φ1 14.28 s 1.64 s 1.75 s 9 ×
Φ2 1.59 s 1.07 s 1.12 s 1.5 ×
Φ3 1.76 s 1.02 s 1.12 s 1.7 ×
Φ4 1.82 s 1.22 s 1.29 s 1.5 ×

Figure 31: Verification of Elevator properties (Time in seconds). Improvement shows
the speed-up of Verify and Gen-Verify vs. fNuSMV.

Φ1 and Φ2 are satisfied by all variants, thus Verify and Gen-Verify achieve
speed-ups of 9 times for Φ1 and 1.5 times for Φ2 compared to the fNuSMV
approach. fNuSMV takes 1.76 sec to check Φ3 and 1.82 to check Φ4, whereas
Verify and Gen-Verify run in 1.02 seconds for Φ3 and 1.22 for Φ4, thus
giving 1.7 times performance speed-up for Φ3 and 1.5 times speed-up for Φ4.

7.4. Discussion
In conclusion, the evaluation shows that for certain properties and variabil-

ity models, our abstraction-refinement procedures, Verify and Gen-Verify,
can outperform the plain lifted model checking fNuSMV. The abstraction-
refinement procedures achieve the best results when the property to be checked
is either satisfied by all variants (e.g., Φ1 and Φ2 for both examples) or there
exists a subset of erroneous variants that share a common counter-example
and depend on only few features. The worst case is when every variant
triggers a different counter-example, so our abstraction-refinement procedures
end up in verifying all variants one by one in a brute force fashion plus the
overhead for generating and verifying all intermediate abstract models (e.g.,
Φ4 for the synthetic example and Verify).

Note that NuSMV is a highly-optimized industrial-strength tool compared
to our proof-of-concept implementations of Verify and Gen-Verify. NuSMV
contains many optimisation algorithms, which are result of more than three
decades research on advanced computer aided verification. On the other hand,
Verify and Gen-Verify are research prototype tools developed by the first
author to support algorithms proposed in this work. Still, for models with
high variability (larger values of |F|) and certain properties, our approach can
be faster than fNuSMV.
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8. Abstraction-refinement for modal µ-calculus

We now discuss how to extend our abstraction-refinement procedures by
considering a richer set of temporal properties, as expressed in the modal
µ-calculus [26].

8.1. Syntax and semantics
The modal µ-calculus logic [26], denoted Lµ, is defined as:

ϕ ::= a | ¬a | x | ϕ1∧ϕ2 | ϕ1∨ϕ2 | �ϕ | ♦ϕ | µx.ϕ | νx.ϕ

where x ∈ Var ranges over propositional variables. Note that Lµ formulae ϕ
are given in negation normal form. Intuitively, � stands for “all successors”,
and ♦ stands for “exists a successor”; while µ denotes a least fixpoint, and ν
denotes greatest fixpoint. We will also write η for either µ or ν. We assume
that every variable x identifies a unique subformula fpϕ(x) = νx.ϕ′ of ϕ.

The semantics [[ϕ]]Tρ of a Lµ formula ϕ over a TS T and an environment
ρ : Var→ 2S, which binds variables to sets of states where they hold, is:

(1) [[a]]Tρ (s)= tt iff a∈L(s); [[¬a]]Tρ (s)= tt iff a 6∈L(s)

(2) [[ϕ1∧ϕ2]]Tρ (s)= tt iff [[ϕ1]]Tρ (s)= tt and [[ϕ2]]Tρ (s)= tt;
[[ϕ1∨ϕ2]]Tρ (s)= tt iff [[ϕ1]]Tρ (s)= tt or [[ϕ2]]Tρ (s)= tt

(3) [[�ϕ]]Tρ (s)= tt iff ∀s′∈S.(s, s′)∈ trans =⇒ [[ϕ]]Tρ (s′)= tt
[[♦ϕ]]Tρ (s)= tt iff ∃s′∈S.(s, s′)∈ trans ∧ [[ϕ]]Tρ (s′) = tt

(4) [[µx.ϕ]]Tρ (s)= lfp(λg.[[ϕ]]Tρ[x 7→g]); [[νx.ϕ]]Tρ (s)=gfp(λg.[[ϕ]]Tρ[x 7→g])}

where ρ[x 7→ g] is the environment which is the same as ρ, except that x is
mapped to g, and lfp(f), gfp(f) stand for the least and greatest fixpoints
of functional f . For a closed formula ϕ, we write [T , s |= ϕ] = [[ϕ]]T⊥env(s),
where ⊥env maps every x ∈ Var to ∅. We write [T |= ϕ] = tt, iff all its initial
states satisfy the formula: ∀s0 ∈ I. [T , s0 |= ϕ] = tt. We say that an FTS F
satisfies a µ-calculus formula ϕ, written [F |= ϕ] = tt, iff all its valid variants
satisfy the formula: ∀k∈K. [πk(F) |= ϕ] = tt.

The semantics of Lµ over an MTSM is slightly different from the semantics
for TSs. We define the 3-valued semantics [[ϕ]]Mρ,3 of ϕ over an MTSM. The
semantics of modalities � and ♦ is extended to the 3-valued case as follows:
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(3) [[�ϕ]]Mρ,3(s)=


tt, if ∀s′ ∈ S. (s, s′) ∈ transmay =⇒ [[ϕ]]Mρ,3(s′) = tt
ff, if ∃s′ ∈ S. (s, s′) ∈ transmust =⇒ [[ϕ]]Mρ,3(s′) = ff
⊥, otherwise

[[♦ϕ]]Mρ,3(s)=


tt, if ∃s′ ∈ S. (s, s′) ∈ transmust =⇒ [[ϕ]]Mρ,3(s′) = tt
ff, if ∀s′ ∈ S. (s, s′) ∈ transmay =⇒ [[ϕ]]Mρ,3(s′) = ff
⊥, otherwise

For a closed formula ϕ, we write [M, s |=3 ϕ] = [[ϕ]]T⊥env ,3(s). We write
[M |=3 ϕ] = tt, iff ∀s0 ∈ I. [M, s0 |=3 Φ] = tt, while [M |=3 ϕ] = ff, iff
∃s0 ∈ I. [M, s0 |=3 Φ] = ff. We then show that the MTS αjoin(F) preserves
the modal µ-calculus Lµ.

Theorem 26 (Preservation results). For every closed formula ϕ ∈ Lµ,

(1) [αjoin(F) |=3 ϕ]= tt =⇒ [F |= ϕ]= tt.

(2) [αjoin(F) |=3 ϕ]=ff =⇒ [F |= ϕ]=ff.

Proof. By induction on the structure of ϕ.
We consider the case (1) and ϕ = �ϕ′. We proceed by contraposition. Assume
[F |= �ϕ′] 6= tt. Then, there exists a configuration k ∈ K and a transition
(s0, s1) ∈ trans of πk(F) (where s0 ∈ I of πk(F)), such that [πk(F), s1 |= ϕ′] 6=
tt. By definitions of αjoin and transmay, we have (s0, s1) ∈ transmay of αjoin(F),
and so [[�ϕ′]]α

join(F)
⊥env ,3 (s0) 6= tt and [αjoin(F) |=3 �ϕ′] 6= tt by definition.

8.2. Abstraction-refinement procedure
The 3-valued model checking game for µ-calculus Lµ over MTSs is defined

in [27, 14]. The game is played by Player ∀ and Player ∃ in order to evaluate
a Lµ-formula ϕ in a state s ofM. We now briefly describe the model checking
game for µ-calculus [27, 14], and we emphasize the points in which it differs
from the corresponding game for CTL in Section 3.

Configurations are elements of S × sub(ϕ). Some possible moves are:

(1) if Ci=(s,�ϕ′), Player ∀ chooses a must-transition s −→ s′ (for refuta-
tion) or a may-transition s −→ s′ ofM (to prevent satisfaction), and
Ci+1 =(s′, ϕ′).
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(3) if Ci=(s,♦ϕ′), Player ∃ chooses a must-transition s −→ s′ (for satisfac-
tion) or a may-transition s −→ s′ ofM (to prevent refutation), and
Ci+1 =(s′, ϕ′).

(3) if Ci = (s, ηx.ϕ′), then Ci+1 = (s, x).

(4) if Ci = (s, x), then Ci+1 = (s, ϕ′) where fpϕ(x) = νx.ϕ′.

The moves (3)− (4) are deterministic, thus any player can make them. The
moves for literals, ∧, and ∨ are the same as for CTL games (see Section 3).

The game-graph GM×ϕ of the 3-valued model checking game contains all
the information relevant for the model checking. The set of nodes N is a
subset of configurations S × sub(ϕ), where (s0, ϕ) with s0 ∈ I is the initial
node. The rest of nodes and edges are defined by possible moves at each node
(configuration). We also define a priority function ΘM×ϕ : Var → N that
maps each variable to a priority [27, 14]. Let x1, . . . , xn be all variables in ϕ.
Then, ΘM×ϕ(xi) is even iff xi is of type ν, and ΘM×ϕ(xi) is odd iff xi is of
type µ. Also, ΘM×ϕ(xi) ≤ ΘM×ϕ(xj) whenever xj occurs freely in fpφ(xi).

The coloring algorithm [27, 14] is performed by solving the 3-valued parity
game (GM×ϕ,ΘM×ϕ), where each color T , F , ? stands for a possible result
(winner) in the game. It represents a generalization of Zielonka’s algorithm
for solving 2-valued parity games. The result of the coloring algorithm is
a 3-valued coloring function χ : N → {T, F, ?}, which reflects the 3-valued
semantics of µ-calculus.

Theorem 27 ([27, 14]). LetM be an MTS and ϕ be a µ-calculus formula.
For each n = (s, ϕ′) ∈ GM×ϕ:

(1) [M, s |=3 ϕ′] = tt iff χ(n) = T iff Player ∃ has a winning strategy at n.

(2) [M, s |=3 ϕ′] = ff iff χ(n) = F iff Player ∀ has a winning strategy at n.

(3) [M, s |=3ϕ′]=⊥ iff χ(n)=? iff none of the players has a winning strategy
at n.

Example 28. Figure 32 presents the game-graph for the MTS αjoin(F1) from
Fig. 3 and the Lµ formula ϕ1 = µx.(a ∨ (¬a ∧ �x)), which is equivalent to
the CTL formula Φ1 = A(¬aUa). The priority function assigns priority 1 for
nodes (s0, x), (s1, x), and (s2, x), since the fixpoint formula of x in ϕ1 is of
type µ. The initial node (s0, ϕ1) is colored by ?, which reflects the fact that
the value of ϕ1 in the initial state s0 of αjoin(F1) is ⊥.
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(s0, µx.(a ∨ (¬a ∧ �x)))

(s0, x)

(s0, a ∨ (¬a ∧ �x))

(s0, a) (s0,�x)

(s0,¬a) (s0,�x)

(s1, x)

(s1, a ∨ (¬a ∧ �x))

(s1, a) (s1,¬a ∧ �x)

(s1,¬a) (s1,�x)

failure node

(s2, x)

(s2, a ∨ (¬a ∧ �x))

(s2, a) (s2,¬a ∧ �x)

(s2,¬a) (s2,�x)

Figure 32: The colored Gαjoin(F1)×ϕ1 .

If the model checking result of an abstract model is indefinite (⊥), re-
finement is needed. The coloring algorithm [27, 14] reports a failure state
and a failure reason in case of an indefinite result. The failure reason is an
outgoing may-transition of the failure state in the underlying abstract model
that is not a must-transition. In the same way as for CTL games in Section 4,
refinement is then performed by splitting abstract configurations in a way
that eliminates the failure reason.

Example 29. The failure analysis on the game-graph Gαjoin(F1)×ϕ1 in Fig. 32
reports that the failure node is (s1,�x) and the failure reason is the may-edge
(s1,�x) −→ (s0,�x). The corresponding concrete transition in F1 is s1

c−→s0.
Hence, we partition the configuration set K1 of F1 into subsets [[c]] and [[¬c]],
and in the next iteration we consider FTSs π[[c]](F1) and π[[¬c]](F1).
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9. Related work

Lifted model checking has been a subject of active research in the last
decade. One of the first proposals for representing variability models of system
families is by using modal transition systems (MTSs) [28], where optional
‘may’ transitions are used to model variability. In contrast, here we use MTSs
with an entirely different goal of abstracting variability models, which is
closer to the original idea of introducing MTSs by Larsen and Thomsen [20].
Subsequently, Classen et al. [4] present featured transition systems (FTSs),
which are today widely accepted as the model essentially sufficient for most
purposes of lifted model checking. They show how specifically designed lifted
model checking algorithms (implemented in ProVeLines [29]) can be used
for verifying FTSs against LTL properties. Classen et al. [18] also present
symbolic lifted model checking algorithms (implemented as an extension of
NuSMV model checker) for verifying FTSs against CTL properties.

The variability abstractions and the corresponding abstract variability
models that preserve LTL are introduced in [6, 7]. Subsequently, automatic
abstraction-refinement procedures for lifted model checking of LTL are pro-
posed [30, 31], which use Craig interpolation to define the refinement. If a
spurious counterexample (introduced due to the abstraction) is found in the
abstract model, the procedures [30, 31] use Craig interpolation to extract
relevant information from it in order to define the refinement of abstract
models. The first author has previously introduced variability abstractions
that preserve all (universal and existential) CTL properties [9], but without
an automatic mechanism for constructing them and no notion of refinement.
The abstractions have to be constructed manually before verification. In
order to make the entire verification procedure automatic, we develop here
an abstraction and refinement framework for CTL properties by using model
checking games to define the refinement [15]. In this paper, we explain
this abstraction-refinement procedure for CTL lifted model checking in de-
tails and we further pursue this line of work by employing the notion of
hyper-transitions in order to give a generalized definition of abstract models.
In this way, we obtain a more effective verification procedure. Moreover,
since abstract variability models also preserve the full µ-calculus [9] and the
game-based model checking for µ-calculus is defined [27, 14], we adapt our
abstraction-refinement procedure for verifying µ-calculus properties.

Another approach to efficiently verify variability models is by using vari-
ability encoding [32], which transforms features into non-deterministically
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initialized variables (replaces compile-time with run-time variability). The
generated family simulator is verified using the standard single-system model
checkers. However, in case of violation, the (single-system) model checker
stops after a single counterexample and a violating variant are found. There-
fore, this answer is incomplete (limited) since there might be other satisfying
variants and also there might be other violating variants with different coun-
terexamples. In contrast, lifted model checking and our approach provide
precise conclusive results for all variants.

One of the earliest attempts for using games for CTL model checking has
been proposed by Stirling [12]. Shoham and Grumberg [13, 14] have extended
this game-based approach for defining compositional abstraction-refinement
framework for CTL over 3-valued semantics. Subsequently, Shoham and
Grumberg [16] introduced the notion of hyper-transitions in order to give
a more generalized definition of abstract models of TSs that preserve CTL.
This gives rise to a monotonic abstraction-refinement framework for full CTL.
In this paper, we employ Shoham&Grumberg’s algorithm for game-based
model checking and the notion of hyper-transition in an entirely new context
of lifted model checking. Thus, we establish a brand new connection between
games and lifted (SPL) model checking.

Variability abstractions have also been employed in lifted static analy-
sis [33]. They aim to tame the combinatorial explosion of the number of
configurations and reduce it to something more tractable by manipulating
the configuration space. Such variability abstractions are used for deriving
abstract lifted static analyses, which enable deliberate trading of precision
for speed. A technique for automatic generation of suitable variability ab-
stractions for lifted static analysis is presented in [34]. It uses a pre-analysis
to estimate the impact of variability-specific parts of the program family on
analysis’s precision. The obtained results from running the pre-analysis are
used for constructing a suitable abstract lifted static analysis.

10. Conclusion

In this work we present a game-based lifted model checking for abstract
variability models with respect to the full CTL. We also suggest an automatic
refinement procedure, in case the model checking result is indefinite. We
use the indefinite part of the colored game-graph of an abstract model to
derive a failure node and a reason, which are then exploited for refinement.
Moreover, we generalize the definition of abstract variability models of FTSs
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by using the notion of hyper-transitions. This results in more precise abstract
models in which more CTL properties can be proved or disproved. Finally,
we suggest an automatic generalized abstraction-refinement procedure, in
case the model checking result is indefinite. We also show how to adapt our
abstraction-refinement procedures for verifying µ-calculus properties.
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