
ALBATROSS: publicly AttestabLe BATched Randomness
based On Secret Sharing

Ignacio Cascudo1 and Bernardo David2∗

1 IMDEA Software Institute, Madrid, Spain, ignacio.cascudo@imdea.org
2 IT University of Copenhagen, Copenhagen, Denmark, bernardo@bmdavid.com

Abstract. In this paper we present ALBATROSS, a family of multiparty randomness gen-
eration protocols with guaranteed output delivery and public verification that allows to trade
off corruption tolerance for a much improved amortized computational complexity. Our basic
stand alone protocol is based on publicly verifiable secret sharing (PVSS) and is secure under
in the random oracle model under the decisional Diffie-Hellman (DDH) hardness assumption.
We also address the important issue of constructing Universally Composable randomness
beacons, showing two UC versions of Albatross: one based on simple UC NIZKs and another
one based on novel efficient “designated verifier” homomorphic commitments. Interestingly
this latter version can be instantiated from a global random oracle under the weaker Com-
putational Diffie-Hellman (CDH) assumption. An execution of ALBATROSS with n parties,
out of which up to t = (1/2−ε) ·n are corrupt for a constant ε > 0, generates Θ(n2) uniformly
random values, requiring in the worst case an amortized cost per party of Θ(logn) exponen-
tiations per random value. We significantly improve on the SCRAPE protocol (Cascudo and
David, ACNS 17), which required Θ(n2) exponentiations per party to generate one uniformly
random value. This is mainly achieved via two techniques: first, the use of packed Shamir
secret sharing for the PVSS; second, the use of linear t-resilient functions (computed via a
Fast Fourier Transform-based algorithm) to improve the randomness extraction.

1 Introduction

Randomness is essential for constructing provably secure cryptographic primitives and protocols.
While in many cases it is sufficient to assume that each party executing a cryptographic construc-
tion has access to a local trusted source of unbiased uniform randomness, many applications (e.g.
electronic voting [1] and anonymous messaging [43,45]) require a randomness beacon [38] that can
periodically provide fresh random values to all parties. Constructing such a randomness beacon
without relying on a trusted third party requires a multiparty protocol that can be executed in
such a way that all parties are convinced that an unbiased random value is obtained after the
execution terminates, even if a fraction of these parties are corrupted. Moreover, in certain scenar-
ios (e.g. in electronic voting [1]) it might be necessary to employ a publicly verifiable randomness
beacon, which allows for third parties who did not participate in the beacon’s execution to verify
that indeed a given random value was successfully obtained after a certain execution. To raise the
challenge of constructing such randomness beacons even more, there are classes of protocols that
require a publicly verifiable randomness beacon with guaranteed output delivery, meaning that
the protocol is guaranteed to terminate and output an unbiased random value no matter what
actively corrupted parties do. A prominent class of protocols requiring publicly verifiable random-
ness beacons with guaranteed output delivery is that of Proof-of-Stake based blockchain consensus

∗Work partially done while visiting IMDEA Software Institute. This work was supported by a grant from
Concordium Foundation, DFF grant number 9040-00399B (TrA2C) and Protocol Labs grant S2LEDGE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/389688157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

protocols [30,22], which are the main energy-efficient alternative to wasteful Proof-of-Work based
blockchain consensus protocols [33,25].

Related Works: A number of randomness beacons aiming at being amenable to blockchain con-
sensus applications have been proposed based on techniques such as Verifiable Delay Functions
(VDF) [8], randomness extraction from data in the blockchain [2], Publicly Verifiable Secret Shar-
ing [30,17,41] or Verifiable Random Functions [22,19]. However, most of these schemes do not guar-
antee either the generation of perfectly uniformly random values [2,22,19] or that a value will be
generated regardless of adversarial behavior [41]. Those methods that do have those two guarantees
suffer from high computational and communication complexity [30] or even higher computational
complexity in order to improve communication complexity [8]. Another issue with VDF based ap-
proaches is that their security relies on very precise estimates of the average concrete complexity of
certain computational tasks (i.e. how much time it takes an adversary to compute a VDF), which
are hard to obtain for real world systems. While SCRAPE [17] does improve on [30], it can still
be further improved, as is the goal of this work. Moreover, none of the protocols that guarantee
generation of truly unbiased uniformly random values have any composability guarantees. This is a
very important issue, since these protocols are not used in isolation but as building blocks of more
complex systems and thus need composability.

Our Contributions: We present ALBATROSS, a family of multiparty randomness generation
protocol with guaranteed output delivery and public verification, where parties generate Θ(n2)
independent and uniformly random elements in a group and where the computational complexity
for each party in the worst case is of Θ(log n) group exponentiations (the most computationally
expensive operation in the protocol) per random element generated, as long as the number of
corrupted parties is t = n/2−Θ(n). Our contributions are summarized below:

– The first randomness beacon with Θ(log n) group exponentiations per party.
– The first Universally Composable randomness beacon producing unbiased uniformly random

values.
– The first randomness beacon based on the Computational Diffie-Hellman (CDH) assumption via

novel “designated verifier” homomorphic commitments, which might be of independent interest.

Our basic stand alone protocol builds on SCRAPE [17], a protocol based on publicly verifiable
secret sharing (PVSS). We depart from the variant of SCRAPE based on the Decisional Diffie-
Hellman (DDH) assumption, which required Θ(n2) group exponentiations per party to generate
just one uniformly random element in the group, but tolerated any dishonest minority. Therefore,
what we obtain is a trade-off of corruption tolerance in exchange for a much more efficient random-
ness generation, under the same assumptions (DDH hardness, RO model). We gain efficiency for
ALBATROSS in the suboptimal corruption scenario by introducing two main techniques on top
of SCRAPE, that in fact can be applied independently from each other: the first one is the use
of “packed” (or “ramp”) Shamir secret sharing in the PVSS, and the second is the use of privacy
amplification through t-resilient functions that allows to extract more uniform randomness from a
vector of group elements from which the adversary may control some of the coordinates. Applying
these techniques requires us to overcome significant obstacles (see below) but using them together
allows ALBATROSS to achieve the complexity of Θ(log n) exponentiations per party and random
group element. Moreover, this complexity is worst case: the log n factor only appears if a large
number of parties refuse to open the secrets they have committed to, thereby forcing the PVSS
reconstruction on many secrets, and a less efficient output phase. Otherwise (if e.g. all parties act
honestly) the amortized complexity is of O(1) exponentiation per party and element generated.

2

Our Techniques: In order to create a uniformly random element in a group in a multiparty
setting, a natural idea is to have every party select a random element of that group and then
have the output be the group operation applied to all those elements. However, the last party in
acting can see the choices of the other parties and change her mind about her input, so a natural
solution is to have every party commit to their random choice first. Yet, the adversary can still wait
until everyone else has opened their commitments and decide on whether they want to open or not
based on the observed result, which clearly biases the output. In order to solve this, we can have
parties commit to the secrets by using a publicly verifiable secret sharing scheme to secret-share
them among the other parties as proposed in [30,17]. The idea is that public verifiability guarantees
that the secret will be able to be opened even if the dealer refuses to reveal the secrets. The final
randomness is constructed from all these opened secrets.

In the case of SCRAPE the PVSS consists in creating Shamir shares σi for a secret s in a finite
field Zq, and publishing the encryption of σi under the public key pki of party i. More concretely,
the encryption is pkσii , and pki = hski for h a generator of a DDH-hard group Gq of cardinality q;
what party i can decrypt is not really the Shamir share σi, but rather hσi . However these values
are enough to reconstruct hs which acts as a uniformly random choice in the group by the party
who chose s. The final randomness is

∏
hs

a

. Public verifiability of the secret sharing is achieved
in SCRAPE by having the dealer commit to the shares independently via some other generator
g of the group (i.e. they publish gσi), proving that these commitments contain the same Shamir
shares via discrete logarithm equality proofs, or DLEQs, and then having verifiers use a procedure
to check that the shares are indeed evaluations of a low-degree polynomial. In this paper we will use
a different proof, but we remark that the latter technique, which we call LocalLDEI test, will be of
use in another part of our protocol (namely it is used to verify that hs is correctly reconstructed).

In ALBATROSS we assume that the adversary corrupts at most t parties where n − 2t = ` =
Θ(n). The output of the protocol will be `2 elements of Gq.

Larger Randomness via Packed Shamir Secret Sharing. In this suboptimal corruption
scenario, we can use packed Shamir secret sharing, which allows to secret-share a vector of ` elements
from a field (rather than a single element). The key point is that every share is still one element
of the field and therefore the sharing has the same computational cost (Θ(n) exponentiations) as
using regular Shamir secret sharing. However, there is still a problem that we need to address: the
complexity of the reconstruction of the secret vector from the shares increases by the same factor as
the secret size (from Θ(n) to Θ(n2) exponentiations). To mitigate this we use the following strategy:
each secret vector will be reconstructed only by a random subset of c parties (independently of each
other). Verifying that a reconstruction is correct only requires Θ(n) exponentiations, by using the
aforementioned LocalLDEI . The point is that if we assign c = log n, then with large probability there
will be only at most a small constant number of secret tuples that were not correctly reconstructed
by any of the c(n) parties and therefore it does not add too much complexity for the parties to
compute those. The final complexity of this phase is then O(n2 log n) exponentiations for each party,
in the worst case.

Larger Randomness via Resilient Functions. To simplfy, let us first assume that packed
secret sharing has not been used. In that case, right before the output phase from SCRAPE, parties
will know a value hsa for each of the parties Pa in the set C of parties that successfully PVSS’ed
their secrets (to simplify, let us say C = {P1, P2, . . . , P|C|}), where h is a generator of a group of

order q. In the original version of SCRAPE, parties then compute the final randomness as
∏|C|
a=1 h

sa ,

which is the same as h
∑|C|
a=1 sa .

3

Instead, in ALBATROSS, we use a randomness extraction technique based on a linear t-resilient
function, given by a matrix M , in such a way that the parties instead output a vector of random
elements (hr1 ,...,hrm) where (r1, ..., rm) = M(s1, . . . , s|C|). The resilient function has the property
that the output vector is uniformly distributed as long as |C| − t inputs are uniformly distributed,
even if the other t are completely controlled by the adversary. If in addition packed secret sharing
has been used, one can simply use the same strategy for each of the ` coordinates of the secret
vectors created by the parties. In this way we can create `2 independently distributed uniformly
random elements of the group.

An obstacle to this randomness extraction strategy is that, in the presence of corrupted parties
some of the inputs si may not be known if the dealers of these values have refused to open them,
since PVSS reconstruction only allows to retrieve the values hsi . Then the computation of the
resilient function needs to be done in the exponent which in principle appears to require either
O(n3) exponentiations, or a distributed computation like in the PVSS reconstruction.

Fortunately, in this case the following idea allows to perform this computation much more
efficiently: we choose M to be certain type of Vandermonde matrix so that applying M is evaluating
a polynomial (with coefficients given by the si) on several n-th roots of unity. Then we adapt the
Cooley-Tukey fast Fourier transform algorithm to work in the exponent of the group and compute
the output with n2 log n exponentiations, which in practice is almost as fast as the best-case scenario
where the si are known. This gives the claim amortized complexity of O(log n) exponentiations per
party and random element computed.

Additional Techniques to Decrease Complexity. We further reduce the complexity of the
PVSS used in ALBATROSS, with an idea which can also be used in SCRAPE [17]. It concerns

public verification that a published sharing is correct, i.e. that it is of the form pk
p(i)
i for some

polynomial of bounded degree, say at most k. Instead of the additional commitment to the shares
used in [17], we use standard Σ-protocol ideas that allow to prove this type of statement, which
turns out to improve the constants in the computational complexity. We call this type of proof a
low degree exponent interpolation (LDEI) proof.

Universal Composability. We extend our basic stand alone protocol to obtain two versions
that are secure in the Universal Composability (UC) framework [13], which is arguably one of the
strongest security guarantees one can ask from a protocol. In particular, proving a protocol UC
secure ensures that it can be used as a building block for more complex systems while retaining its
security guarantees, which is essential for randomness beacons. We obtain the first UC-secure ver-
sion of ALBATROSS by employing UC non-interactive zero knowledge proofs (NIZKs) for discrete
logarithm relations, which can be realized at a reasonable overhead. The second version explores a
new primitive that we introduce and construct called “designated verifier” homomorphic commit-
ments, which allows a sender to open a commitment towards one specific receiver in such a way
that this receiver can later prove to a third party that the opening revealed a certain message.
Instead of using DDH based encryption schemes as before, we now have the parties commit to their
shares using our new commitment scheme and rely on its homomorphic properties to perform the
LDEI proofs that ensure share validity. Interestingly, this approach yields a protocol secure under
the weaker CDH assumption in the random oracle model.

2 Preliminaries

[n] denotes the set {1, 2, . . . , n} and [m,n] denotes the set {m,m + 1, . . . , n}. We denote vectors
with black font lowercase letters, i.e. v. Given a vector v = (v1, . . . , vn) and a subset I ⊆ [n], we

4

denote by vI the vector of length |I| with coordinates vi, i ∈ I in the same order they are in v.
Throughout the paper, q will be a prime number and Zq = Z/qZ is a finite field of q elements. For a
field F, Fm×n is the set of m×n matrices with coefficients in F. Moreover, we denote by F[X]≤m the

vector space of polynomials in F[X] with degree at most m. For a set X , let x
$← X denote x chosen

uniformly at random from X ; and for a distribution Y, let y
$← Y denote y sampled according to

the distribution Y.

Polynomial Interpolation and Lagrange Basis. We recall a few well known facts regarding
polynomial interpolation in fields.

Definition 1 (Lagrange basis). Let F be a field, and S = {a1, . . . , ar} ⊆ F. A basis of F[X]≤r−1,
called the Lagrange basis for S, is given by {Lai,S(X) : i ∈ [r]} defined by

Lai,S(X) =
∏

aj∈S\{ai}

X − aj
ai − aj

.

Lemma 1. Let F be a field, and S = {a1, . . . , ar} ⊆ F. Then the map F[X]≤r−1 → Fr given
by f(X) 7→ (f(a1), . . . , f(ar)) is a bijection, and the preimage of (b1, . . . , br) ∈ Fr is given by
f(X) =

∑r
i=1 bi · Lai,S(X).

Packed Shamir Secret Sharing. From now on we work on the finite field Zq. Shamir secret
sharing scheme [40] allows to share a secret s ∈ Zq among a set of n parties (where n < q) so
that for some specified 1 ≤ t < n, the secret can be reconstructed from any set of t + 1 shares
via Lagrange interpolation (t+ 1-reconstruction), while any t or less shares convey no information
about it (t-privacy). In Shamir scheme each share is also in Zq and therefore of the same size of the
secret.

Packed Shamir secret sharing scheme ([7,24]) is a generalization that allows for sharing a vector
in Z`q while each share is still one element of Zq. Standard Shamir is the case ` = 1. Packing comes
at the inevitable cost of sacrificing the threshold nature of Shamir’s scheme, which is replaced by
an (optimal) quasithreshold (often called “ramp”) behavior, namely there is t-privacy and t + `
reconstruction. The description of the sharing and reconstruction (from t+` shares) algorithms can
be found in Figure 1.

Remark 1. The points 0,−1, . . . ,−(` − 1) (for the secret) and 1, . . . , n (for the shares) can be
replaced by any set of n + ` pairwise distinct points. In this case the reconstruction coefficients
should be changed accordingly. Choosing other evaluation points may be beneficial due to efficient
algorithms for both computing the shares and the Lagrange coefficients [42]. In this work we will
not focus on optimizing this aspect and use the aforementioned points for notational simplicity.

Linear Codes. The Hamming weight of a vector c ∈ Znq is the number of nonzero coordinates of c.
An [n, k, d]q-linear error correcting code C is a vector subspace of Znq of dimension k and minimum
distance d, i.e., the smallest Hamming weight of a nonzero codeword in C is exactly d. A generator
matrix is a matrix M ∈ Zk×nq such that C = {m ·M : m ∈ Zkq}.

Given n pairwise distinct points x1, . . . , xn in Znq , a Reed Solomon of length n and dimension
k is defined as = {(f(x1), . . . , f(xn)) : f ∈ Zq[X],deg f < k}. It is well known that this is an
[n, k, n − k + 1]q-linear code, and therefore achieves the largest possible minimum distance for a
code of that length and dimension. These codes are called MDS (maximum distance separable).

5

Packed Shamir secret sharing

Packed Shamir secret sharing over Zq for ` secrets with n parties, t-privacy and t + `-reconstruction.
We require n+ ` ≤ q, 1 ≤ t, t+ ` ≤ n.
Sharing algorithm.
On input (s0, s1, . . . , s`−1) ∈ Z`q:

– The dealer chooses a polynomial uniformly at random in the affine space

{f ∈ Zq[X]≤t+`−1, f(0) = s0, f(−1) = s1, . . . , f(−(`− 1)) = s`−1}.

– For i = 1, . . . , n, the dealer sends f(i) to the i-th party.
Reconstruction algorithm.
On input the shares σi = f(i), i ∈ Q for a set of parties Q ⊆ [n], with |Q| = t+ `.

– For m = 0, . . . , `− 1, parties compute

sm =
∑
i∈Q

σiLi,Q(−m) =
∑
i∈Q

σi
∏

j∈Q,j 6=i

−m− j
i− j

– Output (s0, s1, . . . , s`−1)

Fig. 1. Packed Shamir Secret Sharing (Sharing Algorithm)

The dual code of a code C, denoted C⊥, is the vector space consisting of all vectors c⊥ ∈ Znq such

that 〈c, c⊥〉 = 0 for all c ∈ C where 〈·, ·〉 denotes the standard inner product. For the Reed-Solomon
code above, its dual is the following so-called generalized Reed-Solomon code

C⊥ = {(u1 · f∗(x1), . . . , un · f∗(xn)) : g ∈ Zq[X],deg f∗ < n− k}

where u1, ..., un are fixed elements of Znq , namely ui =
∏n
j=1,j 6=i(xi − xj)−1.

Linear Perfect Resilient Functions. Our optimizations make use of randomness extractors
which are linear over Zq and hence given by a matrix M ∈ Zu×rq satisfying the following property:
the knowledge of any t coordinates of the input gives no information about the output (as long as
the other r− t coordinates are chosen uniformly at random). This notion is known as linear perfect
t-resilient function [20].

Definition 2. A Zq-linear (perfect) t-resilient function (t-RF for short) is a linear function Zrq →
Zuq given by x 7→M ·x such that for any I ⊆ [r] of size t, and any aI = (aj)j∈I ∈ Ztq, the distribution
of M · x conditioned to xI = aI and to x[r]\I being uniformly random in Zr−tq , is uniform in Zuq .

Note that such a function can only exist if u ≤ r − t. We have the following characterization in
terms of linear codes.

Theorem 1. [20] An u× r matrix M induces a linear t-RF if and only if M is a generator matrix
for an [r, u, t+ 1]q-linear code.

Remark 2. Remember that with our notation for linear codes, the generator matrix acts on the
right for encoding a message, i.e. m 7→ m ·M . In other words the encoding function for the linear
code and the corresponding resilient function given by the generator matrix as in Theorem 1 are
“transpose from each other”.

6

A t-RF for the optimal case u = r− t is given by any generator matrix of an [r, r− t, t+1]q MDS
code, for example a matrix M with Mij = ai−1j for i ∈ [r − t], j ∈ [r], where all aj ’s are distinct,
which generates a Reed-Solomon code. It will be advantageous for us to fix an element ω ∈ Z∗q of

order at least r − t and set aj = ωj−1, that is we will use the matrix M = M(ω, r − t, r) where

Mij = ω(i−1)(j−1), i ∈ [r − t], j ∈ [r]

Then M · x = (f(1), f(ω), · · · , f(ωr−t−1)) where f(X) := x0 + x1X + x2X
2 + · · ·+ xr−1X

r−1, and
we can use the Fast Fourier transform to compute M · x very efficiently, as we explain later.

3 Basic Algorithms and Protocols

In this section we introduce some algorithms and subprotocols which we will need in several parts
of our protocols, and which are relatively straight-forward modifications of known techniques.

3.1 Proof of Discrete Logarithm Equality.

We will need a zero-knowledge proof that given g1, ..., gm and x1, ..., xm the discrete logarithms
of every xi with base gi are equal. That is xi = gαi for all i ∈ [m] for some common α ∈ Zq.
Looking ahead, these proofs will be used by parties in the PVSS to ensure they have decrypted
shares correctly. A sigma-protocol performing DLEQ proofs for m = 2 was given in [18]. We can
easily adapt that protocol to general m as follows:

1. The prover samples w ← Zq and, for all i ∈ [m], computes ai = gwi and sends ai to the verifier.
2. The verifier sends a challenge e← Zq to the prover.
3. The prover sends a response z = w − αe to the verifier.
4. The verifier accepts if ai = gzi x

e
i for all i ∈ [m].

We transform this proof into a non-interactive zero-knowledge proof of knowledge of α in the
random oracle model via the Fiat-Shamir heuristic [23,37]:

– The prover computes ai for all i as above, computes e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am),
where H(·) is a random oracle (that will be instantiated by a cryptographic hash function) and
computes z as above. The proof is (e, z).

– The verifier computes ai = gzi x
e
i for all i, computes e′ = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am)

and checks that e′ = e.

This proof requires m exponentiations for the prover and 2m for the verifier.

3.2 Proofs and Checks of Low-Degree Exponent Interpolation.

We consider the following statement: given generators g1, g2, . . . , gm of a cyclic group Gq of prime
order q, pairwise distinct elements α1, α2, . . . , αm in Zq and an integer 1 ≤ k < m, known by prover

and verifier, the claim is that a tuple (x1, x2, . . . , xm) ∈ Gmq is of the form (g
p(α1)
1 , g

p(α2)
2 , . . . , g

p(αm)
m)

for a polynomial p(X) in Zq[X]≤k. We will encounter this statement in two different versions:

7

– In the first situation, we need a zero-knowledge proof of knowledge of p(X) by the prover. This
type of proof will be used for a dealer in the publicly verifiable secret sharing scheme to prove
correctness of sharing. We call this proof LDEI((gi)i∈[m], (αi)i∈[m], k, (xi)i∈[m]).

– In the second situation, we have no prover, but on the other hand we have g1 = g2 = · · · = gm.
In that case we will use a locally computable check from [17]: indeed, verifiers can check by
themselves that the statement is correct with high probability. This type of check will be
used to verify correctness of reconstruction of a (packed) secret efficiently. We call such check
LocalLDEI((αi)i∈[m], k, (xi)i∈[m])).

3

In [17], the first type of proof was constructed by using a DLEQ proof of knowledge of common
exponent to reduce that statement to one of the second type and then using the local check we
just mentioned. However, this is unnecessarily expensive both in terms of communication and
computation. Indeed, a simpler Σ-protocol for that problem is given in Figure 2.

Protocol LDEI (ZK PoK of Low-Degree Exponent Interpolation)

Public parameters: prime q, cyclic group Gq of prime order q, g1, ..., gm generators of Gq, α1, α2, . . . , αm
pairwise distinct elements in Zq, integer 1 ≤ k < m.

Statement: (x1, x2, . . . , xm) ∈
{(
g
p(α1)
1 , g

p(α2)
2 , . . . , g

p(αm)
m

)
: p ∈ Zq[X], deg p ≤ k

}
and the prover

knows p.

Protocol:
– Sender chooses r(X) ∈ Zq[X]≤k uniformly at random and sends ai = g

r(αi)
i for all i ∈ [m] to the

verifier.
– Verifier chooses e ∈ Zq uniformly at random.
– Sender sends z(X) = e · p(X) + r(X) to the verifier

– Verifier checks that z(X) ∈ Zq[X]≤k and xei · ai = g
z(αi)
i for all i ∈ [m].

Fig. 2. Protocol LDEI Zero-Knowledge Proof of Knowledge of Low-Degree Exponent Interpolation.

Proposition 1. Protocol LDEI in Figure 2 is an honest-verifier zero-knowledge proof of knowledge
for the given statement.

Proof. If the prover is honest, then clearly z is of degree ≤ k and xei ·ai = g
e·p(αi)
i ·gr(αi)i = g

z(αi)
i . To

prove soundness, given the first message (a1, a2, . . . , am), if the prover can provide z, z′ that pass the

test for two different challenges e, e′, then xe−e
′

i = g
(z−z′)(αi)
i for all i. Therefore xi = g

p(αi)
i , where

p(X) = (e − e′)−1(z(X) − z′(X)) is of degree at most k. To prove honest verifier zero-knowledge,
we construct the following simulator: it samples z(X) and e respectively uniformly at random in

Zq[X]≤k and Zq, and it generates ai = g
z(αi)
i /xei for all i. Then ai = g

r(αi)
i , for r(X) = z(X)−e·p(X)

and hence clearly r is uniformly random in Zq[X]≤k, so the distribution is as in the real proof.

Applying Fiat-Shamir heuristic we transform this into a non-interactive proof:

3This type of statement is independent of the generator g1 of the group we choose: it is true for a given
generator if and only if it is true for all of them.

8

– The sender chooses r ∈ Zq[X]≤k uniformly at random, computes ai = g
r(αi)
i for all i = 1, . . . ,m,

computes e = H(x1, x2, . . . , xm, a1, a2, . . . , am) and sets z = e · p+ r. The proof is then (e, z).

– The verifier computes ai = g
z(αi)
i ·x−ei for all i = 1, . . . ,m, computes e′ = H(x1, x2, . . . , xm, a1, a2, . . . , am),

and checks that z ∈ Zq[X]≤k and that e′ = e.

Now we consider the second type of situation mentioned above. The local check is given in
Figure 3.

Algorithm LocalLDEI to Verify Low-Degree Exponent Interpolation

Public parameters: prime q, cyclic group Gq of prime order q, integer m.
Input: pairwise distinct elements (α1, α2, . . . , αm) in Zq, integer 1 ≤ k < m, tuple (x1, x2, . . . , xm) ∈ Gq,
a group generator g.

Statement: (x1, x2, . . . , xm) ∈
{(
gp(α1), gp(α2), . . . , gp(αm)

)
: p ∈ Zq[X], deg p ≤ k

}
.

Algorithm:
– Verifier defines ui = 1/

∏
` 6=i(αi − α`) for all i = 1, . . . ,m.

– Verifier chooses a polynomial p∗ uniformly at random in Zq[X]≤m−k−2 \ {0} and computes vi =
ui · p∗(αi) for all i.

– Verifier checks that
∏m
i=1 x

vi
i = 1 and accepts if and only if that is the case.

Fig. 3. Algorithm LocalLDEI to Verify Low-Degree Exponent Interpolation

Proposition 2. The local test LocalLDEI in Figure 3 always accepts if the statement is true and
rejects with probability at least 1− 1/q if the statement is false.

Correctness is based on the fact that the vector (u1p∗(α1), . . . , unp∗(αm)) is in the dual code
C⊥ of the Reed Solomon code C given by the vectors (p(α1), . . . , p(αm)) with deg p ≤ k, hence if
the exponents of the xi’s (in base g) indeed form a codeword in C, the verifier is computing the
inner product of two orthogonal vectors in the exponent. Soundness follows from the fact that, if
the vector is not a codeword in C, then a uniformly random element in C⊥ will only be orthogonal
to that vector of exponents with probability less than 1/q. See [17, Lemma 1] for more information
about this claim.

3.3 Applying Resilient Functions “in the Exponent”

In our protocol we will need to apply resilient functions in the following way. Let h1, . . . , hr be public
elements of Gq, chosen by different parties, so that hi = hxi (for some certain public generator
h of the group) and xi is only known to the party that has chosen it. Our goal is to extract

(ĥ1, . . . , ĥu) ∈ Guq which is uniformly random in the view of an adversary who has control over up
to t of the initial elements xi. In order to do that, we take a t-resilient function from Zrq to Zuq given by

a matrix M and apply it to the exponents, i.e., we define ĥi = hyi where x 7→ y = M ·x; this satisfies
the desired properties. Because the resilient function is linear, the values ĥi can be computed from
the hi by group operations, without needing the exponents xi. We define the following notation.

9

Definition 3. As above, let Gq be a group of order q in multiplicative notation. Given a matrix

M = (Mij) in Zu×rq and a vector h = (h1, h2, . . . , hr) ∈ Grq, we define ĥ = M � h ∈ Guq , as

ĥ = (ĥ1, ĥ2, . . . , ĥr), where ĥi =
∏u
k=1 h

Mik

k .

Remark 3. Given a generator h of Gq, if we write h = (hx1 , hx2 , . . . , hxr), x = (x1, x2, . . . , xr), then
M � h = (hy1 , hy2 , . . . , hyr) where (y1, y2, . . . , yr) = M · x.

Now let M = M(ω, r− t, r) as in Section 2. In order to minimize the number of exponentiations
that we need to compute M �h recall first that M ·x = (f(1), f(ω), . . . , f(ωr−t−1)), where f is the
polynomial with coefficients fi = xi+1, for i ∈ [0, r−1]. Assuming there exists n > r− t−1 a power
of 2 that divides q − 1, we can choose ω to be a n-th root of unity for n and use the well known
Cooley-Tukey recursive algorithm [21] for computing the Fast Fourier Transform. The algorithm in
fact evaluates a polynomial of degree up to n − 1 on all powers of ω up to ωn−1 with O(n log n)
multiplications. We can just set fj = 0 for j ≥ r, and ignore the evaluations in ωi, for i ≥ r− t). For
completeness, we include the Cooley-Tukey algorithm as presented in [44] in Figure 15, Appendix A.
In our situation the xi’s are not known; we use the fact that in the Cooley-Tukey algorithm all
operations on the xi are linear, so we can operate on the values hi = hxi instead. The resulting
algorithm is then given in Figure 4 (since we denoted fi = xi+1, then hi = hfi−1).

“Cooley-Tukey FFT in the exponent” algorithm FFTE

Parameters: A large prime q, and a group Gq of cardinality q.
Input: An integer n = 2k dividing q − 1, a tuple h = (h1, h2, . . . , hn) ∈ Gnq , and an n-th root of unity
ω ∈ Zq.
Output: The tuple ĥ = (ĥ1, ĥ2, . . . , ĥn) = M ′ �h ∈ Gnq , where M ′ ∈ Zn×nq is given by M ′ij = ω(i−1)(j−1)

for i, j ∈ [n].

If n = 1, return h1.
Else:

– For j = 1, . . . , n/2, compute vj = hj ·hj+n/2, v∗j = (hj · (hj+n/2)−1)ω
j−1

. Set v = (v1, v2, . . . , vn/2),
v∗ = (v∗1 , v

∗
2 , . . . , v

∗
n/2).

– Apply the algorithm recursively to (n/2,v, ω2) and on (n/2,v∗, ω2) obtaining outputs v̂ =
(v̂1, v̂2, . . . , v̂n/2) and v̂∗ = (v̂∗1, v̂∗2, . . . , v̂∗n/2) respectively.

– Return (v̂1, v̂∗1, v̂2, v̂∗2, . . . , v̂n/2, v̂∗n/2).

Fig. 4. Algorithm FFTE (Cooley-Tukey FFT in the exponent)

At every recursion level of the algorithm, it needs to compute in total n exponentiations, and
therefore the total number of exponentiations in Gq is n log2 n. In fact, half of these are inversions,
which are typically faster.

4 ALBATROSS Protocols

We will now present our main protocols for multiparty randomness generation. We assume n partic-
ipants, at most t < (n− 1)/2 of which can be corrupted by some active static adversary. We define

10

then ` = n − 2t > 0. Note that n − t = t + `, so we use these two quantities interchangeably. For
asymptotics, we consider that both t and ` are Θ(n), in particular t = τ · n for some 0 < τ < 1/2.
The n participants have access to a public ledger, where they can publish information that can be
seen by the other parties and external verifiers.

Our protocols take place in a group Gq of prime cardinality q, where we assume that the
Decisional Diffie-Hellman problem is hard. Furthermore, in order to use the FFTE algorithm we
require that Gq has large 2-adicity, i.e., that q−1 is divisible by a large power of two 2u. Concretely
we need 2u > n − t. DDH-hard elliptic curve groups with large 2-adicity are known, for example
both the Tweedledee and Tweedledum curves from [10] satisfy this property for u = 33, which is
more than enough for any practical application.

4.1 A PVSS Based on Packed Shamir Secret Sharing

As a first step, we show a generalization of a PVSS from [17], where we use packed Shamir secret
sharing in order to share several secrets at essentially the same cost for the sharing and public
verification phases. In addition, correctness of the shares is instead verified using the LDEI proof.
This is different than in [17] where the dealer needed to commit to the shares using a different
generator of the group, and correctness of the sharing was proved using a combination of DLEQ
proofs and the LocalLDEI check, which is less efficient. In Figure 5, we present the share distribution
and verification of the correctness of the shares of the new PVSS. We discuss the reconstruction of
the secret later.

Protocol πPPV SS

Let h be a generator of a group Gq of order q. Let H(·) be a random oracle. Protocol πPPV SS is
run between n parties P1, . . . , Pn, a dealer D and an external verifier V (in fact any number of ex-
ternal verifiers) who have access to a public ledger where they can post information for later verification.

1. Setup: Party Pi generates a secret key ski ← Zq, a public key pki = hski and registers the public
key pki by posting it to the public ledger, for 1 ≤ i ≤ n.

2. Distribution: The dealer D samples a polynomial p(X)← Zq[X]≤t+`−1 and sets s0 = p(0), s1 =
p(−1), . . . , s`−1 = p(−(`− 1)). The secrets are defined to be S0 = hs0 , S1 = hs1 , . . . , S`−1 = hs`−1 .
D computes Shamir shares σi = p(i) for 1 ≤ i ≤ n. D encrypts the shares as σ̂i = pkσii and

publishes (σ̂1, . . . , σ̂n) in the public ledger along with the proof LDEI that σ̂i = pk
p(i)
i for some p

of degree at most t+ `− 1.
3. Verification: The verifier checks the proof LDEI.

Fig. 5. Protocol πPPV SS

Under the DDH assumption, πPPV SS satisfies the property of IND1-secrecy as defined in [17]
(adapted from [39,29]), which requires that given t shares and a vector x′ = (s′0, s

′
1, . . . , s

′
`−1), the

adversary cannot tell whether x′ is the actual vector of secrets.

Definition 4. Indistinguishability of secrets (IND1-secrecy) We say that the PVSS is IND1-
secret if for any polynomial time adversary APriv corrupting at most t−1 parties, APriv has negligible
advantage in the following game played against a challenger.

11

1. The challenger runs the Setup phase of the PVSS as the dealer and sends all public informa-
tion to APriv. Moreover, it creates secret and public keys for all honest parties, and sends the
corresponding public keys to APriv.

2. APriv creates secret keys for the corrupted parties and sends the corresponding public keys to
the challenger.

3. The challenger chooses values x0 and x1 at random in the space of secrets. Furthermore it
chooses b← {0, 1} uniformly at random. It runs the Distribution phase of the protocol with x0
as secret. It sends APriv all public information generated in that phase, together with xb.

4. APriv outputs a guess b′ ∈ {0, 1}.

The advantage of APriv is defined as |Pr[b = b′]− 1/2|.

Proposition 3. Protocol πPPV SS is IND1-secret under the DDH assumption.

In order to show this, we will in fact use the following assumption.

Definition 5 (`-DDH hardness assumption). Let ` := `(λ) be an integer depending on the
security parameter λ.

Let D0, D1 be the probability distributions outputting tuples

x := (g, gα, gβ0 , gβ1 , · · · , gβ`−1 , gγ0 , gγ1 , · · · , gγ`−1)

where g is a uniformly random generator of Zq, α, β0, β1, . . . , β`−1 are independently sampled uni-
formly random values in Zq, and:

– In the case of D0, γi = α · βi for all i ∈ [0, `− 1].
– In the case of D1, γ0, γ1, . . . , γ`−1 are sampled uniformly at random from Zq and independently

of each other and of everything else.

Given a PPT adversary A, we define its distinguishing advantage as the probability

Adv(A) = |Pr[b = b′|b← {0, 1},x← Db, b
′ ← A(x)]− 1/2|

We say that the `-DDH problem is hard if for all PPT adversary A, Adv(A) is negligible in λ.

Remark 4. Note that the 1-DDH hardness assumption is the usual DDH hardness assumption.

It was shown in [34] that

Proposition 4. If the DDH-problem is hard, then the `-DDH problem is hard for `(λ) = poly(λ).

In fact, the reduction is tight and the distinguishing advantage is the same. Now we can prove
our result.

Proof (Proof of Proposition3). The proof follows from similar techniques as in the security analysis
of the PVSS in SCRAPE [17].

We suppose that an adversary APriv can break the IND1-secrecy property of protocol πDDH ,
and construct a distinguisher A`−DDH that uses APriv to break the `-DDH assumption with the
same advantage. As pointed out before the `-DDH assumption is hard if the DDH assumption is
hard, since ` = O(n) and n is polynomial in the security parameter. Without loss of generality we
can assume APriv corrupts the t first parties.

Let (g, gα, gβ0 , gβ1 , · · · , gβ`−1 , gγ0 , gγ1 , · · · , gγ`−1) be an instance of the `-DDH problem. Without
loss of generality we assume α 6= 0, βi 6= 0 for all i. A`−DDH simulates the IND1 game as follows:

12

1. The challenger sets h = gα as generator for the group. In the Setup phase, for i ∈ [t + 1, n],
A`−DDH chooses uniformly random values ui ← Zq, and defines pki = gui . Implicitely, this
defines ski as ski = ui/α even though α is not known to A`−DDH. The values pki and the
generator h are sent to APriv.

2. For i ∈ [1, t], APriv creates ski and pki = hski and sends this to the challenger.
3. For i ∈ [1, t], the challenger chooses uniformly random values σi ← Zq and sets σ̂i = pkσii . Let
p(X) be the polynomial in Zq[X]≤t+`−1 such that p(−j) = βj for j ∈ [0, ` − 1], p(i) = σi for
i ∈ [1, t]. Then A`−DDH can compute all values gp(i) for i ∈ [−(`− 1), t] because for the positive
values of i, it knows the exponent and, in the other cases, the values equal gβj which are part
of its input. By Lagrange interpolation applied in the exponent, A`−DDH can compute gp(i) for
i ∈ [t+ 1, n]. From here, A`−DDH computes (gp(i))ui = hσi for i ∈ [t+ 1, n] and sets this as σ̂i
for those indices.
To simulate the NIZK proof of knowledge, A`−DDH chooses a polynomial z ∈ Zq[X]≤t+`−1 and

e ∈ Zq uniformly at random, sets ai = σ̂ei /pk
z(i)
i for i ∈ [1, n] and programs the random oracle

H(·) so that
e = H(pk1, . . . , pkn, σ̂1, . . . , σ̂n, a1, . . . , an).

Finally it sends σ̂i for all i ∈ [1, n], σi for all i ∈ [1, t], and (a1, ..., an, e, z) together with the
vector (gγ0 , gγ1 , · · · , gγ`−1) (which plays the role of xb in the IND game) to APriv.

4. APriv makes a guess b′.

If b′ = 0, A`−DDH guesses that (γi)i∈[0,`−1] = α · (βi)i∈[0,`−1]. If b′ = 1, A`−DDH guesses that

(γ0, γ1, . . . , γ`−1) is a random element in Z`p.
The information that APriv receives in step 3. is distributed exactly like a sharing of the value

hβ = gα·β with the PVSS. Consequently, γ = α · β if and only if the value gγ sent to APriv is the
secret shared by the PVSS. It is now easy to see that the guessing advantage of A`−DDH is the same
as the advantage of APriv.

We now discuss how to reconstruct secrets in πPPV SS . Rather than giving one protocol, in
Figure 6 we present a number of subprotocols that can be combined in order to reconstruct a
secret. The reason is to have some flexibility about which parties will execute the reconstruction
algorithm and which ones will verify the reconstruction in the final randomness generation protocol.

In the share decryption protocol party Pi, using secret key ski, decrypts the share σ̂i and
publishes the obtained value hσi . Moreover Pi posts a DLEQ proof to guarantee correctness of the
share decryption; if several secret tuples need to be reconstructed, this will be done by a batch
DLEQ proof.

Once n − t values hσi have been correctly decrypted (by a set of parties Q), any party can
compute the ` secret values Sj = hsj using the reconstruction algorithm RecQ, which boils down to
applying Lagrange interpolation in the exponent. Note that since Lagrange interpolation is a linear
operation, the exponents σi do not need to be known, one can operate on the values hσi instead.

However, the computational complexity of this algorithm is high (O(n2) exponentiations) so
we introduce the reconstruction verification algorithm RecV erQ which allows any party to check
whether a claimed reconstruction is correct at a reduced complexity (O(n) exponentiations).RecV erQ
uses the local test LocalLDEI that was presented in Figure 3.

Complexity of πPPV SS In Table 1, we collect the number of exponentiations required by each
party in the PVSS. The table shows the numbers for the case when only 1 instance of the PVSS

13

Reconstruction protocol and algorithms in πPPV SS

Protocols used in the reconstruction of secrets in PVSS πPPV SS from Figure 5. Same conditions and
notations as there.

– Share decryption (for Pi): On input σ̂i, pki, decrypt share σ̃i = σ̂
1
ski
i = hσi and publish it in

the ledger together with PROOFi = DLEQ((h, σ̃i), (pki, σ̂i)) (showing that the decrypted share
σ̃i corresponds to σ̂i).

– Amortized share decryption (for Pi): If the PVSS has been used several times where Pi has
received in each case a share σ̂ai , Pi can decrypt shares as above but publish one single proof
PROOFi = DLEQ((h, (σ̃ai)a), (pki, (σ̂

a
i)a)).

– Share decryption verification: Apply the verification algorithm of the DLEQ proof PROOFi
and complain if this is not correct.

– Secret reconstruction algorithm RecQ: On input {σ̃i}i∈Q for a set Q of exactly n− t indices,
for j ∈ [`− 1]:

• Set λ
(j)
i =

∏
m:m∈Q,m 6=i

−j−m
i−m for all i ∈ Q and compute

Sj =
∏
i∈Q

(σ̃i)
λ
(j)
i =

∏
i∈Q

hp(i)λ
(j)
i = hp(−j) = hsj ,

• Publish the values Sj .
– Reconstruction verification algorithm RecV erQ: On input (S0, S1, . . . , S`−1, {σ̃i}i∈Q), and

calling Q = {i1, . . . , in−t} execute

LocalLDEI((αj)j∈[−(`−1),n−t], t+ `− 1, (Σj)j∈[−(`−1),n−t]),

where αj = j and Σj = S−j for j ∈ [−(`− 1), 0] and αj = ij , Σj = σ̃ij for j ∈ [1, n− t].

Fig. 6. Reconstruction protocols and algorithms in πPPV SS

has been used. If the secrets of L instances of the PVSS are reconstructed in parallel, then share
decryption can be amortized to 2L+ 1 exponentiations per decrypting party and share decryption
verification can be amortized to (2L + 2)(t + `) exponentiations per verifier, by using the batch
DLEQ proof.

4.2 Scheduling of non-private computations

In ALBATROSS, parties may need to carry out a number of computations of the form M �h, where
M ∈ Zr×mq , h ∈ Gmq for some r,m = O(n). This occurs if parties decide not to reveal their PVSSed
secrets, and it happens at two moments of the computation: when reconstructing the secrets from
the PVSS and when applying the resilient function at the output phase of the protocol.

These computations do not involve private information but especially in the PVSS they are
expensive, requiring O(n2) exponentiations. Applying a resilient function via our FFTE algorithm
is considerably cheaper (it requires O(n log n) exponentiations), but depending on the application
it still may make sense to apply the distributed computation techniques we are going to introduce.

On the other hand, given a purported output for such a computation, verifying their correctness
can be done locally in a cheaper way (O(n) exponentiations) using respectively the tests LocalLDEI
for verifying PVSS reconstruction and a similar test which we call LocalLExp for verifying the correct

14

Phase Number of exponentiations Party

Distribution 2n+ ` = O(n) By dealer only

Verification 2n = O(n) Per verifier

Share Decryption 3 = O(1) Per decrypting party

Share Dec. Verification
4(t+ `) = O(n) Per verifier

of n− t = t+ ` shares

Reconstruction `(t+ `) = O(n2) Per reconstructing party

Rec. Verification t+ 2` = O(n) Per reconstruction verifier

Table 1. Number of exponentiations for each phase of the PVSS (assuming only 1 instance of the PVSS
has been used). Distribution includes the computation of Sj from sj . In the Share Decryption Verification
we count verification of n− t shares, since we need that number to reconstruct the secret.

application of FFTE (since we will not strictly need LocalLExp, we will not describe it here but it
can be found in Appendix B).

In the worst case where Θ(n) parties abort after having correctly PVSSed their secrets, Θ(n)
computations of each type need to be carried out. We balance the computational complexity of the
parties as follows: for each of the tasks taski to be computed, a random set of computing parties
Ai is chosen of cardinality around some fixed value c(n), who independently compute the task and
publish their claimed outputs; the remaining parties verify which one of the outputs is correct, and
if none of them is, they compute the tasks themselves.

Remark 5. The choice of Ai has no consequences for the correctness and security of our protocols.
The adversary may at most slow down the computation if it can arrange too many sets Ai to contain
no honest parties, but this requires a considerable amount of biasing of the randomness source. We
will derive this randomness using a random oracle applied to the transcript of the protocol up to
that moment, and assume for simplicity that each party has probability roughly c(n)/n to belong
to each Ai.

Let T = {task1, ..., taskf(n)} be a set of computation tasks, each of which consists of applying
the same algorithm AlgComp to an input ini. Likewise, let AlgV er be a verifying algorithm that
given an input in and a purported output out always accepts if the output is correct and rejects it
with very large probability if it is incorrect. We apply the protocol in Figure 7.

Computational complexity. We assume that |P| = Θ(n), and that AlgComp requires ccost(n)
group exponentiations while AlgV er needs vcost(n). On expectation, each party will participate
as computing party for O(f(n) · c(n)/n) tasks and as verifier for the rest, in each case needing to
verify at most c(n) computations. Note that we schedule the verifications so that parties check first
the most common claimed output, as this will likely be the correct one. For a given taski, if Ai
contains at least one honest party, then one of the verifications will be correct. Ai contains only
corrupt parties with probability τ c(n) where τ = t/n and therefore we can assume that the number
of i’s for which this happens will be at most O(τ c(n)f(n)), so parties will need to additionally apply
AlgComp on this number of tasks. Therefore the number of exponentiations per party is

ccost(n) ·O((c(n)/n+ τ c(n)) · f(n)) + vcost(n) ·O (c(n) · (1− c(n)/n) · f(n)) .

PVSS reconstruction. In the case of reconstruction of the PVSS’ed values, we have AlgComp = Rec
(Figure 6), which has complexity ccost(n) = O(n2) and AlgV er is RecV er where vcost(n) = O(n).

15

Distributed computation protocol DistComp(T ,P, c(n))

For each i = 1, . . . , f(n):
– A random subset Ai ⊆ P of c(n) parties is selected.
– Each party Pj ∈ Ai independently executes AlgComp(ini) and publishes outPj . Let Li be the list

of published claimed outputs for taski ordered from most frequent (the one that is claimed to be
the output by more parties in Ai) to least frequent.

– Each party Pk ∈ P \Ai does the following
• Pk applies AlgV er(ini, out) for out ∈ Li in the order they appear in Li until she finds a correct

one, and accepts this as output of taski.
• If none of the out ∈ Li passes the test, Pk computes AlgComp(ini) and sets the result as

output for taski.

Fig. 7. Distibuted computation protocol DistComp(T ,P, c(n))

The number of computations f(n) equals the number of corrupted parties that correctly share a
secret but later decide not to reveal it. In the worst case f(n) = Θ(n). In that case, setting
c(n) = log n gives a computational complexity of O(n2 log n) exponentiations. In fact the selection
c(n) = log n is preferable unless f(n) is small (f(n) = O(log n)) where c(n) = n (everybody
reconstructs the f(n) computations independently) is a better choice. For the sake of simplicity we
will use c(n) = log n in the description of the protocols.

Output reconstruction via FFTE. For this case we always have f(n) = ` = Θ(n). We use FFTE as
AlgComp, so ccost(n) = O(n log n), while AlgV er is LocalLExp where vcost(n) = O(n). Setting
c(n) = |P|, c(n) = log n or c(n) = Θ(1) all give O(n2 log n) exponentiations in the worst case.

Setting c(n) = Θ(1) (a small constant number of parties computes each task, the rest verify)
has a better best case asymptotic complexity: if every party acts honestly each party needs O(n2)
exponentiations.

On the other hand, c(n) = |P| corresponds to every party carrying out the output computation
by herself, so we do not really need DistComp (and hence neither do we need LocalLExp). This
requires less use of the ledger and a smaller round complexity, as the output of the majority is
guaranteed to be correct. Moreover the practical complexity of FFTE is very good, so in practice
this option is computationally fast. We henceforth prefer this option, and leave c(n) = Θ(1) as an
alternative.

4.3 The ALBATROSS Multiparty Randomness Generation Algorithm

Next we present our randomness generation protocol ALBATROSS. We first introduce the following
notation for having a matrix act on a matrix of group elements, by being applied to the matrix
formed by their exponents.

Definition 6. As above, let Gq be a group of order q, and h be a generator. Given a matrix
A = (Aij) in Zm1×m2

q and a matrix B = (Bij) ∈ Gm2×m3
q , we define C = A � B ∈ Gm1×m3

q with

entries Cij =
∏m2

k=1B
Aik
kj .

16

Remark 6. An alternative way to write this is C = hA·D, where D in Zm2×m3
q is the matrix con-

taining the discrete logs (in base h) of B, i.e. Dij = DLogh(Bij). But we remark that we do not
need to know D to compute C.

The protocol can be found in Figure 8 and Figure 9. In Figure 8 we detail the first two phases
Commit and Reveal: in the Commit phase the parties share random tuples (hs

a
0 , . . . , hs

a
`−1) and

prove correctness of the sharing. In the Reveal phase parties first verify correctness of other sharings.
Once n− t correct sharings have been posted,4 the set C of parties that successfully posted correct
sharings now open the sharing polynomials. The remaining parties verify this is consistent with
the encrypted shares. If all parties in C open secrets correctly, then all parties learn the exponents
sai and compute the final output by applying the resilient function in a very efficient manner, as
explained in Figure 9, step 4’.

If some parties do not correctly open their secret tuples, the remaining parties will use the
PVSS reconstruction routine to retrieve the values hs

a
j , and then compute the final output from

the reconstructed values, now computing the resilient functions in the exponent. This is explained
in Figure 9.

Note that once a party gets into the set C, her PVSS is correct (with overwhelming probability)
and her tuple of secrets will be used in the final output, no matter the behaviour of that party
from that point on. This is important: it prevents that the adversary biases the final randomness by
initially playing honestly so that corrupted parties get into C, and at that point deciding whether
or not to open the secrets of each corrupted party conditioned on what other parties open. The
fact that the honest parties can reconstruct the secrets from any party in C makes this behaviour
useless to bias the output. On the other hand, the properties of the resilient function prevent the
corrupted parties from biasing the output before knowing the honest parties’ inputs.

Theorem 2. With overwhelming probability, the protocol ΠALB has guaranteed output delivery and
outputs a tuple of elements uniformly distributed in G`2q , as long as the active, static, computationally
bounded adversary corrupts at most t parties (where 2t+ ` = n).

Proof. Guaranteed delivery is proved as mentioned above: once a party Pa gets into the set C, we
know that her sharing is correct w.o.p, because of the soundness of the LDEI proofs. No matter
what the behaviour of Pa is from this point on, the secret tuple (hs

a
0 , . . . , hs

a
`−1) she shared in the

PVSS will be a row of T . Since there are at most t corrupt parties, C is guaranteed to have n − t
parties, and every party in the protocol will learn the output R = M � T .

Furthermore, to argue the output cannot be biased, note that parties in C can no longer change or
erase their secrets after publishing the sharings, because even if parties refuse to open their secrets,
these can be reconstructed in the Recovery phase. Therefore the matrix T is already determined
when the set C is created. But at this point, the adversary has no information about other parties
secrets because of the IND1-secrecy of the secret sharing scheme. The discrete logs of the secrets
of each of the (at least) n − 2t honest parties in C are uniform vectors in Z`q in the view of the
adversary at the point when the adversary publishes the sharings and LDEI-proofs. Therefore, the
adversary can just influence on t rows of the matrix T without having any information about the
other n − 2t rows. By the properties of the t-resilient function given by the matrix M (Definition
2) applied on every column of T , for every fixed selection of secrets the adversary makes the final
output of the protocol is uniformly distributed.

4This is since n − t is the maximum we can guarantee if t parties are corrupted. However we can also
adapt our protocol to work with more than n− t parties in C if these come before a given time limit.

17

Protocol ΠALB (Commit and Reveal phases)

Protocol ΠALB is run between a set P of n parties P1, . . . , Pn who have access to a public ledger
where they can post information for later verification. It is assumed that the Setup phase of πPPV SS is
already done and the public keys pki of each party Pi are already registered in the ledger. In addition,
the parties have agreed on a Vandermonde (n − 2t) × (n − t)-matrix M = M(ω, n − 2t, n − t) with
ω ∈ Z∗q as specified in section 2.

1. Commit: For 1 ≤ j ≤ n:
– Party Pj executes the Distribution phase of the PVSS as Dealer for ` = n−2t secrets, publishing

the encrypted shares σ̂j1, . . . , σ̂
j
n and sharing correctness verification information LDEIj on the

public ledger, also learning the secrets hs
j
0 , . . . , hs

j
`−1 and the exponents sj0, . . . , s

j
`−1.

2. Reveal:
– For every set of encrypted shares σ̂j1, . . . , σ̂

j
n and the verification information LDEIj published

in the public ledger, all parties run the Verification phase of the PVSS sub protocol.
– Once n− t parties have posted a valid sharing on the ledger (we call C the set of these parties)

each party Pj ∈ C reveals her sharing polynomial pj .
– Every party now verifies that indeed pj is the sharing polynomial that Pj used in step 1 by

reproducing the Distribution phase of Pj , i.e., computing the secrets sji and shares σji of Pj ,

and verifying that σ̂ji is indeed equal to pk
σ
j
i
i . Note that at the same time they have computed

the vector of secrets of Pj , i.e., (sj0, . . . , s
j
`−1).

– At this point, if every party in C has opened their secrets correctly, go to step 4′ in Figure 9.
Otherwise proceed to step 3 in Figure 9

Fig. 8. Protocol ΠALB (Commit and Reveal phases)

Computational complexity: Group exponentiations. In Table 2 we collect the complexity
of ALBATROSS in terms of number of group exponentiations per party, comparing it with the
SCRAPE protocol, where for ALBATROSS we assume ` = Θ(n). For the figures in the table, we
consider both the worst case where Θ(n) parties in C do not open their secrets in the Reveal phase,
and the best case where all the parties open their secrets. As we can see the amortized cost for
generating a random group element goes down from O(n2) exponentiations to O(log n) in the first
case and O(1) in the second.

More in detail, in the Commit phase, both sharing a tuple of ` elements in the group costs
O(n) exponentiations and proving their correctness take O(n) exponentiations. The Reveal phase
takes O(n2) exponentiations since every party checks the LDEI proofs of O(n) parties, each costing
O(n) exponentiations, and similarly they later execute, for every party that reveals their sharing
polynomial, O(n) exponentiations to check that this is consistent with the encrypted shares.

In the worst case O(n) parties from C do not open their secrets. The Recovery phase requires
each then O(n2 log n) exponentiations per party, as explained in Section 4.2. The Output phase
also requires O(n2 log n) exponentiations since FFTE is used O(n) times (or if the alternative
distributed technique is used, the complexity is also O(n2 log n) by the discussion in Section 4.2.

In the best case, all parties from C reveal their sharing polynomials correctly, the Recovery
phase is not necessary and the Output phase requires O(n2) exponentiations per party as parties
can compute the result directly by reconstructing the exponents first (where in addition one can
use the standard FFT in Zq).

18

Protocol ΠALB continued (Recovery and Output phase)

3 Recovery: Let CA be the set of parties Pa ∈ C that do not publish the openings of their secrets in
the Reveal phase, or that publish an erroneous opening.

– Every party Pj ∈ P executes the Amortized Share Decryption protocol for all PVSSs where a
party Pa ∈ CA was the dealer as described in Figure 6.
That is, Pj posts all decrypted shares σ̃aj and a unique PROOFj =
DLEQ((h, (σ̃aj)Pa∈CA)(pk, (σ̂aj)Pa∈CA)) to the public ledger.

– Each party Pi ∈ P verifies each proof PROOFj published by some Pj .
– Once a set Q of n − t parties publish valid decrypted shares, the secrets are reconstructed as

follows:
For every Pa ∈ CA, we define taskRec,a to be the computation of (hs

a
0 , . . . , hs

a
`−1) from the

decrypted shares with AlgComp = RecQ as described in PVSS reconstruction. Let TRec =
{taskRec,a}Pa∈CA .
Parties call DistComp(TRec,P, logn), where DistComp is as described in Figure 7 (where
AlgV er = RecV erQ, as in Figure 6) using as randomness the output of a random oracle
applied to the transcript so far.

4 Output: Let T be the (n− t)× ` matrix with rows indexed by the parties in C and where the row
corresponding to Pa ∈ C is (hs

a
0 , . . . , hs

a
`−1).

– Each computes the ` × `-matrix R = M � T by applying FFTE to each column T (j) of T ,
resulting in column R(j) of R (since R(j) = M �T (j) and M is Vandermonde) for j ∈ [0, `− 1].
a.

– Parties output the `2 elements of R as final randomness.
4’ Alternative output: if every party in C has opened her secrets correctly in step Reveal, then:

– Parties compute R = M � T in the following way:
Let S be the (n − t) × ` matrix with rows indexed by the parties in C and where the row
corresponding to Pa ∈ C is (sa0 , . . . , s

a
`−1). Then each party computes U = M · S ∈ Z`×`q (using

the standard FFT in Zq to compute each column) and R = hU . b

– Parties output the `2 elements of R as final randomness.

aAlternatively DistComp can be used to distribute the computation, using committees of size O(1)
to compute each column and a local test to verify these computations, see discussion in Section 4.2

bMeaning the (i, j)-th element in R is hy where y is the (i, j)-th element in U

Fig. 9. Protocol ΠALB continued

Computational complexity: Other operations. The total number of additional compu-
tation of group operations (aside from the ones involved in computing group exponentiations) is
O(n2 log n). With regard to operations in the field Zq, parties need to carry out a total of O(n)
computations of polynomials of degree O(n) in sets of O(n) points, which are always subsets of
the evaluation points for the secrets and share. In order to speed this computation up we can use
2n− th roots of unity as evaluation points (instead of [−`−1, n]) and make use of the FFT yielding
a total of O(n2 log n) basic operations in Zq. We also need to compute Lagrange coefficients and
the values ui in LocalLDEI but this is done only once per party. In addition, the recent article [42]
has presented efficient algorithms for all these computations.

Communication Complexity: We estimate the broadcast communication complexity, or
rather the storage complexity for the public ledger used to store information accessible to both

19

Scheme
Output Complexity(# group exponentiations) Amortized

size Commit Reveal Recovery Output Total complexity

SCRAPE 1 O(n) O(n2) O(n2) O(1) O(n2) O(n2)

ALBATROSS,
O(n2) O(n) O(n2) O(n2 logn) O(n2 logn) O(n2 logn) O(logn)

worst case

ALBATROSS,
O(n2) O(n) O(n2) - O(n2) O(n2) O(1)

best case
Table 2. Computational complexity in terms of numbers of exponentiations for each phase of the protocols,
and exponentiations per created element (per party).

the parties executing the protocol and to verifiers (who can later verify that a certain output was
obtained without having actively participated in the execution). In the worst case scenario, we
assume that the committees reconstructing unopened secret vectors directly communicate with
the other parties without using the ledger, only using the ledger to store decrypted shares plus
verification information (which is enough for verifying the reconstruction and performing it from
scratch). In this communication complexity estimate, we denote the bit length of an element
of |Gq| by |Gq| and the bit length of an element of Zq by |Zq|. First, notice that posting n
shares of ` = n − 2t secrets plus verification information using πPPV SS requires communication
of n|Gq| + (n − t)|Zq| bits, while reconstructing this secret vector using πPPV SS requires commu-
nication of (n − t)|Gq| + 2(n − t)|Zq| bits (or of t(n − t)|Gq| + 2(n − t)|Zq| bits for reconstructing
t of these secret vectors). In the best case scenario, all parties participating in ΠALB first create n
shares ` = n− 2t secrets using πPPV SS and then reveal the polynomial used by πPPV SS , requiring
communication of n2|Gq| + 2n(n − t)|Zq| bits. In the worst case scenario, all t corrupted parties
fail to reveal their polynomials, forcing the n − t honest parties (who did reveal their polynomi-
als) to reconstruct corrupted party secrets from their respective shares, requiring communication of
(n2+t(n−t))|Gq|+

(
(n− t)2 + 2(n− t) + 2n(n− t)

)
|Zq| = (n2+tn−t2)|Gq|+(n−t)(3n−t+2)|Zq|

bits.

Smaller outputs. ALBATROSS outputs O(n2) random elements in the group Gq. However,
if parties do not need such large output, the protocol can be adapted to have a smaller output
and a decreased complexity (even though the amortized complexity will be worse than the full
ALBATROSS). In fact there are a couple of alternatives to achieve this: The first is to use stan-
dard (i.e., “non-packed” Shamir’s secret sharing, so a single group element is shared per party, as
in SCRAPE; yet the resilient function based technique is still used to achieve an output of O(n)
(assuming t = (1/2− ε)n). This yields a total computational complexity per party of O(n2) expo-
nentiations (O(n) per output). A similar alternative is to instead use ALBATROSS as presented
until the Recovery phase, and then only a subset I ⊂ [0, `−1] of the coordinates of the secret vectors
is used to construct a smaller output, and the rest is ignored for the time being. Then parties only
need to recover those coordinates and apply the output phase to them. The advantage is that at a
later point the remaining unused coordinates can be used on demand, if more randomness is needed
(however it is important to note this unused randomness can not be considered secret anymore
at this point, as it is computable from the information available to every party). If initially only
O(n) random elements of the group are needed, we set |I| = O(1). In that case reconstruction,
we can have every party reconstruct all coordinates in I of the secret vectors (rather than having
small committees reconstruct and then the rest of the parties verify, as was used in this paper) and
therefore this requires O(n2) exponentiations per party (O(n) per output).

20

Implementation. A toy implementation of some of the algorithms used in ALBATROSS can
be found in [35].

5 Making ALBATROSS Universally Composable

In the previous sections, we constructed a packed PVSS scheme πPPV SS and used it to construct
a guaranteed output delivery (G.O.D.) randomness beacon ΠALB . However, as in previous G.O.D.
unbiasable randomness beacons [30,17], we only argue stand alone security for this protocol. In the
remainder of this work, we show that ΠALB can be lifted to achieve Universally Composability by
two different approaches: 1. using UC-secure zero knowledge proofs of knowledge for the LDEI and
DLEQ relations defined above, and 2. using UC-secure additively homomorphic commitments. We
describe the UC framework, ideal functionalities and additional modelling details in Appendix C.

Modeling Randomness Beacons in UC We are interested in realizing a publicly verifiable
G.O.D. coin tossing ideal functionality that functions as a randomness beacon (i.e. it allows any
third party verifier to check whether a given output was previously generated by the functionality).

We define such a functionality Fm,DCT in Figure 10. Notice that it provides random outputs once
all honest parties activate it with (Toss, sid) independently from dishonest parties’ behavior. We
realize this simple functionality for single shot coin tossing because it allows us to focus on the main
aspects of our techniques. In order to obtain a stream of random values as in a traditional beacon,
all parties can periodically call this functionality with a fresh sid.

Functionality Fk,DCT

Fk,DCT is parameterized by k ∈ N and a distribution D, interacting with a set of parties P = {P1, . . . ,Pn},
a set of verifiers V and an adversary S through the following interfaces:

Toss: Upon receiving (Toss, sid) from all honest parties in P, uniformly sample k random elements

x1, . . . , xk
$← D and send (Tossed, sid, x1, . . . , xk) to all parties in P.

Verify: Upon receiving (Verify, sid, x1, . . . , xk) from Vj ∈ V, if (Tossed, sid, x1, . . . , xk) has been
sent to all parties in P set f = 1, otherwise, set f = 0. Send (Verified, sid, x1, . . . , xk, f) to Vj .

Fig. 10. Functionality Fk,DCT for G.O.D. Publicly Verifiable Coin Tossing.

5.1 Using UC-secure Zero Knowledge Proofs

Our first approach is to modify the commit and reveal phases of Protocol ΠALB and use NIZK
ideal functionalities as setup (along with an authenticated public bulletin board ideal functionality
FAPBB as defined in Appendix C in order to obtain an UC-secure version of protocol. The crucial
difference is that instead of having all parties reveal the randomness of the PVSS sharing algorithm
(i.e. the polynomial p(X)) in the reveal phase in order to verify that certain random inputs were
previously shared in the commit phase, we have the parties commit to their random inputs using an
equivocal commitment and then generate a NIZK proof that the random inputs in the commitments

21

correspond to the ones shared by the PVSS scheme in the commit phase. In the reveal phase, the
parties simply open their commitments. In case a commitment is not opened, the honest parties use
the PVSS reconstruction to recover the random input. Intuitively, using an equivocal commitment
scheme and ideal NIZKs allows the simulator to first extract all the random inputs shared by the
adversary and later equivocate the simulated parties’ commitment openings in order to trick the
adversary into accepting arbitrary random inputs from simulated honest parties that result in the
same randomness as obtained from FCT. Protocol ΠCT−ZK is presented in Figures 11 and 12.

Pedersen Commitments We will use a Pedersen commitment [36], which is an equivocal commitment,
i.e. it allows a simulator who knows a trapdoor to open a commitment to any arbitrary message.
In this scheme, all parties are assumed to know generators g, h of a group Gq of prime order q
chosen uniformly at random such that the discrete logarithm of h on base g is unknown. In order to

commit to a message m ∈ Zq, a sender samples a randomness r
$← Zq and computes a commitment

c = gmhr, which can be later opened by revealing (m, r). In order to verify that an opening (m′, r′)
for a commitment c is valid, a receiver simply checks that c = gm

′
hr
′
. However, a simulator who

knows a trapdoor td such that h = gtd can open c = gmhr to any arbitrary message m′ by computing
r′ = m+td·r−m′

td and revealing (m′, r′). For a message m ∈ Zq and randomness r ∈ Zq, we denote a
commitment c as Com(m, r), the opening of c as Open(m, r) and the opening of c to an arbitrary
message m′ ∈ Zq given trapdoor td as TDOpen(m, r,m′, td).

NIZKs We use three instances of functionality FRNIZK. The first one is FLDEINIZK , which is parame-

terized with relation LDEI (Section 3). The second one is FDLEQNIZK , which is parameterized with
relation DLEQ for multiple statements DLEQ((h, (σ̃ij)i∈I)(pk, (σ̂

i
j)i∈I)) (Section 3). The third and

final one is FCOMC
NIZK , which is parameterized with a relation COMC showing that commitments

Com(sj0, r
j
0), . . . ,Com(sj`−1, r

j
`−1) contain the same secrets sj0, . . . , s

j
`−1 as in the encrypted shares

σ̂j1, . . . , σ̂
j
n generated by πPPV SS (Figure 5).

CRS and Bulletin Board In order to simplify our protocol description and security analysis, we
assume that parties have access to a CRS containing the public parameters for the Pedersen equiv-
ocal commitment scheme and Vandermonde matrix for the PVSS scheme πPPV SS . Moreover, a
CRS would be necessary to realize the instances of FRNIZK we use. Nevertheless, we remark that the
parties could generate all of these values in a publicly verifiable way through a multiparty compu-
tation protocol [9] and register them in the authenticated public bulletin board functionality in the
beginning of the protocol.

Communication Model Formally, for the sake of simplicity, we describe our protocol using an ideal
authenticated public bulletin board FAPBB that guarantees all messages appear immediately in
the order they are received and become immutable. However, we remark that our protocols can be
proven secure in a semi-synchronous communication model with a public ledger where messages
are arbitrarily delayed and re-ordered by the adversary but eventually registered (i.e. the adversary
cannot drop messages or induce an infinite delay). Notice that the protocol proceeds to each of
its steps once n− t parties (i.e. at least all honest parties) post their messages to FAPBB , so it is
guaranteed to terminate if honest party messages are delivered eventually regardless of the order
in which these messages appear or of the delay for such messages to become immutable. Using
the terminology of [25,3], if we were to use a blockchain based public ledger instead of FAPBB ,
each point we state that the parties wait for n− t valid messages to be posted to FAPBB could be

22

Protocol ΠCT−ZK (Initialization, Commit and Reveal)
It is assumed that FCRS provides Pedersen commitment parameters gp, hp ∈ Gq and a Vander-
monde (n − 2t) × (n − t)-matrix M = M(ω, n − 2t, n − t) with ω ∈ Z∗q as specified in section
2. We denote the commitment and open procedures of a Pedersen commitment as Com(m, r) and
Open(m, r), respectively. Protocol ΠCT−ZK is run between a set P = {P1, . . . , Pn} (out of which at
most t are corrupted) and a set of verifiers V interacting with each other and with functionalities
FCRS,FAPBB ,FLDEINIZK ,FDLEQNIZK ,FCOMC

NIZK as follows:
1. Initialization: Upon being activated for the first time, all parties in P and V send (CRS, sid) to
FCRS, obtaining (CRS, sid, gp, hp,M). Each party Pi ∈ P samples ski ← Zq, computes pki = hski

and sends (Post, sid,MID, pki) to FAPBB using a fresh MID. Finally, all parties obtain all pki
from FAPBB .

2. Commit: For 1 ≤ j ≤ n:
(a) Party Pj executes the Distribution phase of of πPPV SS (Figure 5) as Dealer for ` = n − 2t

random inputs using FLDEINIZK to compute the NIZKs, obtaining encrypted shares σ̂j1, . . . , σ̂
j
n, a

NIZK proof πjLDEI , secrets hs
j
0 , . . . , hs

j
`−1 and exponents sj0, . . . , s

j
`−1.

(b) Pj computes Com(sj0, r
j
0), . . . ,Com(sj`−1, r

j
`−1) (with fresh randomness rj0, . . . , r

j
`−1 ← Zq) and

obtains from FCOMC
NIZK a NIZK proof πjCOMC that these commitments contain the same secrets

sj0, . . . , s
j
`−1 as σ̂j1, . . . , σ̂

j
n.

(c) Pj sends (Post, sid,MID, (σ̂j1, . . . , σ̂
j
n, π

j
LDEI ,Com(sj0, r

j
0), . . . ,Com(sj`−1, r

j
`−1), πjCOMC)) to

FAPBB using a fresh MID.
3. Reveal:

(a) All parties in P send (Read, sid) to FAPBB , receive (Read, sid,M) and, for every
new (Pi, sid,MID, (σ̂j1, . . . , σ̂

j
n, π

j
LDEI ,Com(sj0, r

j
0), . . . ,Com(sj`−1, r

j
`−1), πjCOMC)) in M, ver-

ify proof πjCOMC using FCOMC
NIZK and run the Verification phase of πPPV SS (Figure 5) using

FLDEINIZK .
(b) Once n − t parties have posted valid σ̂j1, . . . , σ̂

j
n, πjLDEI and Com(sj0, r

j
0), . . . ,

Com(sj`−1, r
j
`−1), πjCOMC on FAPBB (we call C the set of these parties) each party Pj ∈ C

sends (Post, sid,MID,
(
Open(sj0, r0,j), . . . ,Open(sj`−1, r`−1,j)

)
) to FAPBB using a fresh MID,

for j ∈ C.
(c) All parties in Pi send (Read, sid) to FAPBB , receive (Read, sid,M) and check that

(Pi, sid,MID,
(
Open(sj0, r0,j), . . . ,Open(sj`−1, r`−1,j)

)
) is in M for all j ∈ C. Once this check

succeeds, all parties in P verify that these correspond to the secrets that were shared, by com-

puting all hs
j
i and checking the consistency of these values with the published shares with the

check LocalLDEI , in the same way that they would do in Figure 6.
(d) If any of the checks in the previous step fails, proceed to the recovery phase of Figure 12.

Otherwise, if every party in C has opened their secrets correctly, parties compute R = M � T
as follows. Let S be the (n − t) × ` matrix with rows indexed by the parties in C and where
the row corresponding to Pa ∈ C is (sa0 , . . . , s

a
`−1). All parties in P compute U = M · S ∈ Z`×`q

and R = hU , outputting the `2 elements of R as final randomness.

Fig. 11. Protocol ΠCT−ZK , optimistic case (Initialization, Commit and Reveal).

adapted to having the parties wait for enough rounds such that it is guaranteed by the chain growth
property that a large number enough blocks are added to the ledger in such a way that the chain
quality property guarantees that at least one of these blocks is honest (i.e. containing honest party
messages) and that enough blocks are guaranteed to be added after this honest block so that the

23

Protocol ΠCT−ZK continued, pessimistic case (Recovery phase)

4 Recovery: Let CA be the set of parties Pa ∈ C that do not publish a valid opening of their
commitments in the reveal phase. Every party Pj ∈ P proceed as follows:
(a) Execute the Share Decryption protocol for each PVSS where a party Pa ∈ CA was

the dealer as described in Figure 6 using FDLEQNIZK to compute πjDLEQ. Pj sends (Post,

sid,MID, ({σ̃aj }Pa∈CA , π
j
DLEQ)) to FAPBB using a fresh MID.

(b) Send (Read, sid) to FAPBB , receive (Read, sid,M) and, for every new
(Pi, sid,MID, ({σ̃aj }Pa∈CA , π

j
DLEQ)) in M, verify proof πjDLEQ using FDLEQNIZK .

(c) Once a set Q of n − t parties have posted valid decrypted shares on FAPBB , the secrets are
reconstructed as follows. For every Pa ∈ CA, we define taskRec,a to be the computation of
(hs

a
0 , . . . , hs

a
`−1) from the decrypted shares with RecQ as described in PVSS reconstruction.

Let TRec = {taskRec,a}Pa∈CA . Then call DistComp(TRec,P, logn), where DistComp is as
described in Figure 7 with AlgComp = RecQ and AlgV er = RecV erQ (Figure 6), taking all
inputs from FAPBB and posting all outputs to FAPBB .

(d) Send (Read, sid) to FAPBB , obtaining M. Let T be the (n− t)× ` matrix with rows indexed
by the parties in C and where the row corresponding to Pa ∈ C is (hs

a
0 , . . . , hs

a
`−1), which are

obtained from M.
(e) Each computes the ` × `-matrix R = M � T by applying FFTE to each column T (j) of T ,

resulting in column R(j) of R (since R(j) = M �T (j) and M is Vandermonde) for j ∈ [0, `− 1].
(f) Output the `2 elements of R as final randomness.

5 Verify: On input (Verify, sid, x1, . . . , xk), a verifier Vi ∈ V checks that the protocol transcript
registered in FAPBB is valid using the verification interfaces of FLDEINIZK ,FDLEQNIZK ,FCOMC

NIZK . If the
transcript is valid and results in output x1, . . . , xk, AlgV eri sets b = 1, else, it sets b = 0. Vi
outputs (Verified, sid, x1, . . . , xk, b).

Fig. 12. Protocol ΠCT−ZK continued, pessimistic case (Recovery phase)

common prefix property guarantees that all honest parties have this block in their local view of the
ledger. A similar analysis has been done in [30,22] in their constructions of randomness beacons.

Complexity We execute essentially the same steps of Protocol ΠALB with the added overhead of
having each party compute Pedersen Commitments to their secrets and generate a NIZK showing
these secrets are the same as the ones shared through the PVSS scheme. Using the combined
approaches of [12,32] to obtain these NIZKs, the approximate extra overhead of using UC NIZKs in
relation to the stand alone NIZKs of ΠALB will be that of computing 2 evaluations of the Paillier
cryptosystem’s homomorphism and 4 modular exponentiations over Gq per each secret value in the
witness for each NIZK. In the Commit and Reveal phases, this yields an approximate fixed extra cost
of 4n2 evaluations of the Paillier cryptosystem’s homomorphism and 8n2 modular exponentiations
over Gq for generating and verifying NIZKs with FLDEINIZK and FCOMC

NIZK . In the recovery phase, if a
parties fail to open their commitments, there is an extra costs of 2a(n− t) evaluations of the Paillier
cryptosystem’s homomorphism and 4a(n− t) modular exponentiations over Gq for generating and

verifying NIZKs with FDLEQNIZK . In terms of communication, the approximate extra overhead is of
one Paillier ciphertext and two integer commitments per each secret value in the witness for each
NIZK, yielding an approximate total overhead of (n2 + a(n− t)) · |Paillier|+ (2n2 + a(n− t)) · |Gq|
bits where |Paillier| is the length of a Paillier ciphertext and |Gq| is the length of a Gq element.

24

Theorem 3. Protocol ΠCT−ZK UC-realizes Fk,DCT for k = `2 = (n−2t)2 and D = {hs|h ∈ Gq, s
$←

Zq} in the FCRS,FAPBB ,FLDEINIZK ,FDLEQNIZK ,FCOMC
NIZK -hybrid model with static security against an ac-

tive adversary A corrupting corrupts at most t parties (where 2t + ` = n) parties under the DDH
assumption.

Proof. We prove this theorem in Appendix D.

Functionality FDVHCOM

FDVHCOM keeps two initially empty lists opendes and openpub. FDVHCOM interacts with a sender PS , a
set of receivers P = {P1, . . . , Pt}, a set of verifiers V and an adversary S and proceeds as follows:

– Commit Phase: The length of the committed messages λ is fixed and known to all parties.
• Upon receiving a message (commit, sid, ssid, PS , P,m) from PS , where m ∈ {0, 1}λ, record

the tuple (ssid, PS , P,m) and send the message (receipt, sid, ssid, PS , P) to every receiver
Pi ∈ P and S. Ignore any future commit messages with the same ssid from PS to P .

• If a message (abort, sid) is received from S, the functionality halts.
– Addition: Upon receiving a message (add, sid, ssid1, ssid2, ssid3, PS , P) from PS : If tuples

(ssid1, PS , P,m1), (ssid2, PS , P,m2) were previously recorded and ssid3 is unused, record
(ssid3, PS , P,m1 + m2) and send the message (add, sid, ssid1, ssid2, ssid3, PS , P, success) to PS ,
every Pi ∈ P and S.

– Schedule Public Open: Upon receiving a message (P− Open, sid, ssid) from PS , if a tuple
(ssid, PS , P,m) was previously recorded, append ssid to openpub.

– Schedule Designated Open: Upon receiving a message (D− Open, sid, Pd, ssid) from PS for
Pd ∈ P , if a tuple (ssid, PS , P,m) was previously recorded, append (Pd, ssid) to opendes.

– Execute Open: Upon receiving a message (Do− Open, sid) from PS :
• For every ssid ∈ openpub, send (p-reveal, sid, PS , P, ssid,m) to every receiver Pi ∈ P where

m is in the recorded tuple (ssid, PS , P,m).
• For every pair (Pd, ssid) ∈ opendes send (d-reveal, sid, PS , Pd, ssid) to every receiver in P and

send (d-reveal, sid, PS , Pd, ssid,m) to Pd where m is in the recorded tuple (ssid, PS , P,m).
Stop responding to P− Open, D− Open and Do− Open queries.

– Reveal Designated Open Upon receiving message (Reveal-D-Open, sid, Pd, ssid) from Pd, if
(Pd, ssid) ∈ opendes and Execute Open has happened, send (p-reveal, sid, PS , P, ssid,m) to every
receiver Pi ∈ P where m is in the recorded tuple (ssid, PS , P,m).

– Verify Upon receiving (Verify, sid, ssid, PS ,m) from Vj ∈ V, if (p-reveal, sid, PS , P, ssid,m)
was sent to every receiver Pi ∈ P , set f = 1, else, set f = 0. Send (Verified, sid, ssid, PS ,m, f)
to Vj .

Fig. 13. Functionality FDVHCOM

5.2 Using Designated Verifier Homomorphic Commitments

In the stand alone version of ALBATROSS and the first UC-secure version we construct, the
main idea is to encrypt shares of random secrets obtained from packed Shamir secret sharing and
prove in zero knowledge that those shares were consistently generated. Later on, zero knowledge
proofs are used again to prove that decrypted were correctly obtained from the ciphertexts that

25

have already been verified for consistency, ensuring secrets can be properly reconstructed. We now
explore an alternative where we instead commit to their shares using a UC additively homomorphic
commitment scheme and perform a version the LocalLDEI check on the committed shares and open
the resulting commitment in order to prove that their shares were correctly generated. In order to
do that, we need a new notion of a UC additively homomorphic commitment that allows for the
sender to open a commitments to an specific share towards a specific party (so that only that party
learns its share) but allows for those parties to later prove that they have received a valid opening or
not, allowing the other parties to reconstruct the secrets from the opened shares. In the remainder
of this section, we introduce our new definition of such a commitment scheme and show how it can
be used along with FAPBB to realize Fk,DCT .

Designated Verifier Commitments We define a new flavor of multi-receiver commitments that
we call Designated Verifier Commitments, meaning that they allow a sender to open a certain
commitment only towards a certain receiver in such a way that this receiver can later prove that
the commitment was correctly opened (also revealing its message) or that the opening was not
valid. Moreover, we give this commitments the ability to evaluate linear functions on committed
values and reveal only the result of these evaluations but not the individual values used as input,
a property that is called additive homomorphism. We depart from the multi-receiver additively
homomorphic commitment functionality from [15] and augment it with designated verifier opening
and verification interfaces. Functionality FDVHCOM is presented in Figure 13. The basic idea to
realize this functionality is that we make two important changes to the protocol of [15]: 1. all
protocol messages are posted to the authenticated bulletin board FAPBB ; 2. designated openings
are done by encrypting the opening information from the protocol of [15] with the designated
verifier’s public key for a cryptosystem with plaintext verification [5], which allows the designated
verifier to later publicly prove that a certain (in)valid commitment opening was in the ciphertext.
Interestingly, FDVHCOM can be realized in the global random oracle model under the Computational
Diffie Hellman (CDH) assumption. We show how to realize FDVHCOM in Appendix E.

Realizing Fk,D
CT with ΠCT−COM The main idea in constructing Protocol ΠCT−COM is to

have each party compute shares of their random secrets using packed Shamir secret sharing and
then generate designated verifier commitments FDVHCOM to each share. Next, each party proves
that their committed shares are valid by executing the LocalLDEI test on the committed shares
(instead of group exponents), which involves evaluating a linear function on the committed shares
and publicly opening the commitment containing the result of this evaluation. At the same time,
each party performs designated openings of each committed share towards one of the other parties,
who verify that they have obtained a valid designated opening and post a message to FAPBB
confirming that this check succeeded. After a high enough number of parties successfully confirms
this check for each of the sets of committed shares, each party publicly opens all of their committed
shares, allowing the other parties to reconstruct the secrets. If one of the parties does not open
all of their shares, the honest parties can still reconstruct the secrets by revealing the designated
openings they received for their shares. We present Protocol ΠCT−COM in Figure 14 and state
its security in Theorem 4. Since FDVHCOM can be realized in the global random oracle model
under the Computational Diffie Hellman (CDH) assumption, as shown in Appendix E, we obtain

an instantiation of Fk,DCT with security based on CDH.

26

Protocol ΠCT−COM

Let ` = n − 2t. We assume the parties have a Vandermonde (`) × (n − t)-matrix M = M(ω, `, n − t)
with ω ∈ Z∗q as specified in section 2. Protocol ΠCT−COM is run between a set P = {P1, . . . , Pn}
(out of which at most t are corrupted) and a set of verifiers V interacting with each other and with
functionalities FAPBB ,FDVHCOM as follows:

1. Commit: On input (Toss, sid), every party Pi ∈ P proceeds as follows:
(a) Pi acts as dealer in Shamir packed secret sharing, sampling a polynomial p(X)← Zq[X]≤t+`−1

such that s0 = p(0), s1 = p(−1), . . . , s`−1 = p(−(` − 1)) and computing shares σi = p(i) for
1 ≤ i ≤ n.

(b) For 1 ≤ j ≤ n, Pi picks an unused ssidij and sends (commit, sid, ssidj ,Pi,P, σj) to FDVHCOM.
(c) Pi uses the Addition interface of FDVHCOM to evaluate the LocalLDEI test on the committed

shares identified by ssidi1, . . . , ssid
i
n obtaining a new commitment identified by ssidiLDEI . The

random polynomial used by LocalLDEI is sampled via de Fiat-Shamir heuristic using the
output of a global random oracle queried on the protocol transcript so far.

(d) Pi sends (P− Open, sid, ssidiLDEI) to FDVHCOM (scheduling a public opening the commitment
with the LocalLDEI result) and, for 1 ≤ j ≤ n, sends (D− Open, sid,Pj , ssidij) to FDVHCOM

(scheduling the delegated opening of share σj towards Pj). Finally, Pi sends (Do− Open, sid)
to FDVHCOM execute all openings and sends (Post, sid,MID,mi

LDEI) to FAPBB using a fresh
MID (registering the result of the LDEI test on the bulletin board).

(e) For 1 ≤ j ≤ n, Pi checks that it has received (p-reveal, sid,Pj ,P, ssidjLDEI , 0) (meaning
that the shares from Pj passed the LocalLDEI test), (d-reveal, sid,Pj ,Pi, ssidji , σ

j
i) and

(d-reveal, sid,Pj ,Pi, ssidjj′) for every j′ = 1, . . . , n, j′ = j (meaning that Pj opened each
committed share towards the right designated verifier) from FDVHCOM. We call the set of
parties for which this check succeeds C, which is guaranteed to contain at least n − t parties
(all honest parties).

2. Reveal and Output: Every party Pi ∈ P proceeds as follows:
(a) For every party Pj ∈ C, Pi sends (Reveal-D-Open, sid,Pi, ssidji) to FDVHCOM and (Post,

sid,MID, σji) to FAPBB using a fresh MID.
(b) After the n − t honest parties open their committed shares, perform the recovery procedure

of ΠALB directly on the set of shares σjo such that Pj ∈ C and Po revealed its shares in the
previous step (which is guaranteed to contain at least n − t shares revealed by the honest
parties). Output the `2 elements of R as final randomness.

3. Verify: On input (Verify, sid, x1, . . . , xk), a verifier Vi ∈ V checks that the protocol transcript
registered in FAPBB is valid using the verification interface of FDVHCOM. If the transcript is valid
and results in output x1, . . . , xk, AlgV eri sets b = 1, else, it sets b = 0. Vi outputs (Verified,
sid, x1, . . . , xk, b).

Fig. 14. Protocol ΠCT−COM .

Theorem 4. Protocol ΠCT−COM UC-realizes Fk,DCT for k = `2 = (n − 2t)2 and D = {hs|h ∈
Gq, s

$← Zq} in the FDVHCOM,FAPBB-hybrid model with static security against an active adversary
A corrupting at most t parties (where 2t+ ` = n).

Proof. This theorem is proven in Appendix E.

27

Complexity: This construction only uses our new designated verifier additively homomorphic UC
commitments, which inherit the same efficiency as state-of-the-art UC commitments [15,16] for its
regular commit/add/open phases, only requiring calls to a random oracle and simple field arith-
metics (only additions/multiplications but no exponentiations). When instantiated under the CDH
assumption, performing (and checking) the designated opening operation has the added overhead
of computing 2 modular exponentiations and communicating 2 group elements and a binary string
of length 2s, where s is the security parameter. Hence, the computational complexity of executing
this version of our beacon is dominated by the designated opening operation, resulting in a worst
case concrete complexity per party of roughly 4n+ 2t(n− t) modular exponentiations (2n for com-
puting its own designated openings, 2n for checking received designated openings and 2t(n− t) for
checking designated opening proofs received in the worst case scenario). The worst case commu-
nication complexity is roughly of twice the number of random bits generated plus t(n − t) + 2n2

group elements, n2 binary strings of length 2s and t(n − t) binary strings of length 3s, where s is
the security parameter.

6 Acknowledgements

The authors would like to thank the anonymous reviewers for their suggestions, Diego Aranha,
Ronald Cramer and Dario Fiore for useful discussions and Eva Palandjian for the implementation
in [35] and remarks about the initial draft.

References

1. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van Oorschot, editor, Proceedings of the
17th USENIX Security Symposium, pages 335–348. USENIX Association, 2008.

2. Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. Winning the caucus race: Continuous leader
election via public randomness. CoRR, abs/1801.07965, 2018.

3. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction ledger:
A composable treatment. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 324–356. Springer, Heidelberg, August 2017.

4. Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly auditable secure multi-party computation.
In Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS, pages 175–196.
Springer, Heidelberg, September 2014.

5. Carsten Baum, Bernardo David, and Rafael Dowsley. A framework for universally composable pub-
licly verifiable cryptographic protocols. Cryptology ePrint Archive, Report 2020/207, 2020. https:

//eprint.iacr.org/2020/207.
6. Carsten Baum, Bernardo David, and Rafael Dowsley. Insured MPC: Efficient secure computation with

financial penalties. In Joseph Bonneau and Nadia Heninger, editors, FC 2020, volume 12059 of LNCS,
pages 404–420. Springer, Heidelberg, February 2020.

7. G. R. Blakley and Catherine A. Meadows. Security of ramp schemes. In Advances in Cryptology,
Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings, pages
242–268, 1984.

8. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages
757–788. Springer, Heidelberg, August 2018.

9. Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for constructing the public
parameters of the pinocchio zk-snark. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea
Bracciali, Federico Pintore, and Massimiliano Sala, editors, Financial Cryptography and Data Security
- FC 2018, volume 10958 of Lecture Notes in Computer Science, pages 64–77. Springer, 2018.

28

https://eprint.iacr.org/2020/207
https://eprint.iacr.org/2020/207

10. Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted
setup. IACR Cryptology ePrint Archive, 2019:1021, 2019.

11. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven. The won-
derful world of global random oracles. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 280–312. Springer, Heidelberg, April / May 2018.

12. Jan Camenisch, Stephan Krenn, and Victor Shoup. A framework for practical universally composable
zero-knowledge protocols. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 449–467. Springer, Heidelberg, December 2011.

13. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

14. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global random
oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 597–608. ACM
Press, November 2014.

15. Ignacio Cascudo, Ivan Damg̊ard, Bernardo David, Nico Döttling, Rafael Dowsley, and Irene Giacomelli.
Efficient UC commitment extension with homomorphism for free (and applications). In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS, pages 606–
635. Springer, Heidelberg, December 2019.

16. Ignacio Cascudo, Ivan Damg̊ard, Bernardo David, Nico Döttling, and Jesper Buus Nielsen. Rate-1,
linear time and additively homomorphic UC commitments. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 179–207. Springer, Heidelberg, August
2016.

17. Ignacio Cascudo and Bernardo David. SCRAPE: Scalable randomness attested by public entities. In
Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17, volume 10355 of LNCS, pages
537–556. Springer, Heidelberg, July 2017.

18. David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell, editor,
CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, August 1993.

19. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci.,
777:155–183, 2019.

20. Benny Chor, Oded Goldreich, Johan H̊astad, Joel Friedman, Steven Rudich, and Roman Smolensky.
The bit extraction problem of t-resilient functions. In 26th Annual Symposium on Foundations of
Computer Science, Portland, Oregon, USA, 21-23 October 1985, pages 396–407, 1985.

21. James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Comp., 19:297–301, 1965.

22. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98. Springer, Heidelberg, April / May
2018.

23. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987.

24. Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (extended
abstract). In Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6,
1992, Victoria, British Columbia, Canada, pages 699–710, 1992.

25. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 281–310. Springer, Heidelberg, April 2015.

26. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for NIZK.
In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 97–111. Springer, Heidelberg,
August 2006.

27. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In Serge
Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer, Heidelberg,
May / June 2006.

29

28. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge. J.
ACM, 59(3):11:1–11:35, 2012.

29. Somayeh Heidarvand and Jorge L. Villar. Public verifiability from pairings in secret sharing schemes.
In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors, SAC 2008, volume 5381 of LNCS,
pages 294–308. Springer, Heidelberg, August 2009.

30. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably se-
cure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg, August 2017.

31. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party computation using
a global transaction ledger. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 705–734. Springer, Heidelberg, May 2016.

32. Yehuda Lindell. An efficient transform from sigma protocols to NIZK with a CRS and non-
programmable random oracle. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I,
volume 9014 of LNCS, pages 93–109. Springer, Heidelberg, March 2015.

33. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

34. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions.
J. ACM, 51(2):231–262, 2004.

35. Eva Palandjian. Implementation of ALBATROSS, https://github.com/evapln/albatross.

36. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Heidelberg, August
1992.

37. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M. Maurer, editor,
EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer, Heidelberg, May 1996.

38. Michael O. Rabin. Transaction protection by beacons. J. Comput. Syst. Sci., 27(2):256–267, 1983.

39. Alexandre Ruiz and Jorge Luis Villar. Publicly verfiable secret sharing from paillier’s cryptosystem. In
Christopher Wolf, Stefan Lucks, and Po-Wah Yau, editors, WEWoRC 2005, volume 74 of LNI, pages
98–108. GI, 2005.

40. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

41. Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Michael J. Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In 2017 IEEE
Symposium on Security and Privacy, SP 2017, pages 444–460. IEEE Computer Society, 2017.

42. Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan-Gueta, and
Srinivas Devadas. Towards scalable threshold cryptosystems. In 2020 IEEE Symposium on Security
and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages 877–893. IEEE, 2020.

43. Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela: Scalable private
messaging resistant to traffic analysis. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 137–152, New York, NY, USA, 2015. ACM.

44. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.). Cambridge University
Press, 2013.

45. David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent in numbers:
Making strong anonymity scale. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 179–192, Berkeley, CA, USA, 2012. USENIX Association.

A Cooley-Tukey FFT algorithm

We present the Cooley-Tukey FFT algorithm, as described in [44], in Figure 15.

30

https://github.com/evapln/albatross

Cooley-Tukey FFT algorithm

Input: An integer n = 2k dividing q − 1, a primitive n-th root of unity ω, and a polynomial
f = f0 + f1X + · · ·+ fn−1X

n−1.

Output: The vector (f(1), f(ω), . . . , f(ωn−1)).

Algorithm:
If n = 1:

– Return f0.
Else:

– Compute g =
∑n/2−1
j=0 (fj + fj+n/2)Xj , g∗ =

∑n/2−1
j=0 (fj − fj+n/2)ωjXj .

– Apply the algorithm recursively on (n/2, g, ω2) and on (n/2, g∗, ω2) obtaining outputs
(g(1), g(ω2), . . . , g(ωn−2)) and (g∗(1), g∗(ω2), . . . , g∗(ωn−2)) respectively.

– Return (g(1), g∗(1), g(ω2), g∗(ω2), . . . , g(ωn−2), g∗(ωn−2)).

Fig. 15. Cooley-Tukey FFT algorithm

B Test for Correction for Linear Computation in the Exponent

In case we want to use the alternative distributed computation of the output phase, as mentioned in
Section 4.3, we will need an algorithm allowing for local verification of the correct computation of a
linear resilient function in the exponent by some other party. We use similar ideas to the algorithm
LocalLDEI . The basis for the algorithm, that we call LocalLExp in fact allows for testing the correct
computation of an arbitrary deterministic linear function in the exponent given by a matrix M .
Consider the set C = {(x,Mx) : x ∈ Zrq} ⊆ Z2r−t

q . This is a vector space over Zq (i.e. a linear code)
of dimension r. Consider now the (r − t)× (2r − t) matrix

H = (−M |Ir−t)

Every row of H is orthogonal to every element in C. Indeed the i-th row of this matrix is (−Mi|ei)
where Mi is the i-th row of M and ei is the i-th unit vector. The inner product between this
and (x,Mx) gives −Mix + (Mx)i = −Mix + Mix = 0. Moreover the rows of H are all linearly
independent and generate a code of dimension r− t, which is the dual code C⊥ of C. More precisely
C⊥ = {(−zM, z) : z ∈ Zr−tq }.

Then we have the following standard result (see e.g. [17, Lemma 1]).

Lemma 2. Let v ∈ Z2r−t
q and let w = (−zM, z) uniformly random in C⊥ (i.e. z is sampled

uniformly at random in Zr−tq). Then:

– If v ∈ C, 〈v,w〉 = 0 with probability 1.
– If v /∈ C, 〈v,w〉 = 0 with probability at most 1/q.

This gives a probabilistic test of whether a given vector v ∈ Z2r−t
q is in C, i.e., whether it is

of the form (x,Mx). In our situation we need to check that given h = (h1, h2, . . . , hr) ∈ Grq and

ĥ ∈ Gr−tq , it holds that ĥ = M � h. Recall this means that the discrete logarithms of the elements

in ĥ with respect to some generator h form a vector y which equals Mx, where x is the vector of

31

Algorithm LocalLExp to Verify Correctness of Linear Function Computation in the
Exponent

Public parameters: prime q, cyclic group Gq of prime order q, integers t, r, matrix M ∈ Z(r−t)×r
q .

Input: h = (h1, h2, . . . , hr) ∈ Grq and ĥ = (ĥ1, ĥ2, · · · , ĥr−t) ∈ Gr−tq .

Goal: Verify whether ĥ = M � h (Definition 3).
Algorithm:

– Sample z uniformly at random in Zr−tq . Let u = −zM .

– Compute a =
∏r
i=1 h

ui
i ·

∏r−t
i=1 ĥ

zi
i

– If a = 1 accept. Otherwise reject.

Fig. 16. Algorithm LocalLExp to Verify Correctness of Linear Function Computation in the Exponent

discrete logarithms of h with respect to h. Therefore if we write (h, ĥ) = (hz1 , hz2 , . . . , hz2r−t), we
are testing whether z ∈ C. This leads to the testing algorithm LocalLExp in Figure 16.

Because of the arguments above, we have

Proposition 5. If the statement is correct, LocalLExp always accepts. If the statement is false,
LocalLExp accepts with probability at most 1/q.

Note that the number of required exponentiations in the group is 2r − t.

C Universal Composability and Ideal Functionalities

In Sections 5 and 5.2, we work in the Universal Composability (UC) framework of Canetti [13]. In
this section, we discuss our treatment of public verifiable functionalities, randomness beacons and
setup assumptions in the UC framework. We refer the readers to [13] for further details on this
model.

Adversarial Model: Our protocols will be proven secure against static and active adversaries.
In other words, the adversary may deviate from the protocol in any arbitrary way and can only
corrupt parties before the protocol execution starts.

C.1 Public Verfiability and Dynamic Verifiers

In order to model a dynamic set of verifier parties who may join and leave an execution at any
given point, we follow the approach of Badertscher et al. [3], defining a set of verifiers V to which
parties can be added or removed through register and de-register instructions as well as defining
instructions that allow S to obtain the list of registered verifiers. All functionalities that ineract
with a set of verifiers V implicitly include the following interfaces (which are omitted henceforth
for simplicity):

Register: Upon receiving (Register, sid) from some verifier Vi, set V = V ∪ Vi and return
(Registered, sid,Vi) to Vi.

32

Deregister: Upon receiving (Deregister, sid) from some verifier Vi, set V = V \ Vi and return
(Deregistered, sid,Vi) to Vi.
Is Registered: Upon receiving (Is-Registered, sid) from Vi, return
(Is-Registered, sid, b) to Vi, where b = 1 if Vi ∈ V and b = 0 otherwise.

Get Registered: Upon receiving (Get-Registered, sid) from the ideal adversary S, the func-
tionality returns (Get-Registered, sid,V) to S.

Ideal Functionality FAPBB - Authenticated Public Bulletin Board

Functionality FAPBB keeps an initially empty list M of messages and interacts with a set of parties
P, a set of verifiers V and an ideal adversary S as follows:

Post to Bulletin Board: Upon receiving a message (Post, sid,MID,m) from a party Pi ∈ P, if
there is no message (Pi, sid,MID,m′) ∈ M, append (Pi, sid,MID,m) to the list M of authenticated
messages that were posted in the public bulletin board. Then send (Posted, sid,Pi,MID,m) to S.

Read from Bulletin Board: Upon receiving a message (Read, sid) from a party in P or V, return
(Read, sid,M) to the caller.

Fig. 17. Authenticated Public Bulletin Board Ideal Functionality FAPBB from [6].

C.2 Public Bulletin Boards

As in previous works [4,6,31] modelling publicly verifiable protocols in the UC framework, we
require a public bulletin board ideal functionality as setup. While randomness beacons are usually
deployed on top of blockchain based public ledgers [3] using a digital signature ideal functionality
to provide authentication, in order to focus on the main aspects of our protocol instead of the many
public ledger details, we use the ideally authenticated bulletin board from [6], which is described in
Figure 17. However, we remark that our randomness beacon does not depend on the order of the
messages posted to the bulletin board and that it could be realized using a blockchain based public
ledger using the strategy of [30,22], where parties wait for long enough during each phase (i.e.
commit, reveal and recover) such that it is guaranteed that all of their messages become immutable
and accessible to all honest parties with overwhelming probability.

C.3 Common Reference String (CRS)

For the sake of simplicity, in order to model the public parameters g, h ∈ Gq used by the Pedersen
equivocal commitment scheme, we use a Common Reference String (CRS) ideal functionality FCRS.
This functionality is also implied by the NIZK ideal functionalities we employ. However, we remark
that such public parameters for Pedersen commitments and NIZKs can be computed through a
multiparty computation protocol [9] without relying on a trusted CRS. Ideal functionality FCRS is
described in Figure 18.

33

Common Reference String ideal functionality FCRS

Functionality FCRS is parameterized by a distribution D and interacts with a set of parties P and a set
of verifiers V as follows:

1. On input (CRS, sid) from a party in P or in V, if there is no value crs recorded, then sample and

record value crs
$← D. Send (CRS, sid, crs) to the caller.

Fig. 18. Common Reference String ideal functionality FCRS.

C.4 Non-Interactive Zero Knowledge (NIZK)

It is known that a UC-secure NIZKs for all relations in NP can be realized in the CRS model [26,27,28].
However, we remark that more efficient constructions exist for the case of the simple relations on
discrete logarithm that we are interested in, more efficient constructions exist [12] and those can
be made non-interactive through techniques [32] that can be instantiated based on an observable
(i.e. non-programmable) global random oracle [14,11] and a CRS. We use the ideal functionality for
Non-Interactive Zero Knowledge proof systems for a relation R from [26,27,28], which we describe
in Figure 19. For the sake of clarity and keeping with the style of other functionalities, we slightly
modify FRNIZK and model the set of verifiers V separately from the set of parties P, only allowing
the parties in P (resp. verifiers in V) to call the proof (resp. verification) interface. However, a party
may be added to both sets P and V when it needs to query both interfaces.

Non-Interactive Zero Knowledge proof system ideal functionality FRNIZK

Functionality FRNIZK is parameterized with relation R and interacts with a set of parties P, a set of
verifiers V and ideal adversary S as follows:

Proof: On input (prove, sid, x, w) from a party Pi ∈ P, ignore if (x,w) /∈ R. Send (prove, sid, x) to
S and wait for answer (proof, sid, π). Upon receiving the answer, store (x, π) and send (proof, sid, π)
to Pi.
Verification: On input (verify, sid, x, π) from a party Vi ∈ V, check whether (x, π) is stored. If not,
send (verify, sid, x, π) to S and wait for an answer (witness, sid, w). Upon receiving the answer, check
whether (x,w) ∈ R and, in that case, store (x, π). If (x, π) has been stored, return (verification, sid, 1)
to Vi, else return (verification, sid, 0).

Fig. 19. Non-Interactive Zero Knowledge proof ideal functionality FRNIZK from [28].

C.5 Public-Key Encryption with Plaintext Verification:

We present functionality FPKEPV from [5] in Figure 20. It has been shown in [5] that FPKEPV can be
UC-realized in the global random oracle model under the Computational Diffie-Hellman assumption.

34

Functionality FPKEPV

FPKEPV interacts with a special decrypting party Powner, a set of parties P, a set of public verifiers
V and an ideal adversary S. FPKEPV is parameterized by a message domain ensemble M = {Mk}k∈N ,
a family of formal encryption algorithms {Ee}e, a family of formal decryption algorithms {Dd}d for
unregistered ciphertexts and a family of formal plaintext verification algorithms {Vv}v. FPKEPV proceeds
as follows:
Key Generation: Upon receiving a message (KeyGen, sid,Powner) from a party Powner ∈ P (or S),

proceed as follows:
1. Send (KeyGen, sid,Powner) to S.
2. Receive a value e from S.
3. Record e and output e to Powner.

Encryption: Upon receiving a message (Encrypt, sid,Powner, e′,m) from a party Pi ∈ P, proceed
as follows:
1. If m /∈M , then return an error message to Pi.
2. If m ∈M , then:

– If Powner is corrupted, or e′ 6= e, then compute (c, π)← Ek(m).
– Otherwise, let (c, π)← Ek(1|m|).

Record the pair (m, c, π) and return (c, π) to Pi.
Decryption: Upon receiving a message (Decrypt, sid,Powner, c) from Powner, proceed as follows (if

the input is from another party then ignore):
1. If there is a recorded tuple (c,m, π), then hand (m,π) to Powner. (If there is more than one

value m that corresponds to c then unique decryption is not possible. In that case, output an
error message to Powner).

2. Otherwise, compute (m,π)← D(c) and hand (m,π) to Powner.
Plaintext Verification: Upon receiving a message (Verify, sid,Powner, c,m, π) from a verifier Vi ∈
V, proceed as follows:
1. If there is a recorded tuple (c,m, π), then output 1 to Vi.
2. Otherwise, compute b← V (c,m, π), outputting b to Vi.

Fig. 20. Public-Key Encryption Functionality with Plaintext Verification from [5].

C.6 Multi-Receiver Publicly Verifiable Commitments

We use multi-receiver publicly verifiable (non-homomorphic) commitments as the main building
block of our multi-receiver additively homomorphic designated verifier commitment scheme. We
adopt the multi-receiver publicly verifiable (non-homomorphic) commitments functionality FCom

from [6], where it is also shown that FCom can be realized in the restricted programmable and
observable random oracle model of [11] with the use of an ideally authenticated public bulletin
board FAPBB without extra computational assumptions.

D Security Analysis of Protocol ΠCT−ZK - Proof of Theorem 3

We construct a simulator S such that no environment can distinguish an ideal execution with S and
Fk,DCT from a real execution with an adversaryA corrupting up to t parties in the FCRS,FAPBB ,FLDEINIZK ,FDLEQNIZK ,FCOMC

NIZK -
hybrid model. S simulates an execution of ΠCT−ZK with an internal copy A of the adversary, acting
as FCRS,FAPBB ,FLDEINIZK ,FDLEQNIZK ,FCOMC

NIZK towards A by following the exact descriptions of these

35

Functionality FCom

FCom is parameterized by commitment length λ and keeps an internal (initially empty) list C. FCom

interacts with a sender PS , a set of receivers P = {P1, . . . , Pt}, a set of verifiers V and an adversary S,
through the following interfaces:

Commit: Upon receiving a message (commit, sid, ssid, PS , P,m) from PS where m ∈ {0, 1}
λ

, check
if there exists (ssid, ·, ·) ∈ C. If yes, ignore the message, else add (ssid, PS ,m) to C and send (receipt,
sid, PS , P) to every receiver Pi ∈ P and S.

Open: Upon receiving a message (reveal, sid, ssid) from PS , if there exists (ssid, PS ,m) ∈ C, then
send (reveal, sid, ssid, PS , P,m) to every receiver Pi ∈ P and S.

Verify: Upon receiving (Verify, sid, ssid, PS ,m) from Vj ∈ V, if there exists (ssid, PS ,m) ∈ C set
f = 1, otherwise, set f = 0. Send (Verified, sid, ssid, PS ,m, f) to Vj .

Fig. 21. Functionality FCom for Publicly Verifiable Multiparty Commitments from [6].

functionalities unless otherwise stated. One crucial difference is that S simulates FCRS towards A by

sampling matrix M correctly but sampling a random generator gp
$← Gq and computing hp = gtd

for td
$← Zq, so that it knows a trapdoor td that allows it to equivocate openings of the Pedersen

commitment. The case were all parties are honest is handled trivially by executing the exact in-
structions of ΠCT−ZK among simulated honest parties, equivocating the openings of one party’s
commitment so that the k outputs match those obtained from Fk,DCT and outputting whatever A
outputs.

In order to deal with the case where A corrupts at most t parties, S executes the Commit phase
with A by following the exact steps of an honest party in the Commit phase of ΠCT−ZK . In the
Reveal phase, once n − t parties (we say those parties are in set C) post values σ̂j1, . . . , σ̂

j
n, πjLDEI

valid according to FLDEINIZK and values Com(sj0, r
j
0), . . . ,Com(sj`−1, r

j
`−1), πjCOMC valid according to

FCOMC
NIZK have been posted on FAPBB , ∼ extracts from FCOMC

NIZK and FLDEINIZK the secrets sj0, . . . , s
j
`−1

used as witness for these NIZKs. Notice that at this point, since these values are valid according
to FLDEINIZK and FCOMC

NIZK , they are guaranteed to contain the same secrets, meaning that the same
secrets will be recovered if all parties in C open their commitments or if their random inputs
are reconstructed from the simulated honest parties’ encrypted shares. S queries Fk,DCT with (Toss,

sid), obtaining (Tossed, sid, x1, . . . , xk). S samples random secrets ŝj0, . . . , ŝ
j
`−1 for every simulated

honest party Pj ∈ C such that executing the remainder of ΠCT−ZK following the instructions of an

honest party will yield the output x1, . . . , xk obtained from Fk,DCT given that the corrupted parties
in C have the secrets extracted from FLDEINIZK and FCOMC

NIZK . In the remainder of the protocol, ∼
executes exactly the steps of an honest party in ΠCT−ZK except for equivocating the opening of
the commitments Com(sj0, r

j
0), . . . ,Com(sj`−1, r

j
`−1) of simulated honest parties in C so that they

open to the new adjusted ŝj0, . . . , ŝ
j
`−1 instead of the original random secrets (which S can do since

it knows td).
In order to argue why this simulated execution is indistinguishable from a real execution of

ΠCT−ZK , we first observe that under the DDH assumption the encrypted shares do not reveal
any information about the random inputs shared by the parties as per Proposition 3. Moreover,
notice that the Pedersen commitments computed as part of ΠCT−ZK are perfectly hiding, also not
revealing any information about the shared random inputs. By the time the n − t parties in set C

36

post their valid encrypted shares and commitments to secrets, we are guaranteed by FLDEINIZK and
FCOMC

NIZK that the encrypted shares and commitments encode the same secrets. Under the discrete
logarithm assumption (which is of course implied by DDH), we also know that A cannot open
the commitments of corrupted parties in C to any other values than the secret extracted from
FLDEINIZK and FCOMC

NIZK . Hence, we know that whether A opens its commitments or we simulate a
reconstruction of A’s secrets, the obtained secrets will always be the ones S has extracted from the
NIZK functionalities. Now S can obtain the output output x1, . . . , xk from Fk,DCT and sample new
secrets for the simulated honest parties such that executing the remainder of ΠCT−ZK with A will
yield the output of Fk,DCT . Notice that these new adjusted secrets are sampled at random and thus
distributed exactly as in a real execution of ΠCT−ZK . Moreover, since S knows the trapdoor td for
the Pedersen equivocal commitments it can open them to these new adjusted values with openings
that are distributed exactly as in a real execution of ΠCT−ZK . Hence, the ideal execution with
S and Fk,DCT and the real execution with A in the FCRS,FAPBB ,FLDEINIZK ,FDLEQNIZK ,FCOMC

NIZK -hybrid
model are indistringuishable to the environment.

E Realizing FDVHCOM

We realize FDVHCOM with a protocol based on the additively homomorphic multi-receiver com-
mitments from [15] and public verifiability techniques from [5]. The main idea of our protocol is
to have the sender of a commitment encrypt the opening information it would usually send to all
receivers under the public key of an specific receiver using a public-key cryptosystem with plaintext
verification as defined in [5]. Such a cryptosystem, allows the holder of the corresponding public
key to publicly prove that the ciphertext contained a certain plaintext. Hence, the receiver of a
designated open can later prove to the other receivers that it received a valid designated open
or not. In order to achieve public verifiability, we further require an ideal authenticated bulletin
board FAPBB , where public keys, commitments, public opens and designated opens registered for
posterior verification.

E.1 Coding Theory Notation and Tools

We base our protocol on [15] and borrow their notation and tools, which we reproduce almost
verbatim here.

Linear Algebra Notation The set of the n first positive integers is denoted [n] = {1, 2, . . . , n}.
Vectors of elements of some field are denoted by bold lower-case letters, while matrices are denoted
by bold upper-case letters. For z ∈ Fk, z[i] denotes the i’th entry of the vector, where z[1] is the first
element of z. The coordinate-wise (Schur) product of two vectors is denoted by ∗, i.e. if a, b ∈ Fn,
then a ∗ b ∈ Fn and (a ∗ b)[i] = a[i]b[i]. If A ⊆ [n], we will use πA to denote the projection that
outputs the coordinates with index in A of a vector. For a matrix M ∈ Fn×k, we let M[·, j] denote
the j’th column of M and M[i, ·] denote the i’th row. The row support of M is the set of indices
I ⊆ {1, . . . , n} such that M[i, ·] 6= 0. For a vector x ∈ Fn, we denote the Hamming-weight of x by
‖x‖0.

Schur Square and Interleaved Product of Codes The rate of an F-linear [n, k, d] code is k
n and its

relative minimum distance is d
n . A matrix G ∈ Fn×k is a generator matrix of C if C = {Gx : x ∈ Fk},

and we write C(x) = Gx. The code C is systematic if it has a generator matrix G such that the

37

submatrix given by the top k rows of G is the identity matrix I ∈ Fk×k. For an F-linear [n, k, d] code
C, we denote by C∗2 the Schur square of C, which is defined as the linear subspace of Fn generated
by all the possible vectors of the form v ∗w with v,w ∈ C. This is an [n, k̂, d̂] code where k̂ ≥ k and

d̂ ≤ d. For an F-linear [n, k, d] code C, we denote by C�m the m-interleaved product of C, which is
defined by C�m = {C ∈ Fn×m : ∀i ∈ [m] : C[·, i] ∈ C}. In other words, C�m consists of all Fn×m
matrices for which all columns are in C. We can think of C�m as a linear code with symbol alphabet
Fm, where we obtain codewords by taking m arbitrary codewords of C and bundling together the
components of these codewords into symbols from Fm. For a matrix E ∈ Fn×m, ‖E‖0 is the number
of nonzero rows of E, and the code C�m has minimum distance at least d′ if all nonzero C ∈ C�m

satisfy ‖C‖0 ≥ d′. With this definition, it is easy to see that DistComp(C�m) = DistComp(C)

Interactive Proximity Testing and Linear Time Building Blocks As in [15], we use the interactive
proximity testing technique and corresponding linear time building blocks introduced in [16].

Definition 7 (Almost Universal Linear Hashing [16]). We say that a family H of linear
functions Fn → Fs is ε-almost universal, if it holds for every non-zero x ∈ Fn that

Pr
H←H

[H(x) = 0] ≤ ε,

where H is chosen uniformly at random from the family H. We say that H is universal, if it is
|F−s|-almost universal. We will identify functions H ∈ H with their transformation matrix and
write H(x) = H · x.

Theorem 5 (Theorem 1 in [16]). Let H : Fm → F2s+t be a family of |F|−2s-almost universal
F-linear hash functions. Further let C be an F-linear [n, k, s] code. Then for every X ∈ Fn×m at
least one of the following statements holds, except with probability |F|−s over the choice of H← H:

1. XH> has distance at least s from C�(2s+t)

2. For every C′ ∈ C�(2s+t) there exists a C ∈ C�m such that XH>−C′ and X−C have the same
row support

Remark 7 ([16]). If the first item in the statement of the Theorem does not hold, the second one
must hold. Then we can efficiently recover a codeword C with distance at most s− 1 from X using
erasure correction, given a codeword C′ ∈ C�(2s+t) with distance at most s − 1 from XH>. More
specifically, we compute the row support of XH> − C′, erase the corresponding rows of X and
recover C from X using erasure correction (recall that erasure correction for linear codes can be
performed efficiently via gaussian elimination). The last step is possible as the distance between X
and C is at most s− 1.

Theorem 6 (Theorem 2 in [15]). Fix a finite field F of constant size, let s ∈ N be a statistical
security parameter, let n ∈ N and let l = s + O(log(n)). Then there exists an explicit family
H : Fl+n → Fl of |F|−s-universal hash functions that can be represented by O(s2) bits and computed
in time O(n). Moreover, it holds for any function H ∈ H that if x = (x1, . . . , xl, . . . xl+n) is such
that the x1, . . . , xl are independently uniform and xl+1, . . . , xl+n are independent of x1, . . . , xl, then
H(x) is distributed uniformly random.

38

Protocol ΠDVHCOM

Let C be a systematic binary linear [n, k, s] code, where s is the statistical security parameter and n
is k + O(s). Let H be a family of linear almost universal hash functions H : {0, 1}m → {0, 1}l. Let
PRG : {0, 1}λ → {0, 1}m+l be a pseudorandom generator. Protocol ΠDVHCOM is run by a sender PS
and a set of receivers P = {P1, . . . , Pt}, who interact with FCom,FAPBB ,FPKEPV and proceed as follows:
Commitment Phase
1. On input (commit, sid, ssid1, . . . , ssidm, PS , P), PS proceeds as follows:

(a) For i ∈ [n] and j ∈ {0, 1}, sample si,j
$← {0, 1}λ and send (commit, sid, ssidi,j , PS , P, si,j) to

FCom.
(b) Compute Rj[i, ·] = PRG(si,j) and set R = R0 + R1 so that R0,R1 forms an additive secret

sharing of R.Adjust the bottom n − k rows of R so that all columns are codewords in C by
constructing a matrix W with dimensions as R and 0s in the top k rows, such that A :=
R + W ∈ C�m+l (recall that C is systematic). Set A0 = R0,A1 = R1 + W and broadcast
(sid, ssid1, . . . , ssidm,W) (only sending the bottom n− k = O(s) rows).

2. Upon receiving all messages (receipt, sid, ssidi,j , PS , P) from FCom and (sid, ssid1, . . . , ssidm,W)
from PS , every receiver Pi ∈ P proceeds as follows:

(a) Sample ri
$← {0, 1}n and r′i

$← {0, 1}λ, and send (commit, sid, ssid, Pi, P
′, ri) and

(commit, sid, ssid′, Pi, P
′, ri

′) to FCom
a, where P ′ = PS ∪ P \ Pi.

(b) Upon receiving (receipt, sid, ssid, Pj , P
′) and (receipt, sid, ssid′, Pj , P

′) from FCom for all Pj ∈
P \Pi, send (reveal, sid, ssid′) to FCom. Upon receiving (reveal, sid, ssid′, Pj , P

′, rj
′) from FCom

for all Pj ∈ P \ Pi, set r′ = r1
′ ⊕ . . .⊕ rt

′.
3. Upon receiving (commit, sid, ssid, Pi, P

′) and (reveal, sid, ssid′, Pj , P
′, rj

′) from FCom for all Pj ∈ P ,
PS proceeds as follows:
(a) Use r′ = r1

′ ⊕ . . . ⊕ rt
′ as a seed for a random function H ∈ H (note that we identify the

function with its matrix and all functions in H are linear).
(b) Set matrices P, P0 and P1 as the first l columns of A, A0 and A1, respectively, and remove

these columns from A, A0 and A1. Renumber the remaining columns of A, A0 and A1 from
1 and associate each ssidi with the corresponding column index. Notice that P = P0 + P1.
For i ∈ {0, 1}, compute Ti = AiH + Pi and broadcast (sid, ssid1, . . . , ssidm,T0,T1). Note
that AH + P = A0H + P0 + A1H + P1 = T0 + T1, and AH + P ∈ C�l.

Addition of Commitments

1. On input (add, sid, ssid1, ssid2, ssid3, PS , P), PS finds indexes i and j corresponding to ssid1 and
ssid2 respectively and check that ssid3 is unused. PS appends the column A[·, i] + A[·, j] to A,
likewise appends to A0 and A1 the sum of their i-th and j-th columns, and associates ssid3
with the new column index. PS broadcasts (add, sid, ssid1, ssid2, ssid3). Note that this maintains

the properties A = A0 + A1 and A ∈ C�m
′
, where m′ is the current number of columns (after

appending columns for addition results).
2. Upon receiving (add, sid, ssid1, ssid2, ssid3), every Pi ∈ P stores the message.aWe assume that each receiver Pi in ΠDVHCOM has access to an instance of FCom where it acts as

sender and where all receivers plus sender PS act as receivers.

Fig. 22. Commit and Addition phases for the protocol ΠDVHCOM from [15].

E.2 Protocol ΠDV HCOM

We construct Protocol ΠDVHCOM realizing FDVHCOM in the FCom,FAPBB-hybrid model by adapt-
ing the opening phase of the additively homomorphic commitment scheme of [15]. For the sake of
completeness, we reproduce the Commitment and Addition phases of [15] in Figure 22 almost ver-

39

Protocol ΠDVHCOM

Schedule Public Open: On input (P− Open, sid, ssid) PS appends ssid to an initially empty list
openpub.

Schedule Designated Open: On input (D− Open, sid, Pd, ssid), PS appends (Pd, ssid) to an initially
empty list opendes.

Execute Open: On input (do− Open, sid) PS proceeds as follows:
1. (a) For every pair (Pd, ssid) ∈ opendes, PS finds the index j associated to ssid and sends (Encrypt,

sid, Pd, ed, (ssid,A0[·, j],A1[·, j])) to the instance FPKEPV for which Pd acts as Powner, receiving
(c, π) as response. PS sends (Post, sid,MID, (Pd, ssid, c)) to FAPBB using a fresh MID.

(b) PS finds the set JPub = {j1, . . . , jo} of indexes associated to every ssid ∈ openpub and sends
(Post, sid,MID, ({ssid ∈ openpub}, (A0[·, j],A1[·, j])j∈JPub)) to FAPBB using a fresh MID.

2. Upon receiving message (PS , sid,MID, ({ssid ∈ openpub}, (A0[·, j],A1[·, j])j∈JPub)) through
FAPBB , every Pi ∈ P sends (reveal, sid, ssid) to FCom and waits for (reveal, sid, ssid, Pj , P

′, rj)
from FCom for all Pj ∈ P \ Pi. Pi sets r = r1 ⊕ · · · ⊕ rt and sets the diagonal matrix ∆ such that
it contains r[1], . . . , r[n] in the diagonal.

3. Upon receiving (reveal, sid, ssid, Pj , P
′, rj) from FCom for all Pj ∈ P , PS sets r = r1 ⊕ . . . ⊕ rt,

sends (reveal, sid, ssidi,r[i]) to FCom for i ∈ [n] and halts.
4. Upon receiving (reveal, sid, ssidi,r[i], PS , P, si,r[i]) from FCom for i ∈ [n], every receiver Pj ∈ P

proceeds as folllows:
(a) Compute S[i, ·] = PRG(si,r[i]), obtaining a matrix S. Note that each row of S is a row from

either R0 or R1, which form an additive secret sharing of R held by PS . Set B = ∆W + S.
Define the matrix Q as the first l columns of B and remove these columns from B, renumbering
the remaining columns from 1. Note that, for A from the commitment phase, A = A0 +
A1, B = ∆A1 + (I−∆)A0, A ∈ C�m , i.e., A initially held by PS is additively shared and
for each row index, P knows either a row from A0 or from A1. Check that ∆T1 +(I−∆)T0 =
BH+Q and that T0+T1 ∈ C�l. If any check fails, abort. Notice that T0,T1 form an additive
sharing of AH+P, where P knows some of the shares, namely the rows of BH+Q. For every
message (add, sid, ssid1, ssid2, ssid3) received from PS , append B[·, j] + B[·, i] to B, where i
and j are the index corresponding to ssid1 and ssid2 respectively and associate ssid3 with the
new column index. Note that this maintains the property B = ∆A1 + (I−∆)A0.

(b) For every message (PS , sid,MID, (Pj , ssid, c)) received through FAPBB , Pj sends (Decrypt,
sid,Powner, c) to the instance of FPKEPV for which it acts as owner, receiving
((ssid,A0[·, j],A1[·, j]), πssid) and adding j to an initially empty set Ji (the set of indexes
j of commitments for which Pi is a designated verifier).

(c) For every j ∈ JPub
⋃
Ji, check that A0[·, j] + A1[·, j] ∈ C and that, for i ∈ [n], it holds that

B[i, j] = Ar[i][i, j] (recall that r[i] is the i-th entry on the diagonal of ∆). If all checks succeed,
for every j ∈ JPub

⋃
Ji, output the first k positions in A0[·, j] + A1[·, j] as the opened string.

Otherwise, abort by outputting (sid, ssidj ,⊥).

Fig. 23. Opening phase for the protocol ΠDVHCOM .

batim. The main novelty in our protocol lies in the opening phase, where we realize both regular
public openings and designated openings with the help of a public-key encryption with plaintext
verification functionality FPKEPV. Moreover, we show how to perform public verification of open-
ings that have been revealed publicly (either by the sender or by a designated verifier). The new
steps for designated openings, public openings, public verification and other auxiliary procedures
of ΠDVHCOM are described in Figures 23 and 24.

40

Protocol ΠDVHCOM

Public Key Registration: When activated for the first time every party Pi ∈ PS
⋃
P sends (KeyGen,

sid,Pi) to an instance of FPKEPV towards which it acts as Powner, receiving a public key ei and sending
(Post, sid,MID, ej) to FAPBB using a fresh MID. Pi sends (Read, sid) to FAPBB , receives (Read,
sid,M) and checks that there exists (Pj , sid,MID, ej) ∈M for every Pj ∈ PS

⋃
P \ Pi.

Reveal Designated Open
1. Upon receiving message (Reveal-D-Open, sid, Pd, ssid), if it received a mes-

sage (PS , sid,MID, (Pj , ssid, c)) through FAPBB , Pd sends sends (Post,
sid,MID, (ssid,A0[·, j],A1[·, j], πssid)) to FAPBB using a fresh MID.

2. Upon receiving a message (Pd, sid,MID, ((ssid,A0[·, j],A1[·, j]), πssid)) through FAPBB , every re-
ceiver Pi ∈ P \ Pd proceeds as follows:
(a) Retrieve message (PS , sid,MID, (Pd, ssid, c)) received through FAPBB and send (Verify,

sid, Pd, c, ((ssid,A0[·, j],A1[·, j]), πssid) to the instance of FPKEPV for which Pd acts as Powner,
receiving b as response and checking that b = 1.

(b) Check that A0[·, j] + A1[·, j] ∈ C and that, for i ∈ [n], it holds that B[i, j] = Ar[i][i, j].
(c) If all checks succeed set m to the first k positions in A0[·, j] + A1[·, j]. Otherwise, set m =⊥.

Output (p-reveal, sid, PS , P, ssid,m).

Verify: On input (Verify, sid, ssid, PS ,m), a verifier Vi ∈ V proceeds as follows:
1. Send (Read, sid) to FAPBB , receiving (Read, sid,M).
2. Check that every opening of a FCom commitment registered inM is valid according to FCom. If this

check fails, Output (Verified, sid, ssid, PS ,m, 0) and ignore the next steps.
3. Execute all the steps of the Commitment and Addition phases following the instructions of a

honest receiver Pi and using the messages and commitment openings in M. Execute the steps of
the Execute Open phase up to Step 4(c) following the instructions of an honest receiver Pi. If an
honest receiver would have aborted, output (Verified, sid, ssid, PS ,m, 0) and ignore next steps.

4. If there exists a message (PS , sid,MID, ({ssid ∈ openpub}, (A0[·, j],A1[·, j])j∈JPub)) ∈ M such
that ssid ∈ {ssid ∈ openpub} (i.e. the commitment identified by ssid was publicly opened), for the
index j associated to ssid, check that A0[·, j] + A1[·, j] ∈ C and that, for i ∈ [n], it holds that
B[i, j] = Ar[i][i, j]. If this check passes, set m′ to the first k positions in A0[·, j] + A1[·, j] and
check that m = m′. If all of these checks succeed, set f = 1, else, set f = 0. Output (Verified,
sid, ssid, PS ,m, f).

5. If there exists a message (PS , sid,MID, (Pd, ssid, c)) ∈ M (i.e. the commitment identified
by ssid was opened towards a designated verifier Pd), check that there exists a message
(Pd, sid,MID, ((ssid,A0[·, j],A1[·, j]), πssid)) ∈ M such that (ssid,A0[·, j],A1[·, j]) is a valid de-
cryption of c according to the instance of FPKEPV for which Pd acts as Powner (i.e. the designated
verifier Pd revealed a valid opening). check that A0[·, j] + A1[·, j] ∈ C and that, for i ∈ [n], it holds
that B[i, j] = Ar[i][i, j]. If this check passes, set m′ to the first k positions in A0[·, j] + A1[·, j] and
check that m = m′. If all of these checks succeed, set f = 1, else, set f = 0. Output (Verified,
sid, ssid, PS ,m, f).

Fig. 24. Designated Open Release and Verification phases for the protocol ΠDVHCOM .

The use of FAPBB instead of broadcast The sole difference in our protocol is that messages are
broadcast through FAPBB instead of a regular broadcast channel. In Figure 22, all “broadcast
message m” should be read as “send (Post, sid,MID,m) to FAPBB using a fresh MID”. Moreover,
at every point that parties are expected to receive broadcasts, they send (Read, sid) to FAPBB ,
receive (Read, sid,M) and check that the message they are waiting for is in M.

41

Public Verification of FCom commitments In order to realize the public verification interface of
FDVHCOM, we need to also verify the commitments handled in ΠDVHCOM by the underlying in-
stances of FCom. Since only the sender and the receivers participate in the opening of a FCom

commitment, we implicitly assume that the sender sends the opened message (ssid,m) to FAPBB
so that later on verifiers who do not participate in ΠDVHCOM execution can verify that these
commitments were opened correctly with the help of FCom and the opened values in FAPBB .

Using Fiat-Shamir to make Commitment/Open non-interactive As observed in [15], the Fiat-Shamir
transformation can be used to make Protocol ΠDVHCOM completely non-interactive. The basic idea
is to derive the randomness generated by the set of receivers P through commit-then-reveal coin-
tossing using a random oracle instead (i.e. using the output of the random oracle when queried on
the current protocol transcript). Hence, the sender is able to both commit and then open specific
commitments without interacting with the receivers.

Commitment to Arbitrary Messages Protocol ΠDVHCOM actually realizes a version of FDVHCOM

that only supports commitments to random messages. However, it has been proven in [15] that
this is sufficient to realize commitments to arbitrary messages. The idea is simple: use the random
messages as one-time pad keys to encrypt the arbitrary messages. Since these one-time pads are
linear, the linear functions evaluated on the random messages can be replicated by evaluating the
same functions on the one-time pad ciphertexts containing the arbitrary messages and decrypting
with the result of the linear function evaluated on the random messages as key.

Theorem 7. Protocol ΠDVHCOM UC-realizes FDVHCOM in the FAPBB ,FCom,FPKEPV-hybrid model
with static security against an active adversary A corrupting all but one party (i.e. corrupting
PS
⋃
P \ Ph or corrupting P but not PS).

Proof. The proof for the basic Commitment, Addition and (Public) Open phases follows from the
analysis of [15], which constructed the original additively homomorphic multi-receiver commitment
protocol. The public verifiability by leveraging a verifiable non-homomorphic commitment scheme
and an ideally authenticated bulletin board follows from the analysis of [6,15], which showed how
to use a similar construction to add public verifiability to the basic scheme of [15]. What is left to
analyze is the designated open and reveal of designated opened commitments.

Notice that the designated open is simply constructed by encrypting the original opening in-
formation of the protocol in [15] with the help of FPKEPV and posting the resulting ciphertext on
FAPBB . In case the sender PS is corrupted, by extracting the plaintext commitment opening in-
formation from this ciphertext, the simulator can determine whether it contains a valid designated
opening and instruct FDVHCOM to perform the same designated opening. In case only receivers
are corrupted, the simulator simply encrypts the equivocated commitment opening containing the
message received from FDVHCOM in order to simulate this step. Later on, simulating the reveal of
a designated open is achieved by following the instructions of a honest party. Since FPKEPV itself
guarantees that decryptions can be publicly verified, this designated opening procedure does not
affect public verifiability.

Proposition 6. Protocol ΠDVHCOM UC-realizes FDVHCOM in the FGROFAPBB-hybrid model (i.e.
in the global random oracle model with an ideally authenticated bulletin board) under the CDH
assumption.

42

Proof. As proven in [5], a cryptosystem with plaintext verification FPKEPV can be realized from a
global random oracle under the Computational Diffie-Hellman (CDH) assumption. Using the result
from [11] showing that non-homomorphic UC commitments FCom can be realized solely from a
global random oracle, we arrive at the result that ΠDVHCOM realizes FDVHCOM under the CDH
assumption in the global random oracle model given an authenticated public bulletin board FAPBB .

43

	ALBATROSS: publicly AttestabLe BATched Randomness based On Secret Sharing

