©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

Exploring the Evolution of Software Practices

Yvonne Dittrich
IT University of Copenhagen
Copenhagen, Denmark
ydi@itu.dk

Pernille Lous
IT University of Copenhagen
Copenhagen, Denmark

pelo@itu.dk
ABSTRACT

When software products and services are developed and maintained
over longer time, software engineering practices tend to drift away
from both structured and agile methods. Nonetheless, in many
cases the evolving practices are far from ad hoc or chaotic. How
are the teams involved able to coordinate their joint development?
This article reports on an ethnographic study of a small team at a
successful provider of software as a service. What struck us was the
very explicit way in which the team adopted and adapted their prac-
tices to fit the needs of the evolving development. The discussion
relates the findings to the concepts of social practices and meth-
ods in software engineering, and explores the differences between
degraded behavior and the coordinated evolution of development
practices. The analysis helps to better understand how software
engineering practices evolve, and thus provides a starting point
for rethinking software engineering methods and their relation to
software engineering practice.

CCS CONCEPTS

» Software and its engineering — Agile software develop-
ment; Programming teams; - Human-centered computing —
Computer supported cooperative work.

KEYWORDS

Software Processes, Agile software development, Cooperative and
human aspects of software engineering, Empirical software engi-
neering

ACM Reference Format:

Yvonne Dittrich, Christian Bo Michelsen, Paolo Tell, Pernille Lous, and Allan
Ebdrup. 2020. Exploring the Evolution of Software Practices. In Proceed-
ings of the 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE °20), No-
vember 8-13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3368089.3409766

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

©2020 ACM. PREPRINT. This is the author’s version of the work.
It is posted here by permission of the ACM for your personal use.
Not for redistribution.

The definitive version was published as referenced above.
. https://doi.org/10.1145/3368089.3409766

Christian Bo Michelsen
IT University of Copenhagen
Copenhagen, Denmark
chmi@itu.dk

Paolo Tell
IT University of Copenhagen
Copenhagen, Denmark
pate@itu.dk

Allan Ebdrup

Copenhagen, Denmark
allan@878.dk

1 INTRODUCTION

When software products and services are developed and main-
tained over longer time, software engineering practices tend to
drift away from both structured and agile methods. Lous et al. ana-
lyzed software development practices that have evolved over time
to address the challenges of continuous software engineering [16]
and distributed development [17]. A survey-based investigation
into industrial software development reveals the widespread use of
hybrid develoipment methods [36].

In many cases, the reported software development practices are
far from ad hoc or chaotic. Though there have been a number of
empirical studies that document that companies use or do not use
particular methods (see [4, 18, 26, 37] as examples), so far there has
been no research into how these situated development practices
come about, or whether an observed practice is the result of careful
development or an accidental deterioration. The research questions
the article addresses thus are: How can the evolution of software
development practices be investigated? What distinguishes a soft-
ware process that has degenerated from one that has evolved as the
result of conscious deliberation?

We had the possibility to study a distributed software engineer-
ing team developing business software as a service. The develop-
ment practices did not resemble any method, but both successfully
delivered software and was satisfying for the team members. We de-
cided on an ethnographic study as our research method, as we were
interested in understanding the team’s continuous software devel-
opment practices from a members’ point of view. As the method
section below details, the early part of the fieldwork indicated that
one important aspect of the success and high satisfaction was that
the team continuously developed and groomed the way they devel-
oped software.

In the field work, we were able to follow the evolution of the
teams’ way to implement stand-up meetings as a concrete example.
In the thematic analysis (section 5.3), we refer to a number of prac-
tices that were evolved by the team prior to our study. The focus
on the evolution of the stand-up meetings allowed us to follow the
evolution of a specific practice life, and to unfold a related set of
practices of changing practices. The analysis identifies the imple-
mentation of bottom-up, situated software process improvement
as established practices that is based on joint reflection and experi-
mentation as core ingredients. This, in turn, requires the team to
demonstrate responsibility and self-organization.

https://doi.org/10.1145/3368089.3409766
https://doi.org/10.1145/3368089.3409766

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

The concept of software development practices is at the center
of our empirical research. To clarify this core concept, we reference
social theory to develop the concepts of social practices [5, 28, 39],
meta-work, and articulation work [10, 33] as theoretical underpin-
nings. Section 3.2 develops the conceptual framework we apply.

The article’s contribution is a theoretical one based on empirical
research (see also [32]). We show how concepts derived from social
theory allow an understanding of specific observations. The obser-
vations illustrate the theoretical concepts and thereby demonstrate
their value. Further, the theoretical concepts allow us to identify
aspects of our observations that might be transferable to other
contexts. With this contribution, we address Herbsleb’s request
for theoretical foundations for research of cooperative aspects of
software engineering [13].

To motivate the related work and the theoretical underpinnings,
the next section introduces the company we studied, and highlight
some of the observations that determined this article’s focus. It
introduces the company’s daily stand-up meetings and their evolu-
tion over time as the main example. Section 3 introduces the related
work on the relationship between methods and practice in software
engineering, and develops the theoretical underpinning. Then, we
present the research method. Section 5 presents the analysis, which
is then discussed in section 6. In the conclusion, we summarize our
findings, and argue for the further development of a practice theory
for software engineering, to better understand how methods and
practice relate.

2 SOFTWARE DEVELOPMENT AT DB

DB is a Danish SME that develops invoicing software for web appli-
cations and native mobile applications. DB’s journey started in 2012
with a reorganization of the mother company. In 2015, the current
company was founded to focus solely on the current software prod-
uct provided as a service. By the time we ended the study, DB had
40 employees, 12 of which were software developers. The team is
internationally distributed, with two main offices in Denmark and
Ukraine, and two additional developers working from home. At the
time of our research, DB had developed a company-specific practice
of continuous software engineering based on a stable deployment
pipeline. The team was tightly integrated by means of a set of
shared practices and a tailored set of communication channels.

This article focuses on how the developers evolve their practices,
and uses the stand-up meeting as its example. As the team continu-
ously experiments with, and improves its practices, any description
of a practice is only a snapshot. This becomes evident when looking
at the history of the stand-up meeting.

For the stand-up meeting, the entire development team joins a
Slack conference call at 9.35, Mondays through Thursdays each
week, and opens a shared slide set on Google Drive. The slide set
includes standard information pulled by a robot: information about
tasks and availability from the calendar, information about merge
issues from the continuous integration server, bug reports that the
Product Owner (PO) highlights as urgent, and information about
production site errors. This standard set of slides is followed one
slide for each team member, to share information about current
tasks. Under the heading, ‘Anything to add, team members may add
slides to raise topics they deem important to discuss with the team.

Dittrich, Michelsen, Tell, Lous, Ebdrup

When we began our research, the stand-up meeting format had

Mid 2014 End 2015 Beg. 2017
Experimentation; Backlog Items Sub -team slides
autogenerated prioritized by PO
slide deck Mid 2017
Mid 2016 Sub-team +
Mid 2015 Calendar data weekly standups
Error logs

and Cl status

L\ ‘ \

Figure 1: Timeline over changes to stand-up meeting format.

evolved from a series of experiments in 2014, when the previous
format was considered boring and ineffective. (See figure 1 for a
rough overview.) The developers then paired up, and each pair
experimented with the stand-up format for one week. The task was
to “Find out how you would like to hold the stand-up meeting. It just
must not be longer than 15 min, everybody must participate, and it
must be fun.” These experiments went on for six or seven weeks.
The decision was made to keep the simplest format, and to move the
meeting to an audio channel with Google slides, instead of using a
screen-sharing functionality that was considered time-consuming
to set up. The empty slide deck was created through a custom-
written scheduled service called ‘Stand-up as a Service’. Slowly,
other bits and pieces were added: mid-2015, the CTO extended the
slide deck and the script to present the error log and the build status
from the continuous integration system, to address a recurring
frustration. “Someone gets the crummy job to tell people, ‘now you
shall take this bug.” And that is a lousy thing to be left with. [...] For a
long time, it was me and one of the others, who was concerned that
the built should not be red, who pinged people. And that is really
annoying.” Over time, the team adjusted the script so that only
errors that appeared with a certain frequency were included. By
the end of 2015, the presentation of urgent back-up items was
introduced, based on the PO’s initiative. The last major change
before our field work started was the introduction of a slide that
presented data from pulled individual calendars, regarding absences
and team meetings, to provide orientation for the team members.

When we were doing our research, DB’s team had started to work
as several sub-teams, for example, one group focused on developing
a mobile client. The teams developed additional coordination prac-
tices. One of the sub-teams decided, for example, to have additional
sub-team stand-up meetings. This did not go unrecognized, and
resulted in a discussion of the stand-up meeting in the retrospective
that provides the core of our analysis.

3 RELATED WORK

The related work relevant to this article brings together two sep-
arate scientific discourses. Subsection 3.1 presents the literature
on the relationship of methods to software development practice.
Subsection 3.2 provides the theoretical underpinning necessary for
a deeper understanding of our observations. It introduces a set of
concepts from social theory, and relates it to empirical research on
software engineering.

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

Exploring the Evolution of Software Practices

3.1 Methods in Software Engineering

Though methods are at the core of software engineering, the role
of methods in relation to what actually goes on in day-to-day de-
velopment practices has been contested from the very beginning.
Whereas Osterweil’s well-known article, ‘Software Processes are
Software Too’ [24] already argued for the expression of software
development methods as programs, in order to automate the soft-
ware development as much as possible, in ‘Programming as Theory
Building’ Naur argues that methods — understood as ‘sets of work
rules for programmers, telling what kind of things the programmers
should do, in what order, which notations and languages to use, and
what kinds of documents to produce in various stages’ [22] — are in-
compatible with the theory-building view of programming, which
emphasises the development of an understanding of the problem,
and a piece of software to address it.

Though Osterweil’s view has influenced software engineering
research and practices, for example, as the widely applied CMM(I)
[34] and similar frameworks, it is continuously contested: For ex-
ample the Agile Manifesto [2] proposes valuing Individuals and
Interaction over Processes and Tools. Similarly, Naur’s article res-
onates well with software engineers; however, the same developers
welcome and happily explore new methods.

Though quite a few articles show how - for good reasons -
methods are adapted to a specific context, rather than going by
the book (see [4, 18, 26, 37] as examples), the relationship between
methods as descriptions and the practices that they are meant to
inform and improve is, by and large, unresearched. Mathiassen et
al. [19] observe that experienced practitioners do not refer to the
method descriptions on a daily basis; they do not follow the meth-
ods very closely, but competently select and implement relevant
elements. Fitzgerald argues for distinguishing formalized methods
and methods-in-action, where the method-in-action describes the
structured way in which development that takes place in practice.
“[1]t is suggested that methodologies are never applied exactly as
originally intended. Different developers will not interpret and
apply the same methodology in the same way; nor will the same
developer apply the same methodology in the same way in different
development situations. Therefore, on any development project,
the methodology-in-action is uniquely enacted or instantiated by
the developers” [7]. Methods are adapted and tailored to address
a specific development challenge [8]. As Floyd states, “We do not
apply predefined methods, but construct them to suit the situation
at hand. [...] What we are ultimately doing in the course of design
is developing our own methods” [9]. Such method adaptation and
design practices have also been observed. For example, Sigfridsson
reports on how the PyPy community adjusts its sprints to take
care of new developers joining the community [31]. Giuffrida and
Dittrich show how successful distributed student teams deploy
an unstructured social software channel to adjust their processes
[11, 12]. This is also supported by the results of a recently published
survey that indicates a loose correlation between the methods or de-
velopment models that are officially used, and what is implemented
in software development practices [36].

Both traditional and agile development include elements of re-
flection and learning, including project postmortems and retrospec-
tives. Principle 12 of the Agile Manifesto explicitly stipulates that

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

‘At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly’[2, princi-
ples]. However, there is surprisingly little research on what takes
place during such meetings and why and how the teams practices
are adapted as a result. In a grounded theory study, Andriyani et
al. present a categorisation of what is discussed in retrospectives
[1]. Others propose the use of these reflective meetings for soft-
ware process improvement [27], or propose formats to improve
their effectiveness [3]. In our study, we not only report what is
discussed in retrospectives, but we show how retrospectives and
related practices are used by DB’s team to continuously improve
their practices.

3.2 Practice Theory for Software Engineering

Whereas the notion of ‘methods’ is well-established in software
engineering, in most cases, the term ‘practice’ used in its colloquial
sense. However, practice is a core concept of social theory. To dis-
cuss the relationship between methods and software practices, we
draw on the theoretical framework based on social theory devel-
oped in “‘What does it mean to use a method? Towards a practice
theory for Software engineering’ [6]. In this article, Dittrich argues
that the problematic relationship between methods and practices
might be due to our lack of understanding of software engineering
practices as social practices. She suggests adopting concepts from
the philosophy of sociology that have proven successful helping to
understand computer-supported cooperative work [29], and that
are based on Wittgenstein’s Philosophical Investigations [39]. Here,
we summarize the parts of her argumentation that we use in our
analysis and discussion of the data.

In the pragmatic tradition, social practices are seen as constitu-
tive for understanding the development, tradition, and evolution of
language, societal norms, and technology [23]. On the one hand,
these social structures are established and re-produced through the
way in which they are referenced in the everyday activity of the
community-of-practice [38] in which they are rooted; on the other
hand, they provide affordances for the constitutive practices, as
they render certain ways of expressing oneself and certain ways
of acting meaningful and understandable to the others. Wittgen-
stein uses chess pieces as an example. The meaning of the king
or the queen in a chess game depends on the way we play chess
[39]. Though the rules may be explicated, the meaning of rules
and, especially, what it means to follow them, is again rooted in a
practice.

Schatzki further explores the concept of social practices and
defines them as a ‘nexus of doings and sayings’ [28] linked by (a)
common goals, (b) explicit rules and instructions, and (c) a shared
understanding of how different means are employed for a com-
mon end [28]. Similarly common practices render tools, props, and
environments that support the practices, meaningful.

Using the foregoing definition, DB’s stand-up meetings may be
described as a practice: (a) The purpose of the stand-up meeting
is to coordinate the joint work, and to share knowledge about
current tasks to this end; (b) an explicit rule is that the first slides
to be discussed address issues from the continuous integration (CI),
the production site, and urgent bugs, and thereafter, each team
member shares what is deemed necessary; (c) the team members

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

share an understanding, for example, of what is important, and why
or when in a meeting to raise what kinds of concerns. As one of
the developers states, “We have never done it where you have to say
something. You say something if you have something to say. People
are capable of figuring that out themselves.” Some of the explicit
rules - such as discussing CI, live site issues, and urgent bugs first
- are enforced by the software robot that collects data from various
systems to create the first slides for the meeting.

Knorr Cetina [5] argues that Schatzki’s framework needs to
be further developed for it to explain the dynamics of the design
practices she observed when researching the development of a
particle accelerator: The goal of such ‘objectual practices’ is not fully
stated when the project starts, but unfolds throughout the design
and construction processes. With the common object of design, the
design and development practices must also evolve and unfold. We
suggest that software development needs to be understood as such
a set of design and development practices, which need to evolve
along with the software being developed. How does this unfolding
and evolution of the shared practices occur?

To describe processes such evolution and unfolding of practices,
sociology developed the concepts of articulation work [33] and
meta-work [10]. Based on empirical work in a hospital, Strauss [33]
uses the term ‘articulation work’ to describe how different actors
at a hospital coordinate a tight mesh of heterogeneous activities,
and the standardization of cooperative procedures they built on.
Gerson [10] distinguishes between situated articulation, that is, the
coordination of tasks as part of their implementation, and meta-
work, which he uses to describe the planning and standardization
of cooperative procedures.

In the analysis below, we show how DB maintained and evolved
their common practices. We, especially show that the team devel-
oped a practice of changing practices a practice of changing practices.

4 RESEARCH APPROACH AND METHODS

Our research focuses on the evolution of the continuous software
engineering practices at DB, and the rationale behind both the evo-
lution and the current state of the development practices, from the
members’ points of view. Therefore, this study uses an ethnographic
approach [30]. As the development team continuously deployed
its software, participation in its development was not an option.
The contact with DB started when the senior researchers met the
CTO at a meet-up and a practitioner conference on configuration
management. Two of the authors spent a substantial amount of
time on the premises, in order to observe the everyday detail of
the development practices. The rich description in section 2, the
observation used as an illustration in section 3.2, and the descrip-
tion in the analysis, are parts of the detailed and rich descriptions
necessary for the trustworthiness of ethnographic research. Below,
we further detail the data collection, and the analysis of the field
material, and we discuss the trustworthiness of the research.

4.1 Fieldwork and Data Collection

The empirical research that is the basis for this article took place
over three months. During the initial interviews and observations,
it became very evident that the way software is developed at DB is

Dittrich, Michelsen, Tell, Lous, Ebdrup

not static. Instead, part of its specificity and capacity to sustain dis-
tributed, high-quality software development, with high developer
satisfaction, is due to the continuous care for, and adaptation of
their practices. The CTO and the developers at DB emphasized the
company’s pragmatic culture, and the continuous ‘grooming’ of
their practice. This prompted an interest in understanding how DB’s
very specific way of developing software is continuously evolved
by the team and the CTO. The initial field work suggested that the
retrospectives and the three weekly one-on-one meetings between
developers and the CTO were at the core of this continuous situ-
ated improvement. The focus on improving the stand-up meeting
emerged as criticism of the current state of the daily stand-up, and
its adaptation was the subject of the first retrospective we observed.
These two foci - evolving the development practices and stand-up
meetings as an example — then helped to establish the scope for
the later fieldwork. The theoretical underpinning (section 3.2) was
selected after the study’s focus was chosen, and, once selected, in-
formed the scoping and the further fieldwork. Table 1 presents the
context according to [21, 35].

Table 1: Characterization of the empirical context.

Attribute Value

Year 2017

Empirical focus Empirically based
Empirical background Industry
Industry sector Accounting

Subject of investigation Situated software process improvement
Study results Theoretical conceptualisation
Empirical research method Ethnography, interaction analysis
Source of empirical evidence Observ., interview

Location Distributed

Team size 14 (12 developers, 1 PO, 1 CTO)

The field work was part of a M. Sc. thesis [20]. The researcher
doing the fieldwork collaborated closely with the main author of
[17]. The fieldwork took place in the Danish office. The field work-
ers took part in the virtual meetings with all developer present,
and interviewed developers situated in the two main sites. The
developer initiating the change in the stand-up meeting format was
working from Kiev, whereas the CTO and a second developer who
was interviewed worked from Denmark. Table 2 presents a list of
the empirical data collected.

The observations were partly full-day observations, partly they
focused on stand-ups and retrospectives. During observation, de-
tailed notes were taken, using a computer-based observation scheme
that made it possible to quickly note who and what was being ob-
served, where, when, how and why [14]. Pictures and screen dumps
were taken, which illustrated the special context and interactions,
and samples of relevant documents were collected. The meetings
were recorded. We triangulated non-participatory observation with
semi-structured and informal interviews. Semi-structured inter-
views of the CTO took place before the fieldwork started, after
1 month of field work and in the end. Interview guides were de-
veloped for the semi-structured interviews, prior to undertaking
them. The first interview focused on getting an overview over the
company, the development organisation, and the coordination and

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

Exploring the Evolution of Software Practices

communication between the different sites. The second interview
focused on the distributed development and on the tooling. The 3rd
interview focused on the history of the continuous development
practices and was designed to fill the gaps in the understanding
of the continuous development process. Informal interviews were
used to develop an understanding of the context of the observations:
After the observation of the adaptation of stand-up meeting format,
the developer initiating the discussion at the retrospective and the
CTO were interviewed regarding their perspective adaptation of
the stand-up meetings. An interview with a developer, who was
part of the retrospectives but did not initiate the change, developed
into a more broad discussion of the evolution of the development
at DB and his prior experiences with a more rigor implementation
of SCRUM.

Table 2: Fieldwork

Method Date(s) Documentation

Open non-particip. observation ~ 30th Jan 2017 Systematic
15th Feb 2017 field notes
1st Mar 2017

3rd Mar 2017

22nd Mar 2017

23rd Mar 2017

28th Mar 2017

31st Mar 2017

4th Apr 2017

16th Nov 2016 Transcript
1st Mar 2017

21st Apr 2017

Non-particip. observation of 3rd Mar 2017 Field notes
retrospective 31st Mar 2017 Transcript
Unstruct. interview: developer, 22nd Mar 2017 Transcript
formalized methods

Semi-struct. interview: CTO

Unstruct. interview: CTO, 23rd Mar 2017 Transcript
improvement of stand-up
Unstruct. interview: developer, 31st Mar 2017 Transcript
improvement of stand-up
Discussion of prel. results: CTO ~ 21st Apr 2017 Transcript

4.2 Data Analysis

The reflection connected with the beginning of the analysis in-
fluenced the subsequent field work. For example, we planned an
interview with one of the developers participating in the first ret-
rospective, which in turn informed an interview with the CTO.
Owing to these characteristics of qualitative research Robson [25]
also refers to qualitative research designs as ‘flexible research de-
signs’.

As the first step of our analysis, the observation schemata were
developed into field notes that presented the observations in a
textual form that was supplemented by personal reflections, emerg-
ing questions, and plans for future actions. Audio recordings of
recorded meetings, semi-structured and informal interviews were
transcribed. The interview transcripts and the field notes were
coded in order to identify themes that categorized the content of
the material, parallel to, or shortly after its collection. In the sec-
ond round of analysis, a set of codes was developed, mirroring the

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

study’s evolving focus, the improvement of software development
practices, and the focus on stand-up meetings. These codes were
further influenced by the theoretical underpinning chosen at that
time, and their purpose was to help to understand the rationales
of the practices and their evolution. The first set of thematic codes
comprised ten themes: Experimentation as a Driver for Progress,
Continuous Reflection, Practicing what makes Sense, Trust Drives
the Capabilities to be playful and creative, Working Distributed Co-
located, Using One-on-Ones as a Proactive Tool to Make Developers
more Pragmatic, Showing Interest and Supporting rather than Con-
trolling and Regulating, Decision Making is a Shared Responsibility,
Rejecting Formalized Methods and Methodologies,and Fighting Status
Quo.

These themes were used in the discussion of preliminary results
with the CTO. In this discussion, e.g. the importance of the one-
on-one meetings between CTO and the developers was put into
perspective and finally collapsed with Continuous Reflection into
Facilitating for Reflection. Likewise Working Distributed Co-located
was dropped: It was a condition to make a continuous evolution
of distributed software practices work, but did not contribute to
how the evolution came about. The result of the thematic analysis
is presented in section 5.3

Section 5.2 uses an interaction analysis approach [15] to rele-
vant parts of two retrospectives. In this approach a very detailed
transcription of a conversation or discussion is analysed turn by
turn to understand not only what the participants talk about but
also how they through their interaction e.g. come to decisions, and
what other resources they refer to when doing so.

For the article the first author revisited the analysis and checked
and refined the transcription of the retrospective. For the timeline
in figure 1 an additional interview was performed.

4.3 Trustworthiness

Threats to the validity of qualitative research are mainly addressed
through the research design. To ensure the trustworthiness of our
research [25], we triangulated our observations with interviews and
document analysis; the fieldwork took place over an extended pe-
riod, which allowed us to check both intermediary findings and the
final results with the members of the team we observed; the collabo-
ration among the field workers, and the discussions in the research
team acted as debriefing. The use of theory further supported the
evolving analysis and field work. Finally, detailed descriptions are
provided, allowing the reader to criticize the analysis. Below, these
measures are further detailed.

4.3.1 Triangulation. Data triangulation. Observations were trian-
gulated with both semi-structured and informal interviews. Where
suitable, photos and screen dumps were taken, and documents were
collected.

Researcher triangulation. As described above, two fieldworkers
closely collaborated. Interviews in several cases also included other
members of the research team. The two main field workers shared
their analyses and — when using the same material - reviewed each
other’s open coding. To increase the trustworthiness of the anal-
ysis for this article, the first author re-analyzed the field material.
Deviations were discussed and addressed.

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

4.3.2 Member Checking. The flexible research approach allowed
for adaptation of the fieldwork, which was also used to check our
evolving understanding with the developers and DB’s CTO. In
particular, the interviews listed under 3) and 7) in Table 2 were
explicitly used to (also) check the evolving understanding of the
rationale behind the continuous improvement, and the change in
the way stand-up meetings are held.

4.3.3 Debriefing. The research team regularly met and discussed
the evolving analysis of the field material. This debriefing was used
to check for possibly-evolving researcher bias due to becoming too
familiar with DB’s way of developing software.

4.3.4 Audit Trail and Detailed Descriptions. The fieldwork was
meticulously documented; where possible interviews were recorded
and transcribed. The detailed descriptions that underpin the find-
ings in the next section further assist the reader to follow the line
of argument in the field material, and criticize the findings and
insights.

4.4 Limitations

As our research focuses on a specific constellation of practices in
a specific company, the concrete practices cannot be abstracted
and transferred to a new context with a similar result. However,
relating the observations to social theory helps to understand the
maintenance, adaptation, and evolution of software development
practices in teams. In our discussion, we relate the analysis to the
theoretical understanding developed in section 3.2 , which allows
the identification of aspects of the observations that are candidates
for transferability.

5 ANALYSIS: EVOLVING THE STAND-UP
MEETING

Our analysis has three parts. First, we provide an overview of
the activities and meetings that were involved in the evolution of
the stand-up meetings. Second, we present a detailed interaction
analysis of the discussion during the retrospectives, which shows
how the team renegotiated its practices; here, we show how the
various elements of practices presented in section 3.2 come into
play. Third, we present a thematic analysis based on the interviews
preceding and following the evolution of the stand-up meeting,
concerning what enables a team to take care of the continuous
evolution of their practices.

5.1 How the new Stand-up Meeting Developed

The change in the stand-up format was prompted by one of the de-
velopers (‘initiating developer’, below shortened to I-Dev) because
he was dissatisfied with the knowledge-sharing in the stand-up
meetings. He found he lacked information, and people contacted
him to ask for information about his tasks. After first trying to
change the situation by providing more information about his own
work during the stand-up meetings, he took up the matter in a
‘one-on-one’” with the CTO. The CTO holds a one-on-one with each
developer every three weeks. “This [the one-on-ones] is more a place
where [...] I listen to frustrations and maybe try to guide them.” This
led to the decision to raise the question in the next retrospective.

Dittrich, Michelsen, Tell, Lous, Ebdrup

At DB, retrospectives are conducted every fourth week. All de-
velopers, the CTO, and the product owner participate. The retro-
spective during which the stand-up meetings were discussed was
moderated by one of the developers. A retrospective is conducted
according to four agenda points: 1) results of the last retrospective;
2) sharing good and bad things, and 3) generating ideas about what
to do about them; and 4) agreeing on what to change. The online
Slack meeting is supported by a shared Google spreadsheet that the
participants edit collaboratively during the discussion. For example,
the collection of ‘good and bad things’ is conducted as an individual
task,and then the points are elaborated on by the authors. Here, the
I-Dev raised his concerns about the stand-ups. When agenda point
2 was concluded, the team members were asked which point they
would like to discuss further. Here, both, the I-Dev and another
team member again raised the stand-up meeting question.

At the end of the foregoing discussion, the team decided to try
out a format for the stand-up meetings that emphasized knowledge-
sharing among sub-teams: one member of each sub-team reported
what he/she deemed relevant during the entire team’s daily stand-
up. Slides that share information about individual team members’
tasks were still welcome. The solution was tested during the subse-
quent weeks. The stand-up meetings that we observed following the
retrospective discussed above became longer: They now lasted an
average of 14 minutes, instead of the previous average of 9 minutes.

5.2 Negotiating the Change of the Stand-up
Meeting Practices

As discussed above, the retrospectives take place online via Slack,
and are supported by a Google spreadsheet. The meeting is mod-
erated by a developer (RM-Dev). Here, I-Dev raised the question
of the stand-ups during the second step, ‘Sharing good and bad
things’. After presenting his positive points, he raised the question
and pointed out how the lack of knowledge-sharing shows in ev-
eryday work, and proposed returning to an earlier good practice.
By ‘teams’, he refers to the sub-team division.

I-Dev Our main stand-up is getting shorter and shorter. We are not sharing
a lot from different teams. I am not sure if it is a problem for everyone
but at least for me. Yes, and guys needed to ask me in person what we
are doing in mobile and I did the same, asking the web site guys, what
is the progress on their side and so on. So, I would like to... whether
we can do one stand-up like we did before. And that’s it.

The sharing continues. In the wrap-up following this initial part
of the retrospective, both I-Dev and another developer start the
discussion by taking up the question again. This launches the whole
team’s joint root-cause analysis, solution-finding, and reflection,
which also explains the sometimes very tentative language. The
first two developers who react agree that the knowledge-sharing in
the sub-teams may be responsible for the lack of knowledge sharing
in the common stand-up meetings, and discuss possible solutions.

I-Dev Maybe could we could talk about stand-up? Me and Dev1 we have
the feeling that we can improve something there? So guys, it would
be nice to hear from you: Do you feel some problems with stand-ups
as well as me and [Dev1]. Are they too short, too long, too separated,
it’s ok, leave it alone? And so on.

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

Exploring the Evolution of Software Practices

Dev2 Ithink that we can do it a bit better, absolutely. And the way we could
do it is, take more mobile into account, present it at the common
stand-up, and then, if we have something special, we should be ready
to maybe have a small meeting after. Because I think sometimes we
will go into details that [are] more related for the team who is doing
it rather than all people. And I guess, we have exactly the same case
for payments and onboarding or other projects. [...] So, the stand-up
of cause should be for all people, but I still think we need somehow
have something for the specific team.

Dev3 Thanks as for me, I think that we need to have like maybe discard our
mobile stand-ups and maybe some other stand-ups [...], how it works
now, and to move like mobile status, maybe some other statuses, like
most important stuff in slides. And if we need something discuss, only
if we need, we can agree in main stand-ups that we can make a call
between the guys [...] who need to discuss this concrete thing. [...] Or
maybe just to discuss it, like, personally in calls. I think it would be
better.

The CTO proposes considering whether it is the unclear responsibil-
ity for sharing the relevant information from the sub-teams, rather
than that the sub-team’s additional meetings that is responsible
for the lack of knowledge-sharing. He proposes a different way of
addressing the problem, a change of rules, which is then considered
by the developers.

CTO Do you guys think that maybe the reason it is not being shared now...
right now ... is because, when you have a team of four people every-
body [...] might sometimes think that the others will probably do
that? It is just a suggestion and we do not have to do it, but I was
thinking that maybe each team could have like a person who is the
stand-up person who is like responsible for adding one slide once in a
while. That’s an idea.

Dev1l Yeah, we and we can change, so one week it is this person the next
week it is another person. This person will know that he is responsible
for this week and he will add the new slide. I think it will work.

The moderator starts to discuss the guidelines of what should be
shared with the whole team.

RM-Dev I think the reason why we are not sharing that at the general stand-up
is that we do not know if internal team stuff would be interesting for
the whole team, so...

Devl Maybe we can share just not some very specific stuff, internal, but
something that: well, ‘We are working on this feature., ‘We released
this feature.’ I think it can be interesting for a lot of people [...].

The CTO then offers to implement the change in the template for the
stand-up meeting slide deck. Dev1’s remark about the evaluation
of the change indicates that this implementation is done as an
experiment.

CTO You know, there is the stand-up slides template. I could be responsible
for — you know — the teams we have at the moment, I'll just add a
slide for each team and then you can fill it out. So, it is there and it’s
ready to fill out.

Devl Yeah that would be nice, I think. So, we can assess this idea and...
maybe implement it.

RM-Dev We can have a slide in the stand-up template for each team. Just to
have a status for that team.

Dev1l Yeah.

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Dev3, who has been quiet throughout this exchange, agrees, but
raises a more general concern: Does the new format for the stand-
up meeting actually support the purpose of helping the team to
develop and maintain a coherent understanding of the product?
His concern is taken up in the following discussion, which leads to
a further elaboration of what to use the stand-up for, and what to
coordinate within the sub-teams. The matter is finally settled, with
the CTO stating that coordination and sharing within the sub-teams
is up to the sub-teams.

Dev3 [think it is okay to add more but it is more like to mention people, to
mention teams that they have to...just give a short status on what we
are doing. And I think it is really important if we are going later to
have to work together to have an idea about the product. In general, I
think we also miss it, we miss to know what is going on.

Dev4 So maybe we are changing the stand-up from being what people
did to what is happening on the individual project. So, we do not
have personal slides, we only have project-slides. And then we put
all the other miscellaneous stuff at the end. Or something like that.
[...] I think, that it is a good idea in the sense, I mean, that when I
am working with [Dev5] and [RM-Dev] on payments, we don’t all
three of us do add slides what we did on payments, that’s redundant
because we coordinated already between us. So, we as a team just
need to tell everyone else what we did. So yes, [...] that makes sense:
project-slides rather than people-slides.

Dev1 ...or maybe teams?

Dev3 We should remember [...] that stand-ups have several... We should
think about what is the purpose of stand-up. What we are talking
about right now — and in fact also what I am really missing — is
about [...] sharing knowledge about what we are doing. At the same
time, I think, we [...] should also remember that stand-up is also for
coordinating the day, as I see it.

Dev4 But I think we would do that in the individual teams on an ad hoc
basis, right? I mean, RM-Dev and I wouldn’t coordinate in the daily
stand-up.

Dev3 Exactly, [...] that is my point, and that is the reason. For me it is
difficult to see how we can avoid a [...] morning meeting in the team.

Dev4 ButIdon'’t think it necessarily is a meeting, I mean. We just talk on
Slack.

Dev1 Yeah, we cannot make a call, we can just... So, if some task some stuff
needs to be coordinated, we just talk on Slack. Just chatting or calling
if we want if we need to coordinate.

CTO So...

Dev1 Sorry! Maybe I work on some stuff, and they work on different stuff,
and they are not connected with each other, and we do not need to
coordinate, and we just want to work on it, maybe we do not share
and coordinate it.

CTO 1think [...] as a basis [...], each team has, you know, individual needs
and, I think, if someone on the team really feels that stand-up is really
necessary, it’s important that the team listens to that. But I agree
completely that each team can [...] decide how to coordinate on the
team what feels comfortable to them. It also depends on how many
you are on the team. If you are two people, maybe, you do not need to
scheduled stand-up but on mobile team where you are four, it might
be more necessary. So... But you can decide on the teams, I guess.

Dev4 And it makes total sense, and that is also how we did it on Website
team, where we decided to have stand-up twice a week. So, I think it
is a good point, yeah.

Towards the end of the meeting, the team summarizes the discus-
sions and decisions.

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

CTO [...] And the next one is also mine: So, it’s what we talked about that
each team, you know, should have somebody responsible for filling
out that one slide and then you can decide who is doing it this week,
as you like on the team. But I think, [...] things run a bit smoother if
everybody knows who is responsible for things instead of it is just the
team’s responsible.

Dev4 But shouldn’t it be the team’s responsibility to figure out how they
want to manage their slide?

CTO Hm... You can call it a suggestion. [Laughter]

RM-Dev Ok. What else do we have?

In the end, the moderator sums up the action points:

RM-Dev For the second one for each team to have slides in stand-up. [CTO],
will you do it?
CTO Yes!
RM-Dev Yes. [Break] Awesome.

The new stand-up format was then implemented. We observed an
increase on time the stand-up took. Also, the content changed.
During the next retrospective, it became evident that everybody
understood the implementation of the new stand-up format as an
experiment. It was evaluated at the beginning of the retrospective.

RM-Dev So, in general, how do you guys feel about those team slides?
Dev5 [think it is okay.
I-Dev Yeah, I also think it was okay.
Dev4 I liked it.
Dev3 Yeah, it was good.
Dev2 Ithink it is okay as long as you are not always supposed to fill some-
thing out.
Dev4 And you are still allowed to do your own slide if you want to.

With this evaluation the change in the stand-up meeting was made
permanent.

A few weeks later, the team decided to change their stand-up
meetings more drastically: They decided to have daily stand-ups in
the evolving sub-teams, and meet only once a week for a stand-up
of the whole team.

5.3 What Enables a Team to Evolve their
Practices

As described in the methods section, we triangulated our obser-
vations with interviews, both to better understand the members
points of view, and to gain additional insight into how DB developed
their very specific approach to developing software. This section
presents a thematic analysis of observations and interviews. The
focus is still on the stand-up meeting as an example; additionally,
we use examples of the evolution of other practices to show that
the evolution of the stand-up meeting is not an exception.

One of the most prevalent themes in connection with DB is its
strong pragmatic stance, an emphasis on reducing waste. This is sup-
ported by experimentation with changes to development processes,
such as the stand-up meetings that are the focus of this article, the
tools, the development environment, and the implementation tech-
nology; the experimentation and the evolution of practices based
on it are supported by trust and a sense of responsibility. This also

Dittrich, Michelsen, Tell, Lous, Ebdrup

requires the developers’ ongoing reflection on, and awareness of
their own practices.

In the analysis, a layer of supportive individual factors became
evident, underpinning the concepts presented below: communica-
tion skills, courage, and a very reflective leadership style. As we did
not focus on this more psychological level, and do not have enough
such material, we decided to leave this to future research.

5.3.1 A Pragmatic Stance. At DB, both the developers and the CTO
support a thoroughly pragmatic stance, an emphasis on reducing
waste. The development processes, rules, and ceremonies are cut
down to what is deemed really necessary. As one developer puts
it, “I'm actually a certified Scrum Master and I have worked as scrum
master on several occasions. [...] There have been places where they
introduced Scrum, and when they introduced it, they would often like
to implement it as it is prescribed. [...] It’s a very forced way to work,
where to some extent you feel embarrassed. You just sit there and build
these walls of limits, and do role play — come on, we are adults [...J;
we know how to communicate.” (Translation by the authors).

The CTO confirms. ‘T have been to lectures with some incredibly
intelligent people who told me: ‘Well, you have to do as it is in the
book, otherwise you will not be able to say that you’re doing Scrum’
or ‘You cannot say you’re doing Kanban because the book says this
and that’ and T have little regard for people who bend the rules’. And I
totally oppose that. I am 100% pragmatic. We just do what works and
makes sense, so that is what I would call what we do.” (Translation
by the authors.)

The development of the stand-up meeting slides populated by
the software robot is an example for a simplification as just de-
scribed. The robot reduced the effort and frustration of assigning
crucial bugs and live site errors individually. Another example is the
communication and collaboration infrastructure. The CTO stated,
‘T have been to places where many people still have a whiteboard with
paper notes on it. Then there is a webcam, and then you have some
screens, [...] they then try to see what’s happening on the whiteboard
through that webcam [...] it was completely ridiculous. It does not
work in any way. [...] There is no reason to over-complicate things.
[...] That’s why slides are so cool - it’s the perfect online version of
paper and pen. You can do whatever suits you.”

The ultimate criterion for introducing new tools, methods, or
new ways of collaborating is whether something helps the team to
develop better software in a better way. This is where experimenta-
tion comes in: To establish whether something is better, it has to
be tried out for some time.

5.3.2 Experimentation. The change in the stand-up meeting is our
prime example for experimentation. The old format had already
been developed through a series of experiments, where for several
weeks the whole team tried out different formats. Ultimately, the
team voted on different formats and elements and decided on the
format used until the retrospective analyzed above.

The in-depth analysis of the stand-up meeting discussion during
the retrospective reveals further aspects. The results of the discus-
sion of the stand-up first prompt an experiment, which is then
evaluated in the subsequent retrospective. The interaction analysis
above shows that the developers are used to running experiments:
The decision in the first retrospective was clearly understood as
an experimental change in the stand-up format, and nobody was

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

Exploring the Evolution of Software Practices

surprised to be asked to evaluate it in the next retrospective. Only
then did the new format become permanent.

Stand-up meeting formats were not the only aspect of the devel-
opment method with which DB has experimented. Other examples
that we learned about through the interviews were the change from
a mandatory peer review before deploying code, to a voluntary one,
changes in who is responsible for live site errors, and integrating
testing and quality assurance into the developers’ duties. As the
CTO explained in an interview, “It is normal that we evaluate what
we are doing all the time, so in general [...] experimenting, instead of
Jjust saying no because it sounds like a bad idea. Often, we will just
try things, and then we will see if it is actually a bad idea.”

Both the CTO and the developers emphasize that the experiments
are based on the developers’ situated assessment of where are
the problems, of what works and what does not. In return, this
requires the development team to assume responsibility for their
own development processes.

5.3.3 Trust and Responsibility. The initiative to change the stand-
up meeting format came from one of the developers, who recog-
nized that information apparently relevant to his colleagues was not
being shared in a relevant forum. In the retrospective, the develop-
ers conscientiously discussed whether they shared the perception
of the problem, possible solutions, the implication of the proposed
change, and how this would impact the knowledge-sharing mecha-
nisms that they had developed in the various sub-teams.

This is not a unique example of developers taking responsibility
for both their own work and for their team’s development process.
The CTO reported that after the mandatory code review was re-
placed by the rule that developers decide whether to ask a colleague
for a code review, efficiency increased and production site errors
dropped. In the foregoing discussion of the change to the stand-
up meeting, the CTO was one of the last persons to contribute to
and support the solution that emerged from this discussion. In the
follow-up interview, it became clear that he still had some con-
cerns regarding the lack of sharing in the stand-up meetings, but
consciously held back, to leave the responsibility with the team.

Having a team take responsibility requires trust on the part of
management. This was confirmed during the interviews with the
CTO. Much of the reported experimentation with changes in the
development process confirm that the CTO ‘walks his talk’ and
does leave decisions regarding both changes in the development
process and regarding implementation technology with the team.

5.3.4 Developer Reflection and Awareness. At DB, both trust and
responsibility, and experimentation, depend on the CTO and the
developers’ awareness of what is going on and where problems
might develop, and on continuous reflection on how to address the
problems identified. When the developer became aware of the lack
of knowledge-sharing in the stand-up meetings, he first took up
the matter in a one-on-one meeting with the CTO. The one-on-
one meetings play an important role, regarding awareness of, and
reflection on common practices. In an interview, the CTO described
how, during the one-on-ones, he supports the developers in their
reflection on the problems they encounter, to analyze them, and to
identify possible ways to address them.

The retrospectives serve a similar purpose to the one-on-one
meetings, on a team level: The retrospective analyzed above is an

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

example of a group’s reflection on their practice of stand-ups, the
purpose of the stand-ups, and the explicit rules of the stand-ups.
This resulted in a change that was again discussed in the subsequent
retrospective. At DB, the retrospective is promoted as the venue
in which problems are taken up, analyzed, and where, if necessary,
experiments and changes are decided on.

In particular, the continuous experimentation with their pro-
cesses requires a team to be aware of both current practices and
what is subject to experiment right now. In a later interview, the
CTO told of a hiccup, where an experiment was not decided on in
this collective forum: Part of the team was unaware of the exper-
iment, and felt frustrated because they were left out of collective
decisions.

6 DISCUSSION

The previous section presented a qualitative analysis of our em-
pirical case. This section presents the insights we gained from
comparing the analysis to the related work: We first relate our find-
ings to the social theory introduced above. We then discuss team
responsibility and self-organization as core reflective practices. In
the last subsection, we discuss what other companies could learn
from DB.

6.1 Establishing Improvement as a Practice

Our analysis shows that the observed adaptations of DB’s devel-
opment practices are not part of an unwitting deterioration of a
specific method, but a conscious adaptation of a practice. In this
case, the stand-up meeting needed to change, to address the im-
plications of the introduction of sub-teams. This must be regarded
as a fine-tuning of the supportive structures of a high-performing
team. In this subsection, we will recur to the theoretical underpin-
ning developed in section 3.2 to deepen our understanding of the
observations.

The theoretical underpinning developed in section 3.2 allows us
to analyse the observations in a way that relates purpose, rules and
shared understandings underpinning the observed actions. We used
the field material already in section 2 to provide an example of how
the stand-up meeting may be described as a practice consistent with
the social-theory underpinning. Below we further elaborate the use
of Schatzki’s concept of social practices. Schatzki’s concepts can
also be used to describe the retrospectives as practices of changing
practices or meta-practices.

The interaction analysis in section 5.2 shows that the theoretical
elements of a practice may be found in the way the developers
discussed the stand-up meeting format. To recap practices are de-
fined as ‘nexus of doings and sayings’ linked by (a) common goals,
(b) explicit rules and instructions, and (c) a shared understanding of
how different means are employed for a common end [28]. In the
retrospective, two developers shared the concerning observation
that the amount of knowledge-sharing during the stand-up meet-
ings had decreased. They stated a problem with the ‘doings and
sayings’ that constituted a stand-up meeting. (a) The team referred
to the purpose of the stand-up meeting — to share knowledge and
coordinate the day’s work - in their discussion. Instead of abandon-
ing the stand-up meeting, the team engaged in the discussion of
what could be the cause. The diagnosis was that a change in team

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

structure led to that the shared understanding (c) of what to com-
municate did not fit the new situation. The team decided to change
the rules (b): Each sub-team should share what they deem relevant
for the whole group, though sharing of relevant issues by individual
developers was still possible. To implement that, the tooling that
supported the stand-up meetings was adapted. The team shared
the understanding that the change in the stand-up meeting to be an
experiment, and would be assessed in the following retrospective.

The retrospective itself may be described as a social practice
along the definition above as well: (a) Everybody is aware of the
purpose of the retrospectives that also becomes visible in the agenda
points: their purpose is to reflect on the current development pro-
cess, discuss how to address issues raised, and agree on what to
change. Further to evaluate previous changes that were imple-
mented as experiments. (b) There is a set of explicit rules that
guides the retrospective: The retrospective has a specific structure
and process. It takes place every fourth week at a specific time. All
developers who are not on vacation, and the CTO are present. One
of the developers leads the team through the process. All partic-
ipants were familiar with the structure of the meeting, which is
supported by a shared Google spreadsheet. (c) There is a shared, im-
plicit understanding of what points should be raised, during which
part of the retrospective, and how. Also, normally the discussion
would result in some kind of decision. In the case of the specific
retrospective analyzed above, the decision was to experiment with
a different format for the stand-up meetings. To this end, necessary
preparatory tasks — here, the development of the template for the
stand-up meeting slide deck — were distributed. Also, everybody
understood the decision as an experiment to be evaluated at the
next retrospective.

Further, our analysis shows that the retrospectives in our case
were supported by other practices, in order to achieve their purpose.
Along with the retrospective, one-on-one meetings with the CTO
and experiments are practices that DB developed to assess, reflect
on, and change their development practices. The purpose of this set
of practices may be understood as the implementation of the team’s
meta-work [10]. In other words, improving and changing practices
have themselves become established practices. In the triangulating
interviews, it became clear that these meta-practices were carefully
established and promoted by management.

The theoretical concepts introduced in section 3.2 help to distin-
guish between a deteriorating, uncoordinated development and a
conscious situated improvement of the shared practices: if a spe-
cific practice is the result of its consideration and adjustment in
the context of a set of meta-practices, it is a conscious situated
improvement.

Thus, our analysis shows that the concept of social practices that
we developed in section 3.2 may be used to analyse both software
development practices and meta practices as they are established in-
situ by a software team. It also shows that the concept may be used
to describe the meta-practices established by the team. And, finally,
the elements of the definition may be found in the analysis of the
team’s discussion of their own practices in their retrospective.

One could, as part of future work, further explore how the ele-
ments that, according to Schatzky, define a practice may be trans-
lated into a set of questions that guide the situated analysis and
improve development practices: What are the purposes and goals

Dittrich, Michelsen, Tell, Lous, Ebdrup

of a practice? How do the tacit understandings and explicit rules
contribute to these purposes? How are these practices supported
by tools? Regarding the change, the questions might be: What is
the reason existing practices do not work satisfactorily? Which of
the elements do we need to adapt?

6.2 Reflection, Experimentation and Agile
Improvement

Lous et al. [16] argue that ‘Inspect and Adapt’ is one of the core
ingredients that allows the case company to implement radical agile
and continuous development practices. In this article’s in-depth
analysis, we show how this is implemented as an established set of
meta-practices. The one-on-one meetings with the CTO give the
team members a space to reflect on the current practices. At the
retrospectives the team members can raise issues for the team to
discuss, and the experimentation allows the team to consciously
evolve the way the team collaborates and coordinates. Practices that
are determined to have become inadequate are not just abandoned,
but discussed by the team. In the example above, the purpose of
stand-up meetings and the possibly-changing circumstances are
brought forward. New rules and guidelines are decided together,
and then implemented by the whole team. Formulating such a
change as an experiment allows the team to postpone possibly
controversial decisions until after they have experienced the effects
of a proposed change.

It is very evident in the field material that the developers are
the ones who deliberate changes in rules, and tools that support
collaboration and coordination in development. The case we chose
for this article may not strike one as a huge change. However, it is an
example of a change that we observed during the period allocated
to the fieldwork. As highlighted in the section 5.3, we have learned
about a number of other cases where individual practices were
changed by the team.

Our findings resonate with the existing literature on retrospec-
tive. The discussion of the stand-up meeting may also be described
according to the categorizations developed in [1]: Initially raising
the matter may be described as ‘Reporting and Responding’, the
root-cause analysis and development of changes as ‘Relating and
Reasoning’, and the decision about the action plan may be seen as
‘Reconstructing’.

The analysis of the revision of the stand-up meeting provides
an example of how agile development consistent with the last of
the 12 principles underpinning the Agile Manifesto (‘At regular
intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.) may take place. Our
analysis demonstrates how situated software process improvement
may take place bottom-up, as part of normal software development
practices. This differs from a top—down implementation of software
process improvement, which makes use of the retrospective as an
instrument of researchers and management [27]. Nonetheless, our
research makes it evident that DB’s development is not a deteri-
oration, but a consciously and carefully evolved practice. Studies
such as the one presented here complement survey-oriented stud-
ies, e.g. [36]. They allow us to explore the mechanisms behind the
development of the hybrid methods detailed in the article, and thus

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

Exploring the Evolution of Software Practices

allow us to understand whether software development practices
developed based on deterioration or careful evolution.

6.3 What can other Companies Learn from DB

DB presents a very specific instance of agile development practices
that have been adapted by a specific team to fit the circumstances
at hand: software provided as a service by a small and distributed
team with strong technical leadership, a CTO who protects the
team’s mandate to determine how they decide to work. Neither
their development practices nor their tooling may be copied as is
by another development team: they would not be able to transfer
DB’s success to a different context.

The insights provided by this study that may be transferred to
other contexts are related to the theoretical underpinnings: The
success of the application of a method is not based on developers
following the rules that are part of a method, but on the methods
being adapted into the practices of the development team. That
means the team relates their purpose - that is, the problem the
method is designed to solve — to their own needs, and adapts the
implicit understandings and the explicit guidelines and rules to
fit their specific circumstances. If the team, the needs, or the cir-
cumstances changes, this adaptation must evolve. To this end the
often neglected meta-practices, the practices of changing practices
are crucial. The analysis provides an example how such a set of
related meta-practices can look like. In the article ‘What does it
mean to use a method?’ [6] the author suggest understanding meth-
ods as practice patterns, and formulating methods to explicate
their purpose, the explicit rules, and the normally not-explicated,
taken-for-granted understandings. This scheme could be one way
to inform the meta-practices; that way software teams would be
supported in their application and tailoring of the methods.

Following the rules of a formalized method may be justified, for
example, when a new team is established, or when development
needs to be coordinated across a large organization. When a new
team is established, an ‘off the shelf” method may provide a frame-
work for the most necessary practices, which may then be adapted
to the situation at hand. With respect to large and distributed de-
velopment organizations, the Ronkké et al. [26] showed that in an
international company a company-wide process model was central
to facilitating cross-site collaboration and coordination. However,
even there, the project members used their common sense to adapt
that model to the situation at hand.

DB is still a small company, though the number of developers and
tasks allows it to split into sub-teams. It is unclear how the observed
meta-practices scale. In larger development projects, different teams
may be able to evolve their local practices as they see fit. The
evolution practices for coordinate process evolution across local
teams will be subject to future research.

7 CONCLUSION

We started by asking how the evolution of software development
practices can be investigated, and what distinguishes a software
process that has degenerated from one that has evolved as the result
of conscious deliberation. To address the questions, we studied
how a team continuously developed their software development
practices in a coordinated manner.

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Regarding the first questions, the theoretical underpinning we
developed in section 3.2 proofed useful to identify and describe both
the practices that were evolved and the set of related meta-practices
the team had established to this end. By combining one-on-one
meetings between the CTO and the developers to foster reflection,
retrospectives to address concerns about current development, and
experimentation as a way to explore new ways of working, the
team maintained and evolved a set of common practices meet to
their evolving needs. We analyzed an example of such a controlled
change - the evolution of the stand-up meeting format - so it could
continue to fulfill its purpose, even when the team started to split
into sub-teams.

The observation of such meta-practices provides the answer to
the second question: if a team implements meta-practices like the
ones described above, their software development practices are
result of conscious deliberation rather than of degeneration.

In the discussion we argued that social practice theory may help
to explain the observed retrospective and experimentation as prac-
tices to change practices, and how the practices that formalize the
meta-work that this team developed support each other. This con-
clusion provides a building block for a practice theory for software
engineering.

We suggest that companies consider implementing software
engineering methods as a creative process and establish practices
of changing practices or meta-practices as part of their everyday
development.

We indicated several lines of future research: Can we apply
practice theory to support teams’ evaluation of their practices in
their retrospectives? Is it possible to scale such bottom-up improve-
ment through meta-practices to large teams, and, if so, how? Such
research would also improve the understanding of how various
practices interact with each other and with their organizational
contexts when implemented by different organizations.

ACKNOWLEDGMENTS

Thanks to the DB team for their openness and welcoming attitude.

REFERENCES

[1] Yanti Andriyani, Rashina Hoda, and Robert Amor. 2017. Understanding knowl-
edge management in agile software development practice. In International Con-
ference on Knowledge Science, Engineering and Management. Springer, 195-207.
Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
etal. [n.d.]. Manifesto for agile software development. https://agilemanifesto.org/
Elizabeth Bjarnason and Bjorn Regnell. 2012. Evidence-based timelines for agile
project Retrospectives—A method proposal. In International Conference on Agile
Software Development. Springer, 177-184.

[4] Graham Button and Wes Sharrock. 1994. Occasioned practices in the work of
software engineers. In Requirements engineering. Academic Press Professional,
Inc., 217-240.

[5] Karin Knorr Cetina. 2005. Objectual practice. In The practice turn in contemporary
theory. Routledge.

[6] Yvonne Dittrich. 2016. What does it mean to use a method? Towards a practice
theory for software engineering. Information and Software Technology 70 (2016),
220-231.

[7] Brian Fitzgerald. 1996. Formalized systems development methodologies: a critical
perspective. Information Systems Journal 6, 1 (1996), 3-23.

[8] Brian Fitzgerald, Nancy L Russo, and Erik Stolterman. 2002. Information systems
development: Methods in action. McGraw-Hill Education.

[9] Christiane Floyd. 1992. Software development as reality construction. In Software
development and reality construction. Springer, 86—100.

[10] Elihu M. Gerson. 2008. Reach, Bracket, and the Limits of Rationalized Coordination:
Some Challenges for CSCW. Springer London, London, 193-220. https://doi.org/

[2

B3

https://agilemanifesto.org/
https://doi.org/10.1007/978-1-84628-901-9_8
https://doi.org/10.1007/978-1-84628-901-9_8

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the ESEC/FSE ’20
Refer to the paper using: https://doi.org/10.1145/3368089.3409766

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA Dittrich, Michelsen, Tell, Lous, Ebdrup
10.1007/978-1-84628-901-9_8 [37] Hataichanok Unphon and Yvonne Dittrich. 2010. Software architecture awareness
[11] Rosalba Giuffrida and Yvonne Dittrich. 2014. How social software supports in long-term software product evolution. Journal of Systems and Software 83, 11
cooperative practices in a globally distributed software project. In Proceedings (2010), 2211 - 2226. https://doi.org/10.1016/j.js5.2010.06.043 Interplay between
of the 7th International Workshop on Cooperative and Human Aspects of Software Usability Evaluation and Software Development.
Engineering. ACM, 24-31. [38] Etienne Wenger. 1998. Communities of practice: Learning as a social system.
[12] Rosalba Giuffrida and Yvonne Dittrich. 2015. A conceptual framework to study Systems thinker 9, 5 (1998), 2-3.
the role of communication through social software for coordination in globally- [39] Ludwig Wittgenstein. 2009. Philosophical investigations. John Wiley & Sons.

distributed software teams. Information and Software Technology 63 (2015), 11-30.

[13] James Herbsleb. 2016. Building a socio-technical theory of coordination: why and
how (outstanding research award). In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 2—10.

[14] Brian A Hoey. 2014. A simple introduction to the practice of ethnography and

guide to ethnographic fieldnotes. Marshall University Digital Scholar 2014 (2014),

1-10.

Brigitte Jordan and Austin Henderson. 1995. Interaction analysis: Foundations

and practice. The journal of the learning sciences 4, 1 (1995), 39-103.

[16] Pernille Lous, Paolo Tell, Christian Bo Michelsen, Yvonne Dittrich, and Allan
Ebdrup. 2018. From Scrum to Agile: a journey to tackle the challenges of dis-
tributed development in an Agile team. In Proceedings of the 2018 International
Conference on Software and System Process. ACM, 11-20.

[17] Pernille Lous, Paolo Tell, Christian Bo Michelsen, Yvonne Dittrich, Marco
Kuhrmann, and Allan Ebdrup. 2018. Virtual by design: how a work environ-
ment can support agile distributed software development. In 2018 IEEE/ACM 13th
International Conference on Global Software Engineering (ICGSE). IEEE, 97-106.

[18] D. Martin, J. Rooksby, M. Rouncefield, and I. Sommerville. 2007. ’Good’ Organisa-
tional Reasons for ‘Bad’ Software Testing: An Ethnographic Study of Testing in a
Small Software Company. In 29th International Conference on Software Engineering
(ICSE’07). 602-611. https://doi.org/10.1109/ICSE.2007.1

[19] L. Mathiassen, A. Munk-Madsen, P. A. Nielsen, and J. Stage. 1996. Method

Engineering: Who’s the Customer? Springer US, Boston, MA, 232-245. https:

//doi.org/10.1007/978-0-387-35080-6_15

Christian Bo Michelsen. 2017. The Practice of ChangingPractices. IT University of

Copenhagen.

[21] M.B. Miles, A.M. Huberman, and J. Saldafa. 2013. Qualitative Data Analysis.
SAGE Publications.

[22] Peter Naur. 1985. Programming as theory building. Microprocessing and micro-
programming 15, 5 (1985), 253-261.

[23] Davide Nicolini. 2012. Practice theory, work, and organization: An introduction.
OUP Oxford.

[24] Leon Osterweil. 2011. Software processes are software too. In Engineering of
Software. Springer, 323-344.

[25] Colin Robson. 2011. Real world research. Vol. 3. Wiley Chichester.

[26] Kari Rénkko, Yvonne Dittrich, and Dave Randall. 2005. When plans do not work
out: How plans are used in software development projects. Computer Supported
Cooperative Work (CSCW) 14, 5 (2005), 433-468.

[27] Outi Salo and Pekka Abrahamsson. 2007. An iterative improvement process for
agile software development. Software Process: Improvement and Practice 12, 1
(2007), 81-100.

[28] Theodore R Schatzki and Theodore R Schatzki. 1996. Social practices: A Wittgen-
steinian approach to human activity and the social. Cambridge University Press.

[29] Kjeld Schmidt. 2014. The Concept of ‘Practice’: What’s the Point?. In COOP 2014

- Proceedings of the 11th International Conference on the Design of Cooperative

Systems, 27-30 May 2014, Nice (France), Chiara Rossitto, Luigina Ciolfi, David

Martin, and Bernard Conein (Eds.). Springer International Publishing, Cham,

427-444.

Helen Sharp, Yvonne Dittrich, and Cleidson RB De Souza. 2016. The role of

ethnographic studies in empirical software engineering. IEEE Transactions on

Software Engineering 42, 8 (2016), 786-804.

[31] Anders Sigfridsson, Gabriela Avram, Anne Sheehan, and Daniel K Sullivan. 2007.

Sprint-driven development: working, learning and the process of enculturation

in the PyPy community. In IFIP International Conference on Open Source Systems.

Springer, 133-146.

Margaret-Anne Storey, Neil A Ernst, Courtney Williams, and Eirini Kalliamvakou.

2020. The who, what, how of software engineering research: a socio-technical

framework. Empirical Software Engineering (2020), 1-33.

Anselm Strauss. 1985. Work and the Division of Labor. The Sociological Quar-

terly 26, 1 (1985), 1-19. https://doi.org/10.1111/j.1533-8525.1985.tb00212.x

arXiv:https://doi.org/10.1111/§.1533-8525.1985.tb00212.x

[34] CMMI Product Team. 2006. CMMI for Development, version 1.2. (2006).

[35] Antdnio R. D. R. Techio, Rafael Prikladnicki, and Sabrina Marczak. 2015. Re-
porting Empirical Evidence in Distributed Software Development: An Extended
Taxonomy. In Proceedings of the IEEE International Conference on Global Software
Engineering (ICGSE). IEEE, Washington, DC, USA, 71-80.

[36] Paolo Tell, Jil Kliinder, Steffen Kiipper, David Raffo, Stephen G MacDonell, Jiirgen
Miinch, Dietmar Pfahl, Oliver Linssen, and Marco Kuhrmann. 2019. What are
hybrid development methods made of?: an evidence-based characterization. In
Proceedings of the International Conference on Software and System Processes. IEEE
Press, 105-114.

(15

[20

[30

[32

[33

https://doi.org/10.1007/978-1-84628-901-9_8
https://doi.org/10.1007/978-1-84628-901-9_8
https://doi.org/10.1109/ICSE.2007.1
https://doi.org/10.1007/978-0-387-35080-6_15
https://doi.org/10.1007/978-0-387-35080-6_15
https://doi.org/10.1111/j.1533-8525.1985.tb00212.x
https://arxiv.org/abs/https://doi.org/10.1111/j.1533-8525.1985.tb00212.x
https://doi.org/10.1016/j.jss.2010.06.043

	Abstract
	1 Introduction
	2 Software Development at DB
	3 Related Work
	3.1 Methods in Software Engineering
	3.2 Practice Theory for Software Engineering

	4 Research Approach and Methods
	4.1 Fieldwork and Data Collection
	4.2 Data Analysis
	4.3 Trustworthiness
	4.4 Limitations

	5 Analysis: Evolving the Stand-Up Meeting
	5.1 How the new Stand-up Meeting Developed
	5.2 Negotiating the Change of the Stand-up Meeting Practices
	5.3 What Enables a Team to Evolve their Practices

	6 Discussion
	6.1 Establishing Improvement as a Practice
	6.2 Reflection, Experimentation and Agile Improvement
	6.3 What can other Companies Learn from DB

	7 Conclusion
	Acknowledgments
	References

