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ABSTRACT

We present an enhanced version of Exquisitor, our interactive and
scalable media exploration system. At its core, Exquisitor is an
interactive learning system using relevance feedback on media
items to build a model of the users’ information need. Relying on
efficient media representation and indexing, it facilitates real-time
user interaction. The new features for the Lifelog Search Challenge
2020 include support for timeline browsing, search functionality for
finding positive examples, and significant interface improvements.
Participation in the Lifelog Search Challenge allows us to compare
our paradigm, relying predominantly on interactive learning, with
more traditional search-based multimedia retrieval systems.
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1 INTRODUCTION

The Lifelog Search Challenge (LSC) is a live system-evaluation
event, where researchers compare their systems based on their abil-
ity to help users quickly solve search-related tasks for a multimodal
lifelog dataset. Each task in LSC is an independent query, to be
solved in a few minutes, where a correct result is a single image
returned from a set of relevant images. The query description is
given gradually, as might be typical when a lifelog is used to find
information and the user slowly remembers more details about
the situation. The first two editions of LSC, held in 2018 [3, 4] and
2019 [5], have showcased a variety of multimedia retrieval systems
aiming to search the lifelog with different approaches, ranging
from traditional keyword search to novel virtual reality-based ap-
proaches (e.g., see [1, 9, 10, 12]).

We have recently developed Exquisitor, a highly scalable inter-
active learning system for general multimedia analytics applica-
tions [7]. When applied to LSC, the user is initially presented with
a set of randomly selected images from the lifelog and asked to
give feedback on (some of) the items about their relevance to the
LSC task at hand. The feedback is used to build (and subsequently
update) a classification model, which in turn is used to provide
new suggestions; this iterative process continues as long as the
user deems necessary. Figure 1 describes Exquisitor’s interactive
learning interface. A key feature that sets Exquisitor apart from
other interactive learning approaches is its scalability: Exquisitor
can retrieve suggestions from the LSC 2020 collection of 43K images
in less than 50 milliseconds using a single CPU core, allowing to
retrieve suggestions very rapidly following each user interaction.

Exquisitor participated in LSC 2019 [8], where it ranked sixth
out of nine participants. The main lesson from LSC 2019 was that
interactive learning is a viable approach, even in this heavily search-
oriented competition setting. However, we also identified some
shortcomings of the Exquisitor system itself that prevented solving
some of the tasks. In this paper, we present the lessons learned from
LSC 2019 and how we have improved the system for participation
in LSC 2020. These improvements were partly implemented for
participation in the Video Browser Showdown 2020 [6], where
Exquisitor ranked fifth out of eleven participants.
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Figure 1: Exquisitor’s interactive learning interface. Previously selected positive examples are shown on the left and negative
examples on the right. The middle panel shows 25 suggestions based on the classification model built based on the user’s
feedback. By hovering over a thumbnail (see the middle thumbnail), users can select the image/video clip as a positive or
negative example (bottom left/right corners), remove it from consideration (upper right corner) or submit as solution to the
task (upper left corner). The top bars are for search and filtering, as described in the text.

The remainder of the paper is organized as follows. Section 2
briefly outlines the Exquisitor approach. Section 3 describes the
lessons learned from participation in LSC 2019, and Section 4 re-
views the changes made to Exquisitor based on those lessons.

2 EXQUISITOR

Exquisitor is a state-of-the-art multimodal interactive learning ap-
proach that combines efficient representation of data, a fast inter-
active classifier, and large-scale collection indexing [7]. The data
representation for each multimodal item comprises state-of-the-art
semantic visual concepts and text features. The semantic features
are compressed per modality using an index-based compression
method [16] that achieves over 99% compression rate whilst yield-
ing a data representation that preserves the semantic information
in the original data. The interactive classifier of choice, linear SVM,
operates directly in the compressed space to greatly speed up the
suggestion retrieval process. While more complex models, such as
those based on CNN architectures, have achieved great successes
in supervised learning settings, the performance of linear models
for classification is still unparalleled in interactive learning due to
their relatively good performance, explainability and the ability to
scale to very large collections [7, 11, 13, 16].

To build an index suitable of scaling up to large scale datasets,
Exquisitor builds on the extended Cluster Pruning (eCP) algo-
rithm [2], which creates a hierarchical structure of the collection
and enables efficient weaving of index utilization into the interac-
tive learning pipeline. Instead of scoring all items in the collection
with the classifier trained on user input, in each interaction round,
Exquisitor first identifies the b clusters most relevant to the query,
based on the SVM model, and then only scores items in those
clusters, again using the SVM model to produce the suggestion
candidates per modality. More specifically, the b clusters of each
modality are divided into s segments, and a list of r candidates is
produced from each segment. The final suggestions are then ob-
tained by performing late modality fusion over the s X r candidates
from each modality to produce the final k suggestions for the user.

By using a high-dimensional index, Exquisitor’s suggestion re-
trieval relies not only on the scores provided by the interactive
classifier, but also harnesses the collection’s high-dimensional struc-
ture; our results indicate that this can indeed improve the quality of
the suggestions at scale. In [7], large-scale, artificial actor-simulated
experiments [15] with the ImageNet and YFCC100M collections
show that with parameter settings of b = 256,s = 16, = 1,000 and
k = 25, Exquisitor significantly outperforms the state of the art in
user relevance feedback.



3 LESSONS FROM LSC 2019

As outlined in the introduction, we believe that interactive learning
as a concept performed quite well on the search-based tasks of
LSC 2019. We found, however, that the system was missing some
features that would have been useful for solving some of the tasks:

e Model Bootstrapping. Initially, the user is presented with
a screen of 25 random images from the lifelog collection.
Even for the relatively small LSC 2019 collection of about
43K images, this represents less than 0.1% of the collection.
For some tasks there were few positive examples in the
collection, so the odds of randomly finding positive examples
was therefore very low. Some means of searching for positive
examples is thus clearly needed.

o Temporal Overview. Several LSC tasks described a sequence
of events leading up to the correct answer to the task, and
sometimes these prior events were easier to identify than the
eventual answer. Without any means to browse a timeline,
finding these prior events offered limited value for solving
the tasks.

o General Interface Issues. We found that the interactive learn-
ing interface itself had multiple problems, and was in par-
ticular difficult to use for novice users. This included basic
issues such as too much unused space on the screen and too
many mouse-clicks for common operations, as well as re-
quiring complex interactions to apply filters to the relevance
feedback process.

o Metadata Integration. Finally, at LSC 2019 we used only a
subset of the available metadata. While the subset we used
would have been sufficient to solve most of the tasks, inte-
grating all available metadata is important for the ability to
solve general analytics tasks.

We believe that these findings apply generally for any multimedia
analytics application, as the problems encountered during LSC
could be encountered in many situations where a combination of
search and exploration is required.

4 NEW FEATURES FOR LSC 2020

In order to address the lessons described above, we have imple-
mented the following changes to the Exquisitor system:

o Model Bootstrapping. We have implemented text-search func-
tionality, using pylucene, over the metadata of the lifelog im-
ages, including the semantic concepts and their descriptions.
Note, however, that the primary goal of the search function-
ality is not to find the answers to the tasks—although this
may happen in some cases—but rather to identify positive
example images, or even specific negative example images,
that can be used to build the model of user intent.
Temporal Overview. For the Video Browser Showdown, we
implemented a video explorer to browse short scenes within
the context of the videos, as shown in Figure 2. By consider-
ing each lifelog image as a thumbnail from a video (albeit, a
video with a very low frame-rate), we adapt this functional-
ity to support timeline browsing within the lifelog collection.
We have also improved the timeline explorer implementation
to provide flexible granularity of the lifelog timeline, thus
providing better overview for the user.

o General Interface Issues. In order to improve usability, we
have eliminated some functionality that was not used in
practice (e.g., incrementally replacing images with new sug-
gestions), streamlined several important operations (e.g., ex-
amining the collections of positive or negative examples),
and improved screen usage significantly by eliminating un-
used background space.

o Metadata Integration. Finally, we are working to improve
the use of images and metadata. We have applied state-of-
the-art ResNeXt-101 visual concept detectors [14] to the
lifelog images, impacting both the user relevance feedback
process and text search. We have also improved the filtering
process and are working to extend the range of metadata
from the collection that is available to users. As an example,
the ability to filter lifelog images based on geo-location could
potentially be important for some LSC tasks.

As noted above, some of these enhancements have already been
applied in our participation in the Video Browser Showdown 2020.
With the additional changes made for LSC participation, we expect
that the system will perform significantly better with LSC tasks.

5 CONCLUSION

Exquisitor is an efficient interactive learning system, which relies
on user relevance feedback to build a model of the user’s informa-
tion need. While Exquisitor targets general multimedia analytics
applications, the participation in the Lifelog Search Challenge (LSC)
nevertheless allows comparison with more traditional search-based
media retrieval systems. In this paper we have described the lessons
learned from participation in LSC 2019 and the changes made to
the Exquisitor system for our participation in LSC 2020.
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Figure 2: Exquisitor’s interface for exploring media items (images or video clips) in a temporal context. The interface shows
details of the metadata associated with the media item, and allows exploration of the temporal context.
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