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Abstract

An important goal in reinforcement learning is to create
agents that can quickly adapt to new goals while avoiding sit-
uations that might cause damage to themselves or their envi-
ronments. One way agents learn is through exploration mech-
anisms, which are needed to discover new policies. However,
in deep reinforcement learning, exploration is normally done
by injecting noise in the action space. While performing well
in many domains, this setup has the inherent risk that the
noisy actions performed by the agent lead to unsafe states
in the environment. Here we introduce a novel approach
called Meta-Learned Instinctual Networks (MLIN) that al-
lows agents to safely learn during their lifetime while avoid-
ing potentially hazardous states. At the core of the approach
is a plastic network trained through reinforcement learning
and an evolved “instinctual” network, which does not change
during the agent’s lifetime but can modulate the noisy out-
put of the plastic network. We test our idea on a simple 2D
navigation task with no-go zones, in which the agent has to
learn to approach new targets during deployment. MLIN out-
performs standard meta-trained networks and allows agents,
after an evolutionary training phase, to learn to navigate to
new targets without colliding with any of the no-go zones.
These results suggest that meta-learning augmented with an
instinctual network is a promising new approach for RL in
safety-critical domains.

Introduction
While especially deep reinforcement learning (RL) ap-
proaches have shown impressive results across a large va-
riety of different domains (Justesen et al., 2019; Li, 2017),
creating RL approaches that respect safety concern has been
recognized as a major challenge (Ray et al., 2019; Wain-
wright and Eckersley, 2019; Ortega et al., 2018). Reinforce-
ment learning, in particular, is based on the idea of learning
through exploration, in other words: trial and error. How-
ever, trying out different options in an environment without
any restrictions can be inherently risky. The agent might
try behaviors that lead to catastrophic outcomes from which
recovery or further learning is impossible. While this is not
necessarily a problem in simulated environments, it becomes
a more challenging issue if we would like these systems to
someday work well in the real world. For example, a factory
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Figure 1: Meta-Learned Instinctual Networks (MLIN).
Evolution determines the initial parameters P of a policy
network together with hyperparameters h. During an evalu-
ation that includes adaptation to different tasks (three in this
example), policy parameters P are updated through RL, and
performance is evaluated with the updated policy network
parameters, returning a fitness for each task. Modified pol-
icy parameters are not inherited by the next generation. The
instinctual network, which is also evolved and defined by
parameters I , can suppress the activation of the policy net-
work in hazardous situations. Importantly, the parameters I
stay constant during the RL adaptation process (i.e. during
the agent’s lifetime). To generate the next generation, the
initial parameters of P , hyperparameters h, and weights of
the instinctual network I are mutated to produce (P*, I*, h*).

robot can not just randomly try out actions but has to make
sure that the options tried do not pose any danger to humans
working alongside such systems.

In contrast to current RL approaches (Kenton et al., 2019),
animals in nature developed efficient strategies that often
prevent them from trying out actions that are potentially
dangerous to their lives. In particular, animals and humans
possess many different instincts, which are innate behaviors
provided by evolution that are not modified through lifetime
learning. For example, six-month-old infants have a congen-
ital fear of spiders and snakes (Hoehl et al., 2017), likely be-
cause this evolved instinctual fear improved our chances of
survival. Rats instinctively and without any learning avoid
a specific compound found in the urine of carnivores (Fer-
rero et al., 2011), which triggers an avoidance behavioral



response.
The main idea in the approach introduced in this paper

is to allow agents to evolve similar innate capabilities that
help them to avoid potentially dangerous situations. The
novel approach, called Meta-Learned Instinctual Networks
(MLIN), builds on ideas from training agents for fast adap-
tation through meta-learning (Finn et al., 2017; Fernando
et al., 2018; Grbic and Risi, 2019). A novel insight in this
paper is that meta-learning can be an effective approach
for AI safety by jointly evolving the initial parameters of
a policy network that can adapt quickly during deployment
through RL (Fernando et al., 2018), with the weights of an
instinctual network that only changes during evolution and
can modulate the noisy actions of the policy network to pre-
vent the agent from encountering potentially dangerous sit-
uations (Fig. 1). Importantly, once the evolutionary training
is done, safe and fast adaptation to new goals is still possible
through RL.

The results in a simple 2D navigation domain demonstrate
that an instinctual network is critical to allowing an agent to
learn to navigate to different target areas during its lifetime
while avoiding hazardous areas in the environment. In the
future, the idea of combining meta-learning with an instinc-
tual network could now enable safer forms of AI across a
range of different tasks.

Background
This section reviews policy gradient methods, which allow
the agents to adapt during their lifetime, and related work on
meta-learning.

Policy Gradient Methods
In reinforcement learning (RL) an agent is tasked with max-
imizing some reward by interacting with its environment.
The agent follows a policy, which takes an observed envi-
ronment state and returns an action to the environment. The
environment is often modeled by an initial state distribution,
a state transition distribution, and a reward function. From
an initial to a termination state, an agent goes through a se-
quence of states and actions called an episode or a trajectory.
The agent tries to optimize its performance with respect to
the cumulative reward collected through an episode. Typi-
cally, an agent has to sample trajectories exploring the envi-
ronment that will help it optimize the performance.

Policy gradient methods (Williams, 1992), which we em-
ploy in our experiments, are a set of methods that optimize
parameterized policies with respect to expected episode re-
turns (sum of discounted episode rewards) by a gradient-
based optimization algorithm. We denote a parameterized
policy with fθ(action|state), where θ are the parameters of
the policy. The parameterized policies define a distribution
of actions contingent on the current state and policy parame-
ters. The methods compute an estimator of the policy gradi-
ent and return it to a gradient-based optimization algorithm.

The general equation for the most commonly used policy
(Williams, 1992) gradient estimator is:

ĝ(θ) = Eθ[
T∑
t=1

∇θ log fθ(at|st)Rc(st)], (1)

where T is the total number of steps over all trajectories, and
Rc(st) is the estimated return of the state st. In the formula,
the expectation Eθ is approximated with a finite batch of
sampled trajectories.

Since vanilla policy gradient methods (Williams, 1992)
are prone to catastrophically large policy updates, PPO
(Schulman et al., 2017) became a popular upgrade on the
base version of the method. PPO is a simplified version of
the TRPO algorithm (Schulman et al., 2015) which limits
the policy update to a ”trust region” to prevent the learning
instabilities and catastrophic fall in the performance.

Meta-learning
Creating agents that can adapt quickly is one of the long-
term goals in AI research. While current deep learning sys-
tems are good at learning a particular task, they still struggle
to learn new tasks quickly; meta-learning tries to address this
challenge. The idea of meta-learning or learning to learn
(i.e. learning the learning algorithms themselves) has been
around since the late 1980s and early 1990s (Schmidhuber,
1992, 1993) and is now a very active area of research.

A recent trend in meta-learning, which we follow in this
paper, is to find good initial weights in an outer loop from
which adaptation to different tasks can be performed in a few
iterations in an inner optimization loop. This approach was
first introduced by Finn et al. (2017) and is called Model-
Agnostic Meta-Learning (MAML). In the approach pre-
sented in this paper, we use an evolutionary meta-learning
variant, in which evolution is trying to find good initial neu-
ral network parameters that allow an inner RL loop to adapt
quickly (Fernando et al., 2018; Grbic and Risi, 2019).

A less explored meta-learning area is the evolution of
plastic networks that change at various timescales through
local learning rules, such as Hebbian learning. These evolv-
ing plastic ANNs (EPANNs) are motivated by the promise
of discovering principles of neural adaptation, learning, and
memory (Soltoggio et al., 2017). While the paper pre-
sented here does not deal with neural networks that can learn
through local learning rules, adding such learning to our sys-
tem is an interesting future extension.

While the above mentioned meta-learning approaches al-
low agents to adapt faster, they do not take into account any
safety concerns while learning. We will review existing ap-
proaches for safer AI in the next section.

AI Safety
In this paper, we focus on safety in the context of deep re-
inforcement learning approaches. For a broader overview



of work in AI safety, we refer the interested reader to
the reviews by Pecka and Svoboda (2014) and Garcıa and
Fernández (2015). Most work in this area focuses on con-
strained RL (Altman, 1999; Wen and Topcu, 2018). In
constrained RL, safety requirements are formulated as con-
straints, which are states and behaviors the system should
avoid. These constraints are often incorporated into RL al-
gorithms through reward functions. However, it is not al-
ways clear what the optimal weighting between the actual
task reward and the penalty for violating the constraints
should be. For example, if the penalty is chosen too small,
the agent will learn unsafe actions, while it might not learn
anything at all if the penalty is too high (Ray et al., 2019;
Pham et al., 2018; Achiam et al., 2017; Dalal et al., 2018).

An approach to safer RL was introduced by Alshiekh et al.
(2018), in which a reactive system, called ”shield”, monitors
the agent’s actions and corrects the actions if they would vi-
olate the pre-specified safety constraints. However, this ap-
proach relies on temporal logic specifications of the safety
constraints. Another approach that employs goal specifica-
tions in temporal logic in the context of safe RL was recently
proposed by Yuan et al. (2019). Other approaches to safe
deep RL include estimating the safety of trajectories through
Gaussian process estimation (Fan and Li, 2019), or reducing
catastrophic events through ensembles of neural models that
capture uncertainty and classifiers trained to recognize dan-
gerous actions (Kenton et al., 2019).

A related approach to the one introduced in this paper is
called intrinsic fear (Lipton et al., 2016). This approach in-
volves a second module that is trained in a supervised way
to predict the probability of imminent catastrophic events,
which is then integrated into a Q-learning objective. The
approach presented in our paper is different in that it formu-
lates safe learning in the context of meta-learning. During
meta-training, safety violations are slowly reduced, allow-
ing safe task adaptation after meta-training.

Approach: Meta-Learned Instinctual
Networks

The goal of the approach presented in this paper is to allow
agents to learn to adapt to a variety of different tasks during
their lifetime while avoiding hazardous and unsafe states in
the environment. Here, we assume that the set of hazardous
states Sh ⊂ S, where S is the set of all states, is the same
for all tasks the agent needs to adapt to during its lifetime.
We also assume that the undesirability of a hazardous state
is communicated by sending a negative reward to the agent
once reaching such a state. For example, imagine a maze
with crevasses that can damage a robot, in which the robot
needs to locate a goal; ideally, the robot would be equipped
with a mechanism to suppresses noisy exploratory actions
near crevasses.

More formally, a particular task Ti the robot should adapt
to is sampled from a task distribution p(T ), which contains

the state transition distribution qi(st+1|st, at), initial state
distribution qi, and the reward function Ri(s). The associ-
ated functions make the task a Markov decision process with
horizon H .

The agent should be able to maximize the cumulative
episode reward Rc =

∑H
j=1R(sj), by sampling several

trajectories, while minimizing the punishment for visiting
hazardous zones during the trajectory sampling. To achieve
this, the agent needs to know when it finds itself in a haz-
ard’s neighborhood and can thus learn to suppress unsafe
exploratory actions.

Model architecture
The model architecture introduced in this paper consists of
two neural network modules: a policy network and an in-
stinctual network (Fig. 2). The policy network is a neu-
ral network module that is trained to solve a specific task
through reinforcement learning, while the instinctual net-
work is kept fixed during task adaptation. The goal of the
instinctual network is to safeguard the policy network from
potentially dangerous actions during exploration, by modu-
lating its outputs. The specific architecture described here is
suitable for reinforcement learning problems with continu-
ous action spaces.

The policy network has an output for all the actions the
agents can perform in the environment (e.g. two actions for
moving in two dimensions). The instinct network has two
different types of outputs: The first output is a suppression
signal and the second output is an instinctual action. Follow-
ing the standard way of exploration in RL (Williams, 1992),
the actions of the policy network p are noisy; the policy net-
work outputs a mean action aµ that is given to a distribution
(usually the normal distribution) from which the output ac-
tion is sampled: anp ∼ N (anµ, σ

n), where σ is part of the
policy parameters θp, and n denotes nth action dimension.
The suppression signal ~s from the instinct module is multi-
plied with the action vector generated by the policy network.
The suppression signal has the same number of dimensions
as the action vector, such that each dimension can be sup-
pressed separately. Another vector is created by subtracting
the suppression signal values from one to create the sup-
pression signal that will modulate the instinctual action ~ai,
where i denoted the instinctual network. More precisely, the
activation of the network follows the steps below:

1. instinct network outputs two vectors, ~s and ~ai, where ~s
elements are in the interval [0, 1];

2. policy networks outputs ~ap;

3. ~ap gets modulated with the suppression vector, ~a∗p = ~s�
~ap, where� is the element-wise multiplication of vectors;

4. ~a∗i = ~ai � (~1− ~s);

5. final action vector ~af is the sum of two modulated action
vectors, ~af = ~a∗p + ~a∗i .
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Figure 2: The topology of the policy network with instinct
module. Both networks receive the same input from the en-
vironment. The instinctual network outputs an instinctual
action ~ai and a suppression signal ~s. The suppression sig-
nal is a vector of values between 0 and 1 that determines
the magnitude of instinctual action that will be mixed in the
policy action. The suppression signal ~s is multiplied with
policy action ~ap and the opposite suppression signal ~1−~s is
multiplied with the instinctual action ~ai. Two action values
are finally added resulting in the final action ~af .

Meta-training
The question here is how to train an instinctual network that
keeps the agent out of harm’s way together with a policy net-
work that should be able to adapt quickly to new goals. One
of the main insights in the work presented here is that we
can use an evolutionary meta-learning approach (Fernando
et al., 2018; Grbic and Risi, 2019) to train a policy that can
adapt quickly and safely to different tasks. The whole train-
ing procedure runs two training loops: an evolutionary outer
loop, and a task-adaptation inner loop (Alg.1 and Fig.1).

In the outer evolutionary loop, a simple genetic algorithm
(GA) is optimizing the initial parameters of the policy net-
work (weights and Gaussian action noise σ), the weights of
the instinctual network, and a learning rate used by the RL
algorithm in the inner loop. The innovation in this paper is
the instinctual neural network, whose weights are only up-
dated through mutations during the outer loop and are not
modified in the inner loop. In other words, instincts are not
modified during an agent’s lifetime.

The evolved parameters of a particular genome g passed
to the inner loop are the parameters of the policy network
θpg , the parameters of the instinctual network θig , and a learn-
ing rate αg . The inner loop takes the evolved parameters
and evaluates their performance by cycling through tasks
Ti ∈ PT . For each task Ti, the inner loop collects trajecto-
ries (s0, a0, ..., sH) by sampling noisy action, produced by
the policy network, modulated with the instinctual network.
When the agent reaches a goal or collects H state-action

pairs (set to 20 in this paper), it is repositioned back to the
center and the new trajectory begins. This process is re-
peated until the agent collects 2,000 state-action pairs (s, a)
for each task Ti. The algorithm collects the sum of safety vi-
olation punishments V over the sampled trajectories. Using
the collected data from the trajectories, a gradient-based op-
timization algorithm modifies the weight values of the policy
network: θp = θpg − αĝ(θp).

Our specific implementation uses PPO (Schulman et al.,
2017) for the policy gradient estimator ĝ(θp), and the Adam
optimizer (Kingma and Ba, 2014) for the gradient update
of the policy network. The PPO algorithm takes the ac-
tion log-probabilities (log fθ(s, ~ap)) sampled from a distri-
bution defined by the policy network (Eq. 2), not the instinct-
modulated actions that are given to the environment.

After the update, the algorithm samples the final trajec-
tory where the policy network generates actions by taking
the mean aµ action of the fθ(·) distribution. The cumulative
episode reward is added to the hazard violation punishments
(episode reward(θp, θi) + V ). Hazard violation punish-
ment is based on how often the agent enters one of the un-
desired states. Note that the weight values of the policy net-
work after the gradient-based update are discarded after each
task (θp ← θpg ). In other words, parameter adaptations to a
specific task are not inherited (i.e. they are non-Lamarckian).
The final evaluation of the evolved parameters is the sum of
task evaluations Fg for each task visited in the inner loop.
The parameters (θpg , θig , and αg) are optimized in the outer
loop based on the evaluation values Fg .

Algorithm 1: Meta-Learned Instinctual Networks
(MLIN)

foreach genome g in population do
use evolved policy net parameters θpg , instinct net

parameters θig , and learning rates α;
θp← θpg , θi← θig , α← αg Fg ← 0, V ← 0;
take tasks from task collection;
for Ti in PT do

run RL for n steps;
for t← 0 to n do

run trajectories, collect rewards and
#violations;
af ← fθp,θi(st);
st+1 ← episode step(af );
V ← V +#violations;

end
Run gradient-based update on the policy

parameters θp;
θp = θp − α∇L(fθp);
Add fitness to overall fitness;
Fg ← Fg + [episode reward(θp, θi) + V ];
Reset the values of the policy network.;
θp← θpg ;

end
end
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Figure 3: Navigation task with hazardous areas. The agent
is spawned in the center and has to learn – during its lifetime
– to reach a particular goal position (which it does not see).

Task environment
The test domain in this paper is a 2D navigation task with
four hazardous areas (Fig. 3), which is inspired by the sim-
pler 2D navigation (which does not include hazardous areas)
used to evaluate the original MAML approach Finn et al.
(2017). The environment consists of an agent starting at the
coordinate (0,0). The goal of the agent is to learn how to
reach one of four goals Ti ∈ [(0.45, 0.45), (0.45,−0.45),
(−0.45, 0.45), (−0.45,−0.45)] only through the reward it
receives at each time step. The inner loop cycles through
all four goals and rewards the agent for how close it can
approach them (Alg.1). It is important to emphasize that
similar to the setup of Finn et al. (2017), the agent’s neural
network has no access to the location of the current goal, and
the agent has to reach it only by adapting its policy through
rewards. This ensures that the task indeed requires adapta-
tion during the lifetime of the agent; if the agent could see
the goal through sensors, a static policy would be able to
reach each goal without having to re-adapt.

One component to reward is the negative distance
of the current position to the goal state; rd,t =

−
√∑

j(Ti,j − st,j)2, where st is the agent’s current coor-
dinate. The second component is a penalty of rh,t = −10,
which the agent receives for each step it makes in a hazard
zone. The total state reward is thus calculated as: R(st) =
rd,t + rh,t. An episode terminates if the agent gets within
0.01 units to the goal state or the episode exceeds the maxi-
mum horizon of 20 timesteps.

The hazardous areas in the environment test the agent’s
ability to adapt to new goal positions in a safe way. The
agent has to learn by trial to reach the goal position while
avoiding the hazardous areas. The policy network and the
instinctual network get the position the agent currently oc-
cupies (x, y) and the eight range-finders, which detect the
proximity of the hazardous areas, as input. One range-finder
returns the fraction of the distance that an edge of a haz-
ardous zone occupies. The agent outputs a movement vector

(∆x,∆y), where ∆x and ∆y are in the range from -0.1 to
0.1 (Fig. 3).

Network implementation details
For the policy network, we use the same architecture as in
the 2D navigation task from original MAML paper (Finn
et al., 2017), an actor-critic system, where actor and critic
are two separate, fully connected neural networks with two
hidden layers of 100 neurons each and Tanh activation func-
tion. While the task could likely be solved by a smaller net-
work, to more easily analyze the effects of adding an in-
stinctual network, we kept the setup as close as possible to
the original MAML experiments. The policy gradient can
be described as:

ĝ(θ) = Eθ[∇θ log fθ(s, a)Aθ(s)], (2)

where Aθ(·, ·) is the advantage calculated from the critic
and fθ(·, ·) is the output of the actor-network. The critic-
network is updated to minimize the temporal difference be-
tween predicted expected return Aθ(st) at state st, and the
reward R(st) updated return estimate: Aθ(st) − (R(st) +
γAθ(st+1)), where γ is the reward discount hyperparameter
(Peters et al., 2005; Wu et al., 2017).

The actor outputs a mean action for a Gaussian distribu-
tion N (~aµ, ~σ), from which an action is sampled (Williams,
1992). During the final deterministic evaluation of the pol-
icy (episode reward in Alg. 1), no Gaussian noise is added.
The critic outputs the predicted value (predicted future cu-
mulative reward). The final layer of the actor-network has
two outputs (Tanh) scaled to [−0.1, 0.1], reflecting the 2D-
navigation task action space.

The instinct module has two hidden layers of 100 neu-
rons, with the ReLU activation functions, and two parallel
output layers (instinct action and suppression signal). Each
output layer has two output neurons (2D-navigation task ac-
tion space dimensions), where the suppression signal out-
put function is the Sigmoid function, and the instinct action
output function is a Tanh function with codomain scaled to
[−0.1, 0.1] interval.

Optimization Details
The weights of both policy and instinctual networks are ini-
tialized by Kaiming uniform initialization introduced in He
et al. (2015). Gaussian action noise parameter σ is initial-
ized to 0.05. A single population has 480 individuals (60
CPUs × 8). Following recent trends in deep neuroevolu-
tion, we employ a simple mutation-only genetic algorithm,
which has shown to rival RL methods in different domains
(Such et al., 2017; Risi and Stanley, 2019). In the selection
step, the top 10% best performing individuals are chosen as
the parents for the following generation. Each parent makes
clones, which mutate, and are placed in the next generation
until the population is full. One child in the next generation



Figure 4: Average fitness progress over generations. Curves
show the average fitness among five runs for the hazard and
no-hazard 2D navigation task. Shaded areas show one stan-
dard deviation.

is the unchanged best-performing individual from the previ-
ous generation (the elite). Similarly to the mutation operator
in previous work that optimizes deep neural network (Risi
and Stanley, 2019; Such et al., 2017), Gaussian noise cen-
tered around the current parameter value (weight or learn-
ing rate) with an initial sd of 0.01 is added to the network’s
parameters. Mutation decays with a rate of 0.999, with a
minimum sd of 0.001. Each individual is evaluated on four
different goals. The inner loop evaluation Fg (from the pre-
vious subsection) is the genotype fitness.

We used an existing PPO implementation from Kostrikov
(2018). The algorithm requires a set of hyperparameters
that stayed constant throughout the experiments. The hy-
perparameters are: γ discount factor (0.99), PPO clip pa-
rameter (0.2), PPO epoch number (4), value loss coeffi-
cient (0.5), and entropy term coefficient (0.01). The code
for the experiments in this paper can be found at: https:
//github.com/djole/modular_instinct_rl

Results
We compare MLIN against a meta-learning version without
an instinct network in a 2D navigation task with and without
hazards. For the non-instinct version, we found that scaling
the output of the policy network by a factor of 0.5 gives sig-
nificantly better performance and mimics the magnitude of
the average initial suppression signal in the MLIN setup.

In the no-hazard environment, a meta-learning approach
without instincts can quickly learn the task (Fig. 4), while
MLIN takes longer to be optimized, likely because optimiz-
ing both an instinct and policy network at the same time is
more complicated. Final cumulative fitness is, in general,
lower for the environment with hazards because the path to
the goal is longer. However, once hazard zones are intro-

duced, MLIN outperforms the non-instinctual version, indi-
cating that instincts become more crucial in task that require
safe learning (Fig. 4). A more detailed view of a partic-
ular evolutionary run is shown in Fig. 5, which shows the
progression in fitness over generations together with the ex-
ploratory behaviors performed by the best agent found so
far. Since the negative reward for violating the hazard zones
is an order of magnitude larger than the distance fitness (-10
for each step violating hazard zones), evolution favors mod-
els that prioritize avoiding hazards early on.

Testing fast and safe lifetime adaptation
Recall that the main idea in MLIN is to meta-train a policy
network together with an instinct network so that after the
evolutionary training is done (stopping the outer loop), run-
ning only the inner RL loop allows safe adaptation. There-
fore, we compare how fast and safe a MLIN-trained net-
work can reinforcement learn to approach a new goal dur-
ing its lifetime (inner loop), compared to RL adapting a net-
work with randomly initialized parameters (pure RL with-
out meta-training). The pure RL approach uses Kaiming
weight initialization, learning rate of 0.01, and action noise
σ = 0.05.

Following Finn et al. (2017), each agent performs ≈40
trajectories (4000 steps state-action samples), which were
used to perform one gradient update with PPO. The pure RL
setup reaches an average goal distance of -13.3±2.4, while
MLIN is able to adapt faster and therefore gets much closer
to the four goals (-3.9±1.5) (Table 1). Additionally, the pure
RL version has an average of 75.9±48.3 safety violations
while MLIN has only 0.05±0.2 (Table 2).

Fig. 6 shows the exploration trajectories for the best meta-
trained model with instinctual network. MLIN trained net-
works can consistently learn to approach the four targets
while avoiding any of the hazardous zones.

To gain a deeper understanding of the function of the
evolved instinct network, we plot the average instinct sup-
pression signal pattern based on the location on the 2D-
navigation environment plane (Fig. 8). As the instinct
evolves, the average modulated instinctual action that is
added to the modulated policy action increases in magni-
tude. The final evolved instinct changes the direction of bias
added to the policy in states close to the hazardous zones,
preventing the policy from entering the hazardous zones.

Ablation studies
The exploration trajectories of the best performing model
evolved with MLIN with evolved instinct network turned
off are shown in Fig. 7a. Not surprisingly, removing the
instinct reduces the ability of the model to reach the goal
(Table 1) and to avoid the hazardous zones (Table 2). Fig. 7b
shows the stochastic trajectories of an evolved MLIN model
in which the initial evolved parameters of the policy network
are replaced with random weights and Gaussian action noise

https://github.com/djole/modular_instinct_rl
https://github.com/djole/modular_instinct_rl
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Figure 5: Example evolutionary run for MLIN. Shown is the fitness calculated based on the agent’s distance to the goal. Early
on in evolution, the agents learn to avoid the four hazardous areas but they are not able to reach any goals. The agents improve
on that ability over multiple generations, after which they can safely approach the four targets.
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Figure 6: MLIN Goal Adaptation. The green lines show
the exploration trajectories while the purple line is the de-
terministic trajectory of the model after the first gradient up-
date. The agent is able to learn to navigate to the four target
goals during its lifetime while avoiding hazard zones.

σ = 0.05. The instinct network by itself is able to steer the
agent with the random policy away from hazards.

The advantage of the instinct module is that by chang-
ing its weights over the longer (evolutionary) time span the
transformation that it produces over the action space can
safely regulate the randomness of actions to avoid danger-
ous states. The main result is that MLIN produces a network
that can better adapt to different goals than any of the other
methods (Table 1) while doing so in a safe way (Table 2).

(a) Instinct turned off (b) Only instinct

Figure 7: Exploration trajectories in the 2D navigation envi-
ronment with the ablated model. (a) shows the exploration
trajectories of the evolved model shown in Fig. 6a with the
instinct module turned off. The orange lines mark when the
agent stepped inside hazardous areas. The trajectories of the
model with instinct turned on but the policy network ran-
domly initialized are shown in (b).

Table 1: Average fitness over 20 repetitions.

Method Avg. dist. fitness
MLIN -3.9 ± 1.5
Meta-learning without instincts -11.3 ± 10.4
Pure RL -13.3 ± 2.4
MLIN (removed instinct) -8.2 ± 0.37
MLIN (randomly init policy) -13.7± 2.2



(a) Generation 1 (b) Generation 100 (c) Generation 250

Figure 8: Modulated instinctual actions ~a∗i mapped over the
corresponding states s. As the individual instinct improves,
the pattern of actions around the hazard zones appears to
strongly deviate from the surrounding action pattern.

Table 2: Average hazardous zone violations over 20 repeti-
tions. MLIN is the only approach able to avoid dangerous
zones while also closely approaching the targets.

Method Avg. violations
MLIN 0.05 ± 0.2
Meta-learning without instincts 0.03 ± 0.16
Pure RL 75.9 ± 48.3
MLIN (removed instinct) 8.6 ± 2.0
MLIN (randomly init policy) 33.4 ± 6.6

Discussion and Future Work
Safety in deep RL is a prerequisite condition for someday
applying these methods in the real world. Here, we demon-
strate that a slowly changing instinct component that can
regulate the noisy actions of a policy network during the
exploration can avoid hazardous areas while consistently
adapting to specific goals in a simple navigation environ-
ment. Interestingly, the solution the meta-trained model
finds is not to completely suppress the actions from the pol-
icy network, but to redirect them by changing the direction
of the average instinctual action (Fig. 8). An interesting fu-
ture research direction is to further explore the extend of the
Baldwin effect (Hinton and Nowlan, 1987; Fernando et al.,
2018) in MLIN, which could explain some of its superior
performance.

Adapting the setup presented here to more challenging
tasks is an important next step. One such environment is
the recently published OpenAI Safety Gym benchmark (Ray
et al., 2019), which contains multiple different tasks such as
reaching goals, pushing objects toward goals, and avoiding
static and moving dangers during learning.
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