
Evolving HyperNetworks for Game-Playing Agents
Christian Carvelli

modl.ai

chris@modl.ai

Djordje Grbic

IT University of Copenhagen

djgr@itu.dk

Sebastian Risi

IT University of Copenhagen

sebr@itu.dk

ABSTRACT
This work investigates the evolution of indirectly-encoded neural

networks through a hypernetwork approach. We find that for some

Atari games, a hypernetwork with over 14 times fewer parameters,

can compete or even outperform directly-encoded policy networks.

While hypernetworks perform worse than directly encoded net-

works in the game Frostbite, in the game Gravitar, the approach

reaches a higher score than any other evolutionary method and

outperforms complicated deep reinforcement learning setups such

as Rainbow.

KEYWORDS
Neuroevolution, indirect encoding, hypernetworks

ACM Reference Format:
Christian Carvelli, Djordje Grbic, and Sebastian Risi. 2020. Evolving Hy-

perNetworks for Game-Playing Agents. In Genetic and Evolutionary Com-
putation Conference Companion (GECCO ’20 Companion), July 8–12, 2020,
Cancún, Mexico. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/

3377929.3389961

1 INTRODUCTION
Evolving deep neural networks (i.e. deep neuroevolution) has re-

cently shown to be a competitive alternative to deep reinforcement

learning in a variety of different domains [6, 8]. Interestingly, recent

breakthroughs in this area came from pairing a very simple genetic

algorithm (GA) with a deep neural network where the network’s

weights are all mutated at the same time through additive Gaussian

noise [5, 8]. It is an open question how more advanced neuroevolu-

tion algorithms, such as indirect encodings, could further improve

on the performance of these simple GAs. In an indirect encoding,

not every parameter is encoded separately in the genotype but a

genotypic bottleneck forces reuse of information in the decoding

from genotype to phenotype.

A particularly promising indirect encoding is HyperNEAT [7], in

which the connectivity pattern of a policy network is described by

an evolved function that takes as input the geometry of a network

and outputs theweights of a policy network. However, one potential

drawback of HyperNEAT is that the location of nodes need to be

decided by an experimenter or require extensions such as evolvable-

substrate HyperNEAT [4]. While the placement of the network’s

inputs and outputs might be straightforward in a domain such as

robot locomotion, in which it is easy to correlate sensors with their

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7127-8/20/07.

https://doi.org/10.1145/3377929.3389961

position in space, it is less obvious how the geometry of a network

for games such as Atari should look like.

In this workwe investigate amethodwithout the aforementioned

limitation. Hypernetworks [1], a recent HyperNEAT-inspired en-

coding that does not require nodes to have locations in space, has

shown promise when being optimized end-to-end through back-

propagation for supervised learning tasks. However, it is currently

not clear how evolvable hypernetworks are, which is the focus of

this paper.

2 EVOLVING HYPERNETWORKS
A hypernetwork [1] is an indirect encoding that generates the

parameters for a policy network using a smaller network, the "hy-

pernetwork", and a set of learned parameters called "embeddings"

(Fig. 1). In a typical policy network, the parameters of each layer

are represented by a tensor 𝐾 𝑗 of arbitrary size and shape, for each

layer 𝑗 = 1, ..., 𝐷 . Following Ha et al. [1] for each layer 𝑗 the hyper-

network receives an embedding 𝑧 𝑗 ∈ 𝐼𝑅𝑁𝑧
as input and generates

the weights for that particular layer 𝐾 𝑗 : 𝐾 𝑗 = 𝑔(𝑧 𝑗 ),∀𝑗 = 1, ..., 𝐷.

To limit the number of hypernetwork parameters and its number

of outputs, the hypernetwork generates a small set of weights at a

time, called "tile", one for each z vector. The number of tiles needed

for a layer 𝑗 is computed as 𝑇 𝑗 =
𝐾

𝑗

𝑠𝑖𝑧𝑒

𝑡 , where 𝐾
𝑗
𝑠𝑖𝑧𝑒

is the number

of parameter of the layer 𝑗 and 𝑡 is the tile size (an hyperparameter).

Each embedding 𝑧
𝑗
𝑖
, the i-th embedding of the j-th layer, is lin-

early projected in an intermediate vector 𝑎
𝑗
𝑖
that will be projected

into the final tile 𝑇
𝑗
𝑖
. Finally, each group of 𝑇 𝑗 tiles can be concate-

nated, reshaped and trimmed to fit into 𝐾 𝑗 :

𝑎
𝑗
𝑖
=𝑊𝑖𝑧

𝑗 + 𝐵𝑖 ∀𝑖 = 1, ...,𝑇 𝑗 ,∀𝑗 = 1, ..., 𝐷

𝐾
𝑗
𝑖
= ⟨𝑊𝑜𝑢𝑡, 𝑎 𝑗𝑖 ⟩ + 𝐵𝑜𝑢𝑡 ∀𝑖 = 1, ...,𝑇 𝑗 ,∀𝑗 = 1, ..., 𝐷

𝐾 𝑗 = (𝐾 𝑗
1
𝐾
𝑗

2
...𝐾

𝑗
𝑖
...𝐾

𝑗

𝑁𝑖𝑛
) ∀𝑗 = 1, ..., 𝐷

The policy network in this paper is a deep convolutional network

with a dense head and ReLU non-linearity, based on the original

DQN architecture [3]. The hypernetwork is a simple dense network

with a single hidden layer with 8 neurons and ReLU non-linearity.

The embedding size is 32, with a total number of 1199 embeddings.

3 EXPERIMENTS
We compare the hypernetwork setup (43240 trainable parameters)

with a directly-encoded network with the traditional DQN architec-

ture (612018 parameters) and against a version where all the inner

layers have been scaled down by a constant factor of 0.25 (41658

parameters). For the hypernetwork approach, Gaussian noise is

either applied to the hypernetwork weights or the embeddings,

with 50/50 probability. In the case of embeddings, a layer in the

policy network is randomly chosen and only those embeddings are

mutated. For the direct encoding, Gaussian noise is added to all the

parameters of the policy network [8].

71

https://doi.org/10.1145/3377929.3389961
https://doi.org/10.1145/3377929.3389961
https://doi.org/10.1145/3377929.3389961
Djordje Grbic



GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico Christian Carvelli, Djordje Grbic, and Sebastian Risi

Dense

DenseDenseLayer Embedding

DenseConv2DConv2DConv2DConv2D Conv2DConv2D

A
ct

io
n

Policy Network

Hypernetwork

Figure 1: Hypernetwork Architecture. The hypernetwork pro-

duces the weights for each layer in the policy network, conditioned

on different layer embeddings.

Experimental details. The GA evolves a population of 1000

individuals, evaluating them on one episode capped at 20K frames.

The best 20 individuals are evaluated 30 more times to find the

true elite. We experimented with two different parent selection

strategies, where a parent is either: (1) uniform randomly selected

from the best 20 individuals of the previous generation (top), or
(2) the best of two randomly selected individuals determined via

tournament selection (2way). The mutation operator applies addi-

tive Gaussian noise drawn from N(0, 0.002). The directly encoded

individuals are initialized using the Xavier initialization for the

weights and zero biases. Indirectly encoded networks are initialized

with Kaiming normal initialization for the weights and zero for the

biases, while the initial 𝑧 vector is drawn from a normal distribution

N(0, 0.1).

4 RESULTS & DISCUSSION
On the three games tested (Amidar, Frostbite, Gravitar), the hyper-

network approach performs equally well to a direct encoding in

one game, reaches a lower performance in another, and outper-

forms evolutionary methods and state-of-the-art RL methods such

as Rainbow in the game Gravitar (Table 1). Interestingly, 2-way

tournament selection works better for indirectly encoded networks

but penalizes the direct encodings in most cases.

The small-sized direct encoding did perform slightly worse than

the full-sized version on all three games. The indirect encoding

performed worse than the normal and small direct encoding on

Frostbite but managed to outperform the small directly encoded

network (which has around the same number of parameters as

the hypernetwork) in two out of three tests. Importantly, it also

outperformed the full-sized network, which has over 14 times the

number of parameters, in Gravitar and performed as well in Amidar.

Fig. 2 shows evolved and generated weights for the kernels of the

last convolutional layer (conv3) in the champion agent for Gravitar.

The kernels, concatenated in row-major order, can be recognized

as groups of 3×3 pixels in the images. In the indirect encoding,

the hypernetwork generates multiple "tiles" that are concatenated

together, reshaped, and eventually cut to fit the appropriate layer.

While it is difficult to distinguish particular features in these kernels,

it is interesting how the hypernetwork-encoded kernels show a

greater regularity and structure than the directly encoded ones.

This work opens interesting future research directions in indirect

encodings, which include studying in more depth what types of

Rainbow[2] Direct Direct small Hypernet

Frames 200M 500M 500M 500M

Selection top 2way top 2way top 2way

Amidar 5,131.2 372 263 270 244 270 364

Frostbite 9,590.5 5,926 3,456 5,880 1,178 2,520 3,719

Gravitar 1,419.3 732 476 590 875 2,009

Table 1: Testing Performance. We take the best agent found

during three independent evolutionary runs and report its average

performance across 200 episodes.

tasks they excel in and how compression through a genotypic

bottleneck can hurt or improve performance in different settings.

(a) Conv3 direct (b) Conv3 HN

Figure 2: Weight Patterns. Comparison of the kernels of the last

convolutional layer of the direct encoding (a) and encoded by an

evolved hypernetwork (b).

ACKNOWLEDGEMENTS
DG and SR were supported by the Lifelong Learning Machines

program from DARPA/MTO under Contract No. FA8750-18-C-0103.

Any opinions, findings and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not neces-

sarily reflect the views of DARPA. We thank Mads Sønderstrup for

his help during the start of this project.

REFERENCES
[1] Ha, D., Dai, A., and Le, Q. V. Hypernetworks. arXiv preprint arXiv:1609.09106

(2016).

[2] Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney,

W., Horgan, D., Piot, B., Azar, M., and Silver, D. Rainbow: Combining im-

provements in deep reinforcement learning. In Thirty-Second AAAI Conference on
Artificial Intelligence (2018).

[3] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level

control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.
[4] Risi, S., and Stanley, K. O. An enhanced hypercube-based encoding for evolving

the placement, density, and connectivity of neurons. Artificial life 18, 4 (2012),
331–363.

[5] Risi, S., and Stanley, K. O. Deep neuroevolution of recurrent and discrete world

models. In Proceedings of the Genetic and Evolutionary Computation Conference
(2019), pp. 456–462.

[6] Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. Evolution strategies

as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864
(2017).

[7] Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. A hypercube-based encoding

for evolving large-scale neural networks. Artificial life 15, 2 (2009), 185–212.
[8] Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and Clune, J.

Deep neuroevolution: Genetic algorithms are a competitive alternative for training

deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567
(2017).

72


	Abstract
	1 Introduction
	2 Evolving HyperNetworks
	3 Experiments
	4 Results & Discussion
	References

