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ABSTRACT 

 The concept of nutritional programming began to arouse interest around larviculture sector 
due to the high metabolic plasticity of larvae. At this life stage, specific methabolic pathways of 
young organisms are more proned to be alterated with effects that may be propagated in the long 
terms. The aim of the present study was to assess the effect of dietary curcumin as promoter of both 
gut maturation and antioxidant status of gilthead seabream larvae (Sparus aurata). Curcumin was 
delivered through microdiet since mouth opening (4 Days After Hatching, DAH) in two levels of 
supplementation (LOW and HIGH) and the effects were compared with larvae fed on commercial 
diet (CTRL). Feeding plan consisted of a short period of co-feeding with live preys (rotifers and 
Artemia nauplii) and inert diet until 24 DAH, when larvae were weaned. Results on survival rate 
showed that, curcumin did not influence this paramenter. Key performance parameters did not 
reveal statistical differences between treatments, although a positive trend was detected in larvae 
fed on LOW curcumin supplementation. Proteolytic enzymes, such as trypsin and chymotrypsin, 
were positively influenced by curcumin being significantly higher in larvae fed on HIGH curcumin 
supplementation. Despite this, curcumin did not influence the activity of the remain digestive 
enzymes analysed (aminopeptidase, amylase, 4C and 18C-like lipases and alkaline phosphatase). 
Curcumin did not change the larval feeding habits or diet palatability; results revealed that weaning 
larvae at 24 DAH did not influence their feeding incidence. Overall, antioxidant status biomarkers 
(TG, TAC, PC and MOS) did not reveal significant differences between treatments. In summary, 
although results did not prove significant effects of curcumin on most of the parameters under 
investigation, some positive trends leave open the possibility of further investigations. These future 
trials may be addressed independently, or in combination, on both, early programming and new 
dietary additives, to test different curcumin concentrations. 
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RESUMO 

O conceito de programação nutricional refere-se a possíveis estímulos durante fases precoces do 
desenvolvimento do animal que irão ter repercussões em fases mais tardias da vida do mesmo. O 
conhecimento dos mecanismos que controlam o desenvolvimento e o crescimento e sua relação 
com a nutrição são fundamentais para a identificação de fases de desenvolvimento que introduzam 
variação de crescimento, que impactem o potencial do mesmo e/ou que afetem a viabilidade e a 
qualidade dos juvenis. A perspectiva de aplicar este conceito à aquacultura oferece inúmeras 
possibilidades, principalmente focadas na modulação de vias metabólicas, tais como a acreção 
proteica, a homeostase oxidativa e a maturação precoce do sistema digestivo. A nutrição é o factor 
ambiental mais importante que determina o crescimento e o desenvolvimento dos animais. Nos 
últimos anos, foi reportado que a inclusão de extractos de origem vegetal em alimentos inertes 
estimula o apetite e promove o ganho de peso em peixes devido a moléculas bioactivas. O objetivo 
do presente estudo foi avaliar o efeito da inclusão de curcumina na dieta para larvas de dourada 
(Sparus aurata) como promotora da maturação intestinal e do estado redox, e melhorar o 
conhecimento das várias vias fisiológicas que medeiam as relações entre dieta, nutrição e 
metabolismo, apontando para a biologia oxidativa, a capacidade digestiva e a plasticidade do 
crescimento. A curcumina foi suplementada nas microdietas desde abertura da boca (4 dias após 
eclosão, DAE) em dois níveis de suplementação (LOW e HIGH), os efeitos foram comparados com 
larvas alimentadas com dieta comercial (CTRL). O plano alimentar consistiu em um curto período 
de co-alimentação com presas vivas (rotíferos e Artemia nauplii) e dieta inerte até os 24 DAE. Após 
esta idade as larvas foram alimentadas exclusivamente com dieta inerte. A taxa de sobrevivência 
confirmou que a curcumina não afetou este parâmetro. Os principais indicadores de desempenho de 
crescimento não revelaram diferenças estatísticas entre os tratamentos, embora tenha sido 
observado uma tendência positiva em larvas alimentadas com suplementação de curcumina LOW. 
As enzimas proteolíticas, como a tripsina e a quimiotripsina, foram positivamente influenciadas 
pela curcumina sendo a actividade enzimática significativamente mais elevada em larvas 
alimentadas com suplementação HIGH de curcumina. A suplementação de curcumina não 
influenciou a actividade das restantes enzimas digestivas analisadas (aminopeptidasa, amilasa, 
lipasas e fosfatasa alcalina). A curcumina não alterou os hábitos alimentares das larvas ou a 
palatabilidade da dieta; os resultados revelaram alteração na sua incidência alimentar quando 
alimentadas exclusivamente com dieta inerte. No geral, os biomarcadores do estado redox (TG, 
TAC, PC e MOS) não revelaram diferenças significativas entre os tratamentos. Em resumo, embora 
os resultados não tenham demonstrado efeitos significativos da curcumina na maioria dos 
parâmetros sob investigação, algumas tendências positivas deixam em aberto a possibilidade de 
novas investigações. Esses ensaios futuros podem ser abordados de forma independente ou 
combinada, tanto na programação inicial quanto em novos aditivos alimentares, para testar 
diferentes concentrações de curcumina. Os resultados serão traduzidos em estratégias alimentares 
eficazes de modo a promover a robustez e a resiliência dos peixes num futuro próximo e a transferir 
e aplicar o conhecimento e a tecnologia de modo a garantir o desenvolvimento de um sector mais 
sustentável, vital para o futuro da indústria da aquacultura. 
 
 
Palavras-chave: Crescimento, Estado antioxidante, Extractos de plantas, Nutrição, Programação 
metabólica.  
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Abbreviations 
 
am - ante meridiem 
ANOVA - analysis of variance 
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DAH – days after hatching 
DNA - Deoxyribonucleic acid 
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GR – glutathione reductase 
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M - molar 
mg – milligrams 
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MOS – mitochondrial oxidative status 
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P - p-value 
PC – protein carbonylation 
pm - post meridiem 
PMS - post-mitochondrial supernatant 
PTMs - posttranslational modifications 
RFU – relative fluorescence units 
RGR – relative growth rate 
RNA - Ribonucleic acid 
ROS – reactive oxygen species 
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TAC – total antioxidant capacity 
TG – total glutathione 
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1. Introduction	

1.1 World and Mediterranean aquaculture 

Fisheries and aquaculture are largely recognized to be crucial activities as supplier of 

healthy food, employment, recreation activities, trade and economic well being for thousand of 

people around the world (FAO, 2020a). In fact, when compared to terrestrial animal sources of 

food, seafood production have received an increasing attention as source of protein and 

micronutrients, due to it potentially lower environmental impact (Hicks et al., 2019; Parker et al., 

2018; Poore and Nemecek, 2018). As consequence, seafood might achieve food security and 

improved nutrition and empower both international trade and economy of the richer countries as 

well as the local economies of the low-income countries (Asche et al., 2015; Belton et al., 2018; 

Béné et al., 2015; Beveridge et al., 2013; High Level Panel of Experts on World Food Security, 

2014; Röös et al., 2017). Finally, due to the trans-national and trans-generational effects of these 

activities, concerning not only the whole international community but affecting also both present 

and future generations, they should be conducted in responsible and sustainable manner (FAO, 

2020a). 

Aquaculture, i.e. the farming of aquatic organisms including fish, molluscs, crustaceans and 

aquatic plants, is among the fastest growing animal industries (Grigorakis and Rigos, 2011). In fact, 

if in the early 50’s of the last century, world aquaculture production measured as millions of tonnes 

of live weight (plants and algae excluded) counted for just one unit, it passes from 55.1 million to 

80.0 million between the years 2009 and 2016 (FAO, 2019). In 2018, last data available indicated 

that world aquaculture production reached the value of 82.1 million of tonnes (FAO, 2020b). 

Aquaculture production is still today characterized by an evident variance between countries; in fact 

fish farming is predominant in Asia where, over the last 20 years, has been concentrated the 89 

percent of the global world production (FAO, 2020b). The contribution of aquaculture to global fish 

production was 46 percent in 2018 (FAO, 2020b) with the prevision to rise until 62 percent for the 

year 2030; accordingly to this expectation, innovation and technological improvement within the 

sector, as well as social acceptance, must be found and applied (FAO, 2020a). One way to reach a 

higher level of environmental and economical sustainability for the aquaculture sector is to reduce 

the Fish in : Fish out (FIFO) ratio (Kok et al., 2020; Mastoraki et al., 2020; Wang et al., 2020). In 

fact, with the introduction of new feed ingredients and the conceptualization of new feed 

formulation, it will be possible substitute, or at least reduce, fish meal and fish oil content, cutting 

down at the end their negative impacts (Barazi Yeroulanos, 2010; Basto et al., 2020; Belghit et al., 
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2019; Campos et al., 2020; Hua and Bureau, 2012; Machado et al., 2020; Rocha et al., 2016; 

Teodósio et al., 2020; Yadav et al., 2020).  

European aquaculture production started in the late 80’s of the last century, followed by a rapid 

growth during the 90’s (Llorente et al., 2020). Within the Mediterranean area, the larger producers, 

in terms of volume per year, are Egypt, Spain, Turkey France, Italy and Greece (FAO, 2020b; 

OECD, 2020). The most relevant farmed marine fish species are gilthead seabream (Sparus aurata) 

and European seabass (Dicentrarchus labrax) produced in countries around the Mediterranean 

basis, and Atlantic salmon (Salmo salar), for which the production is mainly in Norway (Moretti et 

al., 2005; Rad, 2007; STECF, 2018). Focusing on European seabass and gilthead seabream 

industry, 95 percent of its production takes place within the Mediterranean region, being both these 

species part of the local cuisine-culture. Neverthelles, some countries like Italy, Spain, France and 

Portugal are not able to satisfy the national demand that is match by imports coming from Turkey, 

Egypt and Greece. In 2016, Europeas seabass production was 82 thousand tonnes valued at 555 

million USD, while gilthead seabream production was of 82 thousand tonnes valued at 493 million 

of USD. Turkey is the main producer of both these species at global level (FAO, 2018), playing a 

key role since the beginning of the new millennium thanks to the custom agreement signed with UE 

on March 6, 1995. This has permitted to Turkish items to be freely traded within the EU countries, 

helping to expand the internal demand and to lead to the drops of the domestic market price. Indeed 

not only Turkey, but also Greece and others non-EU countries, took profit from their comparative 

advantages and are competing nowadays with many EU companies (Arikan and Aral, 2019; Kok et 

al., 2020; Rad, 2007; Rad and Köksal, 2000; Regnier and Bayramoglu, 2017; STECF, 2018; 

STEFC, 2015). Nonetheless, within the EU countries, aquaculture is recognized to have a key role 

in the economic activity, able not only to produce sustainable seafood but also to create 

employment in costal and rural areas (Guillen et al., 2015). Because of this, aquaculture was 

inserted into the EU’s Blue Growth Strategy with noticeable public and private investment, leading 

to positive development in production, processing, logistic and marketing. These actions are 

expected to help industry profitability through demand generation and cost-saving during the future 

years (GLOBEFISH, 2017); in this prospect, encouraging signals appeared during the years 2015 

and 2016 where the quantities produced by EU members increased significantly (Llorente et al., 

2020).  
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1.1.2 Gilthead seabream in Mediterranean aquaculture 

Gilthead seabream (Sparus aurata) (from Latin, sparus = a fish, and aurata = golden, ‘fish 

with golden head’) (‘dourada’ in Portuguese) is a marine or brackish and demersal fish, distributed 

in the Eastern Atlantic and Mediterranean area (Bauchot, 1990), also reported in Black sea 

(Magoulas et al., 1995). It is common to find gilthead seabream in sea-grass beds as well as in 

rocky and sandy bottom at different depth, usually ranging 1-30 m for the individuals that live in 

aggregated form (until 150 m for some solitary adults). It is mainly carnivorous, feeding on 

shellfish like mussels and oyster but also on small fish and crustaceans.  

Traditionally, gilthead seabream aquaculture systems were based in coastal lagoons and brackish 

ponds in southern Europe while after the ‘80s sea cage farming was implemented and largely 

applied. Today, gilthead seabream is produced mainly in intensive systems based both on land and 

in floating cages (Jobling, 2011; Trujillo et al., 2012). These facilities are constructed to maximize 

growth performance and health status. Seabream reach 400g after 2 year while its commercial size 

ranges from 250g to more than 1500g (Føre et al., 2018). The production cycle process begins with 

larval rearing, which is performed in modern and highly sophisticated hatcheries. The larvae absorb 

the yolk sac in a few days (generally six days) and exogenous feeding begins, based initially on 

rotifers and Artemia. At 50/55 days after hatching (DAH), inert feed of 300-500 µm is introduced in 

the feeding plan, following the normal “late-weaning” protocol utilized by Hellenic marine fish 

hatcheries (Pantazis et al., 2014). The all on-growing phase is based on the supply of commercial 

pellets with high level of protein and energy content. Spain and Italy are the main markets of 

Mediterranean area in terms of pro-capita consumption (FEAP, 2014).  

1.2 Marine fish larvae nutrition and early programming 

The first feeding stages of aquatic organisms are extremely important for the overall success 

of the rearing process and, for most of the cultured aquatic species, the production of high quality 

larvae and juveniles is one of the main bottlenecks (Vadstein et al., 2013). In fact, some of the 

problems associated with larvae and juvenile quality become visible only during the following 

stages, where the final products can be definitely compromised (Logue et al., 2000). The main 

problems affecting both larvae and juveniles are correlated with poor growth performance, survival 

and appearance of malformation (Kolkovski et al., 2009; Vadstein et al., 2007). Different factors 

have been pointed out as causes of such conditions, including poor gametes quality, inadequate 

nutrition, suboptimal physiochemical conditions and detrimental fish-microbe interactions 

(Vadstein et al., 2013).  
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For what concern the nutritional aspect, the production of marine fish larvae and juveniles in 

commercial hatcheries is still based on the supply of live preys, such as rotifers and Artemia 

(Jobling, 2016). The running and the maintenance of larviculture sector represent a cost, both in 

terms of economy and time, and it requires technologies and trained employers (Lee, 2003; Massa, 

2017). Among the solutions, in order to reduce the aquaculture production costs, there is the chance 

of anticipating the weaning time, i.e. the introduction of inert diet in substitution for live prey 

(Fezzardi et al., 2013). If the mentioned substitution does not represent a big challenge for 

freshwater fish larvae, since they can be fed on inert diet as early as mouth opening, the same can 

not be applied to marine fish larvae, where weaning is still performed several days after the 

beginning of exogenous feeding, and before that time the nutrition is based on live preys (Barazi 

Yeroulanos, 2010).  

Among the main constraints that interfere the possibility of anticipating the weaning time, 

the maturation of digestive system, and consequently the digestive capacity, plays a central role. In 

fact, during larvae development, digestive system is not completed yet, so digestion capacity is 

limited. This happen in Senegalese sole (Solea senegalensis) larvae for example, where the 

proteolytic capacity was a limiting factor for protein digestion especially during the pelagic phase 

limitating the adaptation of larvae to inert diet (Engrola et al., 2010, 2009). To overcome this 

limitation different strategies are utilized, such as the manipulation of protein, both in terms of 

quality and complexity (Canada et al., 2019), or throught the application of nutritional programming 

concept (Xu et al., 2019; Zambonino-Infante et al., 2019). Early nutritional programming studies 

investigate novel feed additives that might be able to stimulate the development of the digestive 

system and enzymatic secretion. Trials performed on different species showed that a dietary 

stimulus applied during a critical developmental stage early in life (neonatal or post-natal nutrition) 

might have long-term consequences on physiological functions in later life (Burdge and Lillycrop, 

2010; Daprà et al., 2011; Geurden et al., 2009; Metges et al., 2014; Patel and Srinivasan, 2002; 

Vagner et al., 2019). As examples: yellow perch (Perca flavences) juveniles performed higher 

weight gain if fed on a soybean based diet as first feeding (Kemski et al., 2018), or vegetable oil 

supplementation on seabream  broodstocks diet was able to improve the progeny ability to utilize 

low fish meal and fish oil diets (Izquierdo et al., 2015) or more, Atlantic salmon (Salmo salar) fed 

for three weeks on plant based diet as first exogenous feeding reached higher growth rate and feed 

efficiency in fifteen weeks-fish challenged with 0% fish oil content diet for six weeks (Clarkson et 

al., 2017). 

The “imprinting” of the nutritional programming events occurs through epigenetic 

modifications. For epigenetic is intended, i.e. the study of mitotically heritable yet potentially 
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reversible, molecular modification to DNA and chromatin without alteration to the underlying DNA 

sequence (Anderson et al., 2012; Li, 2002; Reik et al., 2001). These modifications can occur 

throughout the life cycle, in particular during the early life stages of development, and are heavily 

influenced by external factors (Matzke and Birchler, 2005; Reik et al., 2001). For example, some 

nutritional cues are labeled to be responsible of DNA methylation, which is one of the most widely 

studied form of epigenetic modification (Anderson et al., 2012; Zhang, 2015). The main objective 

to induce such modifications is to generate long-term alteration at molecular, and or metabolic 

level, able to give further positive results, such as improved growth performance (Fang et al., 2014; 

Gong et al., 2015; Rocha et al., 2015). Despite this, the knowledge about long-lasting effects of a 

nutritional event applied during the earliest stage of larvae development is still limited (Rocha et al., 

2016). 

1.3 The onset of exogenous feeding and larval digestive system  

 The ontogeny of the digestive system has been largely studied in many marine teleosts; 

confirming that the organs differentiation patterns are very similar between species, while small 

variations are mainly correlated with the temporal sequence of appearance of the different 

structures. In fact, at hatching time most of marine fish larvae have a very rudimentary digestive 

system without mouth and unpigmented eyes. At this stage, the digestive tract is anatomically a 

simple undifferentiated straight tube with an epithelium formed by a monostratified layer of 

columnar or cubical cells (Zambonino Infante and Cahu, 2001). The onset of exogenous feeding, 

i.e. the passage from endogenous feeding (based on nutrients contained in the yolk-sac) to 

exogenous feeding, after the complete absorption of the yolk sac and mouth opening, is a crucial 

period in terms of larvae survival rate and future growth performance. In fact, at this moment 

different variables, mainly related to nutrition and feeding aspects, such as inappropriate feed 

quality and feeding protocols, but also rearing conditions, may have negative impacts on the 

survival rate reducing, at the end, the number and quality of fish. In addition, any limitation in terms 

of energy uptake during feeding onset period not only affects the correct development of larvae but 

also compromises the growth and survival rates of the following stages of life (Valente et al., 2013). 

The main reasons for which this happens are linked not only to the partial development of the 

digestive tract, and the consequent incomplete settling of enzymatic activity at hatching time, but 

also with all the anatomical feature that are required to start the exogenous feeding, such as the ones 

related with prey localization (eyes and chemosensory organs) and capture (mouth and swimming 

capacity), not fully developed at that time (Cara et al., 2003; Navarro-Guillén et al., 2015), 

Since mouth opening, and after live preys ingestion, organs related with ingestion-digestion 

activities show an allometric increase (Yúfera and Darias, 2007). Subsequently, these organs are 
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characterized by a fast growth and differentiation necessary to reinforce digestion and nutrient 

absorption during the following days (Osse et al., 1997; Sala et al., 2005). At this phase, although 

the digestive tract is not completely developed, the differenciated organs are entirely functional at 

the moment of first exogenous feeding where the digestion occurs in an alkaline environment 

(Yúfera and Darias, 2007). In fact the absorption of lipid and protein, occuring respectively in 

midgut and in hidgut enterocytes, can be observed several hours after start of feeding (Diaz et al., 

2002). The glands annexed to digestive system, such as liver, pancreas and gall bladder, are also 

functional at mouth opening (Chen et al., 2006); as demonstration, the activity of pancreatic 

enzymes (trypsin, lipases and amylase) has been biochemically detected at first feeding and in many 

marine fish even before mouth opening (Chen et al., 2006; Elbal et al., 2004; Gisbert et al., 2004; 

Navarro-Guillén et al., 2015). Cytosolic enzymes of the enterocyte (amino peptidase, acid and 

alkaline phosphatases, esterases) are also present at first feeding in larvae of both Japanese flounder 

(Paralichthys olivaceus) and Yellowtail amberjack (Seriola lalandi) (Bolasina et al., 2006; Chen et 

al., 2006). Digestive regulatory peptides, such as acid and alkaline proteases, leucine-

aminopeptidase, acid and alkaline phospatase, and hormones, such as cholecystokinin (CCK), have 

also been detected at this stage in larvae of white Bream (Diplodus sargus), European seabass, red 

drum (Sciaenops ocellatus) and Senegalese sole  (Cara et al., 2003; Zambonino Infante and Cahu, 

2001; Navarro-Guilén et al., 2017). It is obvious that larvae have a different digestive capacity, both 

respect to juveniles and adults; nevertheless, the application of microfeeds in larvae feeding reflects 

their capacity to ingest and digest inert feed at first feeding (Cahu et al., 2003; Gawlicka et al., 

2000; Lazo et al., 2000; Oozeki and Bailey, 1995; Yúfera et al., 2005). 

1.4 Curcumin in fish diet 

Today academia and industry are both interested on plant natural products and plant 

secondary metabolites, mainly due to their wide applications in humans’ life. In fact, they can be 

used as dietary supplements or therapeutic formulation, dyes and ingredients in cosmetic industry. 

They can also been applyed as flavouring, growth promoter, antioxidant and immunomodulatory 

agents in animal industry (Aggarwal and Sung, 2009; Al-Sagheer et al., 2018; Greathead, 2003; 

Srivastava et al., 2011). In fact, being modern animal farming mostly characterized by intensive 

rearing conditions, animals are subjected to abiotic and biotic stress-generator factors that may have 

negative consequences on animal growth rate, zootechnical performance and on immune system 

defense (Lieke et al., 2020; Nya and Austin, 2011; Wang et al., 2015; Yin et al., 2009). In order to 

alleviate these negative effects, different studies investigated the zootechnical performance of 

reared animals fed on diet supplemented with plant derived products (Hosseini-Vashan et al., 2020; 

Ibrahim et al., 2019; Magouz et al., 2020; Ran et al., 2016; Türk et al., 2016). Among these 
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products currently under inquiry, curcumin is largely used in feed animal of 

zootechnical/economical value, such as cows (Vorlaphim, 2011), pigs (Ilsley et al., 2005), poultry 

(Guil-Guerrero et al., 2017) and fish (Baldissera et al., 2018)   

Curcumin is a yellow coloring agent active polyphenol present in the rhizome of the spice 

turmeric plant (Curcuma longa L.), and native to Southeast Asia. Curcumin has been part of Asian 

medicine for centuries since the time of Ayurveda (1900 BC) and nowadays it is use also in 

Western medicine in particular as anti-cancer agent (Abrahams et al., 2019; Avanço et al., 2017; 

Buhrmann et al., 2020). In laboratory conditions, curcumin showed in fact numerous therapeutic 

activities such as antioxidant, inhibiting highly toxic reactive oxygen species (ROS), 

antiinflammatory, antibacterial, anticancerous, antiviral, antistress, immunomodulatory, free-

radical-scavengers and digestive activity promoter (Baldissera et al., 2018; Bellio et al., 2014; 

Farhangi et al., 2015; Mandal et al., 2009; Mouler Rechtman et al., 2010; Prasad et al., 2014; Shi et 

al., 2015; Srivastava et al., 2011). Because of all the previously mentioned effects, the interest to 

introduce curcumin in animal diets is wide and well documented (Akdemir et al., 2017a).  

In the aquaculture sector, most of the studies where curcumin was supplemented in the diet 

involved adult or at least juvenile stages, while almost no studies have been performed using larvae. 

In rainbow trout for example, curcumin was supplemented as dietary additive in order to alleviate 

the adverse effects of high stock density; it was proved that 200 mg of curcumin per kg of diet 

promoted higher body weight, feed intake and weight gain (Akdemir et al., 2017a). Another study 

with crucian carp (Carassius auratus) demonstrated that growth performance, digestive enzyme 

activities and intestinal antioxidant capacity gave best results supplementing 5 g of curcumin per kg 

of diet (Jiang et al., 2016). In tilapia (Oreochromis mossambicus) curcumin was included in diet at 

0.5-1% doses for 35 days resulting in a significant increase of α-amilase, protease and lipase 

activities and also of insulin-like growth factors such as IGF-1 and IGF-2 (Midhun et al., 2016). 

Juveniles of Wuchang bream (Melagobrama amblycephala) were fed for 60 days with different 

concentrations of curcumin in the diet, the treatment with 60 mg of curcumin per kg showed not 

only better growth performance like, weight gain rate, specific growth rate and lower feed 

conversion rate, but also improved the non-specific immune response (Ge et al., 2015). Juvenile of 

Nile tilapia (Oreochromis niloticus) fed on a curcumin inclusion of 150 mg per kg of feed showed 

also better growth rate, antioxidant capacity and resistance to infection (Cui et al., 2013). Despite 

the good results in terms of growth rate, antioxidant status and immune responses, further research 

are strongly encouraged, in particular trying to apply this natural component into fish larvae 

microdiets. 
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In general, the antioxidant capacity of a substance is related to its reducing power which implies the 

ability of the sample to donate an electron and interfere with the free radical chain reaction (Priya et 

al., 2012). The presence and the production of antioxidants is therefore of vital importance, being 

able to keep under control the level of oxidative agents with the final task of neutralizing/inhibiting 

their deleterious effects through the modulation of some important cellular molecules (Ahmad et al., 

2000). These cellular molecules are known as transcription factors and they act as a corrector 

against impairment of transcription, translation, oxidative metabolism, RNA processing, membrane 

structures and fuction at cellular level (Vaquerizas et al., 2009).  

In this study the effects of dietary curcumin as growth promoter and antioxidant agent were 

investigated on marine fish larvae. Gilthead seabream larvae were fed on inert diet with 

different curcumin inclusion levels since mouth opening. Survival rate, growth rate 

performance, feeding incidence, digestive enzyme activities and antioxidant status were 

analyzed. 
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2. Materials and methods 

2.1 Experimental objective 

 The objective of this work was to promote fish larvae robustness by combining metabolic 

programming and early nutrition concepts. For that, the effects of curcumin through exogenous 

feeding since mouth opening as modulator of gut maturation and antioxidant status in first larvae 

was evaluated.  

 Key performance indicators, gut maturation, feeding incidence and antioxidant status of fish 

larvae fed on two different dietary curcumin supplementation levels (Low and High) was analyzed 

and compared with larvae fed on a commercial diet (Control). Samplings were performed at three 

different developmental stages: 10 DAH (LA), 24 DAH (WN) and 31 DAH (END).  

 The experiment was carried out in compliance with the Guidelines of the European Union 

Council (Directive 2010/63/EU) and Portuguese legislation for the use of laboratory animals, with 

the approval of the CCMAR-CBMR ORBEA Animal Welfare Committee for the project PROLAR 

– Early metabolic programming in fish through nutritional modulation, (ref. ALG-01-0145-

FEDER-029151). CCMAR facilities and their staff are certified to house and conduct experiments 

with live animals (licensed by the ‘Direção Geral de Alimentação e Veterinaria’, Ministry of 

Agriculture, Rural Development and Fisheries of Portugal). 

2.2 Rearing conditions 

 Gilthead seabream larvae of 4 DAH were supplied by the Laboratory of Marine Cultures at 

the University of Marine and Environmental Sciences (Puerto Real, Cádiz, Spain) with an initial 

individual dry weight of 0.03 ± 0.005 mg larva-1 and transferred to Ramalhete Marine Station 

(Universidade do Algarve, Faro, Portugal). 

 Larvae were equally distributed in 9 cylindro-conical tanks (100 L) in a semi-closed 

recirculation system with an initial density of 284 larvae L-1 (28400 larvae/tank). The experimental 

system was equipped with a mechanical filter, a submerged biological filter, a protein skimmer and 

a UV sterilizer. The water parameters were maintained as follow (means ± SD): temperature 19.2 ± 

0.02 ºC, salinity 36.3 ± 0.6 g L-1 and dissolved oxygen in water 93.8 ± 0.4% of saturation. 

Photoperiod was 10 light :14 dark. A daily monitoring of environmental parameters and larval 

mortality was performed; the rearing tanks were cleaned regularly to preserve water quality. 
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2.3 Experimental design and feeding plan 

Three treatments were randomly assigned to 9 tanks: CTRL – commercial diet; LOW – low 

dietary curcumin supplementation level and HIGH – high dietary curcumin supplementation level. 

Inert diets (commercial and experimentals) were manufactured by SPAROS Lda (Olhão, Portugal). 

Curcumin inclusion level in HIGH diet was the double respect to LOW diet, while no curcumin was 

present in diet of treatment CTRL. Each treatment was performed in triplicate.  

Larvae from all treatments were fed according to the feeding plan based on rotifers 

(Brachionus plicantilis) enriched with DHA protein Selco (Inve, Belgium), Artemia nauplii (Inve, 

Belgium) and inert diet. The amount of feed offered, co-feeding intervals and inert diet size were 

the same for all treatments and dependent on larval age according to the following protocol: at 

mouth opening (4 DAH) larvae were fed on rotifers in co-feeding with inert diet. Rotifers were 

initially increased from 12 rotifers mL-1 to 16 rots mL-1 and then progressively reduced until 13 

DAH. Artemia nauplii was introduced at an initial density of 0.3 AF mL-1 at 10 DAH and then 

gradually reduced until 0.15 AF mL-1 at 24 DAH (Weaning). Inert diet was offered from 4 DAH to 

the end (31 DAH). The diet was initially supplied at a commercial size of 100-200 µm from 4 to 11 

DAH, then at an equal mixture (50/50) of 100-200 µm / 200-400 from 12 to 24 DAH and finally it 

was supplied a size of 200-400 µm until the end of the experimental period (31 DAH). Total daily 

amount of inert diet was divided in five meals per day while the total amount of live preys was 

initially divided in three meals (4-9 DAH) and later reduced to two times per day (10-23 DAH). 

Larval rearing system was based on green water technique using Nannochloropsis oculata (4-23 

DAH) (figure 2.3.1).  

 

Figure 2.3.1. Schematic drawing of experimental feeding regime and sampling times of S. aurata 

larvae during the experiment (4 to 31 DAH). 
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2.4 Key performance indicators  

Survival rate (%) for each treatment was determined at the end of the experiment (31 DAH) 

by direct counting of individuals, considering the intermediate samplings, by the formula in (1): 

 (1) Survival (%) = (final fish number / initial fish number) x 100 

 Growth performance at each sampling point was assessed by individual dry weight (DW) 

and total length (TL) measurements (n = 15 per replicate, except for larvae at 4 DAH that were 30 

pooled-larvae, 3 pools/treatment). Dry weight measurements were obtained from freeze-dried 

samples using a high precision microbalance (± 0.001 mg; MSA36S-000-DH, Sartorius, Germany); 

previously, larvae were washed twice in distilled water and snap-freeze in liquid nitrogen. Total 

length was performed using the Leica Application Suite LAS (Leica Microsystems, Germany) for 

digital image analysis. The same larvae were used for dry weight and total length in order to 

calculate larval condition factor (K). Based on those parameters the condition factor was calculated 

according to Fulton’s condition factor formula in (2) (Mozsár et al., 2015). 

  (2) K= final body weight (mg)/[final body length (mm)]^3 

 Individual growth was also valuated measuring the relative growth rate (RGR, % day -1) 

following the formula in (3) (Ricker and Parker, 1960): 

  (3) RGR = (eg – 1) * 100, where g = [(In final weight – In initial weight) / time]  

 

2.5 Gut maturation 

 Gut maturation was evaluated through the analysis of digestive enzyme activities, such as 

trypsin, chymotrypsin, aminopeptidase-N, amylase, lipase and alkaline phosphatase activities. 

Larval sampling per sampling point and treatment was as follows: LA: 4 pooled-larvae (n = 9), 

WN: 3 pooled-larvae (n = 15), END: 2-3 pooled-larvae (n = 6). Samples were freeze-dried and 

manually homogenized in 250 µL (LA), 230 µL (WN) and 350 µL (END) of distilled water. The 

homogenate was centrifuged for 5 min at 12.500 g, 4°C to remove the tissue, and the enzymatic 

extract (supernatant) was used for the analysis. All samples were kept in ice during the process 

described above to avoid enzyme denaturation and /or damage. Enzyme extracts were kept at -20°C 

until analysis.  

 For proteases activity measurement, trypsin, chymotrypsin and aminopeptidase-N, the 

fluorogenic substrates Boc-Gln-Ala-Arg-7- methylcoumarin hydrochloride (BOC, Sigma-Aldrich 

B4153), N-Succinyl-Ala-Ala-Phe-7-amido-4-methylcoumarin (Sigma-Aldrich S8758) and Nα-
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Benzoyl-L-arginine-7-amido-4-methylcoumarin hydrochloride (Sigma-Aldrich B7260), 

respectively, were diluted in dimethyl sulfoxide (DMSO) to a final concentration of 20 μM. For 

analysis, 5 μL of substrate, 190 μL of 50 mM Tris + 10 mM CaCl2 buffer (pH 8.5, without CaCl2 for 

aminopeptidase) and 15 μL of the larval homogenate were added to the microplate (Sanz and 

Toldrá, 2002; Rotllant et al., 2008). Fluorescence was measured at 355 nm (excitation) and 460 nm 

(emission).  

 Ultra Amylase Assay Kit (E33651) from Molecular Probes was used for amylase analysis. 

This kit contains a starch derivate labeled with a fluorophore dye as substrate. This substrate was 

diluted in substrate solvent (sodium acetate; pH 4.0) and reaction buffer (0.5 M MOPS; pH 6.9) 

and, to a final concentration of 200 μg/mL. For analysis, 50 μL of the substrate solution and 15 μL 

of the larvae extract were added to the microplate. Fluorescence was measured at 485 nm 

(excitation) and 538 nm (emission).  

 Lipase activities were assayed using 4-methylumbelliferyl butyrate (Sigma-Aldrich 19362), 

and 4-methylumbelliferyl oleate (Sigma-Aldrich 75164) as susbtrates for for 4-C and 18-C like 

lipases, respectively. Substrates were dissolved in phosphate buffer (pH 7.0) to a final concentration 

of 0.4 mM (modified method from Rotllant et al., 2008), aliquoted and stored at −20 °C. 15 μL of 

the larvae homogenate was added to the microplate and mixed with 250 μL of 0.4 mM substrate for 

the analysis. Fluorescence was measured at 355 nm (excitation) and 460 nm (emission).  

For alkaline phosphatase analysis the substrate used was 4-Methylumbelliferyl phosphate 

disodium salt, (MUP, Sigma-Aldrich M8168). A 1 mmol/L stock solution of MUP was prepared by 

dissolving the substrate in borate buffer (pH 8). 15 μL of the enzymatic extract was added to the 

microplate and mixed with 100 μL of substrate for the analysis (modified from Fernley and Walker, 

1965). Fluorescence was measured at 360 nm (excitation) and 440 nm (emission). 

 All enzyme activities were expressed as RFU (Relative Fluorescence Units) per mg larva 
dry weight.  
 

2.6 Feeding incidence 

 To evaluate the feeding incidence (absence/presence of feed in the gut) 10 larvae per 

replicate were sampled at 5, 6, 8, 12, 16, 20, 23 and 28 DAH, always at 2.00 pm to ensure the same 

feeding status between sampling days. For gut content estimation, gut fullness level was examined 

by image analysis based on the technique described by Romero-Romero and Yúfera (2012) and 

Mata-Sotres et al. (2015). Larvae were photographed under the microscope connected to Leica 

Application Suite (LAS) for digital image analysis. The level of gut fullness was determined 
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measuring the pigmented area within the digestive cavity (figure 2.6.1). Gut content was normalized 

for larvae size using the ratio between the fullness area and the total length of each larvae. For 

feeding incidence estimation, per tank and sampling point, larvae with gut fullness lower than 10% 

respect to the maximum recorded were considered empty. The data analysis was performed using 

Image J software (National Institute of Health, Bethesda, MD) (Abramoff et al., 2006).  

 

  
        Figure 2.6.1. Example of 8 DAH (left) and 28 DAH (right) of S. aurata larvae used for feeding 

incidence. 

 

2.7 Antioxidant status 

The antioxidant status of the larvae was assessed by the measurement of the following 

oxidative stress biomarkers: total glutathione (TG), total antioxidant capacity (TAC), protein 

carbonylation (PC) and mitochondrial oxidative status (MOS). For the analyses 50 pooled larvae 

were collected at LA; 30 pooled larvae at WN, and 20 pooled larvae at END (n=1 per replicate, n=3 

per treatment). Larvae was washed twice in distilled water and then snap-freeze in liquid nitrogen 

and stored at -80°C until being analized.  

2.7.1 Sample preparation for biomarkers analysis	
 

For the analysis of TG, TAC and PC, fish samples were homogenized using a tissuelyser (Star-

Beater, VWR, USA) in 1200 µl of ultra-pure water. 700 µL of the supernatant was diluted in 0.2 M 

K-phosphate buffer (pH 7.4, vol. 1:1), and then centrifuged for 10 min at 10,000 g and 4 ºC. The 

post-mitochondrial supernatant (PMS) was then divided into three aliquots of 250 µL for TG, TAC 

and PC and 50 µL for Bradford analysis. The samples were kept on ice during the assay and the 

aliquots maintained at –80 ºC until further analyses. 

For the analysis of MOS, fish samples were homogenized using a tissuelyser (Star-Beater, 

VWR, USA) in 1 mL of buffer containing 225 mM manitol, 75 mM sucrose, 1 mM EGTA and 4 

mM HEPES (PH 7.2) following the protocol described by da Silva et al. (2015). The homogenate 
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was centrifugated for 10 min at 1,200 g and 4°C. The PMS was carefully removed and 

centrifugated again for 10 min, 16,500 g at 4°C. The pellet was re-suspended in a buffer containing 

250 mM sucrose and 5 mM HEPES (PH 7.2). The volume of buffer utilized was 500 µL, 650 µL 

and 750 µL for LA, WN and END respectively. The samples were kept on ice during the assay and 

then maintained in –80 ºC until further analyses. 

All biomarkers determinations were performed spectrophotometrically, in 96 well flat bottom 

microplates, with a temperature-controlled microplate reader (Synergy 4 BioTek, USA).  

Protein concentration of PMS was determined according to the Bradford method (Bradford, 

1976), using bovine γ-globulin as a standard. 

2.7.2 Oxidative stress biomakers measurement 
 
 Total glutathione content (TG) was determined using a recycling reaction of reduced 

glutathione (GSH) with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) in the presence of glutathione 

reductase (GR) excess (Baker et al., 1990; Tietze, 1969). Briefly, 250 µL of a reaction buffer 

compossed by Na-K phosphate buffer, NADPH, DTNB and GR was mixed with 50 µL of sample in 

the microplate; kinetic was measured at 412nm during 3 min. TG content was calculated as the rate 

of TNB2- formation with an extinction coefficient of DTNB chromophore formed, ε = 14.1 x 103M-

1cm-1 (Baker et al., 1990; Rodrigues et al., 2017). Results were expressed in mmol GSH per mg 

protein. 

 Total antioxidant capacity (TAC) was assessed following the protocol described by Erel 

(2004), using colored 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation 

(ABTS˙+). This method is based on the colorless molecule ABTS, which is oxidized to a 

characteristic blue-green ABTS˙+. When the colored ABTS˙+ is mixed with any substance that can 

be oxidized, it is reduced to its original colorless ABTS form again; in contrast, the reacted 

substance is oxidized. This change in color was measured as a change in absorbance at 660 nm and 

the assay was calibrated with Trolox. Briefly, 5 µl of sample was mixed in a microplate with 200 µl 

of acetate buffer solution (0,4 mol/l, pH 5.8) and 20 µl of ABTS˙+ (in acetate buffer at 30 mmol/l, 

pH 3,6). The first reading was taken just after adding all the reagents (as sample blank) while the 

last absorbance was taken at the end of the incubation period (5 min after the mixing). Results were 

expressed in mmol Trolox equivalent per mg protein  

 
 Protein carbonylation (PC) was measured based on the reaction of 2,4-

dinitrophenylhydrazine (DNPH) with carbonyl groups, according to the DNPH alkaline method 

described by Mesquita et al. ( 2014). 120 µL of DNPH (10 mM in 2M HCl) was added to 120 µL of 

sample and after 10 minutes of incubation, 60 µL of NaOH (6 M) was added. The amount of 

carbonyl groups was quantified spectrophotometrically at 450 nm after 10 minutes of incubation at 
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room temperature against a blank where the sample was substituted by an equal volume of buffer 

solution (22,308 mM−1cm−1extinction coefficient). Results were expressed in nmol carbonyl per mg 

protein 

 

The mitochondrial reactive oxygen species was assessed by the dihydrodichloro-fluorescein 

diacetate –H(2)DCF-DA (da Silva et al., 2015; Van Der Toorn et al., 2007). This dye is non-

fluorescent when chemically reduced, but after cellular oxidation and removal of acetate groups by 

cellular esterases it becomes fluorescent (Garcia-Ruiz et al., 1995). The mitochondrial suspension 

(0.5 mg protein) were incubated in the presence of 1 µM DCFDA and fluorescence was monitored 

over 5 min of gentle shaking at 28°C, with excitation and emission wavelengths of 503 and 529 nm, 

respectively. Under the described conditions the linear increment of fluorescence indicated the rate 

of ROS formation. Results are expressed as Relative Fluorescence Units (RFU) per mg 

mitochondrial protein. 

2.8 Statistical analysis 

Differences in growth performance, feeding incidence, digestive enzymes activities, 

antioxidant status parameters, and body proximal composition due to dietary treatments were 

evaluated using a one-way ANOVA after assessing equality of variances by a Levene's test. Post 

hoc multiple comparisons were carried out using Tukey's test. If equality of variances was not 

observed a Kruskal-Wallis non-parametric test was performed. To evaluate changes in enzymatic 

activity between ages, the enzymes detected only at WN and END sampling points were tested by 

means of an unpaired two-tailed Student's t-test. All percentage data were arcsine square root-

transformed prior to analysis. Statistical significance was set at reliability level of 0.05 and all the 

results were reported as arithmetic mean values ± standard deviation (SD). SPSS 26.0 software was 

used for statistical analysis and graphs (IBM, USA) while charts were done with Excel (Excel for 

Mac, version 2011).  
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3. Results 

3.1 Key performance indicators 

 Dietary treatments had no significant impact on survival rate. Survival rates at the end of the 

experiment (31 DAH) were 2.12 ± 0.63, 1.99 ± 0.59 and 1.54 ± 0.10%, CTRL, LOW and HIGH, 

respectively. 

 Growth performance parameters were similar between treatments at all sampling points 

(table 3.1.1). On average, individual dry weight increased from 0.02 ± 0.005 mg larva-1 at the 

beginning of the experiment (4 DAH) to 0.22 ± 0.01mg larva-1 at the end of the experiment (31 

DAH). Results were close to being statistically different at 31 DAH (P=0.059), tending to be higher 

in the treatments with dietary curcumin supplementation. 

Individual total length at the end of the experiment was 5.93 ± 0.05 mm larva-1. There were no 

statistical differences between treatments though it was slightly higher in treatment LOW. 

Condition factor doubled during the experiment. Although there were not statistical differences 

between treatments, like in dry weight results, it was close to being statistically different at 31 DAH 

(P=0.059), tending to be higher in the treatments with LOW dietary curcumin supplementation. 

 The relative growth rate (RGR) did not show significant differences between treatments 

along the experiment. Average RGR, considering all the experimental period, was 7.99 ± 0.75 % 

day-1. When analysed by sampling intervals, average RGR were -5.45 ± 1.60, 22.49 ± 2.65 and 5.71 

± 3.49 % day-1, for the intervals 4 – 10, 10 – 24 and 24 – 31 DAH, respectively.   
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Table 3.1.1. Growth performance parameters of S. aurata larvae: dry weight (DW), total length 
(TL) and condition factor (K) at 10 DAH (n = 45 per treatment), 24 DAH (n = 45 per treatment) and 
31 DAH (n = 24 per treatment). Relative growth rate (RGR) was measured for each interval time 
(4-10, 10-24 and 24-31 DAH) and for the overall period of the experiment (4-31 DAH). 
 

Treatments 
  CTRL LOW HIGH 

DW                    
10 DAH  0.02 ± 0.005 0.02 ± 0.006 0.018 ± 0.005 
24 DAH 0.15 ± 0.075 0.15 ± 0.081 0.15 ± 0.07 
31 DAH 0.21 ± 0.082 0.24 ± 0.11 0.22 ± 0.089 

TL                   
10 DAH  3.56 ± 0.25 3.61 ± 0.15 3.57 ± 0.14 
24 DAH 5.5 ± 0.69 5.31 ± 0.65 5.65 ± 0.66 
31 DAH 5.91 ± 0.62 6.03 ± 0.57 5.86 ± 0.67 

K                   
10 DAH  0.23 ± 0.08 0.21 ± 0.08 0.2 ± 0.06 
24 DAH 0.42 ± 0.08 0.42 ± 0.14 0.39 ± 0.07 
31 DAH 0.47 ± 0.08 0.54 ± 0.12 0.52 ± 0.1 

RGR                    
4-10 DAH - 4.71 ± 0.89 - 4.97 ± 2.42 - 6.8  ± 0.46 
10-24 DAH 22.12 ± 2.93 22.01 ± 3.75 23.34 ± 1.96 
24-31 DAH 5.04  ± 5.66 6.76 ± 3.28 5.31 ± 1.55 
4-31 DAH 7.87 ± 0.5 8.23 ± 0.95 7.87 ± 0.98 

Results are means ± SD. Absence of letters indicates no statiscal difference between treatments. 
 

3.2 Gut maturation 

 Along the experiment, all the digestive enzymes analysed were detected at least in the most 

advanced stage of development (31 DAH, END). This suggests a regular development of the larvae 

digestive system in all the treatments.  

3.2.1 Proteases 

 Trypsin activity showed an overall increment during the experimental period. In fact, after 

an initial decrease recorded between 10 and 24 DAH, it followed an increasing trend until 31 DAH, 

being this increment statistically significant for all treatments (P=0.000) (table 3.2.1, annexes). 

Trypsin activity at 24 DAH was really close to be statistically different between treatments 

(P=0.054), tending to be higher in larvae from HIGH treatment. This tendency became statistically 

significant at 31 DAH (P =0.002), with higher trypsin activity in larvae from treatment HIGH when 

compared with CTRL larvae (figure 3.2.1.a), and similar between larvae fed the curcumin 

supplemented diets (LOW and HIGH). 
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Chymotrypsin and aminopeptidase activities were detected at the end of the experiment (31 DAH). 

Chymotrypsin activity reached the highest value (P=0.004) in larvae from HIGH treatment. 

Aminopeptidase activity did not show statistical differences between treatments, although values 

tend to be lower in larvae from LOW treatment (figure 3.2.1 b and 3.2.1.c, respectively).  

 
The trypsin:chymotrypsin ratio (T:C) did not reveal significant difference between treatments, 

although it was slightly higher in larvae fed on CTRL diet (table 3.2.1, annexes). Moreover, CTRL 

fish showed also a coefficient of variation clearly higher (17.77%) than LOW (8.64%) and HIGH 

(8.02%). 

3.2.2 Amylase 

Amylase activity was only detected in the older stages of development, at WN (24 DAH) and END 

(31 DAH), showing an overall tendency to decline. The reduction was statistically significant in 

larvae from CTRL and HIGH diets (P=0.026 and 0.002, respectively), decreasing almost in half 

from 24 to 31 DAH (table 3.2.1, annexes). Regarding differences in amylase activity between 

treatments, it was observed a pattern of higher activity in the CTRL treatment (without curcumin 

supplementation), however, without statistical differences (figure 3.2.1.d). 

3.2.3 Lipase  

Both lipases showed decreasing patterns among sampling points. In particular 4-C like lipase 

activity, which was detected in all developmental stages, significantly decreased in all treatments 

between 10 and 24 DAH (P=0.000 for CTRL, LOW and HIGH) (table 3.2.1, annexes). At 10 DAH, 

activity was significantly higher in larvae from LOW respect to HIGH treatment (P=0.041). At 24 

DAH, CTRL larvae showed the significantly highest activity (P=0.004); while at 31 DAH no 

statistical differences were detected between treatments (figure 3.2.1. e).  

By contrast, 18-C like lipase activity was only detected at 24 and 31 DAH. In this span of time the 

enzymatic activity decreased significantly in all treatments (P=0.000, P=0.0024 and P=0.004 for 

CTRL, LOW and HIGH respectively) (table 3.2.1, annexes). Results showed also a significant 

difference at 24 DAH, with higher activity in CTRL larvae compared to LOW and HIGH treatments 

(P=0.000) (figure 3.2.1.f). 

3.2.4 Alkaline phosphatase 

Alkaline phosphatase activity was detected at 24 and 31 DAH; within this period the activity 

incremented, being statistically significant for all treatments (P=0.009, P=0.000 and P=0.022 for 

CTRL, LOW and HIGH respectively) (table 3.2.1, annexes). At 24 DAH, alkaline phosphatase 

activity was significantly higher in CTRL treatment compared to LOW treatment (P = 0.036). 
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Although a trend to lower values persisted in treatments with curcumin supplementation at 31 

DAH, no statistical differences were recorded (figure 3.2.1.g). 
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Figure 3.2.1. Enzymatic activity levels of trypsin (A), chymotrypsin (B), aminopeptidase (C), 
amylase (D), 4-C and 18-C like lipases (E and F, respectively) and alkaline phosphatase (G) 
(RFU/mg DW) in S. aurata larvae at different sampling points, respectively LA (10 DAH; 4 
pooled-larvae), WN (24 DAH, 3 pooled-larvae ) and END (31 DAH, 2-3 pooled-larvae). Blue, 
green and orange colors for CTRL, LOW and HIGH treatments, respectively (lengend shown on 
graph A). Different letters (x,y,z) represent significant differences inside each treatment during 
larvae development. Different letters (a,b) represent significant differences between treatments at 
the same larval age (P<0.05). Absence of letters indicates no statiscal difference between the 
treatments at the same larval age (P>0.05). 
 

3.3 Feeding incidence 

Treatments showed similar patterns of feeding incidence (presence/absence of feed in the gut) 

among all sampling points. CTRL larvae showed statistical differences between samplings, with the 

highest feeding incidence at 20 and 28 DAH and the lowest at 8 and 12 DAH (P=0.007). At 8 DAH 

larvae from CTRL and LOW treatments had a significantly higher feeding incidence than HIGH 

(P=0.027) (figure 3.3.1). Along the experiment more that 50% of larvae in CTRL and LOW 

treatments were detected with feed in the gut, with the only exception of LOW at 6 DAH. HIGH 

treatment generally showed lower values, below the 50% at 8 and 12 DAH, and generally higher 

variability along the experiment. Since the introduction of Artemia nauplii (10 DAH) a higher 

percentage of larvae have been detected with feed in the gut in all the treatments. Moreover, the 

transition between co-feeding and inert diet (24 DAH) had not negatively influenced the feeding 

incidence that remained stable between 23-28 DAH, with almost 80% of the larvae presenting feed 

in the gut.   
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Figure 3.3.1. Feeding incidence (%) of S. aurata larvae at 5, 6, 8, 12, 16, 20, 23 and 28 DAH (n=30 
per treatment). Different letters (y,z) represent significant differences inside each treatment during 
larvae development. Different letters (a,b) represent significant differences between treatments at 
the same larval age (P<0.05). Absence of letters indicates no statiscal differences (P>0.05). 
 

Gut fullness revealed statistical differences along the larval development. An increase in gut 

fullness was recorded from 12 DAH – onwards for all the treatments (P=0.00, 0.000 and 0.000 for 

CTRL, LOW and HIGH, respectively) (figure 3.3.2). For what concern differences between 

treatments at the same larval age, results showed significant differences only at 12 and 23 DAH 

(P=0.028 and 0.001, respectively), where higher gut fullness levels were observed in larvae from 

treatment HIGH compared to CTRL and LOW (table 3.3.1, annexes). 
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Figure 3.3.2. Gut fullness (area / TL) of S. aurata larvae at 5, 6, 8, 12, 16, 20, 23, 28 DAH 
(n=30 per treatment). Blue, green and orange colors for CTRL, LOW and HIGH treatments, 
respectively. Different letters (x,y,w,z) represent significant differences inside each treatment 
during larvae development. Different letters (a,b) represent significant differences between 
treatments at the same larval age (P<0.05). Absence of letters indicates no statiscal difference 
between the treatments at the same larval age (P>0.05). 
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3.4 Antioxidant status 

Antioxidant status biomarkers were detected in all sampling points.  
 

3.4.1 Total glutathione content 

Larvae total gluthatione content (TG) showed an overall increment along the experimental period. 

Although this increasing tendency was registered for all treatments, it was statistically significant 

for HIGH larvae (P=0.022). No differences between treatments at the same age were observed 

(figure 3.4.1.a).  

3.4.2 Total antioxidant capacity 

In general, TAC levels showed a decrease between LA (10 DAH) and WN (24 DAH) period 

followed by a slight increment in the subsequent period (WN-END). This was statistically different 

for CTRL and LOW fish (P=0.021 and P=0.035 respectively), while no differences were found for 

HIGH treatment (P=0.086). No differences were reported between treatments at the same age 

(figure 3.4.1.b). 

3.4.3 Protein carbonylation 

No statistical differences were observed for protein carbonylation neither between treatments at the 

same age nor ontogenetic differences. Overall, values tended to keep stable for CTRL and LOW 

treatments along the experiment, while for HIGH levels trended to increase between LA and WN 

sampling points, followed by a trend to decrease until the end of the experiment. PC levels in HIGH 

larvae were close to be statistically different between sampling points (P=0.058). No differences 

were observed between treatments at each sampling point (figure 3.4.1.c)  

3.4.5 Mitochondrial oxidative status 

Larvae of the different treatments showed a global tendency to increase their mitochondrial 

oxidative status along the experiment. This increment was only significant in CTRL treatment 

(P=0.000), increasing from 58.08±40.25 to 810.19±144.71 RFU/mg mitochondrial protein, no 

statistical difference was observed in LOW and HIGH fish (P=0.061 and P=0.077, respectively). No 

differences were detected between treatments at the same age (figure 3.4.1.d). 
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Figure 3.4.1. Antioxidant status biomarkers; total glutathione content (TG, A), total antioxidant 
capacity (TAC, B), protein carbonylation (PC, C) and mitochondrial oxidative status (MOS, D), of 
S. aurata larvae at 10 DAH (n = 50 pooled larvae per treatment), 24 DAH (n = 30 pooled larvae per 
treatment) and 31 DAH (n = 20 pooled larvae per treatment). Blue, green and orange for CTRL, 
LOW and HIGH treatments, respectively (legend shown in graph A). Different letters (y,z) 
represent significant differences inside each treatment during larvae development (P>0.05).  
Absence of letters indicates no statiscal difference inside each treatment during larval ages. 
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4. Discussion 

Curcumin, a hydrophobic polyphenol extracted from the rhizome of tumeric (Curcuma 

longa L.), is largely known and investigated because of its wide range of pharmacological effects, 

such as: anti-inflammatory, anti-oxidant, anti-tumor, anti-bacterial, anti-viral, promoter of digestive 

capacity and immunomodulator (Akdemir et al., 2017b; Ming et al., 2019). The objective of this 

work was to investigate the effect of dietary curcumin both as early digestive promoter, fostering 

the ontogeny of the digestive system and the correlated enzymatic activity, and as antioxidant agent, 

attenuating the harmful effects of the oxidant molecules. Since mouth opening (4 DAH), gilthead 

seabream larvae were fed on microdiet with different curcumin concentrations (0, LOW and HIGH, 

respectively for CTRL, LOW and HIGH treatments), in co-feeding regime with live preys. At 24 

DAH larvae were weaned and fed exclusively on inert feed until 31 DAH. Survival rate, growth rate 

parameters, feeding incidence, digestive enzyme activities and antioxidant status of the larvae from 

the different treatments were analysed and compared. 

 Among the factors limiting the success of the larval rearing process, one of the most 

important is related to larval nutritional requirements and digestive physiology (Hamre et al., 2013; 

Rocha et al., 2016; Rønnestad et al., 2013). With these implied restrictions, this study was facing a 

current huge challenge in the marine larviculture sector: the early substitution of live preys with 

inert diet. In fact, if survival rate and growth performance in the present study are compared to other 

trials in which inert diet, at the earliest, was supplied in co-feeding in larvae of 14 DAH onward, as 

in Costa, (2012), Pantazis et al., (2014), Perera and Yúfera, (2017), both parameters performed 

lower values. However, being this comparison certainly biased, due to the different rearing 

condition and especially due to differences in the feeding protocol, in particular considering that in 

this trial micro feed was provided since mouth opening at 4 DAH, further research need to be 

conducted. In addition, in this trial no differences were detected between treatments both, for 

survival and growth performance; thus, results leads to confirm that curcumin did not negatively 

influence both parameters and the results obtained should be justified by biological reasons, such as 

larval quality. Despite this, larvae fed on low curcumin supplementation (LOW diet) showed 

slightly better results, being close to the significance level (P = 0.059) both for weight and condition 

factor, especially when compared to CTRL larvae. This might suggest a positive effect of curcumin 

on growth performance. The RGR was also slightly higher in LOW treatment, but no significant 

differences were denoted. RGR measured by intervals reflected the effects of the different phases of 

the feeding plan on the larval growth. RGR was negative during the period 4 – 10 DAH in all the 

treatments while it showed a sharp increase in the following period (10 – 24 DAH), decreasing 

again after weaning (24 – 31 DAH). This might denote a possible negative correlation of RGR with 
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the feeding plan here utilized, that not always might have matched the nutritional requirements of 

the young larvae, especially during the period of co-feeding with rotifers. By contrast, the better 

growth performance was observed in the period of co-feeding with Artemia.   

In general, few researchs have been conducted on fish fed on curcumin but trials performed with 

other animals tend to validate its positive effect on growth. For example, growing Japanese quails 

(Coturnix japonica) of 26.1 ± 0.08 g live weight, returned best growth rate performance when fed 

on curcumin inclusion diets (Reda et al., 2020); while the same positive effect was measured also in 

15 days-old nursing Lacaune lambs (Ovis aries) of 5.34 ± 0.42 kg live weight, for which the highest 

growth rate was measured in treatment with curcumin in the diet (Molosse et al., 2019).  These 

results suggest that curcumin might offer better results in term of growth; nevertheless larviculture 

will need future research to validate the effects of curcumin as survival and growth promoter. 

Digestive enzymes analyses are of particular interest in order to evaluate gut maturation; indeed the 

digestion rate in the gut limits the uptake of nutrient and can potentially limit the growth rate of the 

whole organism (Lemieux et al., 1999; Rønnestad et al., 2013). In addition, if analyses on enzyme 

activities show a response to environmental changes, such as feeding regime or light cycle, the 

utilization of their values as gut maturation indicators is even more justified (Navarro-Guillén et al., 

2015). The digestive enzymes under study were all detected along the experiment, at least at the 

older stages of development according to the species ontogenesis. There were impacts of the dietary 

treatments in larvae with the same age, and also impacts of the dietary treataments in the larval 

development. Overall, in all sampling points, it was noted a huge variability of the results. It is 

important to mention that all samplings were performed at the same time (9.00 am) and feeding 

condition to avoid differences between sampling points due to the feeding status of the larvae.  

 Fish larvae, being the vertebrate organism with the highest growth potential (up to 

100%/day) (Conceição et al., 1998), require a protein- and lipid-rich feed in order to support the 

high energy requirements essential for fast growth (Hamre et al., 2013; Rønnestad et al., 2013). 

Intestinal proteases have a specific hydrolytic activity towards the protein/polypeptide chains; their 

precursors are mainly produced in the pancreas. Trypsin, generally accepted to be the most 

important proteolytic enzyme in the early stage of marine fish larvae, is among the pancreatic-

proteolytic enzymes expressed since the first feeding (Cara et al., 2003; Rønnestad et al., 2013; 

Zambonino Infante and Cahu, 2007). Also, if it is not clear yet the reason behind the slightly tryptic 

activity reduction after the onset of the first feeding (Rønnestad et al., 2013) during the first three 

weeks of life, at least for temperate fish species, the secretion of this enzyme assumes a general 

growing trend (Cahu and Zambonino Infante, 2001). According to this, larval tryptic activity in the 

present study was detected along the whole experiment, following a decreasing and increasing 

trend, for the first (10-24 DAH) and second experimental periods (24-31 DAH), respectively. 
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Moreover, dietary curcumin seemed to have a positive effect on trypsin activity; in fact, along the 

whole experiment trypsin activity tended to be higher in HIGH larvae if compared to both, CTRL 

and LOW fish. This result is similar to the positive effect of curcumin on trypsin activation showed 

in juveniles of Crucian carp (Carassius auratus) and rats (Jiang et al., 2016; Platel and Srinivasan, 

2000). Chymotrypsin, a proteolytic enzyme largely correlated to the maturation of the digestive 

system (Rønnestad et al., 2013), in this study was only measured at 31 DAH, with a strong 

difference between treatments. The highest chymotrypsin activity was detected in larvae fed on 

HIGH diet, meaning that supplying diet with curcumin inclusion promote the development of the 

larvae digestive capacity. In line to this, in a previous study by Mata-Sotres et al. (2016) with 

seabream larvae, despite chymotrypsin gene expression was recorded since 10 DAH, its activity 

was not detected during the whole experiment (until 60 DAH). This might suggest that curcumin 

can affect the post-translational regulation of this enzyme. In addition, some authors suggest to use 

also the trypsin: chymotrypsin ratio (T:C) as additional parameter to determine nutritional status 

both for fish larvae and adults (Cara et al., 2007; Rungruangsak-Torrissen et al., 2006; Sunde et al., 

2001). This ratio indicates the extent of chymotrypsin activated by trypsin, therefore signaling the 

proteolytic capacity of the fish. Those authors also suggested that a higher T:C, indicates a higher 

absorption and transport rates of essential amino acids for protein synthesis. One limitation of this 

approach is represented by the opposite activity patterns of the enzymes; in fact, while trypsin 

usually decrease after the onset of a functional stomach, with gastric digestion settled, chymotrypsin 

continue to increase (Rønnestad et al., 2013). In this study T:C ratio was substantially equal 

between treatments, but a higher homogeneity was detected in treatments with curcumin 

supplementation, mostly due to a lower variability in chymotrypsin activity results. So, curcumin 

might have played a role as synchronyzer of the intestinal maturation of larvae from curcumin 

treatments (LOW and HIGH diets). Among the proteolytic enzymes studied in this work, 

aminopeptidase, contrary to trypsin and chymotrypsin, is produced by the intestinal brush border 

membrane (Cara et al., 2003; Zambonino Infante and Cahu, 2007). In marine fish larvae such as 

European seabass, red drum (Sciaenops ocellatus) and Senegalese sole, its level tends to increase 

since the fourth week after hatching onwards, characterizing the normal maturation of the 

enterocytes, this is not only characteristic of developing fish larvae but also of other species 

including mammals (Cahu and Infante, 1995; Kotzamanis et al., 2007; Rønnestad et al., 2013; 

Zambonino Infante and Cahu, 2001). In line with these studies, also in this trial aminopeptidase was 

only observed at 31 DAH, in concordance with the expected ontogeny of the larvae gut maturation. 

Aminopeptidase activity levels were similar between larvae from different treatments, especially 

between CTRL and HIGH diet while it was slightly lower in larvae fed on LOW diet. As observed 

for chymotrypsin, curcumin inclusion might have helped in the enzyme functionality, with lower 
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variability in larvae fed on dietary curcumin. This leads to suggest that curcumin might stimulate 

larvae gut development and promoting digestive capacity. In the end, curcumin seems to have 

played a positive role on proteolytic enzymes promoting the enzymes functionality. 

 Is it well recognized that the ability of fish to digest carbohydrates (mono-, di and 

polysaccharides) differs according to the feeding habits, from herbivorous to strict carnivorous, of 

different species (Rønnestad et al., 2013). Generally, carnivorous species do not use dietary 

carbohydrates as primary energy substrate; hence carbohydrase enzymes such as α-amylase, a 

fundamental enzyme for the digestion of high complex carbohydrates, have been less investigated 

especially if compared to proteolytic or lipolytic enzymes (Rocha et al., 2016). Despite this, there 

are several studies where amylase was detected since the early stages of life (Cahu and Infante, 

1994; Cara et al., 2003; Gisbert et al., 2009; Ma et al., 2005; Moyano et al., 1996; Suzer et al., 

2007), with clear different patterns between marine fish larvae species (Moyano et al., 1996; Naz, 

2009; Zambonino-Infante et al., 2008). In those studies, it was reported that α -amylase is entirely 

synthetized by the pancreas, and activity was detected since the pancreas starts to be functional 

during the yolksac stage. Activity tends then to reach its peak after the first feeding followed by a 

decreasing pattern, this pattern is always species-specific (Rønnestad et al., 2013). In fact, while in 

herbivorous or omnivorous species the activity of amylase increases along the development 

(Zouiten et al., 2008), the opposite occurs in carnivorous species where, with the activation of the 

stomach, amylase activity tend to decrease (Cara et al., 2003; Zambonino-Infante et al., 2008). In 

this study, amylase was not detected until 24 DAH; this was in line with (Mata-Sotres et al., 2016) 

where amylase was detected for the first time in gilthead seabream larvae at 30 DAH, 0.187 ± 0.021 

mg live weight, slightly smaller than larvae in the present trial. The same pattern was observed for 

Senegalese sole larvae, were amylase activity was measured only at 20 and 32 DAH (Navarro-

Guillén et al., 2015). In the present study, at 24 and 31 DAH amylase, tended to be higher in larvae 

fed on commercial diet, but statistical differences were not found between the treatments. A 

declining pattern of amylase activity was observed in all the treatments, as similarly showed in 

Péres et al., (1996) and Ribeiro et al., (1999), confirming that young larvae tend to have a relative 

higher activity of amylase respect to the older. In conclusion, amylase activity decreased similarly 

in all treatments suggesting that early introduction of diet in a co-feeding regime had no detrimental 

effect on larvae digestive capacity.  

 Larvae dietary lipid utilization is a topic that has received an increasing attention during the 

last decades (Izquierdo et al., 2000a; Rønnestad et al., 2013; Zambonino Infante and Cahu, 2001). 

In fact, lipolytic enzymes play an important role in the digestion process of the young larvae due to 

the high energy needs in the early stages of life (Hamre et al., 2013); despite this, the estimation of 
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the marine fish larval capacity to digest lipids is still difficult (Rønnestad et al., 2013). In this study 

4C-like lipase, able to digest short-lipidic chains, was detected since the beginning of the 

experiment and showed a decreasing pattern probably due to the substitution with lipolytic enzymes 

with affinity for more complex substrates, like 18C-like lipase, as indicated in Izquierdo et al., 

(2000). 4C-like lipase activity was significant different for all treatments between 10 and 24 DAH, 

confirming the main idea of the higher energy requirement at early stages; in fact at 10 DAH it was 

achieved the highest activity level for all treatments. Finally, at 31 DAH there were not differences 

between treatments; at this age in fact, activity levels were in the same range than at 24 DAH for all 

treatments. As observed for 4C-like lipase, also 18C-like lipase activity followed an unexpected 

decreasing tendency, contrary to what suggested in Mata-Sotres et al., (2016) where total lipase 

activity tend to increase from 10 to 30 DAH. Despite this, the dietary treataments did not had a 

negative role on lipases activity since there were not differences comparing to larvae fed on the 

commercial diet; in fact, the decreasing pattern of 18C-like lipase activity was significant in all the 

treatments. It is interesting to note in the end how, despite at 24 DAH the levels of both the lipases 

analyzed were lower in treatments with curcumin supplementation, larvae fed on curcumin diets 

were not significantly smaller, neither in terms of dry weight or total length. This could be derived 

due to the higher trypsin activity measured on these treatments. This opposite trend between trypsin 

and lipase enzymes activity was similar to what reported in a study with gilthead seabream larvae 

fed on different rehydrated microdiets (Yúfera et al., 2016). Nevertheless, further studies are 

suggested in order to better investigate both the functionality and the efficiency of lipolytic enzymes 

in larvae fed on curcumin diet. 

 Over the past years the intestinal isoform of alkaline phosphatase (IAP), among the major 

homeostatic enzymes produced by the enterocytes, has gained an increasing attention due to its 

capacity to keep inflammation under control and, as a consequence, to maintain a gastrointestinal 

and systemic health (Bilski et al., 2017; Lallès, 2019, 2014, 2010; Rader, 2017). The activity of 

alkaline phosphatase, that is related to the transport mechanism of extracellular digestion, is utilized 

as an marker to indicate a fully functionality and integrity of the intestinal epithelium (Novelli et al., 

2016; Parma et al., 2020; Rønnestad et al., 2013; Toledo-Cuevas et al., 2011). Most of the 

publications reviewed by Lallès, (2019) reported that the highest IAP activity was localized in the 

proximal intestine, intermediate values in the mid-intestine while the lowest values were detected in 

the distal intestine, in both juvenile and adult fish. However, other studies reported that age is not 

the only factor affecting the functionality of IAP, but also others factors including dietary regime 

and rearing condition system might have a role on it (Harpaz and Uni, 1999; Wu et al., 2009; Xiao 

et al., 2017). Studies that investigated IAP level changes correlated with fish ontogeny showed that 

although IAP is already present at larval hatching, also if at low levels; then it tends to increase with 
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development, reaching the first peak, and eventually a second, between 10/15 to 40 DAH (Ben 

Khemis et al., 2006; Ghasemi et al., 2020; Lallès, 2019; Zouiten et al., 2008). Despite this general 

trend, substantial differences in the temporal IAP pattern between species have been noted, as 

example both perch (Perca fliviatilis L.) and bay snook (Petenia splendida) displayed high IAP 

activity at hatching (Kuz’mina, 1996; Uscanga-Martínez et al., 2011). In the present study, alkaline 

phosphatase activity was not measured until 24 DAH, correlated to intestinal maturation. 

Differences in activity detection between treatments were only significant at 24 DAH, with higher 

values in CTRL larvae when compared to LOW larvae. Then, alkaline phosphatase increased in all 

treatments, suggesting an overall gain in larvae digestive capacity with development; nonetheless, 

the sharper increment was observed in larvae fed on LOW curcumin diet, suggesting a plausibile 

positive role of curcumin on intestinal maturation. Data collected by Lallès (2019) tend to support 

the hypothesis about the importance of feed intake as a major driver of IAP activity in fish. In fact, 

as observed in mammals (Goldberg et al., 2008; Lallès, 2014, 2010) and in fish, e.g. in Atlantic cod 

(Gadus morhua) (Lemieux et al., 1999), roach (Rutiilus rutilus caspicus) (Abolfathi et al., 2012) 

and blunt snout bream (Megalobrama amblychepala) (Xu et al., 2016) IAP activity is strongly and 

positive correlated with feed intake. In addition, as demonstrated by Engrola et al., (2007) in 

Senegalese sole larvae, the feeding transition at weaning is important in supporting GI development 

also at earlier stages of development. Finally, in this study, at 23 DAH seabream larvae fed on 

HIGH curcumin inclusion had significantly higher feed content in the gut than CTRL, although IAP 

activity was not different between treatments (at 24 DAH). This might indicate that feed intake did 

not significantly influence IAP activity. Nevertheless at 28 DAH, gut content of HIGH treatment 

was slightly lower than CTRL but three days after (i.e. 31 DAH) the level of IAP was substantially 

the same between treatments. So in conclusion, it is not clear if neither the presence of curcumin in 

the diet or feed intake might influence IAP activity in gilthead seabream larvae, but, as mentioned 

before, IAP activity followed an increasing trend in all the treatments, suggesting that curcumin was 

at least not negatively affecting the functionality of IAP. All this together, leave open the possibility 

for further studies to better investigate the role that curcumin might play as beneficial promoter of 

alkaline phosphatase functionality in the long-term, and therefore, on the general gut intestinal 

maturation. 

 In this study, feeding incidence was evaluated following the image analyses technique 

previously described by Romero-Romero and Yúfera, (2012) and optimized by Mata-Sotres et al., 

(2016). For each larva the level of gut fullness was determined measuring the pigmented area within 

the digestive cavity. Initially, the presence/absence of feed in the gut of each larvae was evaluated, 

indicating that along the experiment there were almost no differences in feeding incidence between 

treatments. In fact, differences were only observed at 8 DAH, where larvae fed on CTRL and LOW 
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diets presented higher feeding incidence than HIGH larvae. This confirmed that, overall, curcumin 

inclusion in the diet did not negatively affect neither the dietary palatability nor the larvae appetite. 

Moreover, along the complete experimental period, a wide variability in gut fullness was observed, 

especially for larvae fed on HIGH diet. Only CTRL treatment exhibited significant differences 

among samplings points with higher feeding incidence at 20 and 28 DAH, when compared to 8 and 

12 DAH. Also, HIGH treatment showed differences close to the significance level, but globally, all 

the treatments increased the feeding incidence from 12 DAH-onwards, two days after the 

introduction of Artemia nauplii in the feeding plan. Secondly, gut fulness normalized for total 

length was taken under consideration. The results obtained from this analyse revealed no significant 

differences between treatments for almost all the experiment. The exceptions were at 12 and 23 

DAH, where gut content was markedly higher in HIGH larvae. Despite this, both dry weight and 

total length measured at the nearest sampling point (10 and 24 DAH, respectively) were not 

significantly different between treatments, showing that probably larvae were not efficiently 

utilizing the higher level of ingested feed. Gut fullness showed a significant increment along the 

experimental period for all treatments. As seen previously for presence/absence of feed, the highest 

increment was here performed from 8 / 12 DAH onwards, coinciding to the inclusion of Artemia 

nauplii in the larval feeding plan. While weaning, did not affected negatively the larval feeding 

incidence, the overall survival and growth performance of larvae were lower than in others 

previously mentioned studies involving early weaning. This might probably indicate that the 

introduction of inert diet since mouth opening, combined with the reduction of live preys (both, in 

terms of quantity supplied and duration), is an extreme feeding plan that not fit well with the 

nutritional requirements of the young larvae or that may increase the stress level of the larvae 

rebounding negatively on performance indicators. As no differences were revealed between 

treatments, it was proved that curcumin did not have negative effects on survival and on key 

performance indicators; nevertheless, still remain to find out clear evidence about its positive role as 

intestinal maturation promoter from early stages of development. 

 In this study the effects of curcumin as a potent antioxidant agent were tested on gilthead 

fish larvae. In fact, while the effects of antioxidant agents such asα-tocopherol (vit E) and L-

ascorbic acid (vit C) or taurine (Tau) have been already investigated in fish larvae (Chen et al., 

2005, 2004; Matsunari et al., 2013; Pinto et al., 2018) and juveniles (Brotons Martinez et al., 2004; 

Kim et al., 2008, 2005, 2003; Takagi et al., 2008), curcumin was almost exclusively tested only in 

juveniles (Akdemir et al., 2017a; Jiang et al., 2016; Mahmoud et al., 2017a). Here the antioxidant 

status of the larvae was analysed through the measurement of differents biomarkers such as: total 

glutathione (TG), total antioxidant capacity (TAC), protein carbonylation (PC) and mitochondrial 

oxidative status (MOS), giving at the end a general picture of the antioxidant status of the 
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organism.Globally, the antioxidant molecules prevent and compensate the oxidative stress 

generated by the formation and the accumulation of harmfull oxidant agents: the so-called free 

radicals (Aksoy et al., 2013). Among these free radicals molecules, the reactive oxygens species 

(ROS) are one of the most studied due to their chemical unstability and their capacity to drive 

trough a oxidative stress condition (Young and Woodside, 2001). Oxidative stress is considered a 

physiological condition in which oxidant agents, mainly ROS, are continuosly produced within 

cells with an imbalanced rithm that overcome the production of antioxidant defenses scavenging the 

excessively produced ROS (Harwell, 2007; Imlay, 2003; Ott et al., 2007). If a condition of 

homeostasis is caractherized by the presence of antioxidant compounds that contrast and balance 

the harmful effects of oxidant molecules, in an oxidative stress condition the dangerous effects of 

these lasts molecules become even worse because the absence of the first (Kohen and Nyska, 2002). 

Thus, oxidant reactions can damage not only all sort of biomolecules within cells, such as proteins, 

lipids, carbohydrates and DNA but also the cell itself, culminating in cell death (Butterfield and 

Sultana, 2008; Levine and Stadtman, 2001).  

Glutathione is a bioactive tripeptide present intracellularly in two forms: the reduced glutathione 

(GSH) and the oxidized glutathione (GSSG) (Ming et al., 2019). Glutathione redox cycle is one of 

the most important antioxidant defense mechanisms able to detoxify ROS, like hydrogen peroxide 

(Stephensen et al., 2002). GSH plays physiological functions in the synthesis of protein and DNA 

as well as acting as antioxidant agent reducing the rate of apoptosis in the different tissues, helping 

to maintain a proper cellular redox homeostasis, scavenging the free radicals molecules (Buzadžić 

et al., 2004; Deponte, 2013; Merad-Boudia et al., 1998; Ming et al., 2019; Saeij et al., 2003). 

Despite the role and the importance of GSH content in alleviate toxic effects of metals on animal at 

adult stages was analyzed and confirmed with tilapia (Atli and Canli, 2008), rats (Chattopadhyay 

and Ghosh, 2010) and grass carp juveniles (Ming et al., 2019), there are not studies investigating 

how to enhance the antioxidant capacity of fish larvae, specifically through the induction of GSH 

rises. In this study no differences were observed between treatments in TG content; this might mean 

that curcumin did not played any significant role in the promotion of glutathione production, and 

therefore glutathione redox cycle. In fact, if in terms of average content during the period of the 

experiment TG levels were sligthly higher in larvae fed on LOW curcumin, but with a higher 

average deviation, by contrast, larvae fed on commercial diet presented both, a tend to lower TG 

content and lower deviation.  

The antioxidant capacity of an organism, or sample, is measured as the amount of antioxidant 

molecules, considered as a whole. The fact that the antioxidant molecules are considered as a whole 

instead of being separated, depends on two factors: the first implies the practical difficulty of 
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measuring these molecules individually, while the second involves their additive property at the 

base of their function (Erel, 2004). From this last point derives that the antioxidant capacity is also 

called total antioxidant capacity (TAC) (Erel, 2004; Rice-Evans and Miller, 1994). As previously 

reported, the antioxidant molecules prevent, or inhibit, the harmfull oxidant reactions caused by the 

presence of some unstable molecules, such ROS. The capacity of an organism to not incur in 

oxidative stress condition will be higher the greater the availability of antioxidant molecules 

(Barbosa et al., 2020). In this study, TAC of larvae from different treatments followed the same 

pattern, slightly decreased from 10 DAH to 24 DAH and then slightly increased until 31 DAH, 

although no differences were noticed between treatments along the experiment. Results suggest that 

curcumin did not significantly stimulate the larval total antioxidant capacity, neither positively nor 

negatively. This fact might indicate a positive role of curcumin as antioxidant promoter also in the 

larval stage; being in line with that described in the literature for juvenile and adult fish like in Giri 

et al. (2019) for common carp, in Ge et al. (2015) for Wuchang bream (Megalobrama 

amblycephala) and in Mahmoud et al. (2017b) for tilapia. 

The posttranslational modifications (PTMs) are one of the most harmful cellular effects caused by 

ROS. These modifications affect in particularly biomolecules like proteins, due to their large 

abundance in cells (Bollineni et al., 2014). Protein carbonylation (PC) is among the PTMs that 

affect proteins, and is widely recognized as marker of oxidative stress under pathological conditions 

(Dalle-Donne et al., 2003). PC consist in an irreversible oxidation of the amino acid chain yielding 

chemically reactive carbonyl groups, such as aldehydes, ketones or lactams (Fedorova et al., 2014). 

These compounds, accumulated in the cells, cause the breakages of the normal functionality of the 

organism driving to the appearance of diseases (Stadtman, 2006). In the present work it was 

expected a reduction of PC in the larvae fed on dietary curcumin, as indicative of a higher 

antioxidant status. At 10 DAH, PC tended to be lower in HIGH treatment, being close to the 

significant level, suggesting that curcumin was probably reducing the carbonylation rate of proteins. 

In addition, among treatment with curcumin supplementation, HIGH diet seemed to be more 

efficient than LOW diet, which showed the highest value measured at this stage. Along the 

experiment, PC levels of HIGH larvae showed an oscillatory pattern, increasing at 24 DAH to later 

decline at 31 DAH. Only HIGH larvae showed a decreasing PC pattern between 24 and 31 DAH, 

suggesting a positive curcumin effect on PC levels. Further studies need to be conducted trying to 

enlarge the rearing period and trying to test different curcumin concentrations to find the one that 

better optimize the reduction of both, PC levels and heterogeneity of the results.  

Studies on cell cultures, both of invertebrates and mammals, support the idea that ROS, especially 

the ones produced in the mitochondria, play an essential role in aging and scenecence processes 
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(Balaban et al., 2005; Barja, 2014, 2004). In fact, with age the oxidative stress within mitochondria 

increases and the accumulation of oxidant products might damage not only the macromolecules, 

such as lipids, proteins and DNA, but also negatively affect the mitochondrial function (Paradies et 

al., 2011; Shigenaga et al., 1994; Sohal et al., 2002). In the present study, curcumin was tested also 

as promoter of mitochondrial antioxidant pathways, with the objective of reducing as much as 

possible the oxidative stress condition of these organelles. The mitochondrial oxidative status 

followed an increasing ontogenetic trend in all treatments, as previously reported for zebrafish 

(Danio rerio) in Almaida-Pagán et al. (2014). Nevertheless, only in larvae fed on the commercial 

diet this increment was significant. Thus, curcumin might have played a significative role in the 

mitigation of the stress occurred at mitochondrial level. This is evident, in particular, considering 

the last period of the trials, in which MOS pattern was even negative in LOW larvae, while it was 

increasing in the other treatments. At the end, results suggest that diet with LOW curcumin 

concentration was generally acting positively on MOS. 

In general terms, the dietary treatments tested in the present study started to shed some light on a 

possible antioxidant supplementation on larval diets to promote overall robustness. Some 

antioxidant status biomarkers showed interesting patterns that might be further investigated to 

extend the knowledge of curcumin effects on fish larvae.  

 

5. Conclusion 

 In this trial, metabolic programming and nutritional concepts have been combined in order 

to promote larvae fish robustness. A general trend to higher key performance indicators values was 

detected in larvae fed on LOW diet, revealing a plausible positive effect of curcumin 

supplementation that could have higher impacts in the long-term.  

 Digestive capacity was promoted through the dietary curcumin supplementation. Trypsin 

higher activity was observed in larvae fed HIGH diet, concomitantly with a higher activity of 

chymotrypsin in larvae from fed supplemented diets, suggesting that dietary curcumin might 

promote larval proteolytic capacity. Antioxidant biomarkers did not reveal a clear effect of 

curcumin as antioxidant promoter. However, some trends might indicate a positive effect of 

curcumin, as in the case of mithocondrial oxidative status. 

In general, further early programming studies need to be conducted in order to investigate deeper 

the role of curcumin as growth promoter and antioxidant agent. Moreover, the results of the present 

study leave open, and possibly encourage, further research on early weaning feeding regimes and 

dietary curcumin supplementation. 
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7. Annexes 

 
Table 3.2.1. Enzymatic activity levels of trypsin, chymotrypsin, aminopeptidase, 
trypsin/chymotrypsin ratio, amylase, 4-C like and 18-C like lipases, and alkaline phosphatase 
(RFU/mg DW), in S. aurata larvae, measured at 10, 24 and 31 DAH. 
 

  Treatments 
  CTRL LOW HIGH 

Trypsin                   
10 DAH 3.93E+04 ± 1.62E+04 3.20E+04 ± 1.58E+04 5.90E+04 ± 1.23E+04 
24 DAH 5.04E+03 ± 1.77E+03 4.32E+03 ± 2.34E+03 7.85E+04 ± 1.28E+04 
31 DAH 5.90E+04 ± 1.23E+04 6.20E+03 ± 2.21E+03 1.03E+05 ± 2.50E+04  

Chymotrypsin               

10 DAH not detected not detected not detected 
24 DAH not detected not detected not detected 
31 DAH 5.52E+04 ± 1.74E+04 7.31E+04 ± 1.73E+04 9.53E+04 ± 1.76E+04 

Aminopeptidase                   
10 DAH not detected not detected not detected 
24 DAH not detected not detected not detected 
31 DAH 3.00E+03 ± 1.47E+03 2.17E+03 ± 5.94E+02 2.72E+03 ± 9.41E+02 

Trypsin/Chymotrypsin 
ratio                   

31 DAH 1.07 ± 0.19 1.09 ± 0.94 1.07 ± 0.86 
Amylase                   

10 DAH not detected not detected not detected 
24 DAH 7.54E+04 ± 2.30E+04 6.84E+04 ± 2.06E+04 6.84E+04 ± 1.60E+04 
31 DAH 4.35E+04 ± 1.79E+04 3.38E+04 ± 1.53E+04 3.75E+04 ± 1.14E+04 

4C-Like lipase                   
10 DAH 1.55E+04 ± 3.48E+03 1.72E+04 ± 5.62E+03 1.18E+04 ± 3.33E+03 
24 DAH 3.77E+03 ± 5.74E+02 2.79E+03 ± 1.03E+03 2.93E+03 ± 7.83E+02 
31 DAH 4.30E+03 ± 6.11E+02 3.96E+03 ± 6.80E+02 4.57E+03 ± 7.73E+02 

18C-Like lipase                   
10 DAH not detected not detected not detected 
24 DAH 6.95E+04 ± 7.59E+03 4.05E+04 ± 1.37E+04 3.99E+04 ± 8.82E+03 
31 DAH 2.86E+04 ± 5.43E+03 2.56E+04 ± 1.01E+04 2.63E+04 ± 5.90E+03 

Alkaline phospatase                   
10 DAH not detected not detected not detected 
24 DAH 1.63E+05 ± 4.99E+04 1.19E+05 ± 3.45E+04 1.53E+05 ± 5.10E+04 
31 DAH 2.41E+05 ± 8.66E+04 2.37E+05 ± 5.31E+04 2.22E+05 ± 7.21E+04 

 
Results are means ± SD.

 

 

 



 
 
 
 

68 

Table 3.3.1. Gut fullness (area/TL) of S. aurata larvae at 5, 6, 8, 12, 16, 20, 23, 28 DAH  fed 
experimental diets CTRL, LOW and HIGH. 

 CONTROL LOW HIGH 
5 DAH 0.001 ± 0.001 0.002 ± 0.001 0.001 ± 0.001 
6 DAH 0.001 ± 0.001 0.022 ± 0.002 0.015 ± 0.001 
8 DAH 0.003 ± 0.003 0.004 ± 0.003 0.004 ± 0.003 
12 DAH 0.009 ± 0.006 0.012 ± 0.008 0.024 ± 0.016 
16 DAH 0.025 ± 0.013 0.019 ± 0.011 0.018 ± 0.014 
20 DAH 0.021 ± 0.014 0.016 ± 0.010 0.012 ± 0.014 
23 DAH 0.020 ± 0.012 0.022 ± 0.010 0.033 ± 0.016 
28 DAH 0.027 ± 0.011 0.024 ± 0.011 0.020 ± 0.011 

 
Results are means ± SD.

  

 

 

 

 

 

 

 


