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Abstract  

Portugal is worldwide known for the quality and distinction of its wines and has been sharing a 

strong bond with the vitivinicultural sector since early days, with great economic impact. Several 

current problems, such as climate change and the scarcity of natural resources, have been affecting 

the agricultural sector, with winemaking exemplifying this. Aiming the overcome of those 

problems, several studies have been carried out in order to develop sustainable vitivinicultural 

practices, while preserving wine’s regionality and quality. One of the most researched subjects has 

been the terroir impact on wine’s organoleptic properties, and several studies have been reporting 

the influence of vine and wine’s microbiome, thus arising the importance of the microbial terroir. 

Therefore, there is a need to clarify the microbial terroir role on winemaking processes, identifying 

the microbial consortium and its evolution along the process, to understand their effect on the final 

product. Thus, a comparative study was developed, in which two grape varieties (Touriga Nacional 

and Aragonez) were produced simultaneously under two production modes (Organic and 

Integrated) and fermented by two different methods (spontaneous fermentation vs. commercial 

inoculation). Samples of Initial Must, Medium Fermentation and Final Fermentation were analysed 

by culture-dependent methods, molecular biology techniques and metagenomic tools, to evaluate 

the influence of vinicultural processes on microbiome and organoleptic properties of the 8 wines 

produced.  

This study demonstrated that the mode of production affects the diversity of initial must 

microbiome in both eukaryotes and prokaryotes. However, differences in the beginning of 

fermentation tend to decrease throughout the fermentation process. Regarding the fermentation 

method, in this study musts inoculated with the commercial yeast presented a lower biodiversity 

and a larger number of pathogenic microorganisms, unlike the musts resulting from spontaneous 

fermentation, which not only showed a higher biodiversity, but also exhibited a higher number of 

phytoprotective microorganisms. 

 

Keywords: Wine microbiome, Integrated production mode, Organic production mode, 

Autochthonous yeasts, Commercial yeasts, Spontaneous fermentation, Inoculated fermentation, 

Microbial terroir. 





 

 

Resumo  

Portugal é mundialmente conhecido pela qualidade e distinção dos vinhos que produz e 

comercializa, sendo que este forte vínculo com o setor vitivinícola perdura desde os primeiros dias, 

com grande impacto económico. Dados referentes ao ano de 2018 mostram que, a nível mundial, 

Portugal é o 12º maior produtor, o 11º maior consumidor e o 9º maior exportador. Diversos 

problemas atuais, tais como as mudanças climáticas e a escassez de recursos naturais, têm vindo a 

afetar o sector agrícola, sendo que a produção de vinho exemplo disso mesmo. De forma a 

contornar este problema é importante estudar, desenvolver e aplicar soluções sustentáveis, que não 

só permitam ultrapassar os problemas assinalados, como também possibilitem preservar as 

propriedades e consequente qualidade do produto final, o vinho. Ao longo dos últimos anos têm 

sido realizados vários estudos com o objetivo de desenvolver práticas vitivinícolas sustentáveis, 

diminuindo a utilização de produtos nocivos para o ambiente, aumentando a utilização consciente 

dos recursos naturais e preservando a regionalidade do local, com o objetivo que esta se espelhe 

nas características do vinho. Portugal, a par com países um pouco por todo o mundo, tem 

acompanhado esta tendência ao nível do desenvolvimento e adoção de processos inovadores e 

sustentáveis para a vinificação, através da realização de estudos no seu território. 

Um dos temas mais estudados nos dias de hoje envolve o conceito de terroir: que engloba o 

conjunto de interações entre o solo, a topografia, o clima, as características do terreno, a 

biodiversidade e as práticas de vitivinicultura que ocorrem em determinada área (bem delimitada). 

A este conceito está associada a regionalidade, ou seja, a singularidade de cada vinho. Por outras 

palavras: se uma casta for produzida em terroir diferentes (por muito ligeiras que sejam essas 

diferenças), os vinhos produzidos traduzirão as características inerentes de cada local e por isso 

terão características diferentes. Estas diferenças podem ser reveladas com mais ou menos impacto 

a nível da análise sensorial, no entanto, quando são aplicadas ferramentas moleculares analíticas é 

possível observar as diferenças entre a composição de cada vinho. Um dos constituintes do terroir 

responsável por um grande efeito sobre as propriedades organoléticas do vinho é terroir 

microbiano. Este terroir é resultado dos diversos microbiomas presentes ao longo dos processos 

de produção e fermentação do vinho, ou seja, o microbioma da vinha (como é o exemplo do 

microbioma do solo, do tronco da videira, das folhas, dos bagos, da pele das uvas e das grainhas) 

e o microbioma do mosto (durante o processo de fermentação). Embora o efeito deste terroir nos 

processos de vitivinificação esteja já comprovado em diferentes castas e diferentes locais do 



 

 

mundo, as interações que conduzem a esse efeito e a forma como afetam as propriedades do produto 

final ainda não se encontra clarificada. É por isso importante continuar o estudo desta temática, 

através da identificação do consórcio microbiano e do estudo da sua evolução ao longo dos 

processos de produção e fermentação, de forma a compreender o seu papel no produto final. Para 

além disso, e porque o conceito de terroir traduz isso mesmo, seria importante aliar o estudo acima 

referido a outras variáveis, como o modo de produção e o método de fermentação. 

Tendo em vista esse mesmo objetivo, foi desenvolvido um estudo comparativo, no qual duas castas 

tintas (Touriga Nacional e Aragonez) foram produzidas no Alentejo (Beja, Portugal). Cada casta 

foi simultaneamente produzida em modo biológico e integrado. Ambos os modos de produção são 

considerados sustentáveis, uma vez que combinam a utilização ponderada de recursos naturais com 

praticas agrícolas de incentivo à biodiversidade. A grande diferença entre estes dois modos de 

produção é o apertado controlo da aplicação de produtos fitofarmacêuticos, sendo que no modo de 

produção biológico apenas um pequeno número destes produtos se encontra aprovado para 

aplicação. No modo de produção integrada, embora sejam autorizados alguns tipos de tratamento, 

o seu emprego é também evitado altamente controlado. 

De forma a avaliar o poder do processo de fermentação nas propriedades do vinho, os mostos 

obtidos foram fermentados através de dois métodos diferentes: fermentação comercial e 

fermentação espontânea. Na fermentação comercial o mosto foi inoculado com uma levedura 

comercial cujo efeito nas propriedades finais do vinho já era esperado. Na fermentação espontânea 

não ocorreu qualquer inoculação, o que significa que nesses mostos apenas estavam presentes 

leveduras autóctones – provenientes da vinha (solo, videira, folhas, bagos, pele da uva, grainhas, 

etc.). Assim, as propriedades de um vinho resultante de uma fermentação espontânea vão depender 

exclusivamente do terroir, ou seja, é esperado que estas leveduras traduzam uma maior 

regionalidade no produto final. 

De maneira a clarificar a forma como o terroir microbiano se comporta ao longo do processo de 

fermentação foram recolhidas amostras de Mosto Inicial, mosto em Meio de Fermentação e em 

Fim de Fermentação. Todas as amostras foram analisadas por métodos dependentes de cultura, 

técnicas de biologia molecular e ferramentas metagenómicas, para avaliar a influência dos 

processos vitiviniculturais no microbioma e nas propriedades organoléticas dos 8 vinhos 

produzidos. Através do método de espalhamento em meio YEPD (Extrato de Levedura, Peptona e 

Dextrose), procedeu-se à contagem e isolamento das leveduras cultiváveis, que foram depois 



 

 

identificadas por sequenciação da região ITS. Foi também realizada a análise metagenómica de 

cada um dos oito mostos, de forma a obter uma caracterização da composição da comunidade 

microbiana ao longo dos diferentes processos de produção e fermentação em estudo. Para 

completar o estudo da influência do modo de fermentação, foram amplificadas as sequências 

interdelta dos mostos em final de fermentação.  

Este estudo veio demonstrar que o modo de produção afeta a diversidade do microbioma do mosto 

inicial tanto em eucariotas como em procariotas. No entanto, as diferenças registadas no início da 

fermentação tendem a diminuir ao longo do processo de fermentação. Em relação ao método de 

fermentação, neste estudo os mostos inoculados com a levedura comercial apresentaram uma 

menor biodiversidade e um maior número de microrganismos patogénicos, ao contrário dos mostos 

resultantes da fermentação espontânea, que não só apresentaram uma maior biodiversidade, como 

também exibiram um maior número de microrganismos fitoprotetores. 

 

 

Palavras chave: Microbioma do vinho, Produção integrada, Produção biológica, Leveduras 

autóctones, leveduras comerciais, Fermentação espontânea, Fermentação inoculada, terroir 

microbiano. 
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1.  Introduction 

1.1 World Vitiviniculture 

Wine is one of the best known and most appreciated beverages in the world, being the earliest 

records of its existence date back to the seventh millennium before Christ (B.C.) (McGovern et al. 

2004). Nowadays, grape and wine production (vitiviniculture) takes place all over the world in an 

estimated area of 7.4 mha (3.3 mha in EU). In 2018, about 292.3 mhl of wine were produced 

worldwide (181.9 mhl in the EU), followed by a slight growth in the wine market compared to 

2017 (31.2 billion EUR) (OIV 2019).  

The increasing wine consumption and economy impact has driven not only the production but also 

the pursuit of strategies that can result in a unique product whose quality reflects the inherent and 

autochthonous regional characteristics (Bokulich et al. 2016; Knight et al. 2015). 

1.1.1 Portuguese vitiviniculture 

Portugal has been associated with wine production and commercialization since the early days: it 

is thought that the first vineyard grown on the Iberian Peninsula (Tejo and Sado valley) dates from 

2000 years B.C., being the first book to share Portuguese winemaking techniques published in 1900 

(IVV 2019; Costa 1900). Most recent data (referring to 2018) show that the 192 kha of Portuguese 

territory used for wine production have made Portugal the 12th world's largest producer (with 6.1 

mhl), the 11th world's main consumer (with 5.5 mhl), and the 9th world's biggest exporter (worth 

804 million of EUR) (OIV 2019). 

Although its small area (92212 km2), Portugal confines various types of soil, climate, topography, 

landscape characteristics, biodiversity features and winemaking practices– characteristics that 

constitute the concept of “terroir”. The region’s terroir is the responsible for wine organoleptic 

properties and flavour, i.e., wines produced in different regions (terroirs) will never have the same 

characteristics. According to the Portuguese Wine and Vine Institute (IVV, I.P.), the richness of 

Portuguese terroirs have resulted in 14 distinct appellations (Figure 1.1) (OIV 2010; Knight et al. 

2015). 
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Figure 1.1 – Portugal Wine Regions. (IGP – Protected Geographical Indication; DOP – Protected Designation of 

Origin) (Adapted from: https://www.ivv.gov.pt/np4/regioes/) 

Over the last years Portugal has been following the worldwide trend on development and adoption 

of innovative and sustainable processes for winemaking (Alves et al. 2015; Franco-Duarte et al. 

2016; Pinto et al. 2015a). 

1.2 Wine terroir 

The "terroir” concept is used in the winemaking field to express the interaction between soil, 

topography, climate, landscape characteristics, biodiversity features and vitivinicultural practices 

in a delimited area (OIV 2010; Alves et al. 2015; Knight et al. 2015). Collectively, wine terroir 

features are responsible for defining its organoleptic properties and flavour, i.e., its quality and 

uniqueness (Figure 1.2) (Koundouras 2018). Many of the reported studies have demonstrated the 

impact that each terroir feature has on the final product (Figure 1.3), and the knowledge of these 

interactions has been very helpful, allowing winemakers to adapt the grape variety and/or 

winemaking practices to the terroir characteristics in order to maintain or improve the wine quality 

(Karaoğlan et al. 2015; Belda et al. 2017; Canfora et al. 2018). 
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Figure 1.2  – Schematic representation of the terroir features and their effects on wine organoleptic properties 

and flavor (OIV 2010; Koundouras 2018). Wine glass source: Openclipart – https://publicdomainvectors.org/en/free-

clipart/Half-wine-glass/67030.html). 

 

Figure 1.3 – Terroir effect on phenolic compounds (I) and flavour profile of Muscat of Bornova wines from three 

different terroirs: Halilbeyli, Menderes and Kemaliye (II). (A – Chromatograms in 280, 320 and 360 nm of the 

identified phenolic compounds; B – Spider web diagram of flavour profile analysis of Muscat of Bornova wines: (A) 

data shows palate descriptors, (B) data shows odour descriptors.) Source: Karaoğlan et al. 2015.  
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1.2.1 Microbial terroir 

Although it is currently accepted, the microbial influence in the wine production has only been 

acknowledged in the two last decades, but, since then, the number of studies and data generated on 

this topic has been increasing worldwide (Carreto et al. 2008; Schuller et al. 2012; Pinto et al. 

2015b; Bokulich et al. 2016; Wei et al. 2018; Bagheri et al. 2019).  

Over the years, the development and improvement of available tools has culminated in a library of 

information on the soil, grapevine, leaves, grape, must and wine microbiome (Burns et al. 2016; 

Vitulo et al. 2019; Mezzasalma et al. 2017; Wei et al. 2018; Karaoğlan et al. 2015).  

Studies have been revealing the impact of microbial terroir on wine properties, and it is now known 

that the grape and wine microbiome can improve viticulture yields and benefit the production of 

valuable and unique wines (Pinto et al. 2015; Setati 2015; Castañeda and Barbosa 2017; 

Mezzasalma et al. 2017). 

All terroir elements interact with each other and, from this complex network, result single 

microbiomes of soil, vine, grapes, leaves and consequently, wine. Knowing that, several studies 

have demonstrated that:  

• climate, grape variety and vintage weather conditions leads to soil and grape microbiome 

changes (Pinto et al. 2015b); 

• climate and vitivinicultural practices affect soil composition (Burns et al. 2016; Blotevogel et 

al. 2019);   

• different winemaking processes – e.g. fermentations inoculated with Saccharomyces and native 

non-Saccharomyces yeasts vs fermentations inoculated with only Saccharomyces yeasts – lead 

to modifications on microbial populations of wine fermentations, as well as different wines 

(Padilla et al. 2017).  

Although the scientific community has already achieved the foregoing results, some questions 

remained unclarified:  

i. Will the implementation of a more sustainable production mode lead to major changes on 

wine microbiome? 

ii. Will these changes have a positive influence on the final product? 

iii. Will they contribute for the wine's regionality? 

iv. Will a winemaking process with indigenous yeasts lead to a more improved and 

differentiated wine, in comparison to others inoculated with only commercial yeasts?    
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It is therefore important to continue the study on this subject, not only to produce new quality wines 

but also in pursuance to adopt sustainable winemaking techniques, that allow the conscious and 

thoughtful use of natural resources to obtain unique and healthy wines, enhancing its quality and 

regionality. 

On Figure 1.4 a summarized schematic representation of factors known to influence the 

composition of microbial populations involved in wine fermentations is shown. 

Figure 1.4 – Schematic representation of the factors known to influence the composition of microbial 

populations involved in wine fermentations (1(Bokulich et al. 2014); 2(Burns et al. 2016); 3(Grangeteau, Roullier-

Gall, et al. 2017); 4(Pinto et al. 2014); 5(Miura et al. 2017); 6(Morrison-Whittle and Goddard 2018); 7(Piao et al. 2015); 
8(Stefanini et al. 2016). Image source: Stefanini and Cavalieri 2018. 

1.3 Production Modes 

Current issues, such as global warming and climate change have been triggering the adoption of 

pro-environmental positions. Despite the fact that the agricultural sector is one of the most affected 

by this problem, it was also one of the most responsible for its occurrence, namely in 2017 this 

sector was the second largest emitter of CO2 and the first main emitter of N2O in European Union 

(EEA, 2019). The adoption of unsustainable practices for the environment and human health has 

led to an alarming increase in the number and intensity of outbreaks of pests and diseases of animals 

and plants REFS. This has consequences on the food system, which has been facing food safety 

threats due to emergencies linked to the global warming and climate change (FAO 2017). One of 
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the strategies that has been implemented to combat climate change and its effects, is the 

implementation of sustainable and environmentally friendly production systems (PMEET 2019). 

The integrated and organic production are two agricultural systems based on sustainable processes, 

in order to obtain quality products through rational management of natural resources and the 

adoption of sustainable measures designed to protect and preserve the nature, the environment and 

the human species (Decreto-Lei n.o 256/2009 de 24 de Setembro 2009). 

1.3.1 Integrated Production 

Integrated Production (IP) “is an agricultural system for the production of food and other high-

quality food products, with rational management of natural resources and giving priority to the use 

of natural regulation mechanisms in place of inputs, thus contributing to sustainable agriculture” 

(Decreto-Lei n.o 256/2009 de 24 de Setembro 2009). The exercise of IP is governed by a set of 

rules based on the Decree of Law n.o 256/2009 de 24 de Setembro 2009, of which it is important 

to reiterate the phytosanitary protection and the fertilizers use: 

• The phytosanitary protection is ruled by the principles of integrated protection, which means 

that the use of Plant Protection Products (PPPs) and similar forms of intervention is only 

endorsed at economically and ecologically justifiable levels, reducing its risks to human health 

and the environment (Decreto-Lei n.o 256/2009 de 24 de Setembro 2009). Therefore, PPPs may 

only be applied when the Economic Level of Attack is reached – it corresponds to the time 

when the intensity of crop attack justifies the application of restrictive or fight measures to 

prevent the damage from exceeding the cost of the control measures to be taken, and 

undesirable effects. When the Economic Level of Attack is not established at national level, 

the PPPs can be applied when the importance and extent of damage caused by the enemy to 

fight is justifiable (Decreto-Lei n.o 256/2009 de 24 de Setembro 2009). 

• The use of fertilizers must comply with current legal standards and must be exempt or have 

very low levels of heavy metals or other environmentally hazardous substances. Micronutrient 

fertilizers should only be applied when their need is technically recognized. 

1.3.2 Organic Production 

The Organic Production (OP) “is an overall system of farm management and food production that 

combines best environmental practices, a high level of biodiversity, the preservation of natural 
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resources, the application of high animal welfare standards and a production method in line with 

the preference of certain consumers for products produced using natural substances and processes” 

(Council Regulation (EC) N.o 834/2007 of 28 June 2007). On OP only PPPs approved by law may 

be used  (Decreto-Lei n.o 94/98 de 15 de Abril 1998). 

In OP, the European Commission shall authorize for use and include a restricted list of products 

and substances which may be used as PPPs, fertilizers, soil conditioners and products for cleaning 

and disinfection. 

Both IP and OP may have an impact on the microbial terroir and ultimately in the wine quality. 

Several omics approaches can be used to examine the influence of these production mode on the 

wine microbiome. 

1.4 Wine and multi-omics 

The wine microbiome is composed of a complex interaction network between each microbial 

member of the community. During winemaking, the existing yeasts and bacteria act together as a 

consortium, and all the resulting metabolites end up influencing the wine aroma and taste. The fact 

that these effects may result in a positive or negative impact on wine quality makes this issue one 

of the objectives of the wine microbiome study: once these interactions are known, it will be 

possible to manage the fermentation elements in order to control wine quality (Morrison-Whittle 

and Goddard 2018).  

Over the years, culture-independent molecular methods have been developed to assemble more 

detailed and complete information, in order to better understand the ongoing interactions and their 

meanings in winemaking processes and wine properties.  

Metagenomics, Metatranscriptomics, Metaproteomics and Metabolomics are four molecular and 

informatic tools widely used in this field (Setati, Jacobson, and Bauer 2015; Carreto et al. 2011; 

Zhao et al. 2015; Franco-Duarte et al. 2016).  

As shown in Figure 1.5, each of these tools can be used at any stage of winemaking, however it 

needs a specific sample type (DNA, total RNA and mRNA, proteins or volatile and nonvolatile 

compounds). 
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Figure 1.5 – Multi-omics applications in wine production. Images source: Grapes – Openclipart, 

https://publicdomainvectors.org/en/free-clipart/Grapes-symbol/67038.html; Wine glass – 

https://publicdomainvectors.org/en/free-clipart/Wine-only/64422.html. (Source: Sirén et al. 2019).  

1.4.1 Wine and metagenomics 

Metagenomics is one of the most used tools to describe and compare the compositions of microbial 

populations of wine, since it is a culture-independent method that allows for in-depth analysis 

providing additional information. With this tool  microbial communities from any environmental 

sample (soil, leaves, grapes, vine bark, fermentations, wine, winery surfaces) can be established  as 

long as we can extract its DNA. (Mathabatha Evodia Setati et al. 2012; Zarraonaindia et al. 2015; 

Pinto et al. 2015b; Canfora et al. 2018; Mezzasalma et al. 2018; Vitulo et al. 2019; Bokulich et al. 

2013). 

The application of metagenomics in the study of wine has already opened many doors regarding 

the knowledge of the composition of the microbial terroir not only of the products (grapes, must, 

wine) but also the wine processing environment (vineyard, cellar). However, it is necessary to 

perform more studies that work simultaneously with different variables (in terms of viniculture and 

viticulture) to decode more key points of this complex process. The more obtained information, 

the easier it will be to apply sustainable and appropriate techniques for each terroir. 

 

1.5 Objectives 

The main objective of this study was to evaluate the impact of different winemaking practices on 

wine microbiome during the winemaking process. For this purpose, two Portuguese red wine grape 
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varieties (Touriga Nacional and Aragonez) were produced under two production modes (organic 

and integrated), which fermentation occured by two different approaches (Table 1):  

i. spontaneous fermentation (autochthonous yeasts); 

ii. inoculated fermentation (commercial yeasts). 

Table 1.1 – Innovation strategy at vitivinicultural processes. 

In order to achieve the study aim, the following tasks were established: 

1. Characterization of the impact triggered by the shift from integrated to organic production, 

concerning wine fermentations’ microbiome. 

To allow comparative and statistical analysis of the viticultural changes impact on grape must and 

wine, an experimental field on the studied vineyards was implemented. In this field, Touriga 

Nacional and Aragonez grapevine varieties were simultaneously produced under Organic and 

Integrated Production. Grapes, must and wine samples were collected, preserved and used for 

microbiological, molecular e metagenomic approaches. 

2. Evaluation of the indigenous microbial consortium ability to impose against commercial yeasts, 

being responsible for wine fermentation. 

The fermentation process had occurred in a pilot unit installed in an isolated area of the cellar. This 

unit were constituted by eight regulated temperature fermentation vats, allowing the comparison 

between inoculated and uninoculated fermentations.  

In order to evaluate the indigenous microbial consortium ability to impose against the commercial 

yeast used, the interdelta profile from each one of the eight produced wines was determined. Each 

profile was compared with the interdelta pattern of the commercial yeas in order to find out the 

yeast type responsible for the fermentation (indigenous or commercial).   

 

Viticultural Processes 

Integrated Production (IP) Organic Production (OP) 
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Inoculated Fermentation: 

Commercial + wild yeasts  
Undifferentiated conventional wine Undifferentiated organic wine 

Spontaneous Fermentation: 

Only wild yeasts 
Differentiated conventional wine Differentiated organic wine 
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3. Yeast identification. 

Through the application of culture-dependent methods and sequencing, the cultivable yeasts 

present on initial must, middle fermentation and end fermentation were isolated and identified. The 

obtained results were analyzed in combination with the ones obtained through metagenomic 

analysis. 

 

 

The current study was performed in the Herdade da Malhadinha Nova (located in Beja, Portugal) 

and in UALG – CBMR  in the frame of the project CRESC I&DT, Nº 17987 – “MicroBioWines”,  

which received funding through the  European Regional Development Fund (FEDER) through the 

Operational Program CRESC Algarve2020, of Portugal. 

 

 



 

 

 

 

 

 

 

2. Methods 
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2 Methods 

2.1 Equipment 

• AE200 Analytical Balance – Mettler Toledo© 

• Analog Incubator – Raypa 

• Bio48 Biological Laminar Flow Cabinet – Faster, S.r.l. 

• BTG Shaking Thermostatic Bath – Bunsen, S.A. 

• Bullet Blender Storm 24 – Next Advance, Inc. 

• Centrifuge 5810R – Eppendorf 

• Electrophoresis Power Supply EPS 301 – Amersham Biosciences Corp. 

• Grant Bio Combi-spin PCV-2400 – Grant Instruments™ 

• Kodak DC290 Digital Camera – Kodak 

• Kodak EDAS 290 Analysis System – Kodak 

• Masticator Homogenizator Classic, IULmicro 

• Mini-V/PCR Compact Vertical Laminar Flow Bench – Telstar 

• pH-Meter GLP 21 – Crison Instruments 

• T-Personal Thermal Cycler – Biometra 

• Ultraviolet Transilluminators – Uvitec Ltd. 

• XS-410 Analytical Balance – Fisher Scientific, Inc. 

2.2 Material and Solutions 

• 1 kb DNA Ladder – SIGMA-ALDRICH 

• 4you4 dNTP Mix, 10 mM each – Bioron 

• AccuGENE Molecular Biology Water – Lonza 

• Acetic Acid Glacial – PanReac AppliChem 

• Bacteriological Agar Type E – Biokar Diagnostics 

• δ12 primer (5´-TCAACAATGGAATCCCAAC-3´) – Sigma-Aldrich  

• δ2 primer (5´-GTGGATTTTTATTCCAAC-3´) – Sigma-Aldrich  

• Dextrose – Difco 
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• Ethanol, absolute – Fisher Scientific, Inc. 

• Ethylenediaminetetraacetic acid disodium salt dihydrate, 99% – Sigma-Aldrich  

• General Purpose Agarose – Lonza 

• Glass Beads 0.50 to 0.75 mm – Retsch 

• Glycerine ≥99%, Electran Molecular biology grade – VWR Chemicals 

• GoTaq G2 Flexi DNA Polymerase – PROMEGA 

• GreenSafe Premium – NZYTECH 

• ITS1 primer (5´-TCCGTAGGTGAACCTGCGG-3´) – Integrated DNA Technologies© 

• ITS4 primer (5´-TCCTCCGCTTATTGATATGC-3´) – Integrated DNA Technologies© 

• Loading Buffer 10X – Bioron 

• Lyticase 10 U/µl – A&A Biotecnology© 

• Peptone water (buffered) – Merck 

• Polyvinylpyrrolidone, Molecular Biology Grade – Calbiochem 

• Propan-2-ol – VWR Chemicals 

• Sodium Chloride – PanReac AppliChem 

• Sterile gauze swabs 10 cm x 10 cm – Bastos Viegas, S.A. 

• TrackITTM 100 bp DNA Ladder – InvitrogenTM 

• Trizma base – Sigma-Aldrich  

• Yeast Extract – Biokar Diagnostics. 

2.3 Commercial Kits 

• DNeasy Plant Mini Kit – Qiagen 

• Wizard Genomic DNA Purification Kit – Promega 

• Wizard SV Gel and PCR Clean-Up System – Promega 
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2.4 Sampling 

2.4.1 Grape varieties 

For this study two red grape varieties were selected: Aragonez (AG) and Touriga Nacional (TN). 

Aragonez is an Iberian red grape variety, which prefers a soil with low water availability and a dry 

hot climate, characteristics that lead to complex and aromatically intense wines (Instituto da Vinha 

e do Vinho 2018a).  

Touriga Nacional is an autochthonous grape variety with a high adaptive capacity to most soil 

types, requiring high insolation and heat. Touriga Nacional wines are known as complex and of 

very high quality (Instituto da Vinha e do Vinho 2018b).  

Regarding the constitution of its bunches and leaves, each grape variety exhibit different features 

(Figure 2.1). Aragonez grapes usually have a large leaf with five-lobe pentagonal limb, a medium 

cylindrical-conical cluster and a strong skin small berry (Infovini 2019b). Touriga Nacional grapes 

can present a medium to small very heterogeneous leaf, a small and compact cluster, and a medium 

berry with thick skin (Infovini 2019a).  

2.4.2 Grape production 

Both studied grapevine varieties were planted in 2006 and produced since then under integrated 

production in a 2.04 hectares vineyard at Herdade da Malhadinha Nova, located in Beja (Portugal) 

(Figure 2.2).  

 

 

 

 

 

 

Figure 2.1 – Aragonez and Touriga Nacional grapes and leaves (Image source: © 2019 Infovini). 
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Following 2016 vintage, an experimental field was established on this vineyard with the objective 

of producing both grapevine varieties through integrated and organic production, simultaneously. 

Therefore, the two grapevine varieties located in the periphery of the experimental field started to 

be produced under organic mode, in compliance with all the standards set forth in Regulation (CE) 

No. 834/2007 of the Council of June 28, 2007 (Figure 2.3).   

The experimental field was equally divided relatively to grapevine varieties and production modes, 

and, in order to prevent potential contaminations from other production areas, it was bounded to 

its full length by a dirt road. 

Figure 2.3 – Scheme of the experimental field established in Herdade da Malhadinha Nova (Beja, Portugal). ha 

– hectare; N – North. 

Figure 2.2 – Map of mainland Portugal with a highlight for Herdade da Malhadinha Nova (Beja, Portugal). 

Satellite photo of the 2.04 hectares studied vineyard. Image Source: ©2019 Google Images. Screenshot by author. 
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2.4.3 Must fermentation 

The studied grapes were harvested at 2017 vintage and fermented under aseptic and controlled 

conditions in the pilot unit, placed in an isolated area of Herdade da Malhadinha Nova cellar 

(Figure 2.4). 

In order to achieve the objectives of this study, each grape variety was fermented in four 

fermentation vats with 1000 kg capacity and controlled temperature: one with integrated production 

grape must, inoculated with the commercial yeast VQ51 (Enartis); another with integrated 

production grape must not inoculated; other with organic production grape must inoculated with 

the same commercial yeast (VQ51); and another one with organic production grape must not 

inoculated (Figure 2.5). 

 

 

Figure 2.4 – Pilot unit placed in Herdade da Malhadinha Nova cellar, composed by eight fermentation vats 

(four in the front and four in the back). 

Figure 2.5 – Scheme of the eight fermentation vats placed at Herdade da Malhadinha Nova pilot unit. FT – 

Fermentation; FT13 – Integrated Production/Inoculated fermentation; FT14 – Organic Production/Inoculated 

fermentation; FT15 – Integrated Production/Spontaneous fermentation; FT16 – Organic Production/Spontaneous 

fermentation; FT33 – Integrated Production/Inoculated fermentation; FT34 – Organic Production/Inoculated 

fermentation; FT35 – Integrated Production/Spontaneous fermentation; FT36 – Organic Production/Spontaneous 

fermentation. 
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All the performed procedures until the samples reception on the laboratory were conducted by the 

Herdade da Malhadinha Nova enology technical team. The characterization of the four 

fermentations of each grape variety is shown in Tables 2.1 and 2.2.  

Table 2.1 Characterization of Aragonez fermentations for the year 2017, according to production mode 

(integrated/organic) and fermentation process (inoculated/spontaneous). 
 

Grape variety Fermentation identification Production mode Fermentation process 

Aragonez 

FT13 Integrated Inoculated (VQ51) 

FT14 Organic Inoculated (VQ51) 

FT15 Integrated Spontaneous 

FT16 Organic Spontaneous 

FT – Fermentation; FT13 – Integrated Production/Inoculated fermentation; FT14 – Organic Production/Inoculated 

fermentation; FT15 – Integrated Production/Spontaneous fermentation; FT16 – Organic Production/Spontaneous 

fermentation; VQ51 – Commercial yeast used on inoculated fermentations. 

Table 2.2 Characterization of Touriga Nacional fermentations for the year 2017, according to production mode 

(integrated/organic) and fermentation process (inoculated/spontaneous). 
 

Grape variety Fermentation identification Production mode Fermentation process 

Touriga Nacional 

FT33 Integrated Inoculated (VQ51) 

FT34 Organic Inoculated (VQ51) 

FT35 Integrated Spontaneous 

FT36 Organic Spontaneous 

FT – Fermentation; FT33 – Integrated Production/Inoculated fermentation; FT34 – Organic Production/Inoculated 

fermentation; FT35 – Integrated Production/Spontaneous fermentation; FT36 – Organic Production/Spontaneous 

fermentation; VQ51 – Commercial yeast used on inoculated fermentations. 

Aragonez and Touriga Nacional musts pH and total acidity values are indicated in Table 2.3 and 

2.4. 

Table 2.3 Characterization of Aragonez musts for the year 2017, according to pH and total acidity values. 
 

Grape variety Fermentation identification pH Total acidity 

Aragonez 

FT13 3.84 3.75 

FT14 3.86 3.97 

FT15 3.83 4.70 

FT16 3.86 4.35 

FT – Fermentation; FT13 – Integrated Production/Inoculated fermentation; FT14 – Organic Production/Inoculated 

fermentation; FT15 – Integrated Production/Spontaneous fermentation; FT16 – Organic Production/Spontaneous 

fermentation; VQ51 – Commercial yeast used on inoculated fermentations. 
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Table 2.4 Characterization of Touriga Nacional musts for the year 2017, according to pH and total acidity 

values. 
 

Grape variety Fermentation identification pH Total acidity 

Touriga Nacional 

FT33 3,90 6.22 

FT34 3.98 5.47 

FT35 3.87 7.28 

FT36 3.99 5.02 

FT – Fermentation; FT33 – Integrated Production/Inoculated fermentation; FT34 – Organic Production/Inoculated 

fermentation; FT35 – Integrated Production/Spontaneous fermentation; FT36 – Organic Production/Spontaneous 

fermentation; VQ51 – Commercial yeast used on inoculated fermentations. 

The fermentation progress (density determination) of each must was daily monitored by Herdade 

da Malhadinha Nova technical team of oenology (Figure 2.6 and 2.7).  
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Figure 2.6 – Evolution of the density (g/L) of Aragonez fermentations for the year 2017, from Initial Must 

to End of Fermentation. IM – Initial Must; MF – Middle of Fermentation; EF – End of Fermentation; FT – 

Fermentation; FT13 – Integrated Production/Inoculated fermentation; FT14 – Organic Production/Inoculated 

fermentation; FT15 – Integrated Production/Spontaneous fermentation; FT16 – Organic Production/Spontaneous 

fermentation. 
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2.4.4 2017 vintage 

The studied samples OF WHAT? were produced and collected during the 2017 vintage, which 

have occurred later in comparison to previous years, due to the meteorologically atypical year of 

production.  

For the mainland Portugal, 2016 fall was classified as hot and dry, and even though the 2017 winter 

had registered normal temperatures for the season, it was also dry (Instituto Português do Mar e da 

Atmosfera 2016, 2017h). During the very hot and very dry spring of 2017, Beja district was 

affected by a period of mild to moderate drought, during which two heat waves have occurred 

(Instituto Português do Mar e da Atmosfera 2017i, 2017f, 2017b, 2017e, 2017d). The 2017 summer 

was considered as hot and extremely dry, especially in Beja, where the period of extreme to 

moderate drought lasted up until october (Instituto Português do Mar e da Atmosfera 2017j, 2017a, 

2017c, 2017k, 2017g). 

2.4.5 Sample collection 

The sampling process has occurred at three stages of alcoholic fermentation: initial must (IM), 

middle of alcoholic fermentation (MF) and end of alcoholic fermentation (EF).
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Figure 2.7 – Evolution of the density (g/L) of Touriga Nacional fermentations for the year 2017, from 

Initial Must to End of Fermentation. FT – Fermentation; FT33 – Integrated Production/Inoculated 

fermentation; FT34 – Organic Production/Inoculated fermentation; FT35 – Integrated Production/Spontaneous 

fermentation; FT36 – Organic Production/Spontaneous fermentation. 
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Initial must samples correspond to the harvested grapes immediately sent to the laboratory, and the 

Middle and End of Fermentation samples correspond to the must and wine obtained directly from 

the fermentation vats. 

Grape sampling was composed by 2 kg of Aragonez and Touriga Nacional grapes, aseptically 

collected into sterile plastic sampling bags, from different branches of different vines, randomly 

distributed throughout the experimental field, in triplicate. Only healthy undamaged grapes were 

picked and sent to laboratory, under controlled cooling conditions (± 4°C). At laboratory, all the 

samples were processed (as resumed in section 2.4.6), resulting in 6 Falcons of 50 mL for yeast 

counts and isolation and 6 Falcons of 50 mL for metagenomic analysis, for each grape variety.  

Middle and End of Fermentation samples were directly transferred from the fermentation vats to 

two sterile 50 mL falcons (50 mL for metagenomic analysis and 50 mL for yeast counts and 

isolation), in triplicate. All the samples were immediately transported to laboratory under 

controlled cooling conditions (± 4°C).  

In total, 120 samples were collected: 24 Initial Must samples, 48 Middle of Fermentation samples 

and 48 End of Fermentation samples. 

2.4.6 Sample processing 

At the laboratory, the harvested grapes were manually and mechanically crushed (Masticator 

Homogenizator Classic, IULmicro) and incubated during 20 min at room temperature. The 

resulting liquid – initial must – was filtered through a sterile gauze swab into two Falcons of 50 

mL (50 mL for yeast counts and isolation and 50 mL for metagenomic analysis).  

All collected tubes from the three sampling points for yeast counts and isolation were centrifuged 

(3200 x g for 10 min at 4°C) and the supernatant was discarded. The pellet was resuspended in 

liquid Yeast Extract Peptone Dextrose (YEPD – Yeast Extract, 1% w/v; Peptone, 2% w/v; 

Dextrose, 2% w/v) and glycerol (80%, v/v) and stored at –80°C until further processing.  

All the tubes collected from the three sampling points for metagenomic analysis were centrifuged 

(3200 x g for 10 min at 4°C), the supernatant was discarded, and the pellet was washed with 50 

mL of NaCl (0.9%, v/v). The tubes were re-centrifuged (3200 x g for 10 min at 4°C) and the 

supernatant was discarded. The resulting pellet was resuspended in Tris-EDTA 1X (TE) and 

glycerol (80%, v/v) and stored at –80°C until further processing.  
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2.5 Metagenomic analysis 

2.5.1 DNA Extraction of Grape Musts and Wine 

The DNA used for metagenomic analysis was extracted directly from must and wine samples 

(corresponding to Initial Must, Middle and End of Fermentation samples previously processed and 

stored at –80°C). This procedure was performed using the DNeasy Plant Mini Kit (Qiagen), 

through an optimization of the manufacturer’s instructions. Firstly, 200 μL of sample were added 

to a tube with 200 μL of glass beads, 400 μL of preheated Buffer AP1 and 40 μL of a 10% 

polyvinylpyrrolidone solution. Then, 3 lysis cycles of 1 min were performed in the Bullet Blender 

Storm (Next Advance) at maximum speed. The tubes sit on ice between each cycle, for 2 min. The 

tubes were centrifuged (5,000 x g for 10 min at 4°C), the supernatant was carefully transferred to 

a clean tube and the tubes were washed with 300 μL of Buffer AP1. Afterwards, 2 more lysis cycles 

were completed (at maximum speed for 1 min) and a final cycle were performed at maximum speed 

for 2 min. The tubes sit on ice between each cycle, for 2 min. The tubes were centrifuged (5,000 x 

g for 10 min at 4°C), the supernatant was carefully added to the previously collected. Therein, 4 

μL of 100 mg/mL RNase A were added. The tubes were incubated at 65 °C for 10 min. Hereafter, 

130 μL of Buffer P3 were added and mixed by vortex, and incubated on ice for 5 min. The lysates 

were centrifuged (20,000 x g for 5 min at 4°C) and the supernatant was collected. After being 

centrifuged (5,000 x g for 5 min at 4°C), the supernatant was transferred into a QIAshredder spin 

column, that were centrifuged (5,000 x g for 2 min at 4°C). The flow through were transferred to 

2 mL tubes with 1.5 volumes of Buffer AW1. Fractions of 650 μL of the resulting mixture were 

transferred into DNeasy Mini spin column, that were centrifuged (6,000 x g for 1 min at 4°C). 

When all the mixture had passed through the column, this one was placed in a new collection tube 

a washed with 500 μL of Buffer AW2. After being centrifuged (6,000 x g for 1 min at 4°C) the 

column was re-washed with 500 μL of Buffer AW2 and re-centrifuged (20,000 x g for 2 min at 

4°C). The flow through was discarded. The column was re-centrifuged (20,000 x g for 1 min at 

4°C) and transferred to a new 1.5 mL tube. Then, 50 μL of Buffer AE were added directly to the 

column membrane, which were incubated (for 5 min at room temperature) and centrifuged (10,000 

x g for 1 min at 4°C). The column was discarded, and the DNA was stored at – 20°C. 
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2.5.2 rDNA Library Construction and sequencing  

Samples were prepared for Illumina Sequencing using the 16S rRNA gene and the Internal 

Transcribed Spacer 2 region amplification of the microbial communities. The DNA was amplified 

for the hypervariable regions with specific primers and further reamplified in a limited-cycle PCR 

reaction to add sequencing adapters and dual indexes. First PCR reactions were performed for each 

sample using KAPA HiFi HotStart PCR Kit according to manufacturer suggestions, 0.3 μM of 

each PCR primer: forward primer Bakt_341F 5’– CCTACGGGNGGCWGCAG-3’ and reverse 

primer Bakt_805R 5’– GACTACHVGGGTATCTAATCC-3’ for bacteria and a pool of forward 

primers: ITS3NGS1_F 5’-CATCGATGAAGAACGCAG-3’, ITS3NGS2_F 5’-

CAACGATGAAGAACGCAG-3’, ITS3NGS3_F 5’CACCGATGAAGAACGCAG-3’, 

ITS3NGS4_F 5’-CATCGATGAAGAACGTAG-3’, ITS3NGS5_F 5’-

CATCGATGAAGAACGTGG-3’, and ITS3NGS10_F 5’CATCGATGAAGAACGCTG-3’ and 

reverse primer ITS4NGS001_R 5’TCCTSCGCTTATTGATATGC-3’ for fungi and 12.5 ng of 

template DNA in a total volume of 25 μL (Herlemann et al. 2011)Klindworth et al. 2013; Tedersoo 

et al. 2014). The PCR conditions involved a 3 min denaturation at 95 ºC, followed by 30 cycles 

(bacterial region)/25 cycles (fungal region) of 98 ºC for 20 s, 55 ºC (bacterial region)/60 ºC (fungal 

region) for 30 s and 72 ºC for 30 s and a final extension at 72 ºC for 5 min. Second PCR reactions 

added indexes and sequencing adapters to both ends of the amplified target region according to the 

manufacturer’s recommendations (Illumina, 2003). Negative PCR controls were included for all 

amplification procedures. PCR products were then one-step purified and normalized using 

SequalPrep 96-well plate kit (ThermoFisher Scientific), pooled and pair-end sequenced in the 

Illumina MiSeq sequencer with the V3 chemistry, according to manufacturer’s instructions 

(Illumina, San Diego, CA, USA) at Genoinseq (Cantanhede, Portugal) (Comeau, Douglas, and 

Langille 2017). Sequence data was processed at Genoinseq (Cantanhede, Portugal). Raw reads 

were extracted from Illumina MiSeq System in fastq format and quality-filtered with PRINSEQ 

version 0.20.4 to remove sequencing adapters, reads with less than 100 bases for samples targeting 

ITS region and 150 for samples targeting 16S rRNA gene and trim bases with an average quality 

lower than Q25 in a window of 5 bases (Schmieder and Edwards 2011). The forward and reverse 

reads were merged by overlapping paired-end reads with AdapterRemoval version 2.1.5 using 

default parameters (Schubert, Lindgreen, and Orlando 2016). The QIIME package version 1.8.0 

was used for Operational Taxonomic Unit (OTU) generation, taxonomic identification, sample 
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diversity and richness indices calculation(Caporaso et al. 2010). Sample IDs were assigned to the 

merged reads and converted to fasta format. Chimeric merged reads were detected and removed 

using UCHIME against Greengenes database version 13.8 for samples targeting 16S rRNA gene 

and UNITE/QIIME ITS database version 12.11 for samples targeting ITS region. ITSx version 

1.0.11 was used on samples targeting the ITS region to extract the highly variable fungal ITS2 

subregion from the merged reads (Edgar et al. 2011) DeSantis et al. 2006; Abarenkov et al. 2010; 

Bengtsson-Palme et al. 2013). OTUs were selected at 97% similarity threshold using the open 

reference strategy. Merged reads were pre-filtered by removing sequences with a similarity lower 

than 60% against Greengenes database version 13.8 for samples targeting 16S rRNA gene and 

UNITE version 7.1 for samples targeting 16S rRNA gene and the remaining merged reads were 

then clustered at 97% similarity against the same database (DeSantis et al. 2006) Kõljalg et al. 

2013). Merged reads that did not cluster in the previous step were de novo clustered into OTUs at 

97% similarity. OTUs with less than two reads were removed from the OTU table. A representative 

sequence of each OTU was then selected for taxonomy assignment.  

2.6 Yeast identification 

2.6.1 Isolation of Yeasts 

Initial Must, Middle and End of Fermentation samples previously processed and stored for yeast 

isolation, were subjected to successive decimal dilutions (from 10-1 to 10-6) with NaCl (0.9%, v/v). 

On duplicate, 100 μL of each dilution was spread on YEPD plates (Yeast Extract, 1% w/v; Peptone, 

2% w/v; Dextrose, 2% w/v; Agar, 2% w/v) and incubated at 30°C for 48 h. Colony-forming units 

(CFU/mL) were calculated from plates with 30-300 colonies. 

In order to achieve its molecular identification, up to six colonies sharing the same morphologic 

characteristics were randomly selected and isolated by streaking on YEPD plates.  

A total of 263 isolates were cryopreserved in liquid YEPD and glycerol (80%, v/v) at –80°C until 

further processing. 
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2.6.2 DNA Extraction of Yeasts 

To achieve the molecular identification of the isolated yeasts, its DNA was extracted using the 

Wizard Genomic DNA Purification Kit (Promega), according to the manufacturer’s instructions. 

Initially, each isolate has grown for 20 h in liquid YEPD (at 30°C with 185 rpm agitation). Then, 

1 mL of the grown culture was centrifuged (16000 x g for 2 min) and the supernatant was discarded. 

The cell pellet was resuspended in 293 μL of EDTA (50 mM pH 8.0) and 7.5 μL lyticase (5 

units/μL). 

After 60 min of incubation at 37°C, the tubes were cooled to room temperature. Subsequently, the 

tubes were centrifuged (16000 x g for 2 min), the supernatant was removed and 300 μL of Nuclei 

Lysis Solution were gently added. Then, 100 μL of Protein Precipitation Solution were added, 

followed by a vigorous vortex at maximum speed for 20 s.  

After 5 min on ice, the tubes were centrifuged (16000 x g for 3 min) and the supernatant was 

carefully transferred to a clean 1.5 mL tube containing 300 μL of room temperature isopropanol. 

The tubes were gently mixed by inversion until the thread-like strands of DNA were visible. The 

tubes were centrifuged (16000 x g for 2 min), the supernatant was carefully decanted, and the tubes 

were drained on absorbent paper.  

Therefore, 300 μL of room temperature 70% ethanol were added, followed by a gentle DNA wash 

by tube inversion. After another centrifugation (16000 x g for 2 min) all the ethanol was carefully 

aspirated, the tubes were drained, and the pellet was air-dried during 15 min. To finalize, 50 μL of 

DNA Rehydration Solution and 1.5 μL of RNase Solution were added. The tubes were vortexed 

for 1 s, briefly centrifuged for 5 s and incubated at 37°C for 15 min.  

The DNA was rehydrated overnight at 4°C and its concentration and purity were quantified by 

measuring its absorbance at 260 nm and 280 nm, with NanoDrop 2000/c (Thermo Fisher 

Scientific). The DNA was stored –20ºC. 

2.6.3 Amplification of ITS region 

The amplification of ITS region was performed using a pair of ITS primers: ITS1 (5´-

TCCGTAGGTGAACCTGCGG-3´) and ITS4 (5´-TCCTCCGCTTATTGATATGC-3´) 

(Integrated DNA Technologies)(Mathabatha E. Setati, Jacobson, and Bauer 2015). For each 100 

ng of DNA, a 50 μL reaction mixture was prepared with 5 μL of 5x Colourless GoTaq Flexi Buffer 
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(Promega), 4 μL of 25 mM MgCl2, 0,5 μL 10 mM dNTPs, 1 μL of primer ITS1 at 10 pmol/μL, 1 

μL of primer ITS4 at 10 pmol/μL, 0.125 μL of GoTaq G2 Flexi DNA polymerase (Promega) and 

Molecular Biology Water (Lonza) up to 50 μL. The PCR amplification conditions consisted of a 

denaturation cycle of 95°C for 6 min, 35 cycles of annealing (94°C for 40 s, 53°C for 40 s, 72°C 

for 1 min) and an extension cycle of 72°C for 5 min. A total of 2 μL of each PCR product were 

separated by electrophoresis on a 1% w/v agarose gel stained with Greensafe Premium (NZYtech) 

and visualized using the Kodak DC290 camera (Kodak) and the Kodak 1D software (Kodak). 

2.6.4 Purification of PCR products and sequencing of ITS region 

The remaining 48 μL of each PCR product already amplified for ITS region, were purified using 

Wizard SV Gel and PCR Clean-Up System kit (Promega), according to the manufacturer’s 

instructions.  

Briefly, 48 μL of Membrane Binding Solution were added to the PCR product. The mixture was 

transferred into the Minicolumn assembly and incubated at room temperature for 1 min. After being 

centrifuged (16,000 x g for 1 min at 4°C) the Minicolumn flowthrough was discarded. The 

Minicolumn was placed into a new collection tube and 700 μL of Membrane Wash Solution were 

added. The tubes were centrifuged, the flowthrough discarded and the membrane was washed one 

more time with 500 μL of Membrane Wash Solution. The Minicolumn were centrifuged (16,000 x 

g for 5 min at 4°C), the flowthrough discarded and the centrifugation repeated for 1 min (with the 

microcentrifuge lid off).  The Minicolumn was prudently transferred to a new 1.5 mL tube and 30 

μL of Nuclease-Free Water were added. After 1 min of incubation at room temperature, the tubes 

were centrifuged (16,000 x g for 1 min at 4°C) and the Minicolumn discarded.  

The purified PCR products DNA concentration were quantified by measurement of its absorbance 

at 260 nm and 280 nm, with NanoDrop 2000/c (Thermo Fisher Scientific) and stored at –20°C. 

2.6.5 Sequencing of ITS region 

The sequencing process was performed at CCMAR Technologies and Services Platform (Centro 

de Ciências do Mar, Faro, Portugal). The sequencing process occurred in a 3130xl Genetic 

Analyzer (Applied Biosystems) using the BigDyeTM Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems), the POP7™ Polymer (Applied Biosystems) and the pair of ITS primers: 

ITS1 (5´-TCCGTAGGTGAACCTGCGG-3´) and ITS4 (5´-TCCTCCGCTTATTGATATGC-3’) 
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(Integrated DNA Technologies)(Mathabatha E. Setati, Jacobson, and Bauer 2015). The DNA 

sequences were assessed through BioEdit Sequence Alignment Editor V7.0.5.3 (Tom Hall) and the 

isolates identification was achieved using the NCBI/GenBank nucleotide blast (BLASTn), by 

finding the closest match (based on the maximum identity percentage and query cover and along 

with the lower e-value). 

2.7 Interdelta sequences amplification and analysis 

The amplification of the interdelta sequences was carried out in the eight fermentations under study 

(at End of Fermentation), as well as in the commercial yeast used (VQ51), using a pair of δ primers: 

δ12 (5´-TCAACAATGGAATCCCAAC-3´) and δ2 (5´-GTGGATTTTTATTCCAAC-3´) 

(Franco-Duarte et al. 2011). The DNA extraction of the fermentations was carried out through 

DNeasy® Plant Mini Kit (Qiagen) and the DNA  of the commercial yeast was isolated using 

Wizard® Genomic DNA Purification Kit (Promega) – through the procedures already reported 

above (sections 2.5.1 and 2.6.2). For each 100 ng of DNA, a 25 μL reaction mixture was prepared 

with 5 μL of 5x Colourless GoTaq Flexi Buffer (Promega), 4 μL of 25 mM MgCl2, 0.5 μL 10 mM 

dNTPs, 4.2 μL of primer δ12 at 10 pmol/μL (Sigma-Aldrich), 4.2 μL of primer δ2 at 10 pmol/μL 

(Sigma-Aldrich), 0.125 μL of GoTaq G2 Flexi DNA polymerase (Promega) and Molecular Biology 

Water (Lonza) up to 25 μL. The positive control was the commercial yeast used on the inoculation 

of the fermentations on study (VQ51 – ENARTIS). PCR amplification conditions consisted of a 

denaturation cycle of 95°C for 2 min, 35 cycles of annealing (95°C for 30s, 43.2°C for 1min, 72°C 

for 1min) and an extension cycle of 72°C for 10 min. PCR products were separated by 

electrophoresis on a 2.3% w/v agarose gel stained with Greensafe Premium (NZYTECH) and 

visualized using the Kodak DC290 camera (KODAK) and the Kodak 1D software (KODAK).
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3 Results 

3.1 Metagenomic Analysis 

Aragonez and Touriga Nacional Initial Must, Middle and End of Fermentation samples for each 

production mode (integrated and organic) and fermentation process (commercial and spontaneous) 

were prepared for Illumina Sequencing of Internal Transcribed Spacer 2 region and 16S rRNA 

(V3V4 region), for fungal and bacterial targets, respectively. For Aragonez samples, the 

sequencing generated a total of 4.675.544 sequences for ITS2 and V3V4 region collected at the 

three sampling points, from which 84.6% passed the quality control parameters (Table 3.1). 
 

Table 3.1 – Total sequences obtained for eukaryotic (ITS2) and prokaryotic (V3V4) microbial community for 

Initial Must, Middle and End of Fermentation of Aragonez vintage 2017. IM – Initial Must; MF – Middle of 

Fermentation; EF – End of Fermentation; AGIP – Aragonez Integrated Production; AGOP – Aragonez Organic 

Production; FT – Fermentation; FT13 – Integrated Production/Inoculated fermentation; FT14 – Organic 

Production/Inoculated fermentation; FT15 – Integrated Production/Spontaneous fermentation; FT16 – Organic 

Production/Spontaneous fermentation.   

Sampling point Sample Target region 
Number of Reads 

Total High quality 

IM 

AGPI 
ITS 278567 270224 

V3V4 261821 211390 

AGPB 
ITS 248850 236766 

V3V4 254629 189147 

MF 

FT13 
ITS 172001 165668 

V3V4 208649 159522 

FT14 
ITS 205092 198127 

V3V4 224563 174012 

FT15 
ITS 235225 215064 

V3V4 314682 249565 

FT16 
ITS 255605 226044 

V3V4 185341 143763 

EF 

FT13 
ITS 236840 211890 

V3V4 289225 213462 

FT14 
ITS 158471 147672 

V3V4 199082 143478 

FT15 
ITS 270544 245079 

V3V4 189898 146101 

FT16 
ITS 218807 195249 

V3V4 267652 210988 

Eukaryotic 2280002 2111783 

Prokaryotic 2395542 1841428 

Total 4675544 3953211 
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For Touriga Nacional samples, the sequencing generated a total of 5.310.153 sequences of ITS2 

and V3V4 regions collected at the three sampling points, from which 83.1% passed the quality 

control parameters (Table 3.2). 

Table 3.2 – Total sequences obtained for eukaryotic (ITS2) and prokaryotic (V3V4) microbial community for 

Initial Must, Middle and End of Fermentation of Touriga Nacional vintage 2017. IM – Initial Must; MF – Middle 

of Fermentation; EF – End of Fermentation; TNIP – Touriga Nacional Integrated Production; TNOP – Touriga 

Nacional Organic Production; FT – Fermentation; FT33 – Integrated Production/Inoculated fermentation; FT34 – 

Organic Production/Inoculated fermentation; FT35 – Integrated Production/Spontaneous fermentation; FT36 – 

Organic Production/Spontaneous fermentation. 

Sampling point Sample Target region 
Number of Reads 

Total High quality 

IM 

TNPI 
ITS 331346 284886 

V3V4 148816 112820 

TNPB 
ITS 299244 267082 

V3V4 136142 102682 

MF 

FT33 
ITS 178345 158433 

V3V4 136781 109334 

FT34 
ITS 277164 255396 

V3V4 147604 108488 

FT35 
ITS 243063 216261 

V3V4 141465 102912 

FT36 
ITS 713689 647178 

V3V4 270214 197462 

EF 

FT33 
ITS 223265 195989 

V3V4 273964 210764 

FT34 
ITS 276885 229208 

V3V4 676444 537815 

FT35 
ITS 256092 212072 

V3V4 162209 126071 

FT36 
ITS 256286 217951 

V3V4 161135 119620 

Eukaryotic 3055379 2684456 

Prokaryotic 2254774 1727968 

Total 5310153 4412424 
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3.1.1 General Characterization of Eukaryotic Population 

3.1.1.1 Aragonez Eukaryotic Population 

To evaluate the Aragonez eukaryotic population dynamics, the relative abundance at genus level 

was analysed (Figure 3.1). About 14.2% of the sequenced population has not been identified. The 

entire Aragonez eukaryotic microbial population was mostly characterized by Saccharomyces 

(69.7%), Aureobasidium (7.7%), Lachancea (6%), Alternaria (5.5%), Hanseniaspora (5.2%), 

Sporobolomyces (2.5%) and Torulaspora (1%) genera. 

At Initial Must sampling point, the entire Aragonez eukaryotic population was mostly characterized 

by Aureobasidium (38.5%), Alternaria (27.6%), Sporobolomyces (12.4%), Saccharomyces 

(10.8%), Filobasidium (2.4%), Rhodotorula (1.3%), and Aspergillus (1.2%) genera. Regarding the 

Initial Must under integrated production (AGIP), the most abundant eukaryotic genera were 

Alternaria (28.2%), Sporobolomyces (24%), Saccharomyces (16.9%), Aureobasidium (15.2%) 

Filobasidium (4.5%), Rhodotorula (2.6%), and Aspergillus (2.1%). For the Initial Must organically 

produce (AGOP), the most abundant eukaryotic genera were Aureobasidium (61.8%), Alternaria 

(27%) and Saccharomyces (4.7%). 

At the Middle of Fermentation, the entire Aragonez eukaryotic population was mostly 

characterized by Saccharomyces (74.8%), Lachancea (11.6%), Hanseniaspora (10.7%) and 

Torulaspora (2.1%) genera. Concerning to the most abundant eukaryotic genera in each 

fermentation: FT13 presented mainly Saccharomyces (92.8%), Lachancea (4.2%) and 

Hanseniaspora (1.5%); FT14 showed predominantly Saccharomyces (90.4%), Hanseniaspora 

(5.3%), Lachancea (2.5%) and Aspergillus (1.2%); FT15 revealed mostly Saccharomyces (61.3%), 

Lachancea (27.6%), Hanseniaspora (7.3%) and Torulaspora (3.6%); FT16 displayed a population 

predominantly composed by Saccharomyces (54.9%), Hanseniaspora (28.7%), Lachancea 

(12.1%), and Torulaspora (4%). 

Regarding the End of Fermentation, the Aragonez eukaryotic population was mainly characterized 

by Saccharomyces (94%), Lachancea (3.1%) and Hanseniaspora (2.1%). Concerning the most 

abundant eukaryotic genera in each fermentation: FT13 presented mainly Saccharomyces (97.8%) 

and Lachancea (1.4%);  FT14 showed predominantly Saccharomyces (98%); FT15 revealed 

mostly Saccharomyces (91.9%) and Hanseniaspora (6.3%); FT16 displayed a population 

predominantly composed by Saccharomyces (88.5%) and Lachancea (9.6%). 
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Concerning the number of different eukaryotic genera identified in each production mode and 

fermentation process over the three sampling points: at the Initial Must yield under integrated 

production (AGIP) were identified 26 different eukaryotic genera; at the Initial Must organically 

produce (AGOP) were identified 22 different eukaryotic genera; during the Middle of Fermentation 

were identified, 8, 7, 6 and 5 different eukaryotic genera from FT13, FT14, FT15 and FT16, 

respectively; at the End of Fermentation were identified 6 different eukaryotic genera for FT13 and 

FT15, and 5 different eukaryotic genera for FT14 and FT16 (Figure 3.2).
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Figure 3.1 – Eukaryotic community distribution over Initial Must, Middle and End of Fermentation of Aragonez vintage 2017 at genus level. Relative 

abundance of the eukaryotic community through genus analysis. About 14.2% of the sequenced population has not been identified. IM – Initial Must; MF – Middle 

of Fermentation; EF – End of Fermentation; AGIP – Aragonez Integrated Production; AGOP – Aragonez Organic Production; FT – Fermentation; FT13 – Integrated 

Production/Inoculated fermentation; FT14 – Organic Production/Inoculated fermentation; FT15 – Integrated Production/Spontaneous fermentation; FT16 – Organic 

Production/Spontaneous fermentation.   
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The dynamics of Aragonez eukaryotic communities present at the three sampling points (Initial 

Must, Middle and End of Fermentation) were explored by principal component analysis (PCA) 

(Figure 3.3).  
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Figure 3.2 – Number of different eukaryotic genera identified over Initial Must, Middle and End of 

Fermentation of Aragonez vintage 2017. IM – Initial Must; MF – Middle of Fermentation; EF – End of Fermentation; 

AGIP – Aragonez Integrated Production; AGOP – Aragonez Organic Production; FT – Fermentation; FT13 – 

Integrated Production/Inoculated fermentation; FT14 – Organic Production/Inoculated fermentation; FT15 – 

Integrated Production/Spontaneous fermentation; FT16 – Organic Production/Spontaneous fermentation. 

Figure 3.3 – Principal Component Analysis (PCA) biplot diagram of Aragonez eukaryotic community during 

the fermentation process, based on sequence abundance of eukaryotic genera. Principal component analysis 

(showing the first and second components) of Aragonez eukaryotic genera. IMIP – Initial Must/Integrated Production; 

IMOP – Initial Must/Organic Production; MF13 – Middle of Fermentation/FT13; MF14 – Middle of 

Fermentation/FT14; MF15 – Middle of Fermentation/FT15; MF16 – Middle of Fermentation/FT16; EF13 – End of 

Fermentation/FT13; EF14 – End of Fermentation/FT14; EF15 – End of Fermentation/FT15; ED16 – End of 

Fermentation/FT16; FT13 – Integrated Production/Inoculated fermentation; FT14 – Organic Production/Inoculated 

fermentation; FT15 – Integrated Production/Spontaneous fermentation; FT16 – Organic Production/Spontaneous 

fermentation. 
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Samples were grouped according to their fermentative stage (Initial Must, Middle and End of 

Fermentation), production mode (Integrated or Organic) and fermentation process (inoculated or 

spontaneous), where the x axis explains 83.9% of the total variation, and the y axis explains 10.8% 

of the total variation.  The results show the formation of 3 distinct clusters: one composed by the 

initial must samples (IMIP and IMOP);  another cluster constituted by the middle fermentation 

FT13 and FT15; the bigger cluster is formed by middle fermentation FT14 and FT16 – and by all 

end of fermentation samples – FT13, FT14, FT15, FT16.  

3.1.1.2 Touriga Nacional Eukaryotic Population 

Touriga Nacional eukaryotic population dynamics, the relative abundance at genus level was 

analysed (Figure 3.4). About 16.1% of the sequenced population has not been identified. The entire 

Touriga Nacional eukaryotic population was mostly characterized by Saccharomyces (55.3%), 

followed by Hanseniaspora (25.8%), Aspergillus (8.1%), Aureobasidium (3.7%), Alternaria 

(2.8%), Rhizopus (1.5%) and Lachancea (1.1%) genera. 

At Initial Must sampling point, the Touriga Nacional eukaryotic population was mostly 

characterized by Saccharomyces (28%), Aspergillus (22%), Aureobasidium (18.4%) Alternaria 

(14.1%), Rhizopus (6.9%), Hanseniaspora (3.9%) and Diplodia (2.4%) genera. Regarding the 

Initial Must yield under integrated production (TNIP), the most abundant eukaryotic genera were 

Aspergillus (38.5%), Aureobasidium (20.8%), Rhizopus (13.7%), Alternaria (11.7%), Diplodia 

(4.7%), Hanseniaspora (4.6%) and Saccharomyces (3%). For the Initial Must organically produce 

(TNOP), the most abundant eukaryotic genera were Saccharomyces (53%), Alternaria (16.4%) 

Aureobasidium (16.1%), Aspergillus (5.5%), Hanseniaspora (3.2%) and Sporobolomyces (1.2%). 

At Middle of Fermentation sampling point, the Touriga Nacional eukaryotic population was mostly 

characterized by Saccharomyces (54.4%), Hanseniaspora (36.8%), Aspergillus (6.4%) and 

Lachancea (1.4%) genera. Concerning the most abundant eukaryotic genera in each fermentation: 

FT33 showed mainly Saccharomyces (62.8%), Hanseniaspora (31.9%), Aspergillus (3.7%) and 

Lachancea (1.1%); FT34 showed essentially Saccharomyces (61.2%), Hanseniaspora (34.8%) and 

Aspergillus (3.3%); FT35 revealed mostly Saccharomyces (52.6%), Hanseniaspora (37.9%),  
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Aspergillus (6%), and Lachancea (2%); FT36 displayed a population predominantly composed by 

Hanseniaspora (42.7%), Saccharomyces (40.8%), Aspergillus (12.6%), and  Lachancea (2%). 

At End of Fermentation sampling point, the entire Touriga Nacional eukaryotic population was 

mostly characterized by Saccharomyces (69.8%), Hanseniaspora (25.7%), Aspergillus (2.8%) and 

Lachancea (1%) genera. Concerning the most abundant eukaryotic genera in each fermentation: 

FT33 showed mainly Saccharomyces (75%), Hanseniaspora (20.3%), Lachancea (1.8%), 

Aspergillus (1.7%) and Torulaspora (1%);  FT34 exhibited mostly Saccharomyces (70.4%), 

Hanseniaspora (25.5%) and Aspergillus (3.4%); FT35 revealed mainly Saccharomyces (70.8%), 

Hanseniaspora (24%), Aspergillus (3%) and Lachancea (1.4%); FT36 displayed a population 

predominantly composed by Saccharomyces (63%), Hanseniaspora (32.9%) and Aspergillus (3%).  

Concerning the number of different eukaryotic genera identified in each production mode and 

fermentation process over the three sampling points: at the Initial Must produce under integrated 

production (TNIP) were identified 20 different eukaryotic genera; at the Initial Must produce 

organically (TNOP) were identified 27 different eukaryotic genera; during the Middle of 

Fermentation, at FT33, FT34, FT35 and FT36 were identified, respectively, 10, 8, 13 and 15  

different eukaryotic genera; at the End of Fermentation were identified 7 different eukaryotic 

genera for FT33 and FT34, and 9 different eukaryotic genera for FT35 and FT36 (Figure 3.5). 
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Figure 3.4 – Eukaryotic community distribution over Initial Must, Middle and End of Fermentation of Touriga Nacional vintage 2017 at the genus level. 

Relative abundance of the eukaryotic community through genus analysis. About 16.1% of the sequenced population has not been identified. IM – Initial Must; MF 

– Middle of Fermentation; EF – End of Fermentation; TNIP – Touriga Nacional Integrated Production; TNOP – Touriga Nacional Organic Production; FT – 

Fermentation; FT33 – Integrated Production/Inoculated fermentation; FT34 – Organic Production/Inoculated fermentation; FT35 – Integrated 

Production/Spontaneous fermentation; FT36 – Organic Production/Spontaneous fermentation. 
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The dynamics of Touriga Nacional eukaryotic communities at the three sampling points (Initial 

Must, Middle and End of Fermentation) were examined by principal component analysis (PCO) 

(Figure 3.6). Samples were grouped according to their fermentative stage (Initial Must, Middle 

and End of Fermentation), production mode (Integrated or Organic) and fermentation process 

(inoculated or spontaneous), where the x axis explains 86% of the total variation, and the y axis 

explains 12.6% of the total variation.  The results show the formation of 3 distinct clusters: one 

composed by the initial must samples (IMIP and IMOP); another constituted by the end of 

fermentation FT33, FT34 and FT35; the bigger cluster is formed by middle of fermentation samples 

FT33 and FT34, and by the end fermentation FT36;    one last cluster is formed by middle of 

fermentation FT35 and FT36.

Figure 3.5 – Number of different eukaryotic genera identified over Initial Must, Middle and End of 

Fermentation of Touriga Nacional vintage 2017. IM – Initial Must; MF – Middle of Fermentation; EF – End of 

Fermentation; TNIP – Touriga Nacional Integrated Production; TNOP – Touriga Nacional Organic Production; FT – 

Fermentation; FT33 – Integrated Production/Inoculated fermentation; FT34 – Organic Production/Inoculated 

fermentation; FT35 – Integrated Production/Spontaneous fermentation; FT36 – Organic Production/Spontaneous 

fermentation. 
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3.1.2 General Characterization of Prokaryotic Population 

3.1.2.1 Aragonez Prokaryotic Population 

To better understand Aragonez prokaryotic population dynamics, the relative abundance at class 

level was analysed (Figure 3.7). About 1% of the sequenced population has not been identified. 

Moreover, chloroplast and Miscellaneous Crenarchaeota Group identifications were ignored. The 

dominant class across the entire Aragonez prokaryotic population was Alphaproteobacteria 

(77.7%) followed by Gammaproteobacteria (15.7%), Bacilli (2%), Betaproteobacteria (1.5%), 

Bacteroidia (1.4%) and Clostridia (1%).  

At Initial Must sampling point, the Aragonez prokaryotic population was mostly characterized by 

Alphaproteobacteria (85.2%), Bacteroidia (6.1%), Clostridia (4.6%) and Bacilli (3.2%) classes. 

Figure 3.6 – Principal Component Analysis (PCA) biplot diagram of Touriga Nacional eukaryotic community 

during the fermentation process, based on sequence abundance of eukaryotic genera. Principal component 

analysis (showing the first and second components) of Touriga Nacional eukaryotic genera. IMIP – Initial 

Must/Integrated Production; IMOP – Initial Must/Organic Production; MF33 – Middle of Fermentation/FT33; MF34 

– Middle of Fermentation/FT34; MF35 – Middle of Fermentation/FT35; MF36 – Middle of Fermentation/FT36; EF33 

– End of Fermentation/FT33; EF34 – End of Fermentation/FT34; EF35 – End of Fermentation/FT35; ED36 – End of 

Fermentation/FT36; FT33 – Integrated Production/Inoculated fermentation; FT34 – Organic Production/Inoculated 

fermentation; FT35 – Integrated Production/Spontaneous fermentation; FT36 – Organic Production/Spontaneous 

fermentation. 
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Regarding the Initial Must yield under integrated production (AGIP), the most abundant 

prokaryotic class was Alphaproteobacteria (99%). For the Initial Must organically produce 

(AGOP), the most abundant prokaryotic classes were Alphaproteobacteria (71.3%), Bacteroidia 

(12.2%), Clostridia (9.3%) and Bacilli (5.8%).  

At Middle of Fermentation sampling point, the Aragonez prokaryotic population was mostly 

characterized by Alphaproteobacteria (72%) and Gammaproteobacteria (27%) classes. Regarding 

the most abundant prokaryotic classes in each fermentation: FT13 presented mainly 

Alphaproteobacteria (78.3%) and Gammaproteobacteria (20.6%). FT14 showed principally 

Alphaproteobacteria (90.2%) and Gammaproteobacteria (9.2%); FT15 revealed mostly 

Alphaproteobacteria (62%) and Gammaproteobacteria (37.2%); FT16 displayed a population 

predominantly composed by Alphaproteobacteria (57.6%) and Gammaproteobacteria (41.2%).  

At the End of Fermentation sampling point, the entire Aragonez prokaryotic population was mostly 

characterized by Alphaproteobacteria (79.7%), Gammaproteobacteria (12%), Betaproteobacteria 

(3.3%) and Bacilli (3%) classes. Regarding to the most abundant prokaryotic classes in each 

fermentation: FT13 presented mainly Alphaproteobacteria (79.8%), Gammaproteobacteria 

(14.5%), Betaproteobacteria (2.4%) and Bacilli (1.3%). FT14 showed principally 

Alphaproteobacteria (86.1%), Gammaproteobacteria (7.6%) and Betaproteobacteria (2.5%); 

FT15 revealed mostly Alphaproteobacteria (71.5%), Gammaproteobacteria (13.8%), Bacilli 

(8.5%) and Betaproteobacteria (4.8%); FT16 displayed a population predominantly composed by 

Alphaproteobacteria (81.4%), Gammaproteobacteria (12.3%), Betaproteobacteria (3.5%) and 

Bacilli (1.3%). 
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Figure 3.7 – Prokaryotic community distribution over Initial Must, Middle and End of Fermentation of Aragonez vintage 2017 at class level. Relative 

abundance of the prokaryotic community through class analysis. About 1% of the sequenced population has not been identified. Chloroplast and Miscellaneous 

Crenarchaeota Group identifications were ignored. IM – Initial Must; MF – Middle of Fermentation; EF – End of Fermentation; AGIP – Aragonez Integrated 

Production; AGOP – Aragonez Organic Production; FT – Fermentation; FT13 – Integrated Production/Inoculated fermentation; FT14 – Organic 

Production/Inoculated fermentation; FT15 – Integrated Production/Spontaneous fermentation; FT16 – Organic Production/Spontaneous fermentation.   
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The dynamics of Aragonez prokaryotic families at the three sampling points (Initial Must, Middle 

and End of Fermentation) were analysed by principal component analysis (PCA) (Figure 3.8). 

Samples were grouped according to their fermentative stage (Initial Must, Middle and End of 

Fermentation), production mode (Integrated or Organic) and fermentation process (inoculated or 

spontaneous), where the x axis explains 89.9% of the total variation, and the y axis explains 5.1% 

of the total variation.  The results evidenced the formation of 2 distinct clusters: one composed by 

the middle of fermentation FT15 and FT16; another constituted by the integrated initial must 

(IMIP), for the middle of fermentation FT13 and FT14, and also for the end of fermentation FT13, 

FT14 and FT 16. The end of fermentation FT15 and the organic initial must (IMOP) did not 

integrated into any of the clusters. 

 

Figure 3.8 – Principal Component Analysis (PCA) biplot diagram of Aragonez prokaryotic community during 

the fermentation process, based on sequence abundance of prokaryotic families. Principal component analysis 

(showing the first and second components) of Aragonez prokaryotic families. IMIP – Initial Must/Integrated 

Production; IMOP – Initial Must/Organic Production; MF13 – Middle of Fermentation/FT13; MF14 – Middle of 

Fermentation/FT14; MF15 – Middle of Fermentation/FT15; MF16 – Middle of Fermentation/FT16; EF13 – End of 

Fermentation/FT13; EF14 – End of Fermentation/FT14; EF15 – End of Fermentation/FT15; ED16 – End of 

Fermentation/FT16; FT13 – Integrated Production/Inoculated fermentation; FT14 – Organic Production/Inoculated 

fermentation; FT15 – Integrated Production/Spontaneous fermentation; FT16 – Organic Production/Spontaneous 

fermentation. 
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3.1.2.2 Touriga Nacional Prokaryotic Population 

The relative abundance at class level of the prokaryotic population of Touriga Nacional, was 

analysed (Figure 3.9). About 0.9% of the sequenced population has not been identified. Moreover, 

chloroplast identifications were ignored. The dominant class across the Touriga Nacional 

prokaryotic population was (63.8%) followed by Gammaproteobacteria (12.9%) and Bacilli 

(22.3%). 

At Initial Must sampling point, the entire Touriga Nacional prokaryotic population was mostly 

characterized by Alphaproteobacteria (98.1%) and Gammaproteobacteria (1.2%) classes. 

Regarding the Initial Must produce under integrated production (TNIP), the most abundant 

prokaryotic classes were Alphaproteobacteria (98.1%) and Gammaproteobacteria (1%). For the 

Initial Must produce by organic production (TNOP), the most abundant prokaryotic class was 

Alphaproteobacteria (98.5%).  

At the Middle of the Fermentation sampling point, the Touriga Nacional prokaryotic population 

was mostly characterized by Alphaproteobacteria (49%), Bacilli (33.3%) and 

Gammaproteobacteria (17.4%). Concerning the most abundant prokaryotic classes in each 

fermentation: FT33 presented mainly Alphaproteobacteria (44%), Bacilli (30.4%) and 

Gammaproteobacteria (25.4%); FT34 showed principally Alphaproteobacteria (46.8%), Bacilli 

(37.3%) and Gammaproteobacteria (15.8%); FT35 revealed mostly Bacilli (42.5%), 

Alphaproteobacteria (40.5%) and Gammaproteobacteria (16.7%); FT36 displayed a population 

predominantly composed by Alphaproteobacteria (64.8%), Bacilli (23.2%) and 

Gammaproteobacteria (11.7%). 

At the End of Fermentation sampling point, the Touriga Nacional prokaryotic population was 

mostly characterized by Alphaproteobacteria (61.3%), Bacilli (22.2%), Gammaproteobacteria 

(14.5%) and Betaproteobacteria (1.4%). Concerning the most abundant prokaryotic classes in each 

fermentation: FT33 presented mainly Alphaproteobacteria (66.8%), Gammaproteobacteria 

(16.6%) and Bacilli (15.9%); FT34 showed principally Alphaproteobacteria (66.4%), Bacilli 

(16.7%), Gammaproteobacteria (14.4%) and Betaproteobacteria (2.1%); FT35 revealed mostly 

Alphaproteobacteria (52.4%), Bacilli (35.9%) and Gammaproteobacteria (10.6%); FT36 

displayed a population predominantly composed by Alphaproteobacteria (59.6%), Bacilli (20.3%), 

Gammaproteobacteria (16.2%) and Betaproteobacteria (2.9%). 
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Figure 3.9 – Prokaryotic community distribution over Initial Must, Middle and End of Fermentation of Touriga Nacional vintage 2017 at class level. 

Relative abundance of the prokaryotic community through class analysis. About 0.9% of the sequenced population has not been identified. Chloroplast 

identifications were ignored. IM – Initial Must; MF – Middle of Fermentation; EF – End of Fermentation; TNIP – Touriga Nacional Integrated Production; TNOP 

– Touriga Nacional Organic Production;  FT – Fermentation; FT33 – Integrated Production/Inoculated fermentation; FT34 – Organic Production/Inoculated 

fermentation; FT35 – Integrated Production/Spontaneous fermentation; FT36 – Organic Production/Spontaneous fermentation. 
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The dynamics of the prokaryotic families present in Touriga Nacional at the three sampling points 

(Initial Must, Middle and End of Fermentation) were examined by principal component analysis 

(PCA) (Figure 3.10). Samples were grouped according to their fermentative stage (Initial Must, 

Middle and End of Fermentation), production mode (Integrated or Organic) and fermentation 

process (inoculated or spontaneous), where the x axis explains 97.4% of the total variation, and the 

y axis explains 12.6% of the total variation.  The results show the formation of 3 distinct clusters: 

one composed by the integrated  and organic initial must (IMIP and IMOP); other formed by all 

the end of fermentation samples (FT33, FT34, FT35 and FT36) and also by the middle of 

fermentation FT36; the last cluster was constituted by the middle of fermentation samples FT33, 

FT34 and FT35.  

 

 

Figure 3.10 – Principal Component Analysis (PCA) biplot diagram of Touriga Nacional prokaryotic 

community during the fermentation process, based on sequence abundance of prokaryotic families. Principal 

component analysis (showing the first and second components) of Touriga Nacional prokaryotic families. IMIP – 

Initial Must/Integrated Production; IMOP – Initial Must/Organic Production; MF33 – Middle of Fermentation/FT33; 

MF34 – Middle of Fermentation/FT34; MF35 – Middle of Fermentation/FT35; MF36 – Middle of 

Fermentation/FT36; EF33 – End of Fermentation/FT33; EF34 – End of Fermentation/FT34; EF35 – End of 

Fermentation/FT35; ED36 – End of Fermentation/FT36; FT33 – Integrated Production/Inoculated fermentation; 

FT34 – Organic Production/Inoculated fermentation; FT35 – Integrated Production/Spontaneous fermentation; FT36 

– Organic Production/Spontaneous fermentation. 
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3.2 Cultivable Yeasts 

3.2.1 Determination of Cultivable Yeasts in Aragonez variety 

The number of cultivable yeasts present in the Initial Must, Middle and End of Fermentation of 

Aragonez fermentations were determined. The results are illustrated in Figure 3.11.  

Regarding the Initial Must, the number of cultivable yeasts was higher (p≤0.0001) on samples from 

grapes organic production, in comparison with the samples from grapes produced under integrated 

mode.  

Concerning the Middle of Fermentation, the number of cultivable yeasts isolated did not show a 

statistically significant variation (p>0.05) between any of the four fermentations. At the End of 

Fermentation, the number of cultivable yeasts determined in FT13 and FT16 was not statistically 

Figure 3.11 – Count of cultivable yeasts on Initial Must, Middle and End of Fermentation of Aragonez for 2017 

vintage. The data presented result from the mean of 3 replicates. IM – Initial Must; MF – Middle of Fermentation; EF 

– End of Fermentation; AGIP – Aragonez Integrated Production; AGOP – Aragonez Organic Production; FT – 

Fermentation; FT13 – Integrated Production/Inoculated fermentation; FT14 – Organic Production/Inoculated 

fermentation; FT15 – Integrated Production/Spontaneous fermentation; FT16 – Organic Production/Spontaneous 

fermentation. ns – No statistical significance (p>0.05);  * –Indicate statistical significance at the p≤0.05 level of 

confidence; ** – Indicate statistical significance at the p≤0.01 level of confidence; *** – Indicate statistical 

significance at the p≤0.001 level of confidence; **** – Indicate statistical significance at the p≤0.0001 level of 

confidence. 
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significant (p>0.05). The comparison of the remaining fermentations, namely FT13 and FT14, 

FT13 and FT15, FT14 and FT16 and FT 15 and FT16 showed significantly differences p≤0.000,  

also, the comparison of the number of cultivable yeasts from fermentations FT14 and FT15 was 

significantly different, but with a less significant level (p≤0.05) ((Figure 3.11). 

 

3.2.2 Determination of Cultivable Yeasts in Touriga Nacional variety 

The determined number of cultivable yeasts in Touriga Nacional Initial Must and fermentations 

were evaluated and the results are shown in Figure 3.12.  

 

 



Wine microbiome: impact of vitivinicultural practices | Results 

 

48 

 

In contrast to the Aragonez variety in the Touriga Nacional the Initial Must under Integrated mode, 

showed a higher number of cultivable yeasts in comparison with the Initial Must from the organic 

mode (p≤0.0001) Figure 3.12.  

Concerning the Middle of Fermentation, the number of cultivable yeasts was similar across the 

four fermentations (p>0.05).  

At the End of Fermentation, the comparison of the number of cultivable yeasts isolated in FT33 

and FT35, FT33 and FT36, FT35 and FT36 was not statistically significant (p>0.05). Regarding 

the number of cultivable yeasts, it was significantly different (p≤0.0001) in fermentations FT33 

and FT34, FT34 and FT35, FT34 and FT36.  

 

Figure 3.12 – Count of cultivable yeasts on Initial Must, Middle and End of Fermentation of Touriga Nacional 

for 2017 vintage. The data presented result from the mean of 3 replicates. IM – Initial Must; MF – Middle of 

Fermentation; EF – End of Fermentation; TNIP – Touriga Nacional Integrated Production; TNOP – Touriga Nacional 

Organic Production; FT – Fermentation; FT33 – Integrated Production/Inoculated fermentation; FT34 – Organic 

Production/Inoculated fermentation; FT35 – Integrated Production/Spontaneous fermentation; FT36 – Organic 

Production/Spontaneous fermentation. ns –No statistical significance (p>0.05);  * –Indicate statistical significance at 

the p≤0.05 level of confidence; ** – Indicate statistical significance at the p≤0.01 level of confidence; *** – Indicate 

statistical significance at the p≤0.001 level of confidence; **** – Indicate statistical significance at the p≤0.0001 level 

of confidence. 
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3.2.3 Identification of Cultivable Yeasts 

3.2.3.1 Identification of Yeasts isolated from Aragonez variety 

 The sequencing of the ITS regions allowed the identification of 27 of the 138 recovered yeasts 

isolates collected from three sampling points of Aragonez 2017 vintage (Initial Must, Middle and 

End of Fermentation). The yeasts identifications and their percentages at each sampling point are 

shown in Figure 3.13. 

 

The cultivable yeasts were collected in the Initial Must from grapes produced under integrated 

mode was found to belong to Hanseniaspora opuntiae (50%), Saccharomyces cf. cerevisiae (25%) 

and Babjeviella inositovora (25%). The cultivable yeasts isolated from the Initial Must of grapes 

produced under organic mode consisted of Aureobasidium pullulans (40%), S. cerevisiae (40%) 

and Sporidiobolus pararoseus (20%). Concerning the Middle of Fermentation and the End of 

Fermentation, only one species of yeast (100 %) was identified in all four fermentations, S. 

cerevisiae (Figure 3.13).   
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Figure 3.13 – Identification of cultivable yeasts on Initial Must, Middle and End of Fermentation of Aragonez 

2017 vintage. IM – Initial Must; MF – Middle of Fermentation; EF – End of Fermentation; AGIP – Aragonez 

Integrated Production; AGOP – Aragonez Organic Production; FT – Fermentation; FT13 – Integrated 

Production/Inoculated fermentation; FT14 – Organic Production/Inoculated fermentation; FT15 – Integrated 

Production/Spontaneous fermentation; FT16 – Organic Production/Spontaneous fermentation. 
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3.2.3.2 Identification of Yeasts isolated from Touriga Nacional variety 

The sequencing of the ITS regions enable the identification of 32 of the 125 recovered yeasts from 

three sampling points of Touriga Nacional 2017 vintage (Initial Must, Middle and End of 

Fermentation). The yeasts identifications and their percentages at each sampling point are shown 

in Figure 3.14. 

 

 

The isolated yeasts in the Initial Must from grapes produced under integrated mode belong to 

consist Hanseniaspora opuntiae (60%), H. meyeri (20%) and S. cerevisiae (20%). The population 

of cultivable yeasts identified in the Initial Must of biologically produced grapes consists of H. 

opuntiae (75%), and H. uvarum (25%). Concerning the Middle of Fermentation and the End of 

Fermentation, only one species, the S. cerevisiae (100%) was identified in all four fermentations.  
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Figure 3.14 – Identification of cultivable yeasts on Initial Must, Middle and End of Fermentation of Touriga 

Nacional 2017 vintage. IM – Initial Must; MF – Middle of Fermentation; EF – End of Fermentation; TNIP – Touriga 

Nacional Integrated Production; TNOP – Touriga Nacional Organic Production; FT – Fermentation; FT33 – Integrated 

Production/Inoculated fermentation; FT34 – Organic Production/Inoculated fermentation; FT35 – Integrated 

Production/Spontaneous fermentation; FT36 – Organic Production/Spontaneous fermentation. 
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3.2.4 The interdelta patterns of the Aragonez fermentations 

In order to evaluate the ability of the indigenous yeasts consortium to impose against commercial 

yeast the patterns of the interdelta sequence regions using primer pair delta12 and delta2B were 

evaluated. The results are shown in the Figure 3.15 for the patterns of the interdelta profile of the 

commercial yeast VQ51, the commercial fermentations (FT13 and FT14) and the spontaneous 

fermentations (FT15 and FT16) of Aragonez at the End of Fermentation. 

All the autochthonous yeasts profiles share the 1000 bp and 400 bp band with the commercial 

yeast. The comparison of the interdelta profiles of the commercial fermentations (FT13 and FT14) 

with the commercial yeast evidence at least four common bands (1000 bp, 600 bp, 500 bp and 400 

bp). The interdelta profiles of the spontaneous fermentations (FT15 and FT16) reveal at least four 

common bands (1000 bp, 70 0bp, 400bp and 300 bp). The Aragonez spontaneous fermentations 

profiles have, in common with the commercial yeast profiles at least two bands (1000 bp and 400 

bp) (Figure 3.15). 

Figure 3.15 – Electrophoretic profiles (C+ to FT16) obtained by PCR-inter-delta using primers delta 12 and 2b 

on Aragonez (FT13, FT14, FT15, FT16) fermentations. L1 – TrackITTM 100bp DNA Ladder (Thermo-Scientific); 

C- – Negative Control; C+ – Positive Control (Commercial yeast VQ51); FT – Fermentation; FT13 – Integrated 

Production/Inoculated fermentation; FT14 – Organic Production/Inoculated fermentation; FT15 – Integrated 

Production/Spontaneous fermentation; FT16 – Organic Production/Spontaneous fermentation.  
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3.2.4 The interdelta patterns of the Touriga Nacional fermentations 

The profiles of amplification of the delta sequence regions using primer pair delta12 and delta2B 

of the commercial yeast VQ51, the commercial fermentations (FT33 and FT34) and the 

spontaneous fermentations (FT35 and FT36) of Touriga Nacional at the End of Fermentation are 

shown in  Figure 3.16. 

All profiles shared the 400 bp band with the commercial yeast. The comparison of the interdelta 

profiles of the commercial fermentations (FT33 and FT34) with the commercial yeast showed that 

all bands are common between them (1000 bp, 600 bp, 500 bp and 400 bp). The spontaneous 

fermentations interdelta profiles (FT35 and FT36) evidenced that the two bands are common 

between them (400 bp and 300 bp) and only the 400 bp band is common with the commercial yeast. 

 

Figure 3.16 – Electrophoretic profiles (C+ to FT36) obtained by PCR-inter-delta using primers delta 12 and 2b 

on Aragonez (FT13, FT14, FT15, FT16) fermentations. L1 – TrackITTM 100bp DNA Ladder (Thermo-

Scientific).C- – Negative Control; C+ – Positive Control (Commercial yeast VQ51); FT – Fermentation; FT33 – 

Integrated Production/Inoculated fermentation; FT34 – Organic Production/Inoculated fermentation; FT35 – 

Integrated Production/Spontaneous fermentation; FT36 – Organic Production/Spontaneous fermentation. 
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4 Discussion 

The main objective of this study was to evaluate the impact of different winemaking practices on 

wine microbiome during the winemaking process. For this purpose, two Portuguese red wine grape 

varieties (Aragonez and Touriga Nacional) were cultivated at Herdade da Malhadinha Nova (Beja, 

Portugal), under two production modes (organic and integrated) and fermented by inoculation of a 

commercial yeasts or spontaneously. 

 

Aragonez and Touriga Nacional Initial Must, Middle and End of Fermentation samples (for each 

production mode and fermentation process), were prepared for Illumina Sequencing for fungal and 

bacterial analysis (Internal Transcribed Spacer 2 region and 16S rRNA V3V4 region, respectively). 

The results were assessed, and the eukaryotic and prokaryotic populations of each grape variety 

were characterized regarding the production method, fermentation process and sampling point. 

 

Aragonez eukaryotic population showed a higher relative abundance of Aureobasidium (organic 

Initial Must), Alternaria (integrated Initial Must) and Saccharomyces (Middle and End of 

Fermentation) genera. As expected, the eukaryotic biodiversity of Aragonez decreased during 

fermentation, along with a sequential substitution of species during the different stages, with a 

dominance of non-Saccharomyces yeasts at the initial stage, and a successive replacement by 

Saccharomyces yeasts at the end (regardless of the production and fermentation method). This is 

in line with previous studies that have showed that Saccharomyces suppresses certain non-

Saccharomyces yeast species, while also favouring the persistence of other species (Bezerra-

Bussoli et al. 2013; Bagheri, Bauer, and Setati 2017).  

 

The evaluation of the Aragonez Initial Must eukaryotic populations showed that the integrated 

Initial Must exhibited a higher relative abundance of Saccharomyces yeasts. However, other non-

beneficial microbial members were also present, such as Alternaria and Aspergillus and a lower 

relative abundance of phytoprotectants. In contrast, organic Initial Must showed a lower number 

of eukaryotic genera, a lower relative abundance of Saccharomyces yeasts. In addition, its 

population has resulted in a greater relative abundance of phytoprotectants (Aureobasidium) and a 

smaller relative abundance of pathogens (yet it shares the same relative abundance of Alternaria 

with integrated Initial Must). This finding was also reported by  Grangeteau et al. 2017  and Martins 
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et al. 2016, where a lower yeast biodiversity in organic vineyards was associated with the 

sensitivity of yeasts and yeasts-like fungi to copper and sulphur, with the exception of A. pullulans 

that exhibited an higher resistance to both antifungal agents. 

At Middle and End of Fermentation the eukaryotic populations of Aragonez originated from 

integrated and organic mode of production were compared according to the inoculation process, 

and at the Middle of Fermentation, the integrated and inoculated fermentation (FT13) showed a 

relevant relative abundance of Saccharomyces yeasts. However, the eukaryotic population of this 

fermentation included at relative abundance a non-beneficial member, the genus Aspergillus and a 

lower relative abundance of phytoprotectors. In contrast, the integrated and spontaneous 

fermentation (FT15) showed a less relative abundance of Saccharomyces yeasts. In addition, the 

eukaryotic community include at a significant abundance phytoprotectants, such as Lachancea and 

Torulaspora and a reduced relative abundance of pathogens. The organic and inoculated 

fermentation (FT14) showed a significant relative abundance of Saccharomyces yeasts. However, 

the eukaryotic population of this fermentation evidenced a greater relative abundance of pathogens 

(Aspergillus) and a lower relative abundance of phytoprotectors. In contrast, the organic and 

spontaneous fermentation (FT16) showed less relative abundance of Saccharomyces yeasts. In 

addition, its population showed a marked relative abundance of phytoprotectants (Lachancea and 

Torulaspora) and a minor relative abundance of pathogens. Contrary to what was described by  

Setati et al. 2017 and Padilla et al. 2017, in the current study, the Aragonez inoculated 

fermentations (FT13 and FT14) showed a greater relative abundance of Saccharomyces yeasts. 

Given these results it is thought that the commercial S. cerevisiae suppressed a lower number or 

favour a higher number of non-Saccharomyces species, than it has been reported. 

At End of Fermentation the integrated and inoculated fermentation (FT13) showed a similar 

eukaryotic population as the integrated and spontaneous fermentation (FT15), and a greater relative 

abundance of Saccharomyces yeasts. However, the eukaryotic population of FT13 presented a 

lower relative abundance of pathogens and a greater relative abundance of phytoprotectors 

(Lachancea). The integrated and spontaneous fermentation (FT15) showed the same eukaryotic 

population but a lower relative abundance of Saccharomyces yeasts. In addition, FT15 population 

has resulted in a lower relative abundance of phytoprotectants and a higher relative abundance of 

pathogens (Aspergillus). The organic and inoculated fermentation (FT14) showed the same 

eukaryotic population as the organic and spontaneous fermentation (FT16) and a greater relative 
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abundance of Saccharomyces yeasts. However, the eukaryotic population of FT14 presented the 

highest relative abundance of pathogens (Aspergillus) and the lowest relative abundance of 

phytoprotectors. The organic and spontaneous fermentation (FT16) showed the same eukaryotic 

population but a lower relative abundance of Saccharomyces yeasts. In addition, FT16 population 

evidenced a higher relative abundance of phytoprotectants (Lachancea) and a lower relative 

abundance of pathogens. This finding was also reported by Grangeteau et al. 2017  and Martins et 

al. 2016, where a lower yeast biodiversity was associated with organic production. Furthermore,  

Setati et al. 2017 and Padilla et al. 2017 showed that the commercial S. cerevisiae can suppress 

and favour a number of non-Saccharomyces species (phytopathogens and beneficial 

microorganisms). 

 

Aragonez prokaryotic population showed a greater relative abundance for Alphaproteobacteria 

class (at Initial Must, Middle and End of Fermentation). As expected, the prokaryotic biodiversity 

of Aragonez increased during fermentation (Pinto et al. 2014). 

The comparison of Aragonez Initial Must prokaryotic population from integrated and organic mode 

of production evidenced that the integrated Initial Must the prokaryotic population was less diverse, 

along with a greater relative abundance of Alphaproteobacteria and a lower relative abundance of 

Bacilli. In contrast, organic Initial Must showed a more diverse prokaryotic population, along with 

less relative abundance of Alphaproteobacteria and a significant relative abundance of 

Bacteroidia, Clostridia and Bacilli. 

At Middle and End of Fermentation the prokaryotic populations of Aragonez from integrated and 

organic mode of production were compared according to the applied inoculation process, and at 

Middle of Fermentation, the integrated and inoculated fermentation (FT13) showed the same 

relative abundance of prokaryotic classes as the integrated and spontaneous fermentation (FT15), 

along with a greater relative abundance of Alphaproteobacteria and a lower relative abundance of 

Gammaproteobacteria. The integrated and spontaneous fermentation (FT15) showed the same 

relative abundance of prokaryotic classes as the integrated and inoculated fermentation (FT13), 

along with a lower relative abundance of Alphaproteobacteria and a higher relative abundance of 

Gammaproteobacteria. The organic and inoculated fermentation (FT14) showed the same relative 

abundance of prokaryotic classes as the organic and spontaneous fermentation (FT16), together 

with a greater relative abundance of Alphaproteobacteria and a lower relative abundance of 
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Gammaproteobacteria. The organic and spontaneous fermentation (FT16) show the same relative 

abundance of prokaryotic classes as the organic and inoculated fermentation (FT13), along with a 

lower relative abundance of Alphaproteobacteria and a greater relative abundance of 

Gammaproteobacteria. 

At End of Fermentation the integrated and inoculated fermentation (FT13) showed less 

biodiversity, along with a greater relative abundance of Alphaproteobacteria and 

Gammaproteobacteria, and a lower relative abundance of Betaproteobacteria and Bacilli. In 

contrast, integrated and spontaneous fermentation (FT15) showed greater biodiversity, along with 

a lower relative abundance of Alphaproteobacteria and Gammaproteobacteria and a greater 

relative abundance of Betaproteobacteria and Bacilli. The organic and inoculated fermentation 

(FT14) showed greater biodiversity, along with a greater relative abundance of 

Alphaproteobacteria and a lower relative abundance of Gammaproteobacteria and 

Betaproteobacteria. The organic and spontaneous fermentation (FT16) showed less biodiversity, 

along with a lower relative abundance of Alphaproteobacteria and a greater relative abundance of 

Gammaproteobacteria and Betaproteobacteria. 

All the identified classes are in line with previous studies (Pinto et al. 2015; Salvetti et al. 2016). 

 

Touriga eukaryotic population showed a higher relative abundance of Saccharomyces genus over 

the three sampling points. As expected, several members of eukaryotic community of Touriga 

Nacional decreased during fermentation, in contrast to the increase of the relative abundance of 

Saccharomyces yeasts. 

Comparing Touriga National Initial Must eukaryotic populations, the integrated Initial Must 

showed minor biodiversity, along with a greater relative abundance of non-Saccharomyces yeasts.  

Its population showed a greater relative abundance of pathogens, such as Aspergillus, Rhizopus 

and Alternaria, also evidenced the largest relative abundance of phytoprotectants (Aureobasidium). 

In contrast, organic Initial Must showed a greater biodiversity, along with greater relative 

abundance of Saccharomyces yeasts. In addition, its population showed a lower relative abundance 

of phytoprotectants and pathogens. The loss of integrated Initial Must biodiversity may be due to 

the atypical, dry and hot vintage year, already known to be a factor that negatively affect yeast 

biodiversity (Gayevskiy and Goddard, 2012). 
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At Middle and End of Fermentation the eukaryotic populations of Touriga Nacional integrated and 

organic fermentations were compared according to the applied inoculation process, and  at the 

Middle of Fermentation, the integrated and inoculated fermentation (FT33) showed less 

biodiversity, along with a greater relative abundance of Saccharomyces yeasts, as mentioned above 

several studied already reported that S. cerevisiae can suppress certain species while favour the 

persistence of other (Bahareh Bagheri, Bauer, and Setati 2017). The eukaryotic population of this 

fermentation presented a lower relative abundance of pathogens and phytoprotectors. In contrast, 

the integrated and spontaneous fermentation (FT35) showed greater number of eukaryotic genera 

together with less relative abundance of Saccharomyces yeasts. In addition, its population has 

resulted in a greater relative abundance of phytoprotectants (as Lachancea) and pathogens (as 

Aspergillus). The organic and inoculated fermentation (FT34) showed less biodiversity, along with 

a greater relative abundance of Saccharomyces yeasts, once again in line with previous studies 

where it was clarified that S. cerevisiae can suppress certain species while favour the persistence 

of other (Bahareh Bagheri, Bauer, and Setati 2017). However, the eukaryotic population of this 

fermentation presented a smaller relative abundance of pathogens and phytoprotectors. In contrast, 

the organic and spontaneous fermentation (FT36) showed greater number of eukaryotic genera, 

along with less relative abundance of Saccharomyces yeasts. In addition, its population showed a 

greater relative abundance of phytoprotectants (Lachancea) and pathogens (Aspergillus). These 

findings are in accordance with those described by  Setati et al. 2017 and Padilla et al. 2017, that 

showed that that the commercial S. cerevisiae can suppress and favour a number of non-

Saccharomyces species (phytopathogens and beneficial microorganisms), which can lead to an 

increase of population biodiversity. 

At End of Fermentation the integrated and inoculated fermentation (FT33) showed a lower number 

of eukaryotic genera, together with a greater relative abundance of Saccharomyces yeasts. The 

eukaryotic population of this fermentation presented a lower relative abundance of pathogens and 

a greater relative abundance of phytoprotectors (as Lachancea and Torulaspora). In contrast, the 

integrated and spontaneous fermentation (FT35) showed greater number of eukaryotic genera, 

along with less relative abundance of Saccharomyces yeasts. In addition, its population has resulted 

in a lower relative abundance of phytoprotectants and a greater relative abundance of pathogens, h 

as Aspergillus. The organic and inoculated fermentation (FT34) showed lower number of 

eukaryotic genera, along with a greater relative abundance of Saccharomyces yeasts. However, the 
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eukaryotic population of this fermentation presented a greater relative abundance of pathogens 

(Aspergillus) and a lower relative abundance of phytoprotectors. In contrast, the organic and 

spontaneous fermentation (FT36) showed a greater number of eukaryotic genera, along with less 

relative abundance of Saccharomyces yeasts. In addition, its population has resulted in a greater 

relative abundance of phytoprotectants (as Lachancea and Torulaspora) and a lower relative 

abundance of pathogens. These results are discordant with those reported by Grangeteau et al. 2017 

and Martins et al. 2016, where lower  yeast biodiversity was associated with organic production. 

However, it is important to stress that as mentioned above the studies of  Setati et al. 2017 and 

Padilla et al. 2017, reported that the commercial S. cerevisiae can suppress and favour a number 

of non-Saccharomyces species (phytopathogens and beneficial microorganisms) a finding that is 

concordant with the reported in this study. 

 

Touriga Nacional prokaryotic population showed a greater relative abundance of 

Alphaproteobacteria class. As expected, the number of Touriga Nacional prokaryotic classes 

increased during fermentation. 

Comparing Touriga Nacional Initial Must prokaryotic population, the integrated Initial Must show 

greater number of prokaryotic classes, along with a lower relative abundance of 

Alphaproteobacteria and a greater relative abundance of Gammaproteobacteria. In contrast, 

organic Initial Must showed lower number of prokaryotic classes, along with greater relative 

abundance of Alphaproteobacteria. 

At Middle and End of fermentation the prokaryotic populations of Touriga Nacional integrated and 

organic fermentations were compared according to the applied inoculation process and  at Middle 

of Fermentation, the integrated and inoculated fermentation (FT33) showed the same relative 

abundance of prokaryotic classes as the integrated and spontaneous fermentation (FT35), along 

with a higher relative abundance of Alphaproteobacteria and a lower relative abundance of Bacilli 

and Gammaproteobacteria. The integrated and spontaneous fermentation (FT35) showed the same 

relative abundance of prokaryotic classes as the integrated and inoculated fermentation (FT33), 

together with a lower relative abundance of Alphaproteobacteria and a greater relative abundance 

of Bacilli and Gammaproteobacteria. The organic and inoculated fermentation (FT34) showed the 

lowest relative abundance of prokaryotic classes, along with the lowest relative abundance of 

Alphaproteobacteria and the highest relative abundance of Bacilli and Gammaproteobacteria. The 
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organic and spontaneous fermentation (FT36) showed the highest relative abundance of 

prokaryotic classes, jointly with the highest relative abundance of Alphaproteobacteria and the 

lowest relative abundance of Bacilli and Gammaproteobacteria. 

At End of Fermentation the integrated and inoculated fermentation (FT33) showed lower number 

of prokaryotic classes, in conjunction with a greater relative abundance of Alphaproteobacteria 

and Gammaproteobacteria, and a lower relative abundance of Bacilli. The integrated and 

spontaneous fermentation (FT35) showed greater number of prokaryotic classes, together with a 

lower relative abundance of Alphaproteobacteria and Gammaproteobacteria, and a greater relative 

abundance of Bacilli. The organic and inoculated fermentation (FT34) showed lower number of 

prokaryotic classes, accompanied with the highest relative abundance of Alphaproteobacteria and 

the lowest relative abundance of Bacilli, Gammaproteobacteria and Betaproteobacteria. The 

organic and spontaneous fermentation (FT36) showed greater number of prokaryotic classes, 

together with the lowest relative abundance of Alphaproteobacteria and the greatest relative 

abundance of Bacilli, Gammaproteobacteria and Betaproteobacteria. 

All the identified classes are in line with previous studies (Pinto et al. 2015; Salvetti et al. 2016). 

 

Aragonez and Touriga Nacional Initial Must, Middle and End of Fermentation cultivable yeasts 

were isolated using YEPD medium and by sequencing the ITS region.  

In Aragonez, the Initial Must was the sampling point that reflected a greater number of yeasts 

species identified, with the Middle and End of Fermentation showing the same yeasts members 

between them. At integrated Initial Must three yeast species were identified: Hanseniaspora 

opuntiae (50%) Babjeviella inositovora (25%) and S. cf. cerevisiae (25%). At organic Initial Must 

three yeast species were identified: S. cerevisiae (40%), Aureobasidium pullulans (40%) and 

Sporidiobolus pararoseus (20%). At Middle and End of Fermentation only one yeast species was 

recovered: S. cerevisiae (100%).  

The low diversity of species identified may be due to limiting factors, such as the use of the unique 

growth conditions applied (such as growth medium and  growth temperature) – other studies have 

reported that the use of more than one growth medium, more different species are isolated and 

consequently identified (Padilla et al. 2016). As it was expected, the Initial Must showed a higher 

diversity than the Middle and End of Fermentation, that as expected just showed S. cerevisiae, a 

fact also reported by Padilla et al. 2016. The identified species by the culture- dependent approach 
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are in agreement with the metagenomic data, and also  with the reported by several studies, except 

the presence of B. inositovora (Bezerra-Bussoli et al. 2013; Brysch-Herzberg and Seidel 2015; 

Padilla et al. 2016).  

 

In Touriga Nacional, the Initial Must was the sampling point that reflected a greater biodiversity 

of the isolated yeasts, with the Middle and End of Fermentation showing the same diversity 

between them. In the integrated Initial Must three yeast species were identified: H. opuntiae (60%), 

S. cerevisiae (20%), and H. meyeri (20%). In the organic Initial Must two yeast species were 

identified: H. opuntiae (75%) and H. uvarum (25%). At Middle and End of Fermentation only one 

yeast specie was identified: S. cerevisiae (100%). 

As reported above the identification of a restricted number of yeasts species may be due to limiting 

factors, such as the use of single growth (Padilla et al. 2016). As it was expected, the Initial Must 

showed a significant higher number of species identified in comparison with the Middle and End 

of Fermentation, that also, as expected only S. cerevisiae was recovered (Padilla et al. 2016). The 

identified species are in accordance with the metagenomic data and also in agreement with the 

reported by previous studies (Bezerra-Bussoli et al. 2013; Brysch-Herzberg and Seidel 2015; 

Padilla et al. 2016; Martin et al. 2018). 

 

In order to evaluate the ability of the indigenous yeasts consortium to impose against commercial 

yeast the patterns of the interdelta sequence regions using primer pair delta12 and delta2B were 

evaluated. In addition, these profiles also provided the control of possible contaminations that may 

occurred during the inoculation and fermentation processes.  

The results showed that the inoculated fermentations (FT13, FT14, FT33 and FT34) shared a very 

similar interdelta profile with the inoculated commercial yeast profile, having in common nearly 

all bands between them. All the spontaneous fermentations interdelta profiles (FT15, FT16, FT35 

and FT36) shared only two bands with the commercial yeast profile, so spontaneous fermentations 

were not dominated by the commercial yeast, but by a diverse number of strains similar to the 

commercial one as reported by Martiniuk et al. 2016. 

According to the interdelta profiles of Aragonez and Touriga Nacional fermentations, the 

spontaneous fermentations (FT15 and FT16; FT35 and FT36) were not contaminated with the 

commercial yeast used on the commercial fermentations (FT13 and FT14; FT33 and FT34), during 
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the inoculation process nor during the procedures carried out throughout the fermentation process 

at the pilot unit. 
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5 Conclusion and Future Perspectives 

This study reports the analysis of the wine microbiome of two Portuguese red wine grape varieties 

,Aragonez and Touriga Nacional that were simultaneously produced under two production modes, 

Organic and Integrated, and the fermentations were carried by two different methods: inoculated 

with a commercial yeast and driven by spontaneous yeast community. The sampling was performed 

at three sampling points, namely the Initial Must, Middle and End of Fermentation to evaluate the 

impact of vitivinicultural practices on wine microbiome during the alcoholic fermentation. 

 

This study demonstrated that the production mode (integrated or organic) influences differently the 

eukaryotic and prokaryotic populations throughout the fermentation, for both Aragonez and 

Touriga Nacional. 

Concerning the eukaryotic population, the organic production mode favoured a healthier 

microbiome for both grape varieties, but in different ways. In Aragonez, the characteristics 

provided by the organic production mode provided the necessary conditions for a population with 

a greater abundance of phytoprotectors. However, in Touriga Nacional the characteristics provided 

by the organic production mode provided the conditions for the development of a population with 

a lower abundance of pathogens. Regarding the fermentation process (inoculated or spontaneous), 

it was possible to observe that the addition of commercial yeast leads to a consequent biodiversity 

decrease and an increase of Saccharomyces yeasts abundance. This relationship was observed in 

both Aragonez and Touriga Nacional, regardless of the production method. 

Concerning the prokaryotic population, the organic production mode showed a restriction on the 

prokaryotic members in the Initial Must, however, with the progress of fermentation this effect 

disappears. Regarding the fermentation process (inoculated or spontaneous), in both Aragonez and 

Touriga Nacional, the addition of a commercial yeast does seem to affect the prokaryotic 

microbiome. 

 

Once this study was carried out during the first harvest since all the vitivinicultural  practices were 

implemented (production mode and fermentation method), it would be important to give  

continuity, not only to clarify the questions raised by the observed results, but also to monitor and 

compare the behaviour of the wine microbiome along time, climate and other variables. This should 

allow a deeper characterization of the terroir, allowing application of the attained knowledge to 
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develop more sustainable decisions and processes, allowing the increase of the quality of the final 

product.  

 

Future work should evaluate the contribution of these findings to the chemical composition of wine 

in order to identify the synthesise metabolites and aroma compounds in the produced wines 

(metabolome analysis). Furthermore, is required a sensory analysis by panelists, in order to 

characterize the impact of the different production modes and fermentation types to the final 

product quality and differentiation. 

 

In this study, the impacts of different winemaking practices (production method and fermentation 

methods) on the wine microbiome during fermentation were evaluated. The initially proposed 

objectives were achieved; however, further comprehensive studies are needed to clarify the 

relationships identified. 

 

This study not only contributed to a better understanding of the behaviour of two Portuguese grape 

varieties in a Portuguese wine region, but also allowed to reinforce the importance and the role that 

the terroir has on the microbiome and in the wine’s regionality.
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Table 7.1 – Phytosanitary treatments applied in the experimental field during the year 2017. 

Administration date 
Production 

Mode 
Active substance Cause 

March, 2017 Organic 

Cuprous oxide Downy Mildew prevention 

Sulfur Downy Mildew and Powdery Mildew 

Iron phosphate Snail invasion 

May, 2017 

Organic 
Cuprous oxide Downy Mildew prevention 

Sulfur Downy Mildew and Powdery Mildew 

Integrated 

Dimethomorph 

Fluopyram 

Folpet 

Fosetil-Al 

Iprovalicarb 

Tebuconazole 

Downy Mildew 

June, 2017 

Organic 
Deltamethrin Cicadella viridis invasion 

Spirodiclofen Acariasis 

Integrated 

Dimethomorph 

Folpet 

Tebuconazole 

Downy Mildew 

July, 2017 Integrated Deltamethrin Cicadella viridis invasion 

Kaolin was administered only in the experimental field of the integrated production mode. 

 

Table 7.2 – Evolution of the density (g/L) of Aragonez fermentations for the year 2017, from Initial Must to End 

of Fermentation. 

Stages of 

fermentation 

Days of 

fermentation 

Aragonez fermentations density (g/L) 

FT13 FT14 FT15 FT16 

IM 1 1114 1157 1136 1104 

 2 1103 1100 1102 1104 

 3 1105 1104 1105 1105 

 4 1102 1102 1105 1104 

 5 1089.5 1086.2 1105 1103 

MF 6 1060 1045 1078 1066 

 7 1016 1042 1042 1027 

 8 1008.7 1029.1 1023.9 1013.9 

 9 999.9 1017.3 1010.9 1002.9 

 10 996 1001.2 1010 995.2 

 11 993.7 1004.3 998.5 993.9 

 12 993.2 999 996.3 994.1 
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 13 993.1 997.7 995.5 993.3 

 14 994.5 997 995.4 994 

EF 15 993.8 996.6 995.2 993.6 

IM – Initial Must; MF – Middle of Fermentation; EF – End of Fermentation; FT – Fermentation. 

 

Table 7.3 – Evolution of the density (g/L) of Touriga Nacional fermentations for the year 2017, from Initial 

Must to End of Fermentation. 

Stages of 

fermentation 

Days of 

fermentation 

Touriga Nacional fermentations density (g/L) 

FT33 FT34 FT35 FT36 

IM 1 1108 1075 1104 1123 

 2 1102 1107 1104 1104 

 3 1100 1100 1108 1109 

 4 1100 1104 1104 1104 

 5 1100 1100 1101 1099 

MF 6 1079.3 1092.8 1094 1089.1 

 7 1044 1061 1054 1051 

 8 1029 1037 1021 1024 

 9 1013.5 1024 1007.7 1008.7 

 10 1002.3 1014.1 998.9 999.1 

EF 11 997.9 1004.9 996.1 996.9 

IM – Initial Must; MF – Middle of Fermentation; EF – End of Fermentation; FT – Fermentation. 
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Table 7.4 Number of cultivable yeasts on Initial Must, Middle and End of Fermentation of Aragonez for the 

year 2017. 

Initial Must (log CFU/ml) 

AG IP AG OP 

4.45±0.06 6.85±0.06 

Middle of Fermentation (log CFU/ml) 

FT13 FT14 FT15 FT16 

8.72±0.11 8.65±0.02 8.67±0.07 8.70±0.14 

End of Fermentation (log CFU/ml) 

FT13 FT14 FT15 FT16 

6.97±0.21 8.18±0.03 7.86±0.03 6.91±0.02 

The data presented result from the mean of 3 replicates. AG OP – Aragonez Organic Production; AG IP – Aragonez 

Integrated Production; FT – Fermentation; FT13 – Integrated Production/Inoculated fermentation; FT14 – Organic 

Production/Inoculated fermentation; FT15 – Integrated Production/Spontaneous fermentation; FT16 – Organic 

Production/Spontaneous fermentation 

 

 

Table 7.5 Number of cultivable yeasts on Initial Must, Middle and End of Fermentation of Touriga Nacional 

for the year 2017. 

Initial Must (log CFU/ml) 

TN IP TN OP 

6.22±0.19 3.92±0.01 

Middle of Fermentation (log CFU/ml) 

FT33 FT34 FT35 FT36 

8.48±0.10 8.37±0.17 8.44±0.08 8.33±0.13 

End of Fermentation (log CFU/ml) 

FT33 FT34 FT35 FT36 

7.54±0.07 8.51±0.05 7.57±0.04 7.70±0.16 

The data presented result from the mean of 3 replicates. TN OP – Touriga Nacional Organic Production; TN IP – 

Touriga Nacional Integrated Production; FT – Fermentation; FT33 – Integrated Production/Inoculated fermentation; 

FT34 – Organic Production/Inoculated fermentation; FT35 – Integrated Production/Spontaneous fermentation; FT36 

– Organic Production/Spontaneous fermentation. 

 


