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Abstract 

Seagrasses are among the most important and also mostly threatened ecosystems in the 

marine environment. Seagrass loss can occur in their competition with other macrophytes, 

like invasive macroalgae. These pose a serious threat and present numerous consequences to 

their new environment. Among those that can affect seagrasses, Caulerpa sp. are one of the 

most recognized genus. Different mechanisms can grant them a competitive advantage over 

seagrasses, resulting in partial or even complete replacement. Therefore, knowing how 

Caulerpa sp. functions and interacts with a new environment is crucial, especially in a system 

like Ria Formosa, where three of the four European seagrass species can be found. We aimed 

to study and compare different photo-physiological components of the subtidal seagrasses 

Cymodocea nodosa and Zostera marina and of the macroalgae Caulerpa prolifera along diel 

cycles, while at the same time identifying possible consequences of their interaction, using a 

mesocosm experiment. The first experiment was performed over the course of two days (48 

hour cycle), collecting samples for biochemical analysis at pre-dawn and solar noon at the 

end. The mesocosm experiment involved planting Z. marina and C. prolifera separately and 

mixed. After 4 weeks, photosynthetic performance was tested using photosynthesis-

irradiance curves and rapid light curves, and samples for biochemical analysis were collected. 

The seagrasses revealed higher effective quantum yield and non-photochemical quenching, 

mainly related to their xanthophyll pigments, while C. prolifera displayed a typical shade-

adapted response. Furthermore, it displayed a different carbohydrate usage regime, which 

was related to its higher respiration rates.  Although no different overall photosynthetic 

performance was detected in the interaction of the species, starch content in Z. marina 

rhizomes was significantly lower when C. prolifera was present. This work gives initial 

insight on the physiological performance of C. prolifera in Ria Formosa.  

Keywords                                                                                                                                                                

Cymodocea nodosa, Zostera marina,  Macroalgae, Caulerpa prolifera, Photophysiology,  

Ria Formosa 

 

 

 



 

Resumo 

Ervas marinhas são plantas angiospérmicas adaptadas ao ambiente marinho que formam 

pradarias extensivas em zonas costeiras a nível mundial, com exceção dos polos. Estas 

pradarias formam um habitat complexo e diverso, apresentando uma alta produtividade e 

prestando serviços ecossistémicos importantes, como o sequestro e armazenamento de 

carbono, reciclagem de nutrientes e proteção costeira. No entanto, apesar da sua importância, 

são um dos habitats marinhos mais ameaçados. A maior causa de perda de pradarias de ervas 

marinhas é a atividade antropogénica. Dragagens, eutrofização, descargas de nutrientes e 

desenvolvimento costeiro são exemplos de atividades que diminuem a qualidade da água e 

afetam diretamente as pradarias. Além disso, ocorrem também perdas naturais das pradarias, 

por exemplo, pela competição com outros macrófitos, como é o caso das algas que podem 

ocupar o mesmo espaço e utilizar os mesmos recursos. A sua colonização pode afetar não só 

o ecossistema, mas também a abundancia de espécies endémicas e a sua diversidade. 

Diferentes macroalgas verdes já provaram ter um elevado potencial invasor, entre as quais 

se destingem espécies do género Caulerpa. Este género inclui algumas das algas mais 

invasoras conhecidas atualmente. Caulerpa taxifolia e Caulerpa racemosa são alguns 

exemplos de algas que invadiram o Mar Mediterrâneo e que afetaram negativamente várias 

pradarias de ervas marinhas. Além de competirem por recursos como nutrientes e luz, 

competem também pelo mesmo substrato, previamente ocupado com ervas marinhas, não 

permitindo que elas recuperem.  Fisiologicamente, ervas marinhas e algas, mais 

especificamente do género Caulerpa, são limitadas pela luz. As primeiras apresentam uma 

maior necessidade de luz, mas isso não impede que várias espécies tenham capacidade de 

sobreviver quando a irradiância é baixa. Vários mecanismos de defesa, que variam de espécie 

para espécie, determinam a sua resiliência a estas condições. Por outro lado, a exposição a 

luz excessiva também pode ser prejudicial para as plantas, nomeadamente induzindo stress 

foto-oxidativo. Para defesa contra o excesso de luz (fotoproteção), as plantas possuem 

pigmentos secundários, os carotenóides, capazes de transformar o sistema de captura de luz 

num sistema de dissipação de energia excessiva na forma de calor. O género Caulerpa não 

só apresenta uma elevada plasticidade a nível morfológico mas também ao nível dos seus 

pigmentos. Tal como as ervas, as algas possuem carotenóides capazes de dissipar energia 

excessiva. Além disso, a sua capacidade para tolerar altas intensidades de luz depende dos 



 

nutrientes disponíveis, que podem obter não só da coluna de água, mas também do sedimento, 

havendo assim competição entre as ervas marinhas e as algas em ambos os meios. Com o 

aparecimento da Caulerpa prolifera em zonas menos profundas da Ria Formosa, onde 

ocorrem três das quatro espécies de ervas marinhas a nível Europeu, surge a necessidade de 

perceber o seu funcionamento fisiológico comparativamente com as ervas e avaliar o 

potencial para interações fisiológicas. Para tal, analisou-se a performance circadiana de 

Zostera marina, Cymodocea nodosa e C. prolifera ao longo de um ciclo de 48 horas numa 

sistema seminatural. Foram medidos parâmetros relacionados com a fluorescência da 

clorofila a, medindo a eficiência quântica e recolhendo amostras para analise bioquímica. 

Numa outra experiência, para estudar possíveis consequências da interação entre ervas e 

algas, Z. marina e C. prolifera  foram recolhidas no campo e plantadas em tanques, quer 

individualmente quer em conjunto, em cinco replicados, recebendo sempre a mesma 

intensidade de luz com um fotoperíodo de treze horas, durante quatro semanas. Após as 

quatro semanas, foi avaliada a resposta da fotossíntese à luz de curvas em ambas as espécies 

e recolhidas amostras para posterior analise bioquímica. Foram analisados os conteúdos em 

açúcares solúveis e amido, proteína solúvel, compostos adenilados e pigmentos 

fotossintéticos nas três espécies. Os açúcares e amido foram analisados pelo método fenol-

sulfúrico e as proteínas solúveis pelo método de Bradford. Os compostos adenilados foram 

analisados por cromatografia liquida de alta eficiência (HPLC). Os pigmentos fotossintéticos 

foram analisados primeiro por espectrofotometria para identificar concentrações de clorofila, 

complementando com cromatografia (HPLC) para a identificação dos carotenoides. As ervas 

apresentaram níveis de eficiência quântica real e potencial e dissipação de energia sob a 

forma de calor  mais elevadas comparativamente com a alga, e índices de desepoxidaçao dos 

pigmentos do ciclo das xantofilas  mais elevados,  mostrando estar mais protegidas contra 

intensidades de luz mais elevadas. C. prolifera, pelo contrário, apresentou uma resposta típica 

de espécies adaptadas a baixas intensidades de luz, com razões de clorofila a/b mais baixas 

do que as ervas e índices de desepoxidação do ciclo das xantofilas muito baixos. Apresentou 

ainda taxas fotossintéticas ligeiramente mais baixas, uma taxa de respiração mais elevada e 

uma maior resposta foto-inibitória a intensidade de luz mais alta, comparado a Z. marina. O  

conteúdo de açúcar solúvel da alga foi significativamente mais baixo do que o das ervas, 

enquanto que as suas reservas de amido foram muito mais elevadas, revelando um regime de 



 

utilização de hidratos de carbono bastante distinto. A interação de Z. marina com C. prolifera 

não mostrou ter influência nas capacidades fotossintéticas e teores de pigmentos 

fotossintéticos de ambas as espécies. No entanto, verificou-se um esgotamento das reservas 

de amido nos rizomas de Z. marina. Uma vez que não foram observadas alterações nas taxas 

de respiração, colocamos a hipótese que os hidratos de carbono foram utlizadas como base 

para síntese de moléculas com funções alelopáticas. Desta forma, a alga parece induzir um 

efeito fisiológico nesta erva marinha, ao nível da utilização dos hidratos de carbono. Esta é a 

primeira vez que é reportado um efeito fisiológico deste tipo. Apesar de apresentar 

adaptações para ambientes de baixa intensidade luminosa,  o avanço observado de C. 

prolifera em zonas menos profundas da Ria Formosa pode estar relacionado com a sua 

plasticidade morfológica e a sua resistência a intensidades mais elevadas desde que os 

nutrientes não são o fator limitante. Este estudo apresenta uma introdução às diferenças 

fotofisiológicas entre C. prolifera e as ervas marinhas nativas da Ria Formosa, mas deverá 

ser completado eventualmente com uma análise sazonal e de crescimento, para uma 

compreensão mais detalhada de como  a C. prolifera interage com as ervas marinhas, tanto 

a nível ecológico como também a nível bioquímico. 
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1. Introduction 

1.1. Seagrasses: a key element in the marine environment 

Seagrasses are marine flowering plants (angiosperms) that are fully adapted to the marine 

environment and form extensive meadows in shallow coastal waters all around the world, 

with exception to the polar seas (Green & Short, 2003; Orth et al., 2006). These meadows 

form highly complex and diverse habitats, providing important ecosystem functions, 

presenting high primary productivity and are the basis of many food webs, be it through 

herbivoral or detrital pathways (Short et al., 2011). Their high productivity has also been 

found to support other adjacent ecosystems such as coral reefs, mangroves and even 

terrestrial ecosystems, through energy and material transfers (Heck et al., 2008). 

Furthermore, they play an important role as nurseries for juvenile fish assemblages (Björk et 

al., 2008; Blandon and Zu Ermgassen, 2014), bury and store large amounts of organic carbon 

(Duarte, Middelburg & Caraco, 2004; Fourqurean et al., 2012), export O2 from their leaves 

to their rhizomes and roots (oxygenating the sediment and stimulating microbial activity and 

nutrient recycling), while also promoting wave attenuation (Christianen et al., 2013) and 

preventing coastal erosion (Björk et al., 2008). 

Despite being such an important element in the marine environment, a global decline of 

seagrasses has been observed. A review of 215 studies revealed that seagrass habitats 

declined at a rate of 110 km2 yr-1 between 1980 and 2006 (Waycott et al., 2009). This rapid 

loss makes them one of the most threatened habitats in the world (Orth et al., 2006; Waycott 

et al., 2009). The only known exceptions to this alarming trend are the recently reported signs 

of seagrass stabilization and recovery in Europe (de los Santos et al., 2019). Seagrass loss 

can occur both naturally or due to anthropogenic disturbances, which are among the main 

causes of seagrass loss. Dredging, eutrophication, nutrient loading, land reclamation and 

shoreline development are examples of human activities that, besides increasing seawater 

turbidity, negatively affect seagrass meadows (Duarte, 2002; Erftemeijer & Lewis, 2006; 

Waycott et al., 2009). Indirect impacts, affecting seagrasses globally include: i) sea level rise, 

ii) increased wave action and storms and iii) increased sea temperature (Duarte, 2002). 

Natural losses of seagrasses can also be caused by other macrophytes that compete with them 

for light and nutrients. Replacement of slower growing seagrass species, like Posidonia 
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oceanica, by faster growing species like Cymodocea nodosa has already been observed in 

the Mediterranean sea (Burgos et al., 2017). The same applies for fast growing algae as for 

example, species of the genus Caulerpa, which are known to rapidly propagate in areas 

occupied by seagrasses (Lloret et al., 2005; Holmer et al., 2009; García-Sánchez et al., 2012; 

Tuya et al., 2013). 

 

1.2. Invasive marine macroalgae 

Invasive species are species that due to their high dispersion capability have a negative 

effect in the environment in which they are introduced (William & Smith, 2007). But before 

it can be considered invasive, the species has to be capable of reproducing in large numbers 

and show potential to spread over large distances (Richardson, Pyšek & Carlton, 2011). Their 

ecological role can be debated, as their dominance can be due to their highly interactive, 

competitive and limiting nature (“driver” model) or depend on non-interactive factors (e.g. 

environmental changes) which are less constraining on the invasive species, hence their 

domination (MacDougall & Turkington, 2005).   

In the marine environment, invasive species pose a serious threat, affecting and altering 

entire ecosystems using a variety of mechanisms and leading to a wide range of consequences 

(Ehrenfeld, 2010). Among the many invasive species that can threaten the marine 

environment, a number of them are opportunistic macroalgae. Their colonization can affect 

the surrounding environment and lead to a significant loss of native species and diversity 

(Stæhr et al., 2000; Sanchez et al., 2005; Scheibling & Gagnon, 2006; William & Smith, 

2007). Increased pressure exerted by certain macroalgae can negatively affect seagrass 

meadows as they compete for the same resources such as space, light and nutrients. For 

example, the green algae Enteromorpha radiata spread through subtidal Zostera marina and 

Zostera noltii meadows in northern Europe, and their decrease was assumed to be caused by 

either shading or anoxic conditions caused by the algae matts (Den Hartog, 1994). Another 

example is Codium sp., which have proven to be very successful invaders, exhibiting high 

levels of competition with not only native seaweed species (Scheibling & Gagnon, 2006; 

Williams & Smith, 2007) but also with seagrasses as Codium sp. is able to attach 

epiphytically to seagrasses, potentially disrupting them (Drouin, McKindsey, and Johnson, 
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2012). Also within the Chlorophyta we can find the genus Caulerpa, containing some of the 

most notorious invasive species that affect seagrass meadows. They can rapidly propagate in 

areas occupied by seagrasses and compete with them on different levels, threatening seagrass 

meadow stability (Lloret et al., 2005;  García-Sánchez et al., 2012; Tuya et al., 2013).  

Caulerpa taxifolia, for example, is a notorious, fast-spreading invasive algae that 

successfully invaded the Mediterranean Sea after an accidental introduction (Meinesz & 

Hesse, 1991), among other marine environments (Schaffelke, Murphy & Uthicke, 2002). It 

spread along native Posidonia oceanica meadows, directly affecting them by limiting light 

resources (de Villèle & Verlaque, 1995). Caulerpa racemosa also successfully invaded the 

Mediterranean Sea where it was found along Cymodocea nodosa meadows (Raniello et al., 

2004) and certain P. oceanica meadows, depending on its state and integrity (Klein & 

Verlaque, 2008; Checcherelli et al., 2014). Furthermore, invaded assemblages containing 

encrusting algae were especially affected by C. racemosa (Piazzi & Balata, 2009), related to 

the wide mats created by their stolons, limiting light, trapping and reducing the lower 

vegetative habitat (Piazzi et al., 2007). 

Furthermore, Caulerpa sp. can indirectly affect seagrass meadows by occupying space 

previously occupied by the latter. In other words, seagrass regression can consequently lead 

to the replacement of seagrass meadows by macroalgae such as Caulerpa sp. (Lloret et al., 

2005; Pérez-Ruzafa et al., 2012). This has been recorded, for example, in Mar Menor lagoon 

(Spain), where reduction and restriction of C. nodosa onto shallower sandy patches occurred 

(Pérez-Ruzafa et al., 2005; García-Sánchez et al., 2012;), having almost three-quarters of the 

area been replaced by C. prolifera (García-Sánchez et al., 2012). This can result in the 

deterioration of the seafloor, with the accumulation of organic matter that induces anoxic 

sediment conditions. In turn, this inhibits the settlement of other flora and fauna, negatively 

influencing species composition and diversity, with a broad range of ecological and economic 

implications, namely by affecting local fishing activities (Lloret et al., 2005; Pérez et al., 

2006; York et al., 2007). 
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1.3. Seagrasses versus algae: A physiological comparison 

In a generic physiologically comparison between seagrasses and macroalgae, it is 

apparent that, although the distribution of both groups is limited by light availability (Häder 

et al., 1996; Kenworthy & Fonseca 1996; Lloret et al., 2005), seagrasses have higher 

minimum light requirements compared to that of macroalgae (Abal et al., 1994; Duarte, 

1995), varying between species (Abal et al., 1994; Campbell et al., 2008). Seagrasses can 

nevertheless survive in low light conditions or even light deprivation, but their survivability, 

i.e. the ability to use non-structural accumulated carbon, reducing growth rates and increasing 

their photosynthetic efficiency, depends on the species and ambient conditions (OʼBrien et 

al., 2018). The increase in photosynthetic efficiency is related to the ability of macrophytes, 

including seagrasses, to adjust their pigment levels and ratios (Riechert & Dawes, 1986; Silva 

et al., 2013). Their efficiency and resilience, i.e. the capacity to undergo disturbance without 

the loss of key structures and functions, varies among species (Silva et al., 2013; OʼBrien et 

al., 2018). Furthermore, if light levels fall below the required threshold, severe seagrass loss 

may be observed (Collier, Waycott, & McKenzie, 2012). 

 On the opposite end, seagrass photo-protection mechanisms enable these plants to also 

withstand high light levels. This ability is related to the xanthophyll cycle, in which the 

concentration of three pigments, violaxanthin (V), antheraxanthin (A) and zeaxanthin (Z) 

(VAZ pigments), are adjusted according to environmental light conditions. Higher light 

intensities can induce photo-oxidative stress, caused by the formation of reactive oxygen 

species. The reversible de-epoxidation of the VAZ cycle pigments, mainly V into Z through 

A, play an important role in the dissipation of excess excitation energy as heat and are 

involved in the conversion of the light harvesting state of photosystem II (PSII) into an energy 

dissipating state (Jahns, Latowski & Strzalka, 2009; Jahns & Holzwarth, 2012). The amount 

of VAZ pigments and the ability to interconvert them under different light intensities depends 

on the individual plant adaptation (Adams & Demmig-Adams, 1996; Larkum, Drew & 

Ralph, 2006).  

The morphology and photosynthetic performance of species of the genus Caulerpa 

depend largely on the environmental conditions (Collado-Vides & Robledo, 1999). They 

present remarkable plasticity regarding photosynthetic traits, modifying their pigment pool 
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in order to adjust the photosynthetic efficiency (Raniello et al., 2004). Just as in seagrasses, 

VAZ pigments can be found in the genus Caulerpa, however the amount of each individual 

pigment is species and light dependent (Raniello et al., 2006; García-Sánchez et al., 2012). 

Additionally, the genus Caulerpa presents two additional carotenoids: siphonaxanthin and 

siphonein, the former presenting a role in the adaptation to deeper and darker environments 

in C. racemosa (Raniello et al., 2006; García-Sánchez et al., 2012). C. prolifera has been 

proven to act as a shade-adapted algae, presenting a high quantum efficiency (α) and a low 

saturation irradiance (Terrados & Ros, 1992). Additionally, it was found that in the same 

environment, C. prolifera had a lower maximum Electron Transport Rate (ETRmax), yet 

almost double the photosynthetic efficiency (α) when compared to C. nodosa (García-

Sánchez et al., 2012). Furthermore, it has the capability to acclimate to different light 

environments due to a photoprotective mechanism that was found to depend on nutrient 

availability (Malta et al., 2005). Being a rhizophitc algae, however, Caulerpa sp. has access 

to nutrients not only from the water column, but also from the sediment porewater, thus 

competing with seagrasses not only above, but also below the substrate (William, 1984). The 

combination of high growth rates, low light requirements, various photoprotective 

mechanisms and the capability of occupying different substrates makes Caulerpa sp. strong 

seagrass competitors. 

Recognizing the invasive potential held by species of the genus Caulerpa and the effect 

they may have on native species, the need emerges to understand how they will act in 

different environments and the impact they may have. Caulerpa prolifera was “re-

discovered” in Ria Formosa (Cunha et al., 2013),  and has since spread all over the system, 

occupying deeper channels and slowly spreading toward shallower subtidal areas, where it 

possibly interferes with native seagrass meadows. While the distribution and physiological 

performance of the seagrasses has been extensively studied, little to no information exists 

regarding the physiology of Caulerpa prolifera in Ria Formosa. 

 

1.4. Main objectives 

The main goal of this thesis is to investigate the compared physiological performance of 

Caulerpa prolifera and the native seagrasses Z. marina and C. nodosa in Ria Formosa, in 
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order to understand its different photophysiological and biochemical traits, while also 

elucidating the potential inter-specific physiological interactions. 

 

2. Material and Methods 

C. nodosa, Z. marina and C. prolifera co-occur in shallow subtidal ranges of Ria 

Formosa. The physiological performance of these three species was analyzed under the 

identical conditions and the interaction between C. prolifera and Z. marina was also 

investigated in a mesocosm experiment in controlled conditions.  

In a semi-field experiment, ten leaves of each species were marked, and photosynthetic 

performance was evaluated during 48-hour using chlorophyll fluorescence. Plant tissue 

samples were collected at 4:00 (pre-dawn) and 12:30 (solar noon) for biochemical analysis 

(photosynthetic pigments, soluble carbohydrates, soluble protein and ATP, ADP and AMP).  

To analyze the interaction between C. prolifera and Z. marina, a mesocosm experiment 

was conducted at the Ramalhete Experimental Station (CCMAR). Individuals of both species 

were collected and placed in tanks under ambient temperature and controlled light conditions. 

Each species was planted both separately, 30 shoots of Z. marina and patches of C. prolifera, 

and mixed, 21 shoots of Z. marina and smaller patches of C. prolifera, in 15 different tanks 

of 65L each (n=5). Chlorophyll a fluorescence measurements were done daily to monitor the 

performance of Z marina and C. prolifera.  After 4 weeks in the mesocosm, leaf/frond and 

rhizome samples were taken for biochemical analysis (photosynthetic pigments, soluble 

carbohydrates, soluble protein and ATP, ADP and AMP). Rapid light curves were performed 

and leaf /frond samples were also collected for photosynthesis-irradiance (P-I) curves.  

 

2.1. Site characterization 

The Ria Formosa coastal lagoon, located in the south of Portugal, is delimited by a highly 

dynamic barrier-island system. It is connected to the Atlantic Ocean through a series of 

natural and artificial inlets. Although located along the Atlantic Ocean, Ria Formosa has a 

Mediterranean climate. However, in contrast to Mediterranean lagoons and their microtidal 

regime, Ria Formosa displays a mesotidal regime, with amplitudes ranging from 1.35m (neap 
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tides) to 3m (spring tides) (Newton & Mudge, 2003). The open coastal seawater temperature 

varies between 12-26ºC, while the inner lagoon water can reach up to almost 30ºC during the 

summer. Salinity varies seasonally, with values recorded as low as 26.8 in mid-autumn, and 

as high as 36.15 in the summer, with higher values recorded at the saltpans (Newton & 

Mudge, 2003). The lagoon is characterized by its shallow channels, mudflats and salt 

marches (Cunha et al., 2013) and is a highly productive system, supporting different habitats 

and a wide variety of fauna and flora (Falcão & Vale, 1990; Newton & Mudge, 2003). Three 

of the four European seagrass species can be found in Ria Formosa: Zostera noltii, C. nodosa 

and Z. marina (Cunha et al., 2011). Z. noltii mainly resides in intertidal areas but can also 

inhabit subtidal flats (Borum et al., 2004; Moore & Short, 2006). No information has been 

found regarding C. prolifera occupying intertidal seagrass meadows, therefore Z. noltii was 

not used as a model species in this work. 

 

2.2. Species: a brief introduction 

2.2.1. Cymodocea nodosa 

C. nodosa is widely distributed across the Mediterranean (Mascaró et al., 2009), 

including Southern Portugal (Cunha and Duarte, 2007; Cunha et al., 2011) and part of the 

adjacent Eastern Atlantic Ocean, including the Macaronesian archipelagos of Madeira and 

the Canaries (Mascaró et al., 2009; Tuya et al.,2013). It can be found in depths ranging from 

the shallow subtidal to deeper waters (50-60m). C. nodosa shoots contain 2-5 leaves that can 

reach up to 50 cm in length. Each shoot is connected to the horizontal rhizome via a vertical 

segmented rhizome. These rhizomes can grow meters per year, and this species can therefore 

be considered a pioneer, capable of colonizing vast areas of the sea floor (Borum et al., 2004). 

In Ria Formosa, C. nodosa extends through the edges of the main and secondary channels, 

covering an area of almost 1 km2 (Cunha et al. 2011). Since C. nodosa is often nutrient limited 

(Pérez et al., 1994), the increased supply of nutrients in Ria Formosa (Falcão & Vale, 1990) 

allows high growth and production rates. Nevertheless, declines in C. nodosa meadows can 

occur, mainly due to increases in water turbidity and successive occupation by macroalgae 

(Lloret et al., 2005; García-Sánchez et al., 2012; Tuya et al., 2013).  
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2.2.2. Zostera marina 

Z. marina is distributed along the coasts of the Northern Hemisphere (Green & Short, 

2003), including colder Norwegian waters and can also be found in the Mediterranean 

(Borum et al., 2004). Although it mainly forms mono-specific meadows, it can co-occupy 

substrate with other seagrasses, e.g. Z. noltii and C. nodosa. Its vertical distribution ranges 

from its predominant shallow subtidal habitat to 10-15 meters in depth, depending on water 

clarity (Borum et al., 2004; Cunha et al., 2011). Z. marina shoots contain 3-7 leaves, 

generally 30-60 cm length that can grow up to 150 cm if certain conditions are met. The 

leaves grow from a terminal shoot, that is connected to the horizontal rhizome. For each new 

leaf produced, a new internode is formed and two bundles of roots grow from the node 

between each segment (Borum et al., 2004). In Ria Formosa, it occupies the least area when 

compared with the other two seagrass species (0.05km2) and its patches seem to be declining 

(Cunha et al., 2011), maybe due to its high susceptibility to light reduction (Silva et al., 2013). 

 

2.2.3. Caulerpa prolifera 

Caulerpa spp., including C. prolifera, are one the most differentiated single-celled 

organisms, as no cell wall or membrane separates the many nuclei and cytoplasm (Jacobs, 

1994). C. prolifera (Forsskål) J. V. Lamouroux is present in most of the Mediterranean 

(Cunha et al., 2013; Mateu-Vicens et al., 2010; Tuya et al., 2013), and distributed among the 

tropical and subtropical Atlantic Ocean areas (Cunha et al., 2013; Tuya et al., 2013). Its 

growth and distribution are temperature limited (Mateu-Vicens et al., 2010; García-Sánchez 

et al., 2012) and it prefers sheltered areas, with reduced hydrodynamics and water renewal 

with a considerable amount of organic matter available (Sánchez-Moyano et al., 2001). It 

usually forms dense meadows in shallow waters (1-20 meters) on both soft bottoms, such as 

sand or mud, and on hard substrates like rock (Terrados and Ros 1995; Sánchez-Moyano et 

al., 2001). It forms fronds, stems and rhizoids, that contrarily to other multicellular plant 

organisms, elongate at a constant rate. The roots and the fronds are formed at regular 

intervals, the latter forming more often than the former (Jacobs, 1994). 
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2.3.  Diel photophysiology of Zostera marina, Cymodocea nodosa and Caulerpa 

prolifera 

The diel cycle experiment was done, in May 2019, with C. prolifera, Z. marina and C. 

nodosa, as these are the two seagrass species that can be affected by C. prolifera in Ria 

Formosa. Z. noltii was not selected as up to today there is no record of C. prolifera interfering 

with this species, mainly due to its intertidal distribution. Z. marina, C. nodosa and C. 

prolifera were collected near Ilha da Culatra (37°00'07.8"N 7°49'22.6"W). The individuals 

were carefully collected and transported to the Ramalhete field station (CCMAR) in the dark 

in tanks filled with water from Ria Formosa. Three cylindrical tanks were placed into 5 larger 

tanks as shown in figure 2.1A, resulting in a total of 15 cylindrical tanks. The bottom of each 

cylindrical tank was covered with ca. 7 cm of sand and filled with water from the Ria 

Formosa, previously filtered with sand and UV-filters.  

Seagrasses and algae were then randomly assigned to each cylindrical tank, in which they 

were then carefully planted in the sand as follows (Fig. 2.1A): 

A. Z. marina: 21 shoots evenly spread in each tank;  

B. C. nodosa: 25 shoots evenly spread in each tank; 

C. C. prolifera: 2-3 patches each tank, gently pressed against the sand to bury rhizoids, 

almost completely covering the available sediment. 

After one day of acclimation, two leaves (mature zone of the second and third leaf of the 

shoot) an two healthy fronds were selected in each tank and marked with a clamp, to ensure 

that the same section was measured every time (Fig. 2.1B). A 48-hour cycle was performed 

during which fluorescence data was collected to access the diel cycle of effective quantum 

yield (ΔF/F´m) and non-photochemical quenching (NPQ). Chlorophyll a fluorescence 

measurements were done hourly from 14:00 to 21:00 of day 1, and after 3:00 until 14:00 of 

day 2 (maximal fluorescence during the night and effective quantum yield when there was 

light). All measurements were done with a Diving-PAM (Underwater Fluorometer Pulse-
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Amplitude-Modulated (PAM), Heinz Walz GmbH, Germany) under ambient irradiance and 

temperature. 

Samples were taken for biochemical analysis (photosynthetic pigments, soluble 

carbohydrates, soluble protein and ATP, ADP and AMP) at 4:00 (pre-dawn) and 12:30 (solar 

noon). Samples were taken from the same kind of tissue that was being used for fluorescence 

measurements, i.e., the middle mature part of the second and third leaf of seagrasses and 

healthy fronds of C. prolifera. Seagrass rhizomes were also sampled after roots removal. C. 

prolifera fronds were removed at the stolon, and then rapidly processed to avoid loss of 

cellular content. All samples were quickly washed in distilled water, dry blotted, frozen in 

liquid nitrogen and stored at -80C until analysis.  

 

2.4.  Z. marina and C. prolifera: An interaction mesocosm experiment 

Z. marina and C. prolifera individuals were collected near Ilha da Culatra, Faro 

(37°00'07.8"N 7°49'22.6"W) in the end of May 2019. Leaf/frond samples were taken from 

both species (Field samples) rinsed in distilled water, blotted dry, frozen in liquid nitrogen 

and stored at -80C for future analysis. The individuals were carefully collected and 

transported, in the dark in tanks filled with water from Ria Formosa, to the Ramalhete field 

station (CCMAR) where, after carefully cleaned, were planted in an open-mesocosm system. 

The bottom of fifteen tanks (65L) were covered with 8cm of sand and filled with water from 

Ria Formosa after filtering with sand and UV-filters.  

Figure 2.1: (A) Tanks setup during the diel cycle of (a) Z. marina, (b) C. nodosa and (c) C. 

prolifera; (B) Clamp designed to ensure the correct measurements of the chlorophyll a 

fluorescence parameters 

A 
B A 

a 

b 

c 
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The 15 tanks were set up side by side (Fig. 2.2), and each treatment was randomly 

assigned: 

A. Z. marina: 32 shoots evenly spread in each tank; 

B. C. prolifera: enough biomass to cover the bottom of the tank but avoiding 

overcrowding; 

C. Z. marina + C. prolifera: 20 shoots of Z. marina mixed with patches of C. prolifera. 

 

 

 

 

 

 

 

 

The plants were subjected to a constant light intensity (± 210 µmolphotons m
-1s-1), for 13 

hours per day (8:00-21:00). The water was continuously pumped from Ria Formosa into 

cylindrical head tanks with at a flow of 50 liters per hour. In the head tanks, the water was 

mixed with air before entering the tanks where the seagrasses/algae were planted. Each tank 

had its own head tank. In order to avoid epiphyte accumulation, one treatment (5 tanks) was 

cleaned per day. Both species spent a total of 4 weeks in these tanks during which maximum 

quantum efficiency (Fv/Fm) was measured daily to monitor the physiological performance of 

the seagrasses/algae. At the end of the experiment, two leaves/fronds from each tank were 

selected to perform rapid light curves (RLC). Furthermore, leaf and frond samples were taken 

for photosynthesis-irradiance (P-I) curves. Finally, samples were collected for biochemical 

analysis. The middle mature part of the second and third leaf of Z. marina were collected, 

quickly washed in distilled water, dry blotted, frozen in liquid nitrogen and stored at -80C 

until analysis. Seagrass rhizomes were also sampled and, after roots removal, cleaned and 

processed the same way as the leaves. C. prolifera fronds were collected in small patches, 

Figure 2.2: Partial view of the mesocosm system in the Ramalhete field station 

(CCMAR). 
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cleaned, washed in distilled water, carefully blot dried, cut at the stolon, frozen in liquid 

nitrogen and stored at -80C until analysis.  

 

2.5.  Chlorophyll fluorescence – Basic concepts 

Chlorophyll fluorescence parameters were measured using a Diving-PAM (Underwater 

Chlorophyll Fluorometer Pulse-Amplitude-Modulated (PAM), Walz, Germany). These 

parameters allowed us to monitor and assess the photosynthetic performance of the different 

species, determining the effective quantum yield of photosystem II (ΔF/F´m) and their 

respective non-photochemical quenching (NPQ), and allowed us to develop rapid light 

curves (RLC). 

Chlorophyll fluorescence has been widely used to study photosynthetic organisms. Its 

use relies on basic principles related to the mechanisms of chlorophyll excitation and de-

excitation and fluorometers such as the Pulse-Amplitude-Modulated (PAM) -fluorometers 

have been used to study the chlorophyll responses to light. In the photosynthetic apparatus, 

the chlorophyll a of the reaction centers becomes excited after the absorption of incident 

photons and the transfer of their excitation energy by the antenna pigments to the reaction 

centers. After excited, chlorophyll relaxes by three different pathways: 1) photochemical, i.e. 

the use of the excitation energy for photochemistry, 2) thermal dissipation, where the 

excitation energy is dissipated as heat, and 3) chlorophyll fluorescence, where the excitation 

energy is re-emitted as light of a higher wavelength than that captured (fluorescence). The 

principle of conservation of energy states that energy is neither created, nor destroyed, rather, 

conserved and thus these pathways constantly balance with each other, meaning that if the 

efficiency of one of them increases, it will be at the cost of the others (Roháček & Barták, 

1999; Maxwell & Johnson, 2000).  

When the photosynthetic apparatus is exposed to a saturating flash (0.8 s, 2000–3000 

μmolphotons m−2s−1), fluorescence yield peaks and then slowly declines. Fluctuations in 

fluorescence signals are known as the “Kautsky curve” (Fig. 2.3) and various points along 

this curve allow the insight on dynamic changes in photosynthesis or photokinetics (Larkum, 

Drew & Ralph, 2006).  
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The maximum quantum efficiency (Fv/Fm) is determined in dark adapted photosynthetic 

apparatuses after obtaining F0 (basal fluorescence) and Fm (maximum fluorescence). After 

being in the dark for a certain period of time, that should be long enough to guarantee that all 

the reaction centers are open. In this situation, the electron transport chain is oxidized, any 

photoprotective mechanism (such as the xanthophyll cycle) is relaxed and there is the 

depletion of the trans-thylakoid gradient. Fluorometers emit a measuring light (ML), which 

induces fluorescence but is not strong enough to start the electron transport chain. The 

resulting fluorescence is called the basal fluorescence (F0). Next, a pulse of saturating light 

is applied for a short period of time, allowing the measurement of the maximal level of 

fluorescence (Fm) (Ralph & Gademann, 2005). Fv/Fm is determined from the following 

equation: 

Fv

Fm
 =  

Fm −  F0

Fm
 

Equation 1: Maximal photochemical efficiency of PSII (Fv/Fm). Fm: maximum chlorophyll 

fluorescence in the dark-adapted state, induced by a saturating-light pulse; F0: basal chlorophyll 

fluorescence in the dark adapted state, induced by weak red pulses (measuring light); Fv: variable 

chlorophyll fluorescence (Fm-F0) (adapted from Larkum, Drew and Ralph, 2006). 

Figure 2.3: Kautsly curves are the representation  of the chlorophyll fluorescence induction kinetics as 

measured in light and dark-adapted seagrass leaves. ML: measuring light, SP: saturating light pulse, AL: 

actinic light, Fo and Fm: minimum and maximum chlorophyll fluorescence (dark-adapted leaves) induced 

by ML and SP, respectively, F´m: maximum chlorophyll fluorescence in light-adapted leaves (induced by 

SP after AL on); Ft: chlorophyll fluorescence level induced by non-saturating irradiation (adapted from 

Larkum, Drew & Ralph, 2006). 
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Estimating the effective quantum yield (ΔF/F´m) requires that the photosynthetic 

apparatus is adapted to light. The saturating light pulse is applied allowing the measurement 

of the plant’s maximum fluorescence in light (Fʹm). Prior to the saturating light pulse 

application and after quenching, fluorescence presents a steady state value (Ft) (Larkum, 

Drew & Ralph, 2006). Effective quantum yield of PSII (ΔF/F´m) is calculated as in equation 

2: 

ΔF

F ʹm
 =  

F ʹm −  Ft

F ʹm
  

Equation 2: Effective quantum yield of PSII (ΔF/F´m). F´m: maximum chlorophyll fluorescence 

induced by a saturating-light flash, in the light adapted state; Ft: steady state level of chlorophyll 

fluorescence induced by ambient light in the light adapted state; ΔF: fluorescence spike on top 

of the actinic light-induced fluorescence kinetic (F´m -Ft) induced by a saturating-light flash; 

(adapted from Larkum, Drew and Ralph, 2006). 

Non-Photochemical Quenching (NPQ) is calculated as in Equation 3, and is related to the 

photoprotective mechanisms that are used to dissipate excess excitation energy (Larkum, 

Drew & Ralph, 2006). NPQ calculation is done using pre-dawn values of Fm, obtained after 

several hours of darkness (Maxwell & Johnson, 2000). 

NPQ =  
Fm −  F´m

F´m
 

Equation 3: Non-photochemical quenching (NPQ). Fm: Maximum chlorophyll fluorescence in 

the dark-adapted state, induced by a saturating-light pulse; F´m: maximum chlorophyll 

fluorescence induced by a saturating-light flash, in the light adapted state; (adapted from Maxwell 

& Johnson, 2000). 

In this work, all the chlorophyll fluorescence measurements were done with a diving-

PAM (Underwater Chlorophyll Fluorometer Pulse-Amplitude-Modulated (PAM), Walz, 

Germany) 
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2.6.  Light response curves 

2.6.1. Photosynthesis-Irradiance curves 

Photosynthesis-irradiance (P-I) curves (Fig. 2.4), are the graphical representation of the 

relationship between photosynthesis and irradiance and provide valuable information about 

the photo-physiological fitness of photosynthetic organisms.  These curves allow the 

determination of several important photosynthetic parameters such as the photosynthetic 

efficiency (α), measured at the initial slope of the light response where light is limiting for 

photosynthesis, the maximum photosynthetic rate at saturating irradiance (Pmax), the half-

saturating light intensity (Ik), at which the onset of saturation occurs, and the light 

compensation point (Ic), at which net photosynthesis is zero (Gilbert, Wilhelm & Richter 

2000).  

 

Photosynthetic rates and dark respiration were measured in cleaned leaf segments of Z. 

marina and fronds of C. prolifera (ca. 50 cm2). Second or third leaves of Z. marina were 

selected and cut into smaller section in order to fit in the incubation chamber. Because C. 

prolifera is a single-celled organism, fronds could not be cut and had to be selected according 

to size, selecting the largest fronds that would still fit the chamber. Fronds were removed 

Figure 2.4: Theoretical photosynthesis–irradiance (P–I) curve, where Pmax is the maximum photosynthetic 

rate, Imax is the minimum photosynthetic irradiance that supports Pmax, Ik is the half-saturation irradiance,  Ic  

is the light compensation point, and α is the photosynthetic efficiency (adapted from Touchette & 

Burkholder, 2000) 
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from the stolon, and a tourniquet was placed at the point where the frond meets the stolon to 

prevent any loss of internal structures and organelles (Jacobs, 1994). 70 ml of filtered water 

were taken from the same tanks where the leaves/fronds came from, and placed in incubation 

chambers filling the chamber completely. Foliar tissue/fronds were put into the water and the 

incubation chamber was carefully closed to avoid the formation of any gas bubble.  Oxygen 

microsensors were placed on the lid of each chamber, with easy access for the oxygen probe. 

Oxygen concentration in the water was determined with a PreSens Precision Sensing Microx 

4 Microsensor Oxygen meter and probe (PreSens Precision Sensing GmbH, Regensburg, 

Germany). After being in the dark for, at least, 30 min, the leaves/fronds dark respiration was 

measured. Then, leaves/fronds photosynthesis was measured under ten increasing light 

intensities, ranging from 7 to 1340 μmolphotons m
−2s−1, for approximately 10 min each. Light 

was provided by a halogen light source, and the different light intensities were obtained using 

combinations of neutral density filters. After being exposed to the highest light intensity, 

leaves were again placed in the dark for at least 10 min to measure dark respiration. During 

all this procedure the water temperature in the chambers was maintained at 22ºC. 

Photosynthetic/respiration rates were determined as follows: 

𝑋 =  
Final [O2]−Initial [O2]

t ×60
× V 

DW
 

Equation 4: Calculation of the photosynthetic/respiration rates. X:  Photosynthetic/respiration 

rate (molO2 gDW-1 h-1); Final [O2]: dissolved O2 concentration (µmol/L) measured at the end 

of the incubation time t (minutes); Initial [O2]: dissolved O2 concentration (µmol/L) measured 

at the beginning of the incubation; DW: leaf or frond dry weight (g); V: volume of water in the 

chamber (L) 

The maximum photosynthetic rate (Pmax) and the efficiency of light utilization (α) (Ralph et 

al., 2002) were calculated from the Smith and Talling model (Smith, 1936; Talling, 1957) 

which gave the best fit from all the mathematical models tested (Henley, 1993; Platt et al. 

1980). Half-saturating irradiance (Ik) was obtained from the ratio between Pmax and α. 
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2.6.2. Rapid light curves 

Rapid light curves (RLC) plot the relative electron transport rate (rETR) (i.e. the rate at 

which electrons are pumped through the photosynthetic electron transport chain) as a 

function of the photosynthetically active radiation (PAR). rETR is calculated using the 

following equation (Ralph & Gademann, 2005): 

rETR =  
ΔF

F ʹm
× PAR  

Equation 4: Calculation of the relative electron transport rate (rETR). ΔF/F´m: effective 

quantum yield; PAR: photosynthetically active radiation. 

RLCs were done on healthy and undamaged previously marked second or third leaves 

of Z. marina and larger fronds of C. prolifera that presented a homogenous cellular 

distribution, i.e. that did not have any white or transparent sections (n=10). Leaves/fronds 

were exposed to nine consecutive light levels: 6, 22, 51, 97, 146, 204, 310, 421 and 560 

μmolphotons.m
-2.s-1. Effective quantum yield was measured (Diving-PAM, Underwater 

Chlorophyll Fluorometer Pulse-Amplitude-Modulated (PAM), Walz, Germany) and rETR 

was calculated, for each light level, as in Equation 4.  

The maximum relative electron transport rate (rETRmax), and the efficiency of light 

utilization (α) (Ralph et al., 2002) were calculated from the Platt, Gallegos & Harrison (1980) 

model which gave the best fit from all the mathematical models tested (Henley, 1993; Platt, 

Gallegos & Harrison, 1980) as it is one of the only models that accounts for photo-inhibition. 

Ik was calculated as the ratio between rETRmax and α.  

 

2.7.  Biochemical analysis 

2.7.1. Soluble sugars and starch 

Soluble sugars and starch were extracted from 65 mg of both leaf/frond and rhizome 

samples, grounded in liquid nitrogen. Sugars were extracted in 10 mL of ethanol 80% at 80ºC 

during 30 minutes. The extract was then centrifuged (5 minutes, 2000 rpm, Thermo Fisher 

Scientific Heraeus Megafuge, 16R, U.S.A). The supernatant was used to quantify total 

soluble sugars and the pellet was used to quantify starch.   
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Total soluble sugars were quantified by the phenol-sulfuric assay, using glucose as a 

standard (adapted from Dubois et al., 1956). 1 mL of the supernatant was carefully mixed 

with 1mL of 5% phenol and 5 mL of sulfuric acid (95%) This mixture was then agitated and 

cooled down to room temperature and read at 490 nm  and 750 nm (Beckman-Coulter DU650 

spectrophotometer, U.S.A) 

Starch was determined in the pellet which was previously washed in three successive 

resuspensions in 1 ml Mili-Q water and centrifugations (12000 rpm, 2 minutes, LabNet 

hermle Z233 MK Refrigerated Microcentrifuge, MA, U.S.A). After the last cycle of 

resuspension/centrifugation, the supernatant was removed, 1mL of water was added to the 

pellet, and this suspension was incubated in a water bath at 100˚C during 5 minutes. Then, 

100 µL of the suspension were added to 500 µL of an enzymatic suspension containing α-

amilase (4 U/mL, Roche 102 814) and amiloglucosidase (2.8 U/mL, Roche 102 857). This 

mixture was centrifuged (12000 rpm, 2 minutes, LabNet hermle Z233 MK Refrigerated 

Microcentrifuge, MA, U.S.A) and the resulting suspension was then processed as described 

above for the soluble sugars.  

 

2.7.2. Soluble protein 

Soluble protein was determined by a semiquantitative method where the protein 

concentration in the samples is calculated from a calibration curve made with known 

concentrations of Bovine Albumin Serum (BSA) where Coomassie Brilliant Blue G-250 

(Bio-Rad) is added to both the samples and BSA standards (Bradford, 1976). 

A stock solution of BSA (10 mg mL-1) was prepared in Mili-Q water and diluted to 

obtain standards with 0, 2, 4, 6 and 8 µg.mL-1 of BSA.  200 µL of Coomassie Brilliant Blue 

G-250 was added to 800 µL of each standard.  

 Soluble protein was extracted from 150 mg (fresh weight) of leaf/frond or rhizomes that 

were ground in liquid nitrogen and polyvinylpolypyrrolidone (PVPP). 1500 µL of extraction 

buffer (potassium phosphate 100mM pH 7.8, triton-x 2%, DTT 1mM, PMSF 1mM) was then 

added and the extract was homogenized in a vortex. The homogenate was centrifuged (12000 

rpm during 1 min, at 4˚C, LabNet hermle Z233 MK Refrigerated Microcentrifuge, MA, 
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U.S.A), and 4 µL of the supernatant were added to 796 µL of Mili-Q water and 200 of 

Coomassie Brilliant Blue-250 (Bio-Rad).  

After 10-30 minutes of incubation, both the standards and the samples were read at 750 

nm and 595 nm (Beckman - Coulter DU650 spectrophotometer, U.S.A). The difference of 

the absorbances at 595 and 750 nm was calculated to discard the absorbance due turbidity. A 

linear regression equation obtained from the standards was used to calculate the 

concentration of soluble protein in each sample. 

 

2.7.3.  Adenylate compounds and adenylate energy charge (AEC) 

ATP (adenosine triphosphate), ADP (adenosine diphosphate) and AMP (adenosine 

monophosphate) were quantified by High Performance Liquid Chromatography (HPLC) 

according to Padinha et al. (2000) and Coolen et al. (2008). 500 mg of leaves/fronds or 

rhizomes were extracted in 10 mL of perchloric acid (HClO4) 0.6M. After homogenization, 

the extracts were heated in a water bath at 100ºC during 10 minutes and then cooled in ice 

during 1 minute and centrifuged (4600xg, 4ºC, 30 minuntes) (Thermo Fisher Scientific 

Heraeus Megafuge, 16R, U.S.A). The pH of the supernatant was then adjusted to 6.5, with 

potassium hydroxide (KOH) 1.0M. The final volume was measured and the extracts were 

placed in an ice bath during 30 min, to ensure the precipitation of all the potassium 

perchlorate (KClO4) formed. After the precipitation was concluded, 2 ml of the extract were 

filtered through a 0.22µm porosity hydrophobic PTFE filter and the concentrations of ATP, 

ADP and AMP in the samples were determined at 254 nm by HPLC (Alliance Waters 

separation module 2690, MA Milford, U.S.A, and Alliance Waters Photodiode Array 

Detector). ATP, ADP and AMP in the samples were quantified after the HPLC calibration 

with known concentrations of the pure commercially available compounds.  
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Adenylate energy charge (AEC), which reflects the availability of chemical energy, was 

calculated as in Equation 5 (Larcher, 2003): 

AEC =  
[ATP] + 

1
2 [ADP]

[AMP] + [ADP] + [AMP]
 

Equation 5: Calculation of the adenylate energy charge (AEC). ATP, ADP, AMP: ATP, ADP 

and AMP concentration, respectively 

 

2.7.4. Photosynthetic pigments 

Frozen frond/leaf samples of C. prolifera, C. nodosa and Z. marina (0.20g – 0.24g) were 

ground in liquid nitrogen and with sodium ascorbate to avoid pigment degradation. The 

photosynthetic pigments were then extracted using 5mL of 100 % acetone buffered with 

calcium carbonate, and the extract was filtered using a 0.45 µm hydrophobic PTFE filter 

followed by a 0.22 µm hydrophobic PTFE filter. The filtered extracts were then stored in the 

dark at -20˚C until analysis.  

All the extracts were analyzed spectrophotometrically at three different wavelengths: 470 

nm, 644.8 nm and 661.6 nm. Chlorophyll a, b and the bulk of carotenoids were quantified 

using the equations described by Lichtenthaler and Buschmann (2001): 

6. Chl a (µg/mL) = 11.24 A661.6 – 2.04 A644.8 

7. Chl b (µg/mL) = 20.13 A644.8 – 4.19 A661.6 

8. Carotenoids (x + c) (µg/mL) = (1000 A470 – 1.90 ca – 63.14 cb) /214 

Equation 6: Chlorophyll a (Chl a);  

Equation 7: Chlorophyll b (Chl b);  

Equation 8: Carotenoids ((x+c); xanthophylls and carotenes); 

As the absorption peaks of the different carotenoids are too close to accurately identify 

and quantify each one using the spectrophotometric method, each carotenoid (- and β-

carotene, lutein, neoxanthin, lutein epoxide, violaxanthin, antheraxanthin and zeaxanthin) 

was separated and quantified by HPLC as described in Silva et al. 2013 after Larbi et al. 
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(2004) and de las Rivas, Abadía & Abadía (1989). 

Liquid chromatography analysis was performed in an Alliance Waters 2695 separation module 

(Milford MA, USA), with a Waters 2996 photodiode array detector and a Waters 21 Novapak C18 

radial 86100 mm compression column (4 mm particle size). Prior to sample injection, the column was 

equilibrated, and the samples were injected together with two different organic solvents (filtered and 

sonicated before use: R1: 879.5 mL acetonitrile, 117 mL methanol and 3.5 mL triethylamine (TEA); 

Eluent R2: 434 mL acetonitrile, 59.6 mL methanol, 7 mL TEA, 496 ml ethyl acetate and 2.5 mL of 

Milli-Q water).  These organic solvents act as the mobile phase during the separation process. Each 

carotenoid in the samples was quantified after the HPLC calibration with known 

concentrations of commercially available pure pigments. 

The de-epoxidation index of the violaxanthin xanthophyll cycle pigments (AZ/VAZ) was 

calculated as in Equation 6 (Niyogi, Grossman & Björkman, (1998)). 

AZ

VAZ
=

A + Z

V + A + Z
 

Equation 9: Calculation of the de-epoxidation index of the xanthophyll cycle pigments  

(AZ/VAZ). V, A, Z: violaxanthin, antheraxanthin and zeaxanthin concentrations, 

respectively 

 

2.8.  Data analysis 

All data was statistically analyzed with the software “Sigmaplot” (Copyright © 2008 

Systat Software, Inc. Germany, Sigmaplot for Windows Version 14.0). Before analysis, all 

data was tested for normality (Shapiro-Wilk tests) and homogeneity of variances and 

transformed when necessary. 

Differences of the maximum quantum yield (Fv/Fm), effective quantum yield of 

photosystem II (ΔF/F´m), and non-photochemical quenching (NPQ) between species were 

tested using a One-Way Analysis of Variance (ANOVA) (p<0.05). Whenever a significant 

effect was detected, a Student-Newman-Keuls test was applied.  

One-Way ANOVA was also applied to detect differences in the parameters obtained from 

the light response curves (P-I curves and RLCs) (p<0.05). Whenever a significant effect was 
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detected, a  Student-Newman-Keuls test was applied. Dark Respiration was tested with a 

Two-Way ANOVA to detect any effect caused  by the interaction between  Z. marina and C. 

prolifera.  

Biochemical parameters were statistically tested depending on the experiment. Diel cycle 

samples were tested with a One-Way ANOVA (p<0.05) for differences between pre-dawn 

and solar noon and also between species. Whenever significant differences were detected, a 

Student-Newman-Keuls test was applied. The interaction experiment was tested with Two 

Way ANOVA (p<0.05) to detect whether or not the presence of C. prolifera affected Z. 

marina. If significant differences were detected, a Holm-Sidak test was applied. Whenever 

equality of variance failed, data were ln transformed. If equality of variance continued to fail 

after transformation, a One-Way ANOVA (p<0.05) was applied between treatments, as it 

was the case for foliar starch content. Rhizomes data were tested with One-Way ANOVA 

(p<0.05) and complement with Student-Newman-Keuls test if significant differences were 

detected. If normal distribution failed, data were ln transformed. Whenever data 

transformation failed, a non-parametric Kruskal-Wallis test (One-Way Analysis of Variance 

on Ranks) (p<0.05) was applied, as was the case of the soluble sugar content of rhizomes. 
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3. Results 

3.1.  Diel photophysiology of Zostera marina, Cymodocea nodosa and Caulerpa 

prolifera 

3.1.1. Chlorophyll fluorescence 

The effective quantum yield (ΔF/F´m) displayed the same pattern in all the three species: 

it increased as the day ended and light conditions slowly faded, and decreased as the morning 

of the next day arrived and the irradiance slowly increased (Fig. 3.1). Non-photochemical 

quenching (NPQ) is positively related with the photoprotective mechanisms from which 

results the dissipation of excess energy of excitation in photosynthesis (Larkum, Drew & 

Ralph, 2006), and is inversely related to the effective quantum yield, decreasing as effective 

quantum yield increases, as shown in Figure 3.1.  

 Seagrasses revealed to have significantly higher Fv/Fm measured at 4:00 when compared 

to C. prolifera (Table 3.1). Z. marina presented the highest value, followed by C. nodosa. 

ΔF/F´m measured at 14:00 was also significantly higher in seagrasses, with Z. marina using 

light more efficiently then C. nodosa and both seagrasses being more efficient than C. 

prolifera. On the other hand, seagrasses also had higher NPQ than C. prolifera (Table 3.1 

and Figure 3.1) revealing a higher photoprotective capacity.  

 

 

 

 

 

 

 

 

 

 

 

Table 3.1:  Maximum quantum yield (Fv /Fm) measured at 4:00 h on dark-adapted 

leaves, effective quantum yield (ΔF/F´m) and non-photochemical quenching (NPQ)  

measured on light-adapted leaves at 14:00 h. Values are means  SE (n=10). 

Different letters indicate significant differences between species (p<0.05) 

Species Fv /Fm ΔF/F´m NPQ 

Z. marina  0.803 ± 0.002a 0.393 ± 0.011a 3.193 ± 0.318a 

C. nodosa 0.782 ± 0.007b 0.315 ± 0.009b 3.496 ± 0.262a 

C. prolifera 0.732 ± 0.007c 0.263 ± 0.002b 1.778 ± 0.297b 
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Figure 3.1: Quantum yield (ΔF/F´m) and non-photochemical quenching (NPQ) of Zostera marina, 

Cymodocea nodosa and Caulerpa prolifera along a 48 hour chlorophyll fluorescence cycle. Values are means 

 SE, n=10.  

C. prolifera

Time

  16:00:00   22:00:00   04:00:00   10:00:00   16:00:00   22:00:00   04:00:00   10:00:00

Δ
F

/F
´m

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
P

Q

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Z. marina

  16:00:00   22:00:00   04:00:00   10:00:00   16:00:00   22:00:00   04:00:00   10:00:00

Δ
F

/F
´m

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
P

Q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 ΔF/F´m 
NPQ

C. nodosa

  16:00:00   22:00:00   04:00:00   10:00:00   16:00:00   22:00:00   04:00:00   10:00:00

Δ
F

/F
´m

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
P

Q
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0



25 

 

3.1.2. Biochemical Analysis 

3.1.2.1.  Soluble Sugars and starch 

While the foliar concentration of soluble sugars significantly increased from pre-dawn to 

solar noon in both seagrass species, the same cannot be said for C. prolifera´s fronds, where 

soluble sugar content did not change (Fig. 3.2A). When comparing species, they all presented 

significantly different soluble sugar content at pre-dawn, where C. prolifera had the lowest 

concentration. This difference however only persisted for C. prolifera at solar noon, as both 

seagrasses no longer present a significant difference in their soluble sugars content (Fig. 

3.2A).  

Foliar/frond starch content did not vary between pre-dawn and solar noon in any of the 

three species, and C. prolifera´s starch content is approximately twice that of both seagrasses 

independently of the hour of the day (Fig. 3.2B).  

Figure 3.2: Soluble sugars (A) and starch (B) content of Z. marina, C. nodosa leaves and C. prolifera 

fronds at pre-dawn and solar noon. Values are mean ± SE (n = 10, except for Z. marina starch at solar noon, 

n = 9); different letters indicate significant differences among species, (*) indicates significant differences 

pre-dawn and solar noon (p<0.05). 
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Soluble sugars content didn’t change in the rhizomes of the seagrasses from pre-dawn to 

solar noon. Z. marina rhizomes appear to contain more soluble sugars than those of C. 

nodosa, but that difference between the two species was significant only at solar noon (Fig. 

3.3A). Starch content in Z. marina rhizomes was identical at pre-dawn and solar noon, while 

in C. nodosa it increased significantly during the day (Fig. 3.3B).  

 

3.1.2.2.  Soluble proteins 

Foliar soluble protein of all species showed a tendency to increase between pre-dawn and 

solar noon. However, no significant differences were found neither between species nor 

between pre-dawn and solar noon (Fig. 3.4A). The same results were obtained for rhizomes 

of both seagrass species (Fig. 3.4B) 

 

3.1.2.3.  Adenylate energy charge (AEC) 

Foliar AEC increased from pre-dawn to noon in Z. marina, but no differences were found 

in C. nodosa and C. prolifera. (Fig. 3.5A). At pre-dawn, Z. marina leaves had a significantly 

lower AEC than the other two species, but at solar noon this difference was not observed and 
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Figure 3.3: Soluble sugars (A) and starch (B) content of Z. marina and C. nodosa rhizomes at pre-dawn and 

solar noon. Values are mean ± SE (n = 10, except for C. nodosa starch at pre-dawn, n = 8); different letters 

indicate significant differences among species, (*) indicates significant differences between pre-dawn and solar 

noon (p<0.05). 
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there were no significant differences among species (Fig. 3.5A). In rhizomes, the AEC of 

both seagrasses did not change significantly from pre-dawn to solar noon and there were no 

differences between species (Fig. 3.5B) 

 

 

Figure 3.5: Adenylate energy charge (AEC) of  Z. marina and C. nodosa leaves and C. prolifera fronds (A) 

and Z. marina and C. nodosa rhizomes (B) at pre-dawn and solar noon. Values are mean ± SE (n = 5, except 

for Z. marina (pre-dawn), Z. marina rhizomes (pre-dawn) and C. nodosa rhizomes (pre-dawn) where n=4); 

different letters indicate significant differences among species(p<0.05); (*) indicates significant differences 

between pre-dawn and solar noon (p<0.05). 

 

 

 

Figure 3.4: Soluble protein content in Z. marina and C. nodosa leaves and C. prolifera fronds (A), and 

seagrasses rhizomes (B) at pre-dawn and solar noon. Values are mean ± SE (n = 5) (p<0.05).  
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3.1.2.4.  Photosynthetic pigments 

Chlorophylls a and b, and eight carotenoids (neoxanthin, violaxanthin, antheraxanthin, 

zeaxanthin, lutein epoxide, lutein and - and β-carotene) were quantified in leaf/frond 

extracts of Z. marina, C. nodosa and C. prolifera. -carotene was identified in C. prolifera 

but it was absent from any of the seagrasses (Table 3.2).   

In all three species there was a tendency for total chlorophyll (Chl T), neoxanthin, lutein, 

and β-carotene concentrations to increase from pre-dawn to solar noon, however no 

significant differences were found (Table 3.2).  

At solar noon, lutein epoxide concentrations were significantly higher in C. prolifera 

while lutein was significantly lower, when compared to the seagrasses. (V+A+Z)/ChlT was 

not significantly different between species or time of the day, although there was a slight 

tendency to increase at solar noon. The (V+A+Z)/Lutein ratio however, was found to be 

significantly higher in C. prolifera, due to its lower lutein concentrations. This ratio is over 

ten times greater than that of seagrasses (Table 3.2).  

Violaxanthin (V) concentration was significantly higher in C. prolifera than in 

seagrasses.  During pre-dawn, antheraxanthin (A) concentrations were significantly higher 

in C. prolifera than in seagrasses but, while in seagrasses anteraxanthin concentration 

increased from pre-dawn to solar noon, the same did not happen in C. prolifera.  On the other 

hand, zeaxanthin (Z) content was significantly lower in C. prolifera than in seagrasses during 

pre-dawn. Similarly to antheraxanthin, C. prolifera zeaxanthin content did not change from 

pre-dawn to solar noon while it significantly increased in seagrasses. These changes on the 

xanthophyll cycle pigments (V,A and Z) were reflected on the de-epoxidation index 

((AZ)/(VAZ)) that significantly increased from pre-dawn to solar noon in seagrasses but not 

in C. prolifera whose de-epoxidation index was kept very low during solar noon. Considering 

seagrasses, C. nodosa demonstrated a higher photoprotective response than Z. marina (Table 

3.2, Fig. 3.6). 
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Table 3.2:. Total chlorophyll (Chl T), chlorophyll a/b ratio (Chl a/b), Neoxanthin, Violaxanthin, Antheraxanthin, 

Zeaxanthin, Lutein epoxide, Lutein, α- and β-carotene, Violaxanthin + Antheraxanthin + Zeaxanthin (V+A+Z), de-

epoxidation index of the pigments of the xanthophyll cycle (AZ/VAZ),  (Violaxanthin + Antheraxanthin + Zeaxanthin)/ total 

chlorophyll ((V+A+Z)/Chl T) and (Violaxanthin + Antheraxanthin + Zeaxanthin)/lutein ((V+A+Z)/lutein) ratios determined 

for  Z. marina, C. nodosa and C. prolifera at pre-dawn and solar noon. Pigments are presented in µmol g DW-1, with 

exception of the ratios. Values are means ± SE (n = 5); different letters indicate significant differences among species; (*) 

indicates significant difference between pre-dawn and solar noon (p<0.05). 

 Zostera marina Cymodocea nodosa Caulerpa prolifera 

 Pre-dawn Solar noon Pre-dawn Solar noon Pre-dawn Solar noon 

Chl T 2.70± 0.76 2.78 ± 0.54 2.23 ± 0.26 3.58 ± 0.71 3.48 ± 0.55 3.71 ± 0.87 

Chl a/b  1.91 ± 0.22 2.15 ± 0.27 2.16 ± 0.07 1.80 ± 0.18 1.50 ± 0.10 1.53 ± 0.06 

Neoxanthin  0.14 ± 0.03 0.17 ± 0.03 0.15 ±0.01 0.27 ± 0.07 0.24 ± 0.04 0.24 ± 0.06 

Violaxanthin 0.28 ± 0.05 0.30 ± 0.02a 0.29 ± 0.02* 0.16 ± 0.02b 0.47 ± 0.09 0.58 ± 0.14a 

Antheraxanthin 0.009 ± 0.002b 0.08 ± 0.009*a 0.01 ± 0.001b 0.11 ± 0.01*a 0.03 ± 0.007a 0.03 ± 0.007b 

Zeaxanthin 0.02 ± 0.01a 0.08 ± 0.01*b 0.03 ± 0.007a 0.19 ± 0.02*a 0.004 ± 0.002b 0.004 ± 0.002c 

Lutein epoxide 0.007 ± 0.002 0.005 ± 0.002b 0.006 ± 0.003 0.002 ± 0.002b 0.02 ± 0.006 0.02 ± 0.005a 

Lutein 0.38 ± 0.09a 0.48 ± 0.05a 0.37 ± 0.03a 0.49 ± 0.09a 0.04 ± 0.003b 0.06 ± 0.001b 

α-carotene n.d. n.d. n.d. n.d. 0.10 ± 0.03a 0.11 ± 0.04a 

β-carotene 0.30 ± 0.06 0.40 ± 0.03 0.40 ± 0.09 0.45 ± 0.05 0.29 ± 0.06 0.32 ± 0.09 

V+A+Z  0.31 ± 0.06 0.46 ± 0.03* 0.33 ± 0.03 0.46 ± 0.04* 0.53 ± 0.10 0.62 ± 0.15 

(AZ)/(VAZ) 0.06 ± 0.01b 0.35 ± 0.04*b 0.14 ± 0.01a 0.65 ± 0.02*a 0.06 ± 0.01b 0.05 ± 0.003c 

(V+A+Z)/Chl T 148.64 ± 37.71 189.32 ± 30.22 127.11 ± 15.86 139.41 ± 17.86 153.11 ± 16.57 166.28 ± 12.30 

(V+A+Z)/Lutein 0.92 ± 0.15b 0.95 ± 0.002b 0.77 ± 0.08b 0.98 ± 0.07b 14.91 ± 2.16a 13.12 ± 0.78b 

Figure 3.6: De-epoxidation index in leaves/fronds of Z. marina, C. nodosa and C. prolifera at pre-dawn and 

solar noon. Values are mean ± SE (n = 5), different letters indicate significant differences among species; (*) 

indicate significant difference between pre-dawn and solar noon (p<0.05). 
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3.2. Z. marina and C. prolifera: An interaction mesocosm experiment 

3.2.1. Photosynthetic light response curves 

Both Z. marina and C. prolifera displayed the typical hyperbolic response of 

photosynthesis to increasing irradiance. Photosynthetic rates increased linearly with the 

lower limiting irradiances until approximating their maximum (Pmax), at half-saturating 

irradiances (Ik) (Fig. 3.7).  

Dark respiration, photosynthetic quantum efficiency (), maximal photosynthesis 

(Pmax), and half-saturation irradiance (Ik) were calculated for both species from the P-I 

Figure 3.7: Photosynthetic light response curves of Z. marina and C. prolifera (n=5), 4 weeks after being  

planted separately (reference)  and together (mixed).  Curves were fitted using the Smith and Talling (Smith 

(1936), Talling (1957)) model.  
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curves after applying the mathematical model of Smith and Talling (Smith, 1936; Talling, 

1957). The results obtained show no differences between species, and also that neither 

species was significantly affected when mixed with each other. Although not significant, Pmax 

and Ik appear to be higher in Z. marina while photosynthetic quantum efficiency (α) appears 

to be higher in C. prolifera (Table 3.3).   

 

Dark respiration of both species was not significantly affected by mixing but C. prolifera 

seems to respire at a higher rate than Z. marina (Fig. 3.8). 

 

 

 

 

 

 

 

 

 

 

Table 3.3:  Maximum photosynthetic rate (Pmax, μmolO2.g-1.s-1), photosynthetic quantum efficiency at 

limiting irradiances (α, μmolO2/μmolphotons), half-saturation irradiance (Ik, μmolphotons.m-2.s-1) and the 

coefficient of the model adjustment to the data (r2) of Smith and Talling (Smith, 1936; Talling, 1957) of 

Z. marina and C. prolifera 4 weeks after being  planted separately (reference)  and together (mixed).  

Values are means ± SE (n=5). 

Treatment Pmax α Ik r2 

Z. marina 

Reference  812.27 ± 31.56 3.77 ± 0.34 215.46 ± 21.16 0.8972 

Mixed 817.27 ± 25.55 3.82 ± 0.28 210.63 ± 16.56 0.9265 

C. prolifera     

Reference  777.23 ± 58.37 5.47 ± 1.21 142.09 ± 33.19 0.4730 

Mixed 734.69 ± 58.16 4.20 ± 0.89 174.92 ± 39.56 0.5178 

Figure 3.8:  Dark respiration of Z. marina and C. prolifera, 4 weeks after being planted separately (reference) 

and together (mixed). Values are Mean ± SE (n=5). 
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3.2.2. Rapid light curves  

Rapid light curves (RLC) allow the analysis of the response of the relative electron 

transport rate (rETR) to irradiance. The response to lower irradiances was similar for both 

species, with increasing rETR as increasing low light intensities activated the electron 

transport chain. However, at irradiances higher than ca. 150 µmolphotonsm
-2s-1 C. prolifera 

showed its shade adapted nature (García-Sánchez et al., 2012), revealing a distinct and more 

pronounced photoinhibitory response to higher light intensities, four times more pronounced 

than that of Z. marina. No differences in rETRmax, , and Ik were detected between species 

or treatments (reference and mixed) (Fig. 3.9, Table 3.4).  
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Figure 3.9: Rapid light curves of Z.  marina and C. prolifera (n=10), 4 weeks after being  planted separately 

(reference)  and together (mixed).  Curves were fitted using the Platt, Gallegos & Harrison (1980) model. 
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3.2.3. Biochemical analysis 

The biochemical analysis included the quantification of soluble sugars, starch, soluble 

proteins, AMP, ADP and ATP in order to obtain the adenylate energy charge (AEC), and 

finally photosynthetic pigments (chlorophylls a and b, and the carotenoids - and -carotene, 

neoxanthin,  lutein, lutein epoxide, violaxanthin, anteraxanthin and zeaxanthin). Field 

samples were first compared to reference samples from the mesocosm experiment (Tables 

3.5 and 3.6). Of all the components analyzed and displayed in Table 3.5, only starch appeared 

to be significantly higher in Z. marina reference, while there were no significant differences 

among the rest.  

Most photosynthetic pigments did not vary between field and reference in neither species. 

However, it is important to mention that total chlorophyll (Chl T) in field samples presented 

to be extremely low (Table 3.6). This could be associated to pigment degradation occurred 

during procedures. Significant differences were found in violaxanthin, antheraxanthin and 

zeaxanthin concentrations of both species between Ria Formosa and mesocosm samples. 

Furthermore, neoxanthin concentration in Z. marina reference, and the de-epoxidation index 

were significantly higher in the field when compared to the reference tanks (Table 3.6) but 

this may have to do most probably with the plants acclimation to the mesocosm light 

Table 3.4: Maximum relative electron transport rate (rETRmax, μmolelectronsm-1s-1), initial slope (α), inhibition term 

(β), saturation irradiance (Ik, μmolphotonsm-1s-1) and the coefficient of determination of the model adjustment to 

the data (r2). Photosynthetic parameters obtained from the adjustment of the model equation of Platt, Gallegos & 

Harrison (1980) to the observed rapid light curve data for Z. marina and C. prolifera, 4 weeks after being planted 

separately (reference) and together (mixed) Values are means ± SE (n=10); Different letters indicates differences 

between species (p<0.05). 

Treatment rETRmax α β Ik
 r2 

Z. marina  

Reference 45.827 ± 3.179 1.130 ± 0.125 0.035 ± 0.012a 40.541 ± 5.295 0.7286 

Mixed 52.442 ± 3.844 1.136 ± 0.118 0.042 ± 0.014a 46.180 ± 5.875 0.7592 

C. prolifera 

Reference 54.266 ± 4.405 1.205 ± 0.101 0.147 ± 0.027b 45.053 ± 5.253 0.8049 

Mixed 56.592 ± 5.898 1.304 ± 0.131 0.183 ± 0.041b 43.409 ± 6.293 0.7454 
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conditions in which irradiance was lower than that in the field (± 210 µmolphotons m
-1s-1) The 

same might have happened in C. prolifera in which lutein concentrations were significantly 

higher in the field samples. 

 

Table 3.5:  Soluble sugars, starch, soluble protein (mg g DW-1) and adenylate energy charge (AEC) of Z. 

marina leaves and C. prolifera fronds from field samples and samples taken from the reference tanks 4 

weeks after being planted for the mesocosm experiment. Values are means ± SE (n=10 for soluble sugar and 

starch, n=5 for soluble protein and AEC); (*) indicates difference among Field and Reference (p<0.05). 

 Zostera marina Caulerpa prolifera 

 Field Reference Field Reference 

Soluble sugar 78.22 ± 7.21 85.34 ± 14.40 13.12 ± 0.50 8.931 ± 1.46 

Starch 274.94 ± 15.06* 201. 28 ± 6.89 514.26 ± 41.43 510.28 ± 91.90 

Soluble protein 95.26 ± 22.70 64.31 ± 14.10 141.37 ± 39.28 110.74 ± 26.06 

AEC 0.48 ± 0.007 0.50 ± 0.013 0.52 ± 0.015 0.57 ± 0.017 

Table 3.6:  Total chlorophyll (Chl T), chlorophyll a/b ratio (Chl a/b), Neoxanthin, lutein epoxide, Lutein, 

α- and β-carotene, Violaxanthin + Antheraxanthin + Zeaxanthin (V+A+Z), de-epoxidation index 

(AZ)/(VAZ),  (Violaxanthin + Antheraxanthin + Zeaxanthin)/total chlorophyll ratio and (Violaxanthin + 

Antheraxanthin + Zeaxanthin)/lutein  ratios were determined for  Z. marina and C. prolifera field samples 

and samples taken from reference tank at the end of the mesocosm experiment. Pigments are presented in 

µmol g DW-1, with exception of the ratios. Values are means ± SE (n=5); different letters indicate significant 

difference among species of the same treatment; (*) indicates significant difference between treatments 

(p<0.05). 

 Zostera marina Caulerpa prolifera 

 Field Reference Field Reference 

Chl T 1.81 ± 0.50b 3.21 ± 0.71 4.96 ± 1.10a 4.48 ± 1.64 

Chl a/b  2.10 ± 0.22 1.79 ± 0.22 1.64 ± 0.04 1.68 ± 0.16 

Neoxanthin 0.09 ± 0.02b 0.17 ± 0.02* 0.36 ± 0.10a 0.28 ± 0.08 

Violaxanthin 0.10 ± 0.02b 0.26 ± 0.04*b 0.78 ± 0.13a 0.57 ± 0.18a 

Antheraxanthin 0.04 ± 0.008* 0.02 ± 0.003 0.04 ± 0.008* 0.01 ± 0.004 

Zeaxanthin 0.10 ± 0.02*a 0.02 ± 0.004a 0.02 ± 0.005*b 0.002 ± 0.004b 

Lutein epoxide 0.01 ± 0.008 0.005 ± 0.002 0.02 ± 0.007 0.008 ± 0.003 

Lutein 0.30 ± 0.07a 0.45 ± 0.08a 0.08 ± 0.001b* 0.02 ± 0.005b 

α-carotene n.d. n.d. 0.39 ± 0.15a 0.19 ± 0.05a 

β-carotene 0.24 ± 0.05 0.36 ± 0.06 0.54 ± 0.14 0.44 ± 0.11 

V+A+Z  0.24 ± 0.05b 0.29 ± 0.04 0.89 ± 0.19a 0.58 ± 0.18 

(AZ)/(VAZ) 0.57 ± 0.02a* 0.11 ± 0.02a* 0.07 ± 0.003b* 0.03 ± 0.006b* 

V+A+Z/Chl T 148.85 ± 21.61 100.94 ± 13.45b 182.30 ± 4.68 148.90 ±15.26a 

V+A+Z/Lutein 0.81 ± 0.07b 0.68 ± 0.04b 11.61 ± 154a 18.19 ± 3.97a 
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3.2.3.1.  Soluble sugars and starch  

Soluble sugar content of Z. marina leaves was not affected by the presence of the 

macroalgae. The same can be said for C. prolifera fronds which, however, had a significantly 

lower concentration of soluble sugars when compared to Z. marina (Fig. 3.10A). Conversely, 

C. prolifera had approximately twice the starch content of Z. marina which increased when 

mixed with the macroalgae. Caulerpa starch content was unaffected by the presence of the 

seagrass (Fig. 3.10B). Taking a closer look at the seagrass rhizomes reveals that the presence 

of the macroalgae negatively affected its soluble sugar content that was almost four times 

lower than the reference. Starch content however, remained unaffected, as no significant 

differences were detected (Fig. 3.11).  

 

 

 

 

 

 

 

 

Figure 3.10: (A) Soluble sugars and (B) starch content of Z. marina leaves and C. prolifera fronds 4 weeks 

after being planted separately (reference) or together (mixed) for the mesocosm experiment. Values are mean 

± SE (n=10); (*) indicates significant differences between reference and mixed plants/algae (p<0.05). 
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3.2.3.2. Soluble proteins 

Foliar soluble protein content of Z. marina showed no significant change in the presence 

of the macroalgae. On the other hand, protein content in the fronds of C. prolifera slightly 

increased, enough to be significantly higher than Z. marina´s content, a trend not observed 

in the reference treatments (Fig. 3.12A). Furthermore, soluble protein content in the rhizomes 

of Z. marina did not seem to be affected by the presence of the macroalgae (Fig. 3.12B). 

 

3.2.3.3. Adenylate energy charge (AEC) 

Z. marina and C. prolifera AEC was not affected by mixing the two species, but in Z. 

marina rhizomes AEC tended to decrease in the presence of C. prolifera. C. prolifera fronds 

had a significantly higher AEC than Z. marina leaves no matter the two species were 

separated or mixed (Fig. 3.13A and 3.13B). 

Figure 3.11: Soluble sugars and starch content of Z. marina rhizomes 4 weeks after being planted separately 

(reference) or together with C. prolifera (mixed) for the mesocosm experiment.  Values are mean ± SE (n=8 

for sugar samples, n=10 for starch); (*) indicates significant difference between reference and mixed plants 

(p<0.05).  
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3.2.3.4. Photosynthetic pigments 

 The foliar/frond photosynthetic pigments concentration was not affected by mixing Z. 

marina and C. prolifera. There were however, some significant differences among species. 

Z. marina contained significantly more lutein and a significantly higher de-epoxidation 
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Figure 3.13: Adenylate energy charge of (A) Z. marina leaves and C. prolifera fronds and (B) Z. marina 

rhizomes 4 weeks after being planted separately (reference) or together (mixed). Values are Mean ± SE (n=5); 

different letter indicate significant difference among species (p<0.05). 

  

 

Figure 3.12: Soluble protein content of (A) Z. marina leaves, C. prolifera fronds and (B) Z. marina rhizomes, 

4 weeks after being planted separately (reference) or together (mixed). Values are Mean ± SE (n=5); different 

letters indicate significant differences among species (p<0.05). 
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index, while C. prolifera contained α-carotene which was absent in Z. marina and a 

xanthophyll pigment/lutein ratio significantly higher (Table 3.7).  

 

 

4. Discussion 

The photosynthetic production of C. prolifera was slightly lower compared to that of Z. 

marina, while dark respiration almost doubled that of the seagrass. C. prolifera presented 

similar results in terms of photosynthetic efficiency and saturating irradiance in Ria Formosa 

as in other comparable coastal lagoons (Collado-Vides & Robledo, 1999). Rapid light curves 

of Z. marina and C. prolifera showed similar responses to lower light levels, with C. prolifera 

using the light more efficiently. However, the rapid light curves indicate that photoinhibition 

occurs in both species, but significantly more in C. prolifera. As the VAZ xanthophyll cycle 

Table 3.7: Total chlorophyll (Chl T), chlorophyll a/b ratio (Chl a/b), Neoxanthin, Violaxanthin, 

Antheraxanthin, Zeaxanthin, Lutein epoxide, Lutein, α- and β-carotene, Violaxanthin + Antheraxanthin + 

Zeaxanthin (V+A+Z), de-epoxidation index (AZ)/(VAZ),  (Violaxanthin + Antheraxanthin + Zeaxanthin)/ 

total chlorophyll ratio and (Violaxanthin + Antheraxanthin + Zeaxanthin)/lutein  ratios were determined for  

Z. marina, C. nodosa and C. prolifera 4 weeks after being planted separately (reference) or together (mixed).  

Pigments are presented in µmol g DW-1, with exception of the ratios. Values are means ± SE (n=5); different 

letters indicate significant difference among species of the same treatment (p<0.05). 

 Zostera marina Caulerpa prolifera 

 Reference Mixed Reference Mixed 

Chl T 3.21 ± 0.71 2.79 ± 0.83 4.48 ± 1.64 5.13 ±1.17 

Chl a/b  1.79 ± 0.22 1.93 ± 0.18 1.68 ± 0.16 1.51 ± 0.07 

Neoxanthin 0.17 ± 0.02 0.35 ± 0.07a 0.28 ± 0.08 0.14 ± 0.09b 

Violaxanthin 0.26 ± 0.04 0.21 ± 0.05b 0.57 ± 0.18 0.57 ± 0.15a 

Antheraxanthin 0.02 ± 0.003 0.02 ± 0.006 0.01 ± 0.004 0.009 ± 0.004 

Zeaxanthin 0.02 ± 0.004a 0.01 ± 0.001a 0.002 ± 0.002b 0.002 ± 0.001b 

Lutein epoxide 0.005 ± 0.002 0.004 ± 0.002 0.008 ± 0.003 0.011 ± 0.008 

Lutein 0.45 ± 0.08a 0.44 ± 0.12a 0.02 ± 0.005b 0.01 ± 0.002b 

α-carotene n.d. n.d. 0.19 ± 0.05a 0.20 ± 0.09a 

β-carotene 0.36 ± 0.06 0.32 ± 0.06 0.44 ± 0.11 0.56 ± 0.09 

V+A+Z  0.29 ± 0.04 0.23 ± 0.05 0.58 ± 0.18 0.58 ± 0.15 

(AZ)/(VAZ) 0.11 ± 0.02a 0.13 ± 0.02a 0.03 ± 0.006b 0.02 ± 0.005b 

(V+A+Z)/Chl T 100.94 ± 13.45b 97.74 ± 14.06 148.90 ±15.26a 112.40 ± 9.64 

(V+A+Z)/Lutein 0.68 ± 0.04b 0.59 ± 0.07b 18.19 ± 3.97a 27.74 ± 5.26a 
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is not as effective in C. prolifera, photoinhibition presents itself as dependent on other 

photoprotective mechanisms in higher irradiances that allow the dissipation of energy, 

through the depression of photosynthetic rates and the impairment of electron transport and 

photophosphorylation (Touchette and Burkholder, 2000), or as the result of photodamage 

(Niyogi, 1999). Together with its distinct pigment content, compared to seagrasses, 

photoinhibition at higher irradiances points towards the fact that C. prolifera in Ria Formosa 

maintains its well-described shade-adapted characteristics (Terrados & Ros, 1992; Robledo 

& Freile-Peligrin, 2005; García-Sánchez et al., 2012). 

Comparison of the diel cycles revealed significantly lower maximal quantum yield 

(Fv/Fm), minimal effective quantum yield (ΔF/F´m) and non-photochemical quenching (NPQ) 

in C. prolifera when compared to seagrasses. Malta et al. (2005) found similar Fv/Fm in C. 

prolifera submitted to high light and high nutrients, which could relate to its capacity to 

survive higher light intensities, if nutrients are not limiting. In another study, C. nodosa and 

C. prolifera of Mar Menor lagoon were compared, revealing a similar response (García-

Sánchez et al., 2012). C. nodosa´s and Z. marina´s higher Fv/Fm were not found early in the 

evening during the 48-hour cycle but rather during late night (around 4:00), with NPQ values 

being lower at this same period. This is caused by the fact the antennae need to relax and that 

epoxidation of zeaxanthin into violaxanthin takes longer then the inverse de-epoxidation.  

Higher values of NPQ indicate the presence of photoprotective mechanisms and can be 

related to xanthophyll cycles (Demmig-Adams & Adams, 1996). Excessive light energy is 

dissipated in the antennae through reversible de-epoxidation of certain xanthophyll pigments. 

This is caused by an increase of the pH in the thylakoid lumen, resulting of exposure to 

excessive light (Demmig-Adams et al., 1999; Müller, Li & Niyogi, 2001). Sun-adapted 

macrophytes have shown to contain larger pools of xanthophyll cycle pigments and possess 

a greater ability to convert these pigments under high light conditions (Adams & Demmig-

Adams, 1996; Larkum, Drew & Ralph, 2006). However, differences between sun-adapted 

species exist (Silva et al., 2013; Marín-Guirao et al., 2015). One of them is how differently 

seagrasses react to excess light. The differences in NPQ between species are related to the 

individual capacity of each species to dissipate excess energy (Enríquez & Borowitska, 

2002). This was visible when comparing the 48-hour chlorophyll fluorescence cycle. As can 
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be seen in the results, the first day of measurements was a darker and cloudier day, which is 

probably the reason behind the lower NPQ in Z. marina during the first day, being a lot higher 

during the second, when it was sunny. C. nodosa, however, revealed similar NPQ response 

during both days, revealing that its photoprotective mechanisms are activated even under 

lower irradiances. In this study, C. nodosa presented a higher zeaxanthin concentration and 

de-epoxidation index, which points towards a highly photoprotective response to light, 

converting more violaxanthin into zeaxanthin (Adams & Demming-Adams, 1992). A similar 

response was found elsewhere for Z. marina (Ralph et al., 2002), which also increased its 

zeaxanthin concentration and de-epoxidation index, but not to the same extent as C. nodosa 

in this study.  

C. prolifera´s lower NPQ values during the 48-hour cycle reveals that, although some 

excess energy is dissipated, it is nowhere near that of seagrasses. Additionally, it showed 

little to no change in its antheraxanthin or zeaxanthin concentrations at solar noon. This does 

not occur in seagrasses, with both species demonstrating a significant rise of the de-

epoxidized xanthophylls. Higher antheraxanthin content in the morning in Caulerpa sp. has 

been recorded before and was related to low light photo-oxidative stress that can occur in 

these species (Raniello et al., 2006). This reveals that exposure to low light after longer dark 

conditions (night) may cause photo-oxidative stress.  

The accumulation of lutein epoxide (Lx) has been related to the improvement on light 

harvesting efficiency of PSII antennae and its commonly found in higher foliar concentrations 

in deeply shaded species/individuals (García-Plazoala, Matsubara & Osmond, 2007). Lutein 

epoxide de-epoxidation into lutein transforms an efficient light harvesting system into a 

photoprotective one, under excess light (Müller, Li & Niyogi, 2001). In addition to the VAZ 

xanthophyll cycle and working in parallel, Lx cycle aid in the dissipation of excess energy, 

further improving photoprotection by lutein, or improve light capture if lutein epoxide 

concentration is high. The Lx cycle, however, has only been identified in higher plants 

(García-Plazoala, Matsubara & Osmond, 2007). Solar noon samples of C. nodosa and Z. 

marina appear to contain more lutein and less lutein epoxide, which indicates that seagrasses 

may use this cycle for additional photoprotection only. However, to the best of our 

knowledge, this cycle has not yet been described in macroalgae. It cannot be excluded that 
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the higher Lx values in C. prolifera may be associated to a constitutive shade adapted 

behavior, and its need for a higher light harvesting capacity in low light environments.  

The amount of light that can be absorbed by a leaf/frond depend on its pigment content. 

Modification of this content as, for example, the increase of chlorophylls content and 

modification of their ratios can enhance (or decrease) light harvesting capacity and the 

efficiency of absorption (Marín-Guirao et al., 2015). Chlorophyll content in macroalgae tends 

to be higher when compared to seagrasses. Although not significant, the results of both 

experiments reveal that C. prolifera total chlorophyll content is slightly higher than that of 

seagrasses. C. prolifera seems to present a lower Chl a/b ratio, when compared to both C. 

nodosa and Z. marina. Lower Chl a/b ratios are generally found in shade-adapted species, 

while light-adapted species are characterized by higher Chl a/b ratio (Robledo & Freile-

Peligrin, 2005; Rosenburg & Ramus, 1982). These results seem to corroborate the idea that 

C. prolifera in Ria Formosa performs like a shade-adapted species (Terrados & Ros, 1992; 

García-Sánchez et al., 2012) while, in comparison, the seagrasses behave as light-adapted 

species.  

At night, seagrass leaves contained significantly lower soluble sugar values than during 

the day. C. nodosa and Z. marina have been shown to contain less soluble sugar during lower 

or no irradiance (Zimmerman et al., 1995; Silva et al., 2013). Comparatively, C. prolifera 

revealed no significant change of its soluble sugar content. Similar results were obtained 

during the mesocosm experiment, with soluble sugar being significantly higher in Z. marina 

than in C. prolifera, while starch was significantly higher in C. prolifera. This leads us to 

believe that C. prolifera has a different carbohydrate regime compared to seagrass. Lower 

soluble sugar content could be linked to C. prolifera´s higher respiration rate. Plant 

respiration produces a large amount of chemical energy and components necessary for 

biosynthesis and cellular maintenance (Atkins et al., 2005). Thus, under the same conditions 

as Z. marina, C. prolifera´s higher adenylate energy charge could be a result of a higher 

respiratory activity compared to Z. marina. Furthermore, starch content was still rather high 

(May) when compared to findings by other authors (Terrados & Ros, 1992; Robledo & 

Freile-Peligrin, 2005; Vergara et al., 2011). This was linked with an increase in protein 

content and higher productivity and recruitment of new fronds. In Ria Formosa, C. prolifera 
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total carbohydrate content is relatively high, which leads us to believe that starch content 

remains untouched, while soluble sugars are enough to support the various biochemical 

processes. Further analysis of the annual carbohydrate usage of C. prolifera in Ria Formosa 

may help elucidate its global carbohydrate management strategy, including production, use 

and storage. 

Z. marina revealed limited flexibility in its capacity to allocate carbon and carbohydrates, 

presumably to save inter-conversion energy, and to maintain a possible energy source (Burke, 

Dennison & Moore, 1996; Silva et al., 2013). This would also explain why Z. marina shows 

a lower adenylate charge during the morning, allocating less carbon to maintain its energy 

levels. Silva et al. (2013) showed that C. nodosa possesses a more advantageous strategy, 

capable of maintaining similar energy levels at night or during the day. Nevertheless, this 

was tested using an in situ shading experiment, and not under an invasive pressure caused by 

an algae. The significant decrease of Z. marina soluble sugars in the rhizomes, when mixed 

with C. prolifera, was accompanied by a significant increase of starch in the leaves. However, 

the magnitude of the increase in leaf starch content is much lower than the decrease in soluble 

sugars in the rhizomes. This significant decrease of carbohydrates content in Z. marina while 

maintaining a similar energy charge could be related with the increase in dark respiration. 

However, dark respiration was kept at the same rate, not indicating the use of extra 

carbohydrates. We hypothesize whether Z. marina may use carbohydrates as building blocks 

for the synthesis of molecules with allelopathic functions such as aminoacids, fatty acids, 

phenolic compounds and others (Gniazdowska & Bogatek, 2005) as a response to C. 

prolifera, explaining this way their decrease. The reduction of the sediment quality may 

induce stress in Z. marina, with a corresponding physiological response. This could involve 

the activation of detoxifying mechanisms, antioxidant systems (Gniazdowska & Bogatek, 

2005), and production of secondary metabolites, like flavonoids and phenolic acids, which 

have a potential algicidal effect (Laabir et al., 2013).  

C. prolifera is a rhizophitic and nitrophilic algae, capable of using both sediment and 

water column nutrients, actively foraging for nutrients (Malta et al., 2005). In C. prolifera, 

as in most species, the nutrients are used to produce aminoacids, proteins such as Rubisco 

(which accounts for up to 50% of the soluble protein of leaves) (Parry et al., 2003), and 
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secondary metabolites. In the presence of Z. marina, the nutrients in the sediment must be 

shared between both species. An increase in soluble protein may be the result of C. prolifera 

actively foraging for more nutrients in order to sustain its productivity, especially in the 

presence of neighboring species, more so than Z. marina. Furthermore, recent research in Ria 

Formosa demonstrated that C. prolifera absorbs most of its nutrients by the belowground 

thallus, with absolute rates that are much higher than those of Z. marina (Alexandre, pers. 

comm.).  

Different mechanisms that contribute to Caulerpa sp. successful invasions have been 

suggested. Among these, the allelopathic use of metabolites has been described in Caulerpa 

racemosa (Raniello et al., 2007). The mesocosm experiment revealed that C. prolifera has 

no effect on the overall photosynthetic 

performance of Z. marina. Furthermore, no 

differences in foliar/frond soluble sugars, soluble 

proteins and adenylate energy charge and 

pigments were found. Beneath the sediment, 

however, a significant decrease in starch content 

in Z. marina’s rhizomes reveals that the presence 

of C. prolifera may affect this seagrass. 

Checcherelli et al. (2014) showed that C. 

racemosa can cover both substrate and seagrass 

rhizomes, depending on the state the meadow. 

Invasive species can have a significant impact on 

the fitness of native plants, namely by alterations of the ecosystem processes above or below 

ground (Oduor, 2013).  Our observation appears to be the first record of C. prolifera rhizoids 

found among Z. marina rhizomes (Fig. 4.1). This allows hypothesizing that C. prolifera could 

affect the substrate around Z. marina rhizomes, namely by increasing organic matter pools 

and microbial activity but also increasing sulfide, which is particularly harmful for seagrasses 

(Holmer et al., 2009).  

Another trait described by Collado-Vides (2002) is C. prolifera´s remarkable 

morphological plasticity, with big differences between shade and light fragments. We can´t 

Figure 4.1:  Z. marina collected in Ria 

Formosa, illustrating C. prolifera rhizoids 

entangled around the seagrass rhizome.  
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exclude the possibility that C. prolifera of Ria Formosa is capable of such morphological 

change, depending on environmental conditions. In fact, during sampling for both 

experiments, C. prolifera samples were rather compact, and blades were short, in contrast 

with those observed in deeper waters. This would indicate that C. prolifera growing in 

shallower regions of Ria Formosa may be light-adapted fragments. Furthermore, C. prolifera 

appears to present different growth rates, depending on the environmental conditions (Malta 

et al., 2005; Gab-Alla, 2007). The regression of seagrasses meadows of Ria Formosa may 

lead to their replacement by these light-adapted fragments. C. nodosa, which presents marked 

differences in its seasonal leaf production rates in Ria Formosa (Cunha & Duarte, 2007), may 

provide the chance for these macroalgae to advance and replace parts of these meadows.   

 

5. Conclusion 

Based on the chlorophyll a fluorescence response and its photosynthetic pigments, 

Caulerpa prolifera of Ria Formosa displays a shade-adapted response, while seagrasses were 

more light-adapted. The algae demonstrated differences in its carbohydrate proportions, 

using more soluble sugars but storing more starch compared to the seagrasses. This lower 

soluble sugar content was connected to its higher respiration rates. The interaction of Z. 

marina and C. prolifera revealed to have no effect on photosynthetic performance or pigment 

concentrations. The algae does however appear to have a physiological effect on the seagrass, 

which drastically decreased its rhizome starch content. We hypothesize that, instead of 

accumulating extra carbohydrates as starch, Z. marina may be using  them as a base for the 

synthesis of molecules with allelopathic functions. This is the first record of this response. 

Due to its morphological and physiological plasticity, further studies are required to fully 

comprehend C. prolifera´s ecological and biochemical processes  in Ria Formosa on a 

seasonal scale.  
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