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Abstract 

The food and feed industry surpass their sustainable boundaries and global food security is one 

of society's biggest challenges today. Macroalgae of the genus Ulva have been identified as a 

suitable candidate for cultivation, with various applications within the food and feed industry.

   

This work discusses the sustainability performance of Ulva cultivation and identifies the 

potential of Ulva species in southern Portugal for their use in the food and feed industry. 

It was tested, which species are available in different coastal and lagoon habitats and whether 

species identity or environmental conditions have a stronger effect on the seaweed’s protein 

content and fatty acid profile, to find out, whether the selection of one Ulva species is favorable 

over another for cultivation.    

 

Ulva species were collected at coastal and lagoon locations in southern Portugal and genetically 

identified, using the tufA gene sequences. Ulva rigida, Ulva flexuosa, Ulva fasciata, Ulva 

australis and Ulva compressa were identified as potential cultivation candidates. U. australis 

has not previously been reported in southern Portugal. Protein content in U. rigida sampled in 

coastal locations was higher (p < 0.01) compared to lagoon locations, but not different among 

species within the Ria Formosa (p = 0.363). Fatty acid profiles were not different across 

locations (p = 0.739). However, U. compressa had a higher PUFA content than U. rigida and 

U. fasciata within the Ria Formosa (p = 0.0245). Results suggest that U. compressa might be 

more a more suitable Ulva candidate for PUFA production and that protein content in seaweeds 

may be more susceptible to environmental conditions.  

In southern Portugal, Ulva is still an underexploited resource but has the potential to be part of 

the solution to overcome food security challenges in the future.  

Keywords: Ulva; fatty acids; protein; sustainability; food and feed industry.  
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Résumo 

A indústria de alimentos e rações supera os seus limites sustentáveis e, a segurança alimentar 

global, é um dos maiores desafios da sociedade hoje. Os sistemas de produção alimentar 

necessitam de novas soluções e de uma abordagem mais orientada para a sustentabilidade, 

garantindo produção de alimentos suficiente para as gerações futuras. Neste trabalho, o cultivo 

de algas é discutido como uma solução para os desafios enfrentados pelo atual sistema de 

produção alimentar e deverá ser inserido no contexto da sustentabilidade e no debate sobre as 

mudanças climáticas. 

O primeiro capítulo introdutório fornecerá uma visão geral da composição bioquímica de algas 

marinhas e do uso de biomassa das mesmas na indústria de alimentos para animais, com foco 

no mercado europeu e no género Ulva. Ulva contém vários compostos benéficos, como 

aminoácidos essenciais (EAA), fibras alimentares, ácidos gordos polinsaturados (PUFAs), 

minerais e vitaminas. As altas taxas de crescimento das algas, a distribuição omnipresente, a 

sua alta capacidade de absorção de nutrientes, a composição da dieta e a tolerância a diferentes 

condições ambientais tornam estas algas em potenciais candidatas ao cultivo, atraente para a 

indústria de alimentos e rações. Atualmente, a produção de algas marinhas ocorre 

principalmente em países asiáticos e na Europa. Portugal não está listado entre os principais 

países produtores de algas, com pouca tradição de consumo de algas comestíveis (EUMOFA 

2017; Soares et al. 2017). Em Portugal continental, a indústria da aquicultura costeira baseia-

se principalmente no centro e na costa sul do país e é dominada pela produção de moluscos 

(50%), dourada, robalo e pregado (Ramalho & Dinis 2011). Diferentes parâmetros de cultivo 

afetam a taxa de crescimento e a composição química bruta de Ulva, portanto a seleção do 

ambiente de cultivo afeta o rendimento dos compostos-alvo. A literatura sugere que a 

composição bioquímica das algas marinhas não depende apenas do ambiente de cultivo, mas 

que as espécies podem mostrar alguma estabilidade no seu perfil nutricional, mesmo entre 

ambientes (Angell et al. 2015; Gosh et al. 2012). 

 

O segundo capítulo revelou que o cultivo de algas marinhas se destaca das técnicas atuais de 

produção de alimentos em termos de desempenho e sustentabilidade. O facto de não haver 

necessidade de terra arável ou utilização de água doce para produção torna-se cada vez mais 

relevante, considerando a expectável escassez de água terrestre devido à sobrepopulação e ao 

aquecimento global. Os benefícios ecológicos do cultivo de algas marinhas são maiores em 
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sistemas de cultivo aberto ou quando combinados com a produção de outras espécies em uma 

cultura multi-trófica integrada (IMTA), onde as preocupações ambientais associadas à 

aquacultura podem ser reduzidas. Considerando que, a pesca global está no seu limite 

sustentável e a produção de alimentos para animais é discutida de forma controversa, Ulva pode 

então ser considerada uma valiosa fonte de proteínas e PUFAs tonando-se um substituto 

sustentável da produção agrícola atual. 

  

As condições de cultivo para Ulva podem ser otimizadas para obter rendimentos máximos de 

compostos-alvo para várias aplicações na indústria alimentar e de rações. O objetivo deste 

trabalho foca-se na identificação do potencial das espécies de Ulva no sul de Portugal, quer no 

seu uso na indústria alimentar, quer como um recurso mais sustentável em comparação com a 

produção alimentar existente atualmente. Para isso, testou-se se diferentes espécies ou 

condições ambientais têm um efeito mais pronunciado no conteúdo de proteínas e perfil de 

ácidos gordos nas algas marinhas, para descobrir se a seleção de uma espécie de Ulva é 

favorável em relação à outra para fins alimentares ou para produção de rações. 

Diferentes espécies de Ulva foram recolhidas em locais costeiros e lagunares no sul de Portugal 

e identificadas geneticamente, usando o gene tufA. Ulva rigida, Ulva flexuosa, Ulva fasciata, 

Ulva australis e Ulva compressa foram as cinco espécies de Ulva identificadas. U. australis 

não foi relatada anteriormente na costa sul portuguesa.        

As amostras foram analisadas quanto ao seu teor total de proteínas por combustão térmica. A 

quantidade de proteína total entre as espécies variou de 2.2% a 9.46% do peso seco (DW), com 

uma média de 4.35% para todas as espécies nos locais de amostragem costeiros e lagunares. Os 

números estão dentro, mas na extremidade inferior, do que foi relatado para as espécies de Ulva. 

Observou-se uma quantidade significativamente maior de proteína total em U. rigida amostrada 

em locais costeiros (p  < 0,01) comparativamente aos locais de amostragem em lagoas, embora 

não existam diferenças significativas de proteína total entre as diferentes espécies da Ria 

Formosa (p = 0.336), suportando a hipótese de que o ambiente de cultivo tenha um efeito mais 

forte no perfil nutricional das algas do que na própria espécie.         

Os perfis de ácidos gordos foram analisados por cromatografia gasosa - espectrometria de 

massa. O ácido palmítico (C16:0) foi o ácido gordo mais abundante em todas as espécies de 

Ulva, variando de 36.8% a 85.29% do total de ácidos gordos. Os ácidos gordos polinsaturados 
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(PUFAs) mais abundantes foram o ácido linoleico (C18: 2n-6) e o ácido α-linoleico (C18:3n-

3). Os ácidos gordos saturados (AGS) compuseram a maior proporção de ácidos gordos, 

seguidos por PUFA e MUFA. No entanto, ao comparar a quantidade de PUFA dentro de U. 

rigida nos locais de amostragem costeira e de lagoa, a diferença não foi significativa (p = 

0.739), enquanto U. compressa apresentou um conteúdo de PUFA significativamente maior 

que U. rigida e U. fasciata na Ria Formosa (p = 0.0245). Não foram encontradas diferenças 

significativas entre os perfis de ácidos gordos entre os locais da U. rigida (p = 0.6713) nem 

entre as espécies da Ria Formosa (p = 0.1064). Os resultados sugerem que U. compressa pode 

ser a espécie mais adequada para produção de PUFA e que o teor de proteínas nas algas pode 

ser maioritariamente suscetível às condições ambientais, comparativamente à composição de 

ácidos gordos. 

Neste trabalho, as espécies Ulva U. rigida, U. compressa, U.fasciata e U. flexuosa foram todas 

identificadas como um recurso promissor para o cultivo, diversificando e suplementando a atual 

produção alimentar de forma sustentável no sul de Portugal. Principalmente tendo em conta o 

cultivo em sistemas de aquacultura multi-trófica integrada (IMTA), uma abordagem de cultivo 

através da qual a produção de algas marinhas se torna mais económica, podendo acrescentar 

benefícios ambientais à indústria aquícola nesta região de Portugal. Os serviços de ecossistemas 

fornecidos através do cultivo em sistema aberto podem ajudar a manter ecossistemas saudáveis 

no sul de Portugal. 
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Chapter one - Overview on the properties and application of seaweeds in the 

food and feed industry 

1. Introduction 

In light of a growing world population and climate change, combined with an increasing 

awareness and demand for nutritiously high value food or functional foods, the food industry 

is facing various challenges for which new solutions have to be found. Due to their high 

nutritional value and numerous advantages over terrestrial food production, seaweeds have been 

suggested to be one such solution. The present work aims to identify the potential of cultivating 

the green macroalgae Ulva in southern Portugal as a sustainable resource for the food and feed 

industry in an environmentally friendly way.   

 

The first introductory chapter will provide a general overview on seaweeds biochemical 

composition and the use of seaweed biomass in the food and feed industry, with a focus on the 

European market and the genus Ulva. Ulva contains various beneficial compounds such as 

essential amino acids (EAA), dietary fibers, polyunsaturated fatty acids (PUFAs), minerals and 

vitamins (Rasyid 2017; Jannat-Alipour et al. 2019). The seaweed´s high growth rates, 

ubiquitous distribution, high nutrient uptake capacity, dietary composition and tolerance to 

different environmental conditions generally make them attractive cultivation candidates for 

the food and feed Industry (Wu et al. 2018; Wichard et al. 2015). Today, seaweed production 

mainly occurs in Asian countries.  In Europe, seaweed cultivation is emerging but Portugal is 

not listed amongst the major seaweed producing countries, with little tradition in the 

consumption of edible seaweeds (EUMOFA 2017; Soares et al. 2017). In mainland Portugal, 

the coastal aquaculture industry is mainly based in the center and south coast of the country and 

dominated by the production of molluscs (50%), seabream, seabass and turbot (Ramalho & 

Dinis 2011). Different cultivation parameters affect the growth rate and the crude chemical 

composition of Ulva, wherefore selection of the cultivation environment impacts the yield of 

target compounds. Literature suggests that the seaweed´s biochemical composition does not 

only depend on the cultivation environment, but that species can show some stability in their 

nutritional profile, even across environments (Angell et al. 2015; Gosh et al. 2012).  

In chapter two, seaweeds will be embedded into the sustainability discourse. Therefore, the 

benefits and adverse effects of different cultivation systems will be examined and seaweeds 
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will be discussed in the context of global food security and climate change. Seaweeds can be 

cultivated in closed, semi-closed or open systems and in combination with already existing 

aquaculture structures in IMTA systems. With mainland Portugal's approximately 900km long 

coastline, the countries existing aquaculture activity, and its coastal lagoons, there are many 

potential sites for seaweed cultivation in southern Portugal (Ponte Lira et al. 2016). An analysis 

of benefits and adverse effects of cultivating seaweeds for the food and feed industry as 

compared to current agricultural practices and comparison of different cultivation practices will 

reveal the potential of Ulva as a sustainable food and feed resource and identify the most 

environmentally friendly cultivation approach. 

 

In Chapter three, for the first time, Ulva species from southern Portugal will be genetically 

identified and screened for their food and feed potential. The hypothesis that the biochemical 

composition in Ulva is species dependent and influenced by environmental parameters, will be 

tested in this chapter. The aim is to understand whether species selection or environmental 

conditions have a stronger effect on the seaweed´s biochemical composition and thus it´s value 

as food or feed. Therefore, barcoding based species identification will be correlated with the 

amount of total protein and fatty acid (FA) profiles across environments and among species 

within the same environment. The Ria Formosa is a coastal lagoon system that is connected to 

the Atlantic Ocean through six major inlets and is located in the south of Portugal. The coastal 

lagoon is an important habitat for many species but also anthropogenically influenced by the 

cities, Faro, Olhão and Tavira, which are located at the lagoon (Mourade et al. 2019). The Ria 

Formosa as a potential cultivation site for Ulva for food and feed purposes will be compared to 

coastal locations in southern Portugal. Genetic identification of Ulva species through barcoding 

will increase knowledge on the species diversity in southern Portugal.  

Overall, results will find implication in cultivating Ulva for the food and feed industry by 

identifying suitable candidates and potential sites for production.   

 

1.1. Seaweeds nutritional components 

Seaweeds can be distinguished into three different phyla: Ochrophyta (brown algae), 

Rhodophyta (red algae) and Chlorophyta, the green algae (Bunker et al. 2017). The phyla are 

not only distinct from each other based on their pigmentations but also possess different 

biochemical features, leading to variability in their suitability as food or feed. In society, health 

and wellbeing are closely linked to diet. Health promoting benefits are amongst major food 
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marketing tools and following dietary regimes to achieve certain body goals is common. A 

healthy diet includes the intake of all essential nutrients to avoid deficiencies but also to reduce 

the caloric intake to an extent not exceeding that of personal requirements to avoid obesity 

(Lichtenstein et al. 2006). Bioactive compounds are compounds taken in through the diet, 

influencing cellular activity (Biesalski et al. 2009). Global research effort on the nutritional 

components in seaweed has proven that they can be abundant sources of these bioactive 

compounds, containing protein (comprising all EAA), dietary fiber, PUFAs (including n-3 

PUFAs), as well as minerals, vitamins and trace elements (Peng et al. in Tiwary & Troy 2015, 

pp. 79-84). These bioactive compounds are said to have antiviral, antibiotic, antioxidant, anti-

inflammatory, antiherpetic, anticoagulant, antiangiogenic and antitumoral activity, to name a 

few (Carlucci et al. 1997; Dias et al. 2005).  

This makes seaweed compounds interesting for vide application in the food and feed industry 

as well as for medical applications (Cardozo et al. 2007). Associated health benefits derived 

from regular seaweed consumption are of diverse nature and range from anti-cancer, anti-

obesity and anti-inflammatory activity to weight loss and cardiovascular health (Fleurence et 

al. 2012; Hafting et al. 2012; Brownlee et al. 2012; SAPEA 2017). Each seaweed, however, is 

unique in their nutritional profile, determined not only phylogenetically but also by 

environmental parameters. Changing environmental or cultivation conditions and the seaweeds 

life-stages cause fluctuation in seaweed growth performance and their nutritional properties 

(Wells et al. 2016). The protein content in a seaweed species for example, can fluctuate between 

10-40% DW throughout the year (Pangestuti & Kim in Tiwary & Troy 2015, p. 127). To 

appraise and enhance the dietary value of the seaweed chosen for cultivation and to accurately 

position them in the food market, knowledge on the effect of light, salinity, nutrient availability, 

aeration, water flow velocity and temperature on the species is needed for successful 

cultivation.   

A combination of identifying a species that obtains high amounts of the targeted compounds 

and knowledge on the optimal culture conditions for maximization of these is recommendable 

for selecting a suitable candidate for cultivation.  

1.1.1. Proteins in seaweeds  

Globally, there is an increasing awareness of the importance of protein in our nutrition. Proteins 

are essential structural and functional elements of our body to build and repair tissue, maintain 

a balanced weight etc. (DGE 2017). The amount as well as the quality of protein taken in 

through the diet is important (Maehre et al. 2014).  
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Proteins consist of amino acids (AA) of which there are twenty in total. Nine of these are so 

called essential amino acids (EAA), which cannot be synthesized by the human body and have 

thus to be taken in through food. Namely, these essential amino acids are: Isoleucine, Leucine, 

Lysine, Methionine, Phenylalanine, Taurine, Threonine, Tryptophan and Valine. Arginine, 

Histidine and Glycine are two AA that are considered additionally essential for some life-stages 

(Asif et al. 2011). The EAA profile of land-based crops is usually not complete and lacks one 

or more EAA (Hoffman & Falvo 2004). This makes seaweeds a potentially advantageous 

protein source, with an AA profile that can comprise all EAA (Paiva et al. 2017). Whereas 

protein content of brown seaweeds is generally low (5-15% DW), green seaweeds have 

moderate levels (9-26% DW) and red seaweeds can reach up to 47% DW. An exception in the 

green seaweeds is Ulva with protein levels of up to 33% DW, equivalent to common vegetable 

sources (Fleurence et al. 2017). Apart from phylogenetic differences, the amount of protein is 

directly correlated to the availability of nutrients, especially nitrogen. However, fluctuation in 

protein quantity and quality can also be attributed to seasonal variability and varying 

environmental factors (Moustafa & Eladel 2015). 

Amongst the most common plant-based protein sources today is the protein rich soybean. Soy 

is not only cultivated as a protein source for human consumption but also as a feed ingredient 

for livestock or as a replacement of fishmeal in animal feed (Dersjant-Li 2002; Gibney et al. 

2002, pp. 46-47; Fleurence 1999; Dawcynski et al. 2007). Their use as animal feed instead of 

for direct consumption is often criticized (Gibney et al. 2002, pp. 46-47; Fleurence 1999; 

Dawcynski et al. 2007). Studies on the AA profiles of seaweeds have shown that their AA 

composition can be superior to that of soybeans, justifying their consideration as a soybean 

meal replacement (Moustafa & Eladel 2015; Dersjant-Li 2002). Ulva lactuca e.g., grown with 

AD manure, had glycine concentrations higher than were found in soybeans and isoleucine, 

cysteine and serine comparable to that of soybeans (Nielsen et al. 2012).  

The amount of protein in seaweeds is measured in two ways: either through the direct extraction 

of protein or through a nitrogen-to-protein conversion factor of 6.25 traditionally (Nielsen et al. 

2012). However, a new conversion factor has been suggested, because whereas direct extraction 

methods underestimated protein content by 33%, the nitrogen-to-protein factor of 6.25 over-

estimated the protein content by 43%. A new factor of 5 has therefore been suggested to be 

more accurate (Angell et al. 2015).   

 

One major issue of high protein quality derived from seaweeds is their potentially low 

digestibility. Research on in vivo digestibility of protein does not show concordant results 
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(Holdt & Kraan 2011). The low digestibility of seaweed protein is often associated with high 

polysaccharide content and phlorotannins, as well as the lack of the proper digestive enzymes 

(Bleakley & Hayes 2017; Galland-Irmouli et al. 1999). Food processing, protein extraction 

methods and the enzymatic degradation of seaweed fibers have been suggested to improve 

protein digestibility (Pangestuti & Kim in Tiwary & Troy 2015, p. 129). Ultrasound - assisted 

extraction (UAW) or the use of pulsed electric field, or enzymes could be possible solutions 

(Bleakley 2017; Wijesinghe and Jeon 2012). A study comparing sonication, pH shift and 

accelerated solvent protein extraction methods for different seaweeds concluded that the pH 

shift method achieved the highest protein yields overall (Harrysson et al. 2018). Even though 

these methods have shown to improve digestibility and extracts have been successfully 

incorporated into e.g. pasta or bread, it is also a costly procedure, which could be reduced 

through product diversification (SAPEA 2017; Bleakley & Hayes 2017). A study on the 

digestibility of protein of Ulva armoricana showed that not only the composition of amino acids 

changed by season but also the digestibility, which may be explained by a structural change of 

protein (Fleurence et al. 1999).  

1.1.2. Lipids in seaweeds  

Lipids are a group of molecules of diverse structures, including fatty acids (Burdge & Calder 

2015). Even though the amount of total lipids in seaweeds is low (not exceeding 5% of total 

dry biomass) seaweed lipid profiles comprise a substantial amount of fatty acids with varying 

chain lengths (Mišurcová, Ambrožová & Samek 2011). Fatty acids can be distinguished 

between saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated 

fatty acids (PUFA) each differing in their molecular structure and their dietary effect (Mensik 

2016). Whereas an excess consumption of SFA has been attributed to negative health effects 

such as an increased risk of heart disease, the consumption of PUFAs has been attributed to 

health benefits such as anti-inflammatory, antioxidant and antibacterial activity (White 2009; 

Pereira et al. 2012; Kendel et al. 2015). PUFAs can further be distinguished into n-3 and n-6 

PUFAs, differentiated by their position of the double bond in the carbon chain. The n-3 PUFA, 

alpha linolenic acid (ALA) and the n-6 PUFA linolenic acid (LA) are considered important 

parts of the diet, since they cannot be produced by the body (Simopoulos 2000). ALA is 

converted to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two omega-3 fatty 

acids that are mainly found in fish oil. Since the conversion rate from ALA to DHA and EPA 

is considered low, EPA and DHA should also be taken in through the diet (Wells et al. 2017).  
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Since the same enzyme synthesizes ALA and LA, an optimal ratio of n-3 and n-6 PUFA is often 

discussed. Views on the importance of an optimal n-6 to n-3 PUFA ratio in the diet differ 

amongst scientists. On the one hand, an FAO expert consultation came to conclude that no 

specific ALA to linolenic acid (LA) ratio is necessary if total dietary intake of these PUFAs is 

met, with fish, seafood and seeds being the most abundant sources of n-3 PUFAs (FAO 2010). 

On the other hand, studies have shown that the ratio of ALA to LA is important for positive 

effects on the metabolism. The ratio is often not met due to an insufficient intake of n-3 fatty 

acids in today's diet (Pereira et al. 2012; Simopoulos 2000). Bearing in mind declining fish 

stocks and a trend towards vegetarian diets, an insufficient n-3 PUFA intake is likely and has 

increased awareness of the health benefit of n-3 supplementation (Martinson 2016; Swanson et 

al. 2012). Seaweeds have been studied as an alternative source to fish oil for supplementation 

of n-3 PUFAs and regarded as a good alternative (van Ginneken et al. 2011; Schmid et al. 

2018). 

Since the FA profile varies not only amongst phyla but even within the same species under 

different environmental parameters, the cultivation of seaweed for PUFAs can be optimized 

through strain selection and optimal cultivation parameters (Schmid et al. 2017).  

1.1.3. Dietary fibers in seaweeds 

Dietary fiber is the term for plant cell components indigestible in the human small intestine. 

This includes structural and storage type polysaccharides (Gibney 2002, p. 76). In the European 

food industry, dietary fiber from seaweeds is mainly commercially used as stabilizers, 

emulsifiers and thickeners (Cherry et al. 2019). Carrageenan, agars, agarose and alginates 

(mainly found in red and brown algae) are the most common storage polysaccharides and differ 

to those found in terrestrial plants (Stiger-Pouvreau et al. in Tiwary & Troy 2015, p.223). These 

types of carbohydrates are distinguished between water-soluble and insoluble (Pal et al. 2014). 

In seaweeds, polysaccharides, mainly soluble ones, usually make up the highest content of the 

crude chemical composition (Jiménez-Escrig & Sánchez-Muniz 2000). Polysaccharides have 

various beneficial effects on human health, especially in the gastrointestinal system. Since they 

are non-digestible, the dietary fibers pass through the intestinal tract, where their positive health 

benefits are manifold. Fermentable fibers can e.g. benefit colonic bacteria, ameliorate the gut 

microbiome or dietary fibers can interact with immune cells and improve immunity (Slavin 

2013).  

The health benefits associated with dietary fibers are manifold and range from antitumor, 

antiherpetic and antiviral activity to helping to prevent obesity through controlling appetite 
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(Mišurcová et al. 2012; Lovegrove et al. 2017). The Deutsche Gesellschaft für Ernährung 

(DGE) e.g., suggests a daily intake of 30g of dietary fibers (DGE 2012).   

However, polysaccharides act in the gastrointestinal tract where they also have an effect on the 

digestibility of other nutrients, which can be both positive, e.g. by lowering serum cholesterol 

or regulating blood sugar. However, polysaccharides can also inhibit the digestibility of other 

relevant nutrients or influence the digestibility of e.g., minerals or dietary protein (Pal et al. 

2014; Brown et al. 1999; Gudiel-Urbano & Goñi 2002; Jiménez-Escrig & Sánchez-Muniz 

2000).  

1.1.4. Minerals and vitamins in seaweeds 

The mineral content of seaweeds can be highly variable and exceed the concentration of these 

elements in the surrounding water body due to high accumulation rates (Rupérez 2002). 

Minerals in marine algae are found to be comparable or even higher to those of land plants and 

comprise sodium, calcium, magnesium, potassium, chlorine, sulphur and phosphorus, amongst 

others (Mohamed et al. 2012; Paiva et al. 2014). The variability in mineral accumulation by 

different seaweeds offers opportunities to explore seaweed diversity for different mineral 

supplementation purposes for humans and animal feed (Circuncisao et al. 2018).  

Iodine and selenium are two minerals in seaweeds that are especially interesting because they 

are mainly found in fish and not in other plants. Iodine deficiencies often occur in mountainous 

regions or in areas with iodine poor soils. Supplementation is thus often important, e.g. in the 

form of iodized salt and can be provided through seaweeds (Gibney et al. 2002, p. 211; Vazhiyil 

2008). However, if iodine is consumed in high amounts, it may negatively affect thyroid 

functioning. It is thus important to state the iodine content of edible seaweed products to prevent 

the risk of overconsumption (Yeh et al. 2014).  

Generally, seaweeds are a good source for many vitamins, especially water-soluble B Vitamins 

and the vitamins A, C, D, E and K but also water insoluble Vitamins. This makes seaweeds a 

valuable candidate as a vitamin source in human nutrition and animal feed (Wells et al. 2017; 

Skrovánková 2011). 

1.2. Seaweed nutritional value - challenges and concerns 

The nutritional value and potential health benefits associated with the consumption of seaweed 

is not determined by their nutritional profiles alone. The fate of the nutritional constituents 

derived from seaweeds, is determined by multiple factors:  
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First of all, the potential health benefits of seaweed-derived compounds are determined by their 

bioavailability, the extent to which a nutrient is accessible to the human metabolic system. 

Bioavailability of seaweed compounds and protein digestibility has been poorly understood and 

studied little to date, especially in humans (Hambidge 2010; Wells et al. 2016; Fleurence 1999). 

To overcome low in in vivo digestibility of seaweed protein, associated with their high dietary 

fiber content, food processing and protein extraction methods have been suggested (Bleakley 

& Hayes 2017; Fleurence 1999). Even though these have shown to improve digestibility and 

extracts have been successfully incorporated into e.g. pasta or bread, it is also a costly 

procedure, which could be reduced through product diversification (SAPEA 2017; Bleakley & 

Hayes 2017). Increased research effort on digestibility is required to overcome these 

uncertainties and improve seaweed quality as food and feed. This can be driven by the 

increasing interest in seaweeds in western societies (Admassu et al. 2015; Hafting et al. 2012).   

Secondly, digestive enzymes in the human gut microbiome can differ among nationalities and 

can be a determining factor for the health benefits derived from foods, making generalized 

statements misleading (Chen et al. 2016; Wells et al. 2017).  

 

Furthermore, the form of processing, for example the drying of the biomass, influences the 

nutritional composition and thus changes the amount of potential health promoting compounds 

available from the seaweed (Jiménez-Escrig et al. 2001; Cox et al. 2011). For budgeting food 

intake, it thus makes a difference, whether the seaweed is consumed in its whole, fresh or dried 

form or whether extracts are incorporated into other foods. Processing the seaweed after harvest 

can thus be an additional means to improve the amount of target compound for a given industry.  

Lastly, the amount of seaweed consumed should be considered, as the daily recommendation 

for seaweed consumption does not exceed 8g DW, possibly significantly reducing the uptake 

of sufficient health promoting compounds (MacArtain et al. 2007). An Australian study 

considered the dietary intake of per-portion amounts of seaweeds and whole foods and came to 

conclude that dietary fiber, calcium (for Ulva spp.), potassium, iron, some vitamins and protein 

are the nutritionally relevant compounds in seaweeds (Winberg, Gosh & Tapsell 2009). The 

micronutrient iodine is often discussed in terms of safety of seaweed consumption and amounts 

can vary widely amongst seaweeds. An iodine deficiency is common in some parts of the world 

and can negatively affect health, when not supplemented, e.g. through iodine enriched salts. 

Seaweeds could provide a good source of iodine. An elevated intake of iodine, however, may 

be a health hazard due to negative effects on the thyroid system (Gunnarsdottir & Dahl 2012; 

Leung & Braverman 2014). For a safe consumption, the iodine content should be checked for 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Gunnarsdottir%20I%5BAuthor%5D&cauthor=true&cauthor_uid=23060737
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seaweeds and stated on the packaging and regulations should be established (Circuncisão et al. 

2018). 

Seaweeds are known to have high absorption capacities and have for example proven to be 

successful candidate in IMTA systems for bioremediation and can be used for biomonitoring 

(Dadolahi-Sohrab et al. 2011; Chung et al. 2002).  

Toxins, heavy metals and metalloids that have been absorbed by seaweed raise health concerns 

associated with their consumption. Therefore, careful monitoring is required for safe seaweed 

consumption, especially when harvested or cultivated in the natural environment. However, 

health risk assessment conducted for various seaweeds in different geographic locations have 

resulted in low health risk for the consumer, especially since the amount consumed is usually 

small (Chen et al. 2018; Desideri et al. 2015). All the above-mentioned factors should be taken 

into consideration, when promoting seaweeds as a health food to avoid consumer mislead. 

 

1.3. Utilization of cultivated seaweed in the food and feed industry 

Seaweed biomass can either be cultivated or obtained through harvest from the wild. Globally, 

aquaculture is the major source of seaweeds and over 96.5% of seaweeds used for commercial 

application are produced in mariculture, the farming at sea (Chopin 2018).  

Worldwide, 30.1 million tons of seaweed are produced annually, as compared to a production 

of 80.0 million tons of food fish. Ninety-six percent of this output has been used for direct 

consumption or further processing (FAO 2018). In terms of volume, seaweeds dominate the 

farming activity in inland, marine and coastal aquaculture and is practiced in 50 countries, 

dominated by Asian countries, with leading farming countries being Indonesia, China, Korea, 

Japan and the Philippines. About 2220 different species are cultured in these countries (FAO 

2016; FAO 2018). Of the about 250 commercially used macroalgae, 150 species have been 

used for human consumption (Kumari 2010). Of the approximately 150 seaweeds used for 

human consumption, Laminaria japonica (kombu), Undaria pinnatifida (wakame), Palmaria 

palmata (dulse), Porphyra tenera (nori) Ulva lactuca (sea lettuce), and Ulva pertusa are some 

of the most cultivated species with application in the food industry (Chopin 2018). Edible 

seaweeds can be consumed in their whole form, raw, dried and as a mix of species. Seaweeds 

nutritional compounds are also extracted and incorporated into other foods, creating so-called 

“functional foods” that promote health benefits exceeding those of basic nutrition (Gibney et 

al. 2002, pp. 9-10). Extracts of certain compounds can further be sold as food supplements, e.g. 

for people following a vegetarian or vegan diet.  
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For commercial application, robust strain selection and new strain development with reduced 

or absent reproduction, high growth rates, high resilience and abundance of target compounds 

is desirable and could be achieved through the development of new strains and improved 

breeding technologies (Kim et al. 2017). A study on a sterile Ulva strain e.g., showed up to 

40% higher N/P uptake rates, higher SGR, higher EAA percentage and an increased lipid 

(especially PUFAs) and ash content as compared to the wild strains, as well as reduces swelling 

and oil holding capacity (Gao 2016). This suggests that more research effort in finding robust 

strains or creating sterile strains can increase the potential of cultivating Ulva for the food and 

feed industry. A study on the effect of processing seaweeds concluded that neither drying nor 

canning negatively affected the seaweeds nutritional value (Sanchéz-Machado et al. 2004). 

Apart from direct consumption, seaweeds are furthermore utilized in the food and feed industry 

as animal feed, fodder, fertilizer, fungicides, herbicides, condiments or as a resource of 

phycocolloids such as agar, alginate, and carrageenan (Elizondo-González et al. 2018; López-

Mosquera 2011; Yaich et al. 2011).  

 

Another way of utilizing the biochemicals of seaweeds is to enhance the nutritional quality of 

other foodstuff. For meat, dairy products and fish an increase in mineral content has been 

achieved by including seaweeds into the feed formula (Circuncisao et al. 2018).  

The future of seaweeds in the food and feed industry will include the development of high value 

markets for functional foods, calling for improved cultivars, quality control and traceability 

(Hafting et al. 2012; Hafting et al. 2015). High growth rates (quantity) and control of the desired 

compounds (quality) are essential to assure good quality biomass production for the food and 

feed industry (FAO 2016; Hafting et al. 2015). 

 

1.4. Seaweeds in the European food market  

In Asian countries such as China and Japan seaweeds are parts of the daily diet (Lahaye 1991). 

In Europe, seaweed consumption has a tradition in some countries such as France and Britain 

but seaweed products for consumption mainly serve niche markets and are currently 

underexplored. They are mainly used for the extraction of thickening agents, which is 

astonishing, considering their proven health benefit (Fleurence 2012; Paiva et al. 2017). Harvest 

from the wild is currently the primary source of seaweed biomass in Europe. Only 0.3% (93.000 

tones) of the biomass produced in the world comes from European production with France 

(63%), Ireland 32%), Spain (2.3%) and Italy (1.3%) being the main producers. Portugal is not 

being listed amongst the major producers (EUMOFA 2017).  
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Recently, the potential of cultivating seaweed in Europe has gained an increasing interest. Root 

causes of this are: environmental constraints of current food and feed production techniques, 

declining natural resources, the acknowledgement of the health benefits derived from seaweeds, 

their economic potential and the influence of Asian cuisine in Europe, such as the use of 

Porphyra, commonly known as “Nori”, to wrap sushi (EUMOFA 2017; FAO 2018; Brownlee 

et al. 2012; Chung et al. 2017).  

A major bottleneck is the lack of knowledge on how to incorporate seaweeds in the daily diet 

and include them into cooking practice as well as their unaccustomed taste. Seeking inspiration 

from Asian cooking and experimenting with different tastes and recipes can help to overcome 

this. Restaurants, especially star cuisines are increasingly incorporating seaweeds into dishes 

and can further contribute to accustomed seaweed meals (Mouritsen 2012).  

Whereas malnutrition is mostly not a concern in Europe, a high awareness of the consumption 

of micronutrients, functional- and health foods make seaweeds a highly interesting candidate 

in the European food market (Long, Ortiz-Monasterio & Banziger 2014). France was the first 

European country to officially authorize the commercialization of 21 seaweeds as vegetables 

and condiments and the market for seaweeds is expanding (Le Bras et al. 2015). Viewing this 

development and the high potential of an increasing demand for seaweeds in Europe, concerns 

are being raised regarding harvesting practices that overexploit natural resources and emphasize 

the importance of implementing seaweed harvesting management (Buschmann et al. 2017; 

Rebours et al. 2014). Resource access grant and regulatory bodies differ greatly amongst 

European coastal countries. In Ireland e.g., Irish authorities must grant seaweed harvesting. 

Recently, the granting of licenses has stopped due to a lack of compliance with the practice to 

the Natura 2000 conservation objectives (Fleurence & Levine, p.32, 2016). As has been the 

case with for fed-fish cultivation as a response to declining natural stocks and conservation 

measurements, increasing farming activity of seaweed is to be expected in Europe.  

 

Seaweed cultivation has its origins in Asia where immense research effort and experience has 

contributed to an optimized cultivation. In countries like Korea or Indonesia, low wages and a 

large coastline suitable for seaweed cultivation facilitates the profitable cultivation of seaweeds. 

A lack of “know-how”, high wages and economic viability are major bottlenecks for seaweed 

cultivation in Europe. Limited and highly regulated coastal areas in Europe suggest a different 

cultivation approach as compared to Asian countries (pers. communication). 
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A more European based production of seaweeds would have various advantages compared to 

imported products from other continents: A local seaweed industry would reduce emission 

intensive import. European products would have a higher traceability and can be more regulated 

under the EU food regulatory body. The local markets can be supported. Research on new 

strains, technologies and techniques adapted to local conditions through research projects can 

support this development and overall create new jobs and market opportunity.  

 

1.5. Seaweeds as animal feed 

There has been an increased research effort to diversify animal feed for terrestrial as well as for      

aquatic animals and to find alternative feed sources, wherefore knowledge on nutritional needs 

of farmed animals has increased. In times of intensive animal production, animal performance 

and health are of uttermost importance. Currently, a lot of alternative feeds contain protein rich 

plant sources such as corn, soy, or peas and additional micronutrients, vitamins and minerals 

(Ayadi et al. 2012). The cultivation of these, however, is subject to environmental issues and 

requires freshwater, arable land and the cultivation of feed crops stands in direct competition 

for food (Oppenheimer et al. 2014; Spierts & Ewert 2009). Furthermore, some plants are not 

digested easily, due to anti-nutritional components or lack certain amino acids, such as lysine 

or methionine, wherefore feed often needs to be diversified or processed to meet the animal’s 

requirements (Kaushik & Hemre 2008; Pantalone 2012; Dersjant-Li 2002). Seaweeds have 

proven to be viable sources of high-value protein, PUFAs and provide important minerals and 

vitamins in terrestrial as well as aquatic animal feed. Studies on algae supplementation in 

terrestrial animal feed showed positive effects on physiological and metabolic pathways, gut 

function and improved overall performance and animal health (Makkar et al. 2016; Heim et al. 

2014; Bendary et al. 2013).  

Various studies have also investigated the potential of replacing aquatic animal diets by 

seaweeds. This is especially helpful in times of overfishing and declining fish stocks. Replacing 

conventional feed partially with Ulva spp. has proven successful e.g., in the case of shrimp, 

gilthead seabream, abalone and sea urchins (Cruz-Suárez et al. 2010; Cyrus et al. 2015; Bolton 

et al. 2009; Emre et al. 2013). However, the successful replacement of fishmeal is depending 

on the species. In some cases, a partial replacement of fishmeal by Ulva did not negatively 

affect growth performance, whereas higher amounts showed a negatively affect, making a 

universal feed formula impossible (Diler et al. 2007; Abdhel-Wahab 2016).  
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There are also constraints using seaweeds as livestock feed. The total amount of EAA obtained 

by seaweeds in their whole form is insufficient to meet the requirement of most livestock, so 

that concentration and extraction procedures are necessary to obtain sufficient amount 

(Raymond Angell 2016; Bikker et al. 2016). Current high production costs (up to ten times 

higher for DHA derived from seaweeds as compared DHA derived from fish oil) make the 

inclusion of seaweeds in aquaculture feed for PUFAs (being the highest expense of farmers) 

economically not feasible and halts development (Rajauria et al. in Tiwari & Troy 2015, p.327). 

Nevertheless, the increasing interest in seaweeds as a source of biofuel leads to enhanced 

research and technology optimization in the field. It can contribute to overcome this bottleneck 

(Mazarrasa et al. 2014). An expected increase in crop prices, as well as an increase in cost for 

fish oil and fish meal may be tipping points to make the incorporation of seaweeds economically 

feasible in the future (Trostle 2010; Tacon & Metian 2008).  

1.6. The genus Ulva 

Seaweeds of the genus Ulva are eukaryotic, photosynthesizing organisms with a wide 

distribution along the coasts of the world's oceans and can also be found in brackish- and 

freshwater (Bunker et al. 2017, pp. 230-231). The genus Ulva belongs to the family Ulvaceae 

and the division Chlorophyta. They are characterized by their green color, given by their 

pigments chlorophyll a and b (Guiry 2019). The green color of Ulva is intensified with an 

increase in tissue nitrogen and fading colors can be an indicator of nutrient poor conditions for 

farmers (Robertson-Andersson 2009). Ulva often thrives in polluted areas where competition 

with other macrophytes is low. It can form green tides, which can become toxic when hydrogen 

sulphide is produced. Ulva can be free floating or a basal disk can fix the thalli. Ulva 

morphology is of diverse nature and varies not only among species but also maturity stage of 

the seaweed. The mature thallus of Ulva lactuca e.g., is a flattened, distromatic, lettuce-like 

blade (see Figure 1) comprised of two cell layers giving the species its common name “sea 

lettuce” (Bunker et al. 2017, p. 218). Ulva can also be filamentous and be attached to substrate 

such as e.g. Ulva compressa (see Figure 1).   

In algaebase, currently 403 species names are listed in the genus Ulva with 132 being accepted 

taxonomically (Guiry 2019). Ulva can be a suitable candidate for cultivation due to high growth 

rates, ubiquitous distribution, opportunistic nature and tolerance to fluctuation in culture 

conditions due to a persistent stress response. Their high nutrient uptake rates make them 

especially interesting candidates for the cultivation in IMTA and can also serve to identify water 
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quality (Wichard et al. 2015, Neori et al. 2004; Lawton et al. 2013; Vermaad & Sand-Jensen 

1987). 

1.6.1. Taxonomy and life cycle of Ulva species  

For proper selection of Ulva for cultivation, correct species taxonomy is essential and often 

confused or lacking for Ulva species (Bolton et al. 2016). The root cause of this being that Ulva 

morphology is highly variable and Ulva taxonomy has been solely based on morphology in the 

past. Morphological changes occur under changing environmental factors and further depend 

on thallus age, the reproductive stage and some Ulva species are morphologically 

indistinguishable (Bunker et al. 2017, p. 218; Blomster et al. 2002; Rybak 2018). Recently, 

new molecular techniques have proven to be efficient for genetic identification and improve 

species taxonomy (Bunker et al. 2017, p. 218). This development also helped to facilitate the 

distinction of Ulva and Enteromorpha, two genera whose taxonomy has been often confounded 

in the past (Hayden & Waaland 2002). 

The life cycle of Ulva (see Figure 2) is strongly influenced by biotic and abiotic environmental 

factors resulting in a switch from vegetative to reproductive modes e.g., through temperature 

drop or change in photoperiod, stimulating germination (Han et al. 2002; Hurd 2015).  The life 

cycle of Ulva consists of two distinct phases: a haploid (n) gametophyte and a diploid (2n) 

sporophyte phase which are isomorphic. Haploid plants produce flagellated gametes, which      

do or do not fuse. The sporophyte phase produces quadri-flagellated zoospores, which develop 

into the haploid gametophytes that are morphologically identical (isomorph) to the sporophyte 

and produce male and female gametes. The fusion of male and female gametes forms zygotes 

Figure 1: Lettuce like thalli of Ulva lactuca attached at basal disk (left). Image source: 

http://www.irishseaweeds.com/sea-lettuce-ulva-lactuca/. Fillamentous thalli of Ulva compressa (right). Image 

source: V. Mirgolth - Eigenes Werk, CC BY-SA 3.0. 
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(2n), which grow into the mature sporophyte (Bunker et al. 2017, p. 219). Thus, in Ulva, 

reproduction either occurs asexually by quadri-flagellated zoospores or sexually by biflagellate 

anisogamous (Guiry 2019).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6.2. Dietary composition of Ulva species 

Ulva often stands out in the Chlorophyta phylum for its favorable biochemical composition, 

being higher in proteins, dietary fiber, minerals, vitamins and (PUFAs) than most other green 

algae (Carl et al. 2014; Vázquez-Rodríguez & Amaya-Guerra 2016; Yaich et al. 2011). Often, 

the biggest proportion of Ulva crude chemical composition is dietary fiber. These can make up 

to around 60% of the seaweeds DW and represent and abundant source of polysaccharides, 

containing mostly rhamnose, uronic acids, xylose, arabinose and glucose (Ortiz et al. 2006; 

Yaich et al. 2011; Abdel-Fattah & Edrees 1972; Pena-Rodriguez et al. 2011). The proportion 

of soluble and insoluble fraction varies amongst Ulva species. For Ulva clathrate for example, 

8.7-10.7% of insoluble fiber and 15.6 - 16.6% soluble fiber have been reported, whereas Ulva 

lactuca showed more insoluble than soluble fiber at 34.27% and 20.53% respectively (Vázquez-

Rodríguez 2016). In Ulva, the major water - soluble, sulphated polysaccharide is ulvan and can 

represent up to 18-29% of the DW (Laheye & Robic 2007; Pérez et al. 2016). Ulvan has shown 

to have, e.g. antioxidants, immunomodulation and tissue-engineering activity but is less 

Figure 2: Ulva bi-phasic life cycle, distinguished in isomorphic haploid (n) and diploid (2n) stages. 

Male and female gametes fuse into zygotes, growing into mature sporophytes (mt+/-); mt = mating 

types. Image available via license: CC BY 4.0. 



27 

 

exploited and studied than polysaccharides from red or brown seaweeds (Laheye & Robic 2007; 

Vázquez-Rodríguez et al. 2016; Berri et al. 2017). Ulvan also has multiple applications outside 

the food/feed industry and can be of interest for various applications, such as in the 

pharmaceutical, agricultural or chemical industry, for example as functional biopolymers or 

representing an antibiotic alternative in animal feed. This justifies more research attention on 

ulvan (Lahaye & Robic 2007, Chiellini & Morelli 2010; Cunha & Grenha 2016).   

Ulva can show high protein contents of up to 26% DW, protein being the second most abundant 

component reported for U. lactuca (Pirian et al. 2018; Amaya-Guerra 2016; Fleurence 1999). 

Research on Ulva derived protein digestibility showed high results with 87% in vitro 

digestibility for Ulva pinnatifida, 95% for Ulva petusais and 86% digestibility of protein 

concentrates from Ulva lactuca (Fleurence 1999; Wong & Cheung 2011). Ulva protein can also 

comprise all EAA. This makes Ulva seaweed superior to some of the currently used plant 

protein sources, which often lack one or more EAA such as lysine and methionine, which often 

have to be supplemented in plant-based animal diets (Nielsen et al. 2012; Boland et al. 2013). 

A study by Nielsen (2012) on Ulva lactuca grown with AD manure e.g., found Glycine 

concentrations higher than in soybeans and isoleucine, cysteine and serine comparable to that 

of soybeans. The total amount of EAA found in Ulva has also been reported to be greater than 

that found e.g. in soybeans (Aquilera-Morales et al. 2005).  

The total lipid content reported for Ulva is generally making up around 1.7% of the DW (Paiva 

et al. 2017; Shanmugam & Palpandi 2008). However, Ulva species can show an exceptionally 

high concentration of n-3 PUFAs within the Chlorophyte phyla, particularly of α-linolenic acid 

(ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Pereira et al. 2012). A 

study that combined the findings of 74 different reported FA profile of Ulva showed, that Ulva 

FA profile is comprised of 35.3 ± 13.7% SFA, 15.9 ± 6.6% MUFA and 41.8 ± 15.6% PUFA 

(McCauley et al. 2016). High amounts of PUFA have been confirmed by other studies, e.g. 

with 29% of total lipids being n-3 PUFAs in Ulva armoricana and 33% of lipids being PUFAs 

in Ulva clathrate (Kendel et al. 2015; Shanab et al. 2018). Furthermore, a health-promoting 

ratio of n-6 to n-3 PUFA has been reported for Ulva (Pirian et al. 2018). Amongst seaweeds, 

Ulva can therefore be considered a valuable source of dietary important n-3 FA (Pereira et al. 

2012).  

Ulva seaweeds can also provide a good source of minerals and vitamins, such as vitamin A, B1 

and B2, which have been reported e.g. for Ulva lactuca (Rasyid 2017). Minerals found in Ulva 

will dependent on the minerals found in the culture medium and are not generalizable. However, 

an 8g portion of Ulva - which is the daily portion of seaweed usually consumed in Asian 

https://en.wikipedia.org/wiki/Eicosapentaenoic_acid
https://en.wikipedia.org/wiki/Docosahexaenoic_acid
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countries - can significantly contribute to the recommended daily mineral uptake, since Ulva 

species can be especially rich in Ca, Mg, Fe and Mn (Neto et al. 2018; Rasyid 2017; Circuncisão 

et al. 2018).  

1.7. Effect of cultivation parameters on the market relevant characteristics 

of Ulva 

The quantity (growth performance) and quality (crude chemical composition) of seaweed 

biomass obtained from culture is not only species dependent but also highly affected by the 

cultivation conditions. Growth performance and the amount of target compounds fluctuate due 

to changes in temperature, light, salinity, nutrient availability as well as aeration, water flow 

velocity, seedling- and culture density. However, that growth performance in Ulva is also 

species dependent has been suggested by a study, showing that growth of Ulva prolifera was 

higher in growth than naturally co-occuring Ulva linza for the same temperatures tested (Luo, 

Liu & Xu 2012).  

 

In seaweed, growth is mainly affected by sufficient nutrient supply of phosphor, nitrogen and 

carbon in an optimal ratio, sufficient light, and a tolerable temperature, all of which peak at a 

certain optimum. For most seaweed, the highest photosynthetic rates, measured by CO2 

consumption or oxygen production per unit time, occur at longer daylengths and higher 

temperatures and follow a seasonal pattern (Litter, Murry & Arnold 1979; Viaroli et al. 2005). 

For Ulva species, reported growth rates range from 9.47 - 22.18% day-1 for Ulva intestinalis 

and similar growth rates of 20% day-1 were reported for Ulva rigida (Ruangchuay et al. 2012; 

Ashkenazi, Israel & Abelson 2019). Temperature alone explained 44% of growth variation in 

Ulva curvata and light, temperature and nitrogen supply combined explained 53% (Duke & 

Ramus 1989). Ulva growth correlates to the natural conditions of the species latitudinal 

distribution and temperature is an important factor controlling seasonal and annual growth 

fluctuation (Steffensen 1976). 

 

Temperature also affects the seaweeds life cycle. In Ulva fasciata, sporophyte reproduction was 

observed under higher temperatures than those naturally occurring in the seaweed´s habitat, 

whereas lower temperatures lead to gametogenesis (Mohsen, Nasr & Metwalli 1973). This was 

confirmed by a study on Ulva fenestra, where optimal vegetative growth was observed at 10°C, 

whereas an increase or decrease of 5°C lead to the offset of Sporo- and gametogenesis, 

respectively (Kalit & Tytlianov 2003). So, in order to keep Ulva in a vegetative state, favorable 
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for cultivation, a certain temperature needs to be kept avoiding loss of biomass through offset 

of reproduction. As is true for temperature, saturation irradiance for Ulva depends on the species 

latitudinal distribution and varies among Ulva species. However, through dark respiration, Ulva 

can overcome periods of low light availability, helping the seaweed to thrive in naturally 

fluctuating conditions (Xiao et al. 2016; Sand-Jensen & Borum 1988). Growth of seaweed is 

further limited by the macro-nutrients nitrogen, phosphorus and carbon (Harrison & Hurd 

2001).      

Ulva generally has a high nutrient uptake capacity. A study showed that ammonium removal 

efficiency of Ulva was at 97%, and even though ammonium was removed first, almost all nitrate 

in the water was also removed (Aníbal et al. 2014). Salinity tolerance of Ulva species is 

generally considered high and has been confirmed by Ruangchuay (2012) showing that 

germling clusters of Ulva intestinalis grew well in various salinity ranges. Furthermore, aeration 

and water movement are crucial factors influencing growth, since they ensure sufficient light 

exposure of the biomass and passing of nutrients over the thallus for increased absorption whilst 

removing sediments and epiphytes from thalli, reducing boundary layer. Water movement 

becomes especially relevant in nutrient limited conditions at a Nitrogen supply below 4 g N 

m−2 day−1 but showed no further benefit for Ulva lactuca under nutrient sufficiency (Msuya 

2008; Hurd 2000). It is also the highest cost of production and intermediate aeration has been 

suggested, with 8h of no aeration at night, showing no negative effect on algae growth (Msuya 

2008; Caines et al. 2014). Ultimately, density of seedlings and stocking density have an effect 

on growth of Ulva due to matt formation and competition for nutrients, light and dissolved 

gases of the thalli (Ruangchuay 2012; Sherrington 2003).  

 

Different cultivation parameters may not only affect growth rate but also the crude chemical 

composition of Ulva, thus influencing the nutritional quality of the seaweed. Literature suggests 

that biochemical parameters vary amongst taxonomic groups and that genotypes can show some 

stability in their nutritional profile, even across environments (Angell et al. 2015; Gosh et al. 

2012). Understanding the metabolic pathway of the seaweed species in cultivation can be a 

valuable means to manipulate culture conditions in order to obtain maximum yields of the target 

compound. The synthesis of protein, carbohydrates, lipids, vitamins and the amount of minerals 

is strongly influenced by the abiotic factors acting on the seaweed. Certain conditions e.g., result 

in a stress response in the seaweed, changing the crude chemical composition.  

Lipids serve as a storage product in seaweed that can be catabolized as metabolic energy 

(Guschina & Harwood 2009; Nelson, Phleger & Nichols 2002; Floretto et al. 1993). Generally, 
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at lower temperatures, the amount of total lipid in seaweed increases, whereas a decrease in 

fatty acid content at an increasing total lipid content has also been reported (Mohsen, Nasr & 

Metwalli 1973; Gosh et al. 2012). A meta study on the effect of different environmental 

conditions on the fatty acid profiles of Ulva seaweeds found that sufficient nutrients in the 

cultivation medium are beneficial for the production of seaweed oil products with an increase 

in PUFAs under high nutrient conditions. Nutrient availability has been found to have the 

strongest influence on the fatty acid composition in Ulva (McCauley et al. 2016). Light also 

strongly influences the lipid composition with a decrease of C16:4n-3 and C18:4n-3 fatty acids 

under low light and an increase of the fatty acid C16:0 under high light conditions reported for 

Ulva pertusa (Harwood 1998; Floreto et al. 1993).  

 

As for protein, in Ulva fasciata higher amino acids and sugar contents have been observed 

under higher temperatures (Mohsen, Nasr & Metwalli 1973). Generally, higher temperatures, 

light and nutrient availability drive photosynthesis and increase the uptake rates in seaweeds, 

wherefore more nutrients can be absorbed (Harrison, Hurd 2001; Wheeler & Srivistava, 1984). 

Protein content in seaweed is directly related to nitrogen stored in the tissue. If nitrogen supply 

exceeds that of demand for growth, it can accumulate as amino acids, especially so in seaweeds 

with a high surface area to volume ratio (SA:V), thus increasing the protein content (Rosenberg 

& Ramus 1984). The concentration and quality of protein also varied for different salinities in 

Ulva species. An augmentation in salinity influences protein quality by increasing the total 

amount of amino acids. However, the amino acid profile changed with an increase of some 

amino acids whilst decreasing others (Patil & Imchen 2018; Floreto &Teshima 1998).  

 

Carbohydrates in seaweeds are a proxy for photosynthetic rate and are the energy and storage 

carbon products, serving as photosynthetic reserves (Raven & Beardall 2003). This suggests 

that when photosynthesis is reduced, the organic solutes will be reduced. The amount of 

nitrogen available further influences the carbohydrate synthesis and thus the dietary fiber 

content. Under nitrogen enriched conditions, the C:N ratio is reduced and thereby reduces fiber 

content in the seaweed, whereas fiber content increased in nitrogen limited culture conditions 

in Ulva rigida (Pinchetti et al. 1998).  
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1.8. Chapter summary 

This chapter highlighted some important aspects when debating seaweeds’ potential as an 

alternative food and feed resource in Europe. It has become evident that the crude chemical 

composition of seaweeds generally has great potential as human food or animal feed, with 

various potential health benefits for animals and humans. Ulva is no exception and especially 

interesting for cultivation due to its high tolerance to different cultivation parameters. It has 

been shown that growth performance and the nutritional constituents are strongly influenced by 

the cultivation parameters. Seaweed quantity and quality can thus be manipulated through 

culture conditions to optimize production for the target industry. When cultivating Ulva for the 

target compounds protein and PUFAs, sufficient nitrogen supply and optimal temperature have 

been identified as the two most important cultivation parameters to consider. Ultimately, even 

though current seaweed cultivation is mostly located in Asian countries, there is a growing 

interest in seaweeds as food or feed production in Europe. This suggests an opportunity to 

expand the European cultivation of seaweed in closer proximity to the consumer under the EU 

regulatory body. Concerns and uncertainties associated with seaweed consumption were 

highlighted and suggest more in-depth research, consumer information and technology 

improvement.  
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Chapter two - Seaweed cultivation under the aspect of sustainable 

development  

The cultivation of seaweeds, as photosynthesizing filter organisms, has various advantages over 

terrestrial food and feed production in terms of sustainability. This is especially interesting in 

times when global food security is one of the major challenges that society is facing today. 

Apart from an overall increase in food demand due to increasing population, there are some 

general trends that can be observed in the food industry of industrialized, developed countries 

today. A major trend is the consumption of highly processed, energy dense foods that are easy 

and ready to prepare for high convenience (Monteiro et al. 2013). The current western diets are 

mostly comprised of saturated fats and simple carbohydrates as their major food components. 

This diet is said to increase the risk of many health issues such as cardiovascular disease, 

obesity, type-2 diabetes (Simopoulus 2016; Kanoski & Davidson 2011). 

On the other hand, an overall increase in wealth, goes hand in hand with an increasing 

awareness and demand for a more diversified and nutritionally high value diet. This led to the 

creation and marketing of so-called “functional foods“, being foods that promote health benefits 

exceeding those of basic nutrition (Siro et al. 2008). This development also strengthened the 

awareness of health benefits derived from a high protein diet, increasing the overall global 

demand for protein for human consumption but also to feed animals (Henchion et al. 2017). 

Furthermore, higher incomes are positively correlated with a demand for livestock and animal 

derived products, driving the meat and dairy industry to increase its production (WHO). At the 

same time, in industrialized nations, a shift to favoring vegetarian and vegan diets, motivated 

by environmental, health and animal welfare concerns can be observed (Janssen et al. 2016). 

Whereas a diversified plant-based diet can provide all EAA needed for a healthy diet, obtaining 

sufficient amounts of PUFAs can be challenging. These are often supplemented in vegetarian 

or vegan diets, especially for omega-3 FA such as DHA and EPA, because they are only found 

in aquatic organisms (Gladyshev 2013). As has been discussed in the previous chapter, 

seaweeds can be both, a source of EAA and PUFAs, justifying an examination of their potential 

for food and feed purposes based on these compounds.  

Despite cultivating seaweeds for the food and feed industry, a lot of attention has been drawn 

to their potential as a renewable energy source and their carbon sink potential, relevant topics 

in the climate change debate (Alvarado-Morales 2013; Krause-Jensen et al. 2018). Seaweed 

cultivation systems are of diverse nature and will be examined for their sustainability 

performance in this chapter. Furthermore, benefits and adverse effects of each cultivation 
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technique in terms of sustainability will be identified. Seaweed cultivation will be embedded 

into the broader context of sustainable development and climate change. Ultimately, this 

chapter will allow drawing conclusions on the extent to which seaweed biomass from 

cultivation can contribute to overcome global food challenges. 

 

2. Sustainable development   

In light of finite resources and climate change, the importance of sustainable development, 

being “development that meets the needs of the present, without compromising the ability of 

future generation to meet their own needs“ is long recognized by the United Nations 

(Brundtland 1987). The three pillars of sustainability (social, environmental and economic 

sustainability) is a well-known concept that integrates all three pillars to approach and solve 

sustainability problems (Michelson & Adomßent 2014, p. 28). Environmental sustainability is 

related to impacts on and cautious handling of ecosystems, resources, and the greater 

environment we depend upon. To achieve sustainable development, various steps have been 

taken on national and international level, recognizing and including food and feed production. 

With the 2030 agenda for sustainable development, the United Nations set the target to “achieve 

food security, improved nutrition and promote sustainable agriculture”, aiming at resilient 

agricultural practices that increase productivity and production and are adapted to climate 

change impacts. The aim is further to “conserve and sustainably use the oceans, seas and 

marine resources” and to “protect, restore and promote the sustainable use of terrestrial 

ecosystems”, as well as to ensure “sustainable consumption and production patterns” and the 

sustainable management of water resources (United Nations 2015).  

The European Union established the goal of sustainable growth in their 2020 Strategy, being 

the promotion of a more resource efficient, greener and more competitive economy (European 

Commission 2010). The blue growth strategy has emerged as a strategy to achieve these goals 

in the marine and maritime sector, with aquaculture being amongst the sectors of potential for 

such growth (European Union 2018). The European Commission strategies aim at putting 

European aquaculture at the forefront of sustainable development and aim at being leaders in 

the blue revolution (European Commission 2009). Member states are encouraged to find 

sustainable means of aquatic production, including IMTA systems, which are supported 

financially by the European Maritime and Fisheries Fund and can incorporate seaweeds 

(European Commission 2012).  

Various European projects working on sustainable seaweed technologies have been funded 

recently, such as ENalgae or GENIALG. The aim of these projects was and is to discover 
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seaweeds biotechnological potential e.g. as a biofuel resource and to bring seaweeds into the 

context of the EU blue economy, by improving cultivation systems to maximize yields. Blue 

carbon is a term used to describe the potential of the world's oceans and coastal ecosystems to 

capture carbon. Seaweeds have been discussed in this context. To date, there is no consensus, 

whether or not to include seaweeds into blue carbon strategies, due to their highly debated role 

as carbon sinks (Thomas 2014; Krause-Jensen et al. 2018).  

 

2.1. Global challenges in the food and feed industry  

By 2050, the world population is predicted to reach 9.7 billion people (United Nations 2017). 

One of today ́s major global challenges is food security. An ever-increasing demand for 

nutrients comes hand in hand with finite resources and a food sector that is greatly impacted by 

climate change events. At the same time, food production is a major cause of global greenhouse 

gas emissions (Hart 2017). The IPCC reported that agriculture; forestry and land use account 

for 24% of global GHG emissions, as the second largest economic sector after electricity and 

heat production and with agriculture being the main contributor (IPCC 2014). The food 

production for human consumption comprises meat production and animal derived products 

such as eggs or milk, the raising of aquatic animals through aquaculture and crop production 

for food and feed purposes. Given finite resources of fertile land and freshwater, all of these 

food production practices can become unsustainable, already due to the mere amount needed to 

meet demand. Each form of food production requires resources and the intensity of production, 

the location, and the type of product determines their environmental impact. From a production 

side, responses to the increasing demand for food are either an increase in area (causing the 

degradation of intact ecosystems) or an increase in yield, often resulting in higher chemical 

demand or genetic modification techniques, on existing agricultural land (Edgerton 2009).

  

In light of climate change, the agriculture sector is also facing various challenges. Water 

shortages, heat and flood events are expected to negatively influence agriculture in the near 

future and result in yield and quality decrease (OECD 2017). Every year, five to six million 

hectares of arable land have been estimated to be subject to degradation, affecting agricultural 

activity (Hamdy 2014).  

Agricultural crops, including grains, fruits, vegetables, plants etc., are produced for direct 

human consumption or for animal feed purpose. Producing crops to feed animals is often 

discussed controversially, since they could be used as food directly, especially so, since their 
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cultivation reduces the amount of fertile soils (Sabaté & Soret 2014; Steinfeld et al. 2006). In 

Europe, 68% of the farmland is used for the cultivation of animal feed crops (Leip et al. 2015). 

Producing crops can have negative environmental influences. Through the use of pesticides and 

nitrogen or phosphorus fertilizers, especially in intensive agriculture, chemicals can end up in 

the water cycle through runoff. This affects water quality negatively and can lead to 

eutrophication. Soils are excessively used, so that they become infertile and require even more 

so the use of chemical treatment (Bennett et al. 2001; Smith et al. 1999) Withdrawals of water 

for agriculture accounts for 70% of all withdrawals (Edgerton 2009). This is especially 

noteworthy in times of freshwater shortages (Jacobsen et al. 2013; Cox 2002). Strategies to 

overcome these challenges, such as monocultures or genetic modification have emerged in the 

agriculture sector, to make production more efficient and target higher yields. However, these 

strategies are controversially discussed due to associated risks such as biodiversity loss 

(Maghari & Ardekani 2011). 

 

Various health organizations around the world, such as the world health organization (WHO) 

or the Deutsche Gesellschaft für Ernährung (DGE), promote the regular consumption of animal 

derived foods, meat and dairy products, as well as fish for a balanced diet. However, the 

livestock industry has enormous impacts on the environment. Directly, or indirectly, through 

the feed crop production such as the protein rich soybeans, occupies 30% of the world´s 

agriculturally usable surface area (FAO 2012). Land-use and water requirements for animal 

farming further far exceed that of agricultural crop production (FAO 2012; Steinfield et al. 

2006). The feed conversion ratio (FCR) to produce one kg of beef is approximately six times 

fold that of producing one kg of poultry (compare Figure 3). 
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Figure 3: Feed conversion ratio for different animals and animal derived products; image source: 

https://ourworldindata.org/meat-and-seafood-production-consumption. 

 

The raising of livestock is the number one driver of GHG emissions such as methane or carbon. 

Beef production is by far the biggest driver of GHG emissions, especially compared to land-

crops (compare Figure 4). 

 
Figure 4: Comparison of greenhouse gas emissions for different protein sources; image source: 

https://ourworldindata.org/meat-and-seafood-production-consumption. 
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For both, the production of crops as well as raising livestock, a shortage of space leads to 

continuous expansion and exploitation of untouched ecosystems, causing deforestation (Erb et 

al. 2016; O´Mara 2011). However, the discourse on the negative effects of raising livestock is 

also often polarized by environmental organizations. Livestock, for example, can also be 

farmed extensively and be grass-fed. This way, feed crop usage is reduced and the manure 

produced by the animals can be used directly as natural fertilizer for the soil. 

 

Aquatic animals are another important source for food. In many coastal areas around the world, 

fish is the major source of animal protein and provides a unique source of PUFAs (Rice & 

Garcia 2011). However, capture fisheries experience major challenges due to overfishing and 

changing species abundance patterns around the globe due to climate change (Roessig et al. 

2004; FAO 2016, p.6). A 50% increase in current production would be needed to meet the 

amount of fish required today (Rice & Garcia 2011). However, insufficient fisheries 

management leads to an increasing decline of fish stocks and global catch levels are at their 

limit in most regions (Quaas et al. 2016). One response to this particular challenge is the 

development of the aquaculture industry, which today provides about half of the fish that is 

consumed globally (FAO 2016, p.16). However, the industry itself can have massive negative 

impact on the ecosystem by releasing organic waste into the environment, destroying habitats 

or increasing pressure on wild species through fish escape or disease transfer, to name a few 

(Bunting 2013, p.13). For the aquaculture industry, fishmeal is often used in feed as a source of 

high-quality protein and lipids. This is controversially discussed since “fishing for feed” 

additionally stresses wild fish stocks and reduces the amount of fish directly available for 

human consumption (Chapman & Miles 2018; Goldburg & Naylor 2005). 

 

To sum up, a cascading effect can be observed through the continued exploitation of natural 

resources and current practices within the food industry: current food and feed production 

practices can negatively impact the environment and cause biodiversity loss, soil degradation 

and freshwater scarcity. At the same time, agricultural activity intensifies climate change 

through GHG emissions and reduces nature’s natural climate-change mitigation capacity (Rice 

& Garcia 2011). What has become evident is, that in order to assure food security in the future, 

we need to improve the sustainability of current practices, as well as improve cultivation 

techniques, change consumption behaviors, reduce waste, equalize distribution around the 

globe and explore alternative food sources (IPCC 2014; Campbell et al. 2016). This chapter 
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intended to outline major trends and challenges the food and feed sector is experiencing, well 

aware that discussing the full complexity of this topic would exceed the scope of this paper.  

2.2. Seaweed cultivation in the context of current food production 

In light of the abovementioned, it becomes evident, that apart from changing our consumption 

habits and increase the efficiency of current farming techniques, we must also look at alternative 

food sources, to meet the demand for high-value nutrients in a sustainable way for current and 

future generations (Bleakley & Hayes 2017). Acknowledging that 70% of the earth's surface is 

covered by water, turning our attention to farming the seas and looking for alternatives there 

seems to stand to reason. Seaweeds may be one such alternative. 

 

Seaweed culture is considered an extractive form of aquaculture and has various ecological 

benefits compared to terrestrial production: The cultivation of seaweeds needs no supply of 

fresh water or arable land, nor are fertilizers or chemicals needed for their production 

(Radulovich et al. in Tiwary & Troy 2015, p. 34).  In underprivileged coastal communities, 

seaweed farming offers alternative livelihoods and can even reduce destructive fishing and 

increase awareness of the importance of conservation (Crawdord 2002; Link et al. 2017). 

Farming seaweeds can be regarded as a form of nutrient recovery e.g., through the uptake of 

dissolved nitrogen and phosphorus, which reduces the risk of eutrophication caused by 

agricultural runoff or effluents of fish farms. When applied in areas of access nutrients, this can 

be beneficial to the ecosystem. Compared to fed-fish cultivation, seaweed cultivation usually 

does not require additional feed, when farmed in a nutrient rich environment (Buck et al. 2017). 

As photosynthesizing organisms, seaweeds can furthermore improve primary production, act 

as carbon sinks and produce oxygen acting against hypoxia (Chung et al. 2017; Krause-Jens et 

al. 2018). As a potentially complete source of EAA and PUFAs, as discussed in chapter 1, 

seaweeds can be an alternative source of these essential nutrients for a plant-based diet and 

diversify current consumption habits in Europe. Figure 5 illustrates and summarizes the major 

advantages mentioned that seaweed cultivation has over meat, dairy, aquatic animals and crop 

production in terms of environmental sustainability.  
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Figure 5: Overview of the ecological benefits of seaweed cultivation compared to traditional production of meat, 

dairy, aquatic products and crops. The blue boxes show the major ecological concerns of common food and feed 

sources. The green box shows how seaweed cultivation is superior to the corresponding adverse effects (indicated 

by letters).   

 

2.3. Seaweed cultivation systems and sustainability 

The technique used for seaweed cultivation is very case specific and depends on the purpose, 

the scale of operation, the species selected for cultivation and the cultivation environment. 

Generally, it is distinguished between open systems, set up directly in the natural environment, 

or in land based, closed systems e.g., ponds or tanks. Integrated-multi trophic aquaculture 

(IMTA) is an approach suitable for both types of cultivation systems (Radulovich et al. in 

Tiwory & Troy 2015, p. 37). For all cultivation types, the right conditions: temperature, salinity, 

nutrient availability, light duration and intensity, oxygen and CO2 for optimal growth and yield 

of target compounds needs to be met for optimal production.  

Regarding the seaweed production for food application, a production of high-quality biomass 

with a stable nutritional profile, low toxins accumulation and high yields of the targeted 
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compounds is desirable (Magnusson et al. 2015). This may generally favor the farming of 

seaweeds over harvested biomass from the wild, and closed systems over open systems, since 

culture conditions are more controllable. In all three cultivation cases, species selection must 

be matched to the cultivation technique and site. Dominating the reproduction cycle and 

knowing the effect of different culture conditions on the biochemical composition and growth 

of the selected species improve cultivation success and should be considered a-priori to 

cultivation. Regardless of the cultivation system, the process associated with seaweed 

cultivation often starts with seedling production in nurseries. The seedlings are produced in 

nurseries and directly attach to cultivation structures. Through this type of cultivation higher 

yields can be obtained, but also increase cost compared to the use of vegetative seedlings. Using 

vegetative seedlings on the other hand is labor intensive due to selection, cutting and attachment 

to ropes. Dominating the reproduction pathway of seaweeds requires expertise and a crucial 

factor for successful cultivation. The cultivation of the seedling then mainly occurs on ropes or 

in nets but also floating rafts, tank or pond culture (Radulovich in Tiwory & Troy, pp. 37-39). 

Advantages and adverse effects of different cultivation techniques will be explored from a 

sustainability perspective and discussed in the following. In all cases, biomass for the food and 

feed industry can be obtained from a new, additional source and thereby strongly contributes to 

overcome global food challenges.   

2.3.1. Cultivation in open systems 

Cultivating seaweeds at sea means that there is a direct impact on the surrounding ecosystem, 

which can be both positive and negative. The scope of impact of seaweed culture depends on 

the scale of operation and the farming technique and sustainability assessments of these have 

been conducted little to date (Hasselström 2018; Loureiro; Gachon & Rebours 2015).  

 

Benefits of cultivating seaweeds in open systems can be provisioning and have shown to 

provide shelter, habitat and nursery grounds for marine life and to enhance productivity and 

biodiversity in degraded ecosystems and fisheries (Buschmann et al. 2014; Radulovich et al. 

2015; Walls 2017). As photosynthesizing organisms, seaweed add oxygen to the water, acting 

against hypoxia (Duarte et al. 2017). They also clean aquatic environments from excess 

nutrients such as phosphate and nitrogen. This becomes especially relevant in areas of high 

anthropogenic influences, where aquatic systems are often eutrophicated (Buschmann et al. 

2014). Depending on the structure of the seaweed farm, the farming site can also act as coastal 

protection by reducing the power of the wave energy (Duarte et al. 2017). Lastly, open systems 
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benefit from natural water availability and water movement through natural currents, so that no 

water needs to be transported, hold, pumped or aerated, saving resources, energy and money.  

 

Adverse effects and concerns of cultivation of seaweeds in the natural environment have been 

raised on various different topics. Concerns are being raised, that seaweed cultivation can alter 

habitats by involuntary spread of cultivars, especially those that are non-endemic, to adjacent 

areas affecting bacteria, meiofauna, benthic macrofauna, fish and corals (Bindu & Levin 2010; 

Bergman, Svensson & Öhman 2001). The introduction of invasive species or gene swamping 

of introduced seaweeds with native stocks should be avoided (Loureiro; Gachon & Rebours 

2015). That the spread of species from the cultivation site can also have positive effects for 

some species has been shown in the case of Hypnea musciformis, cultivated in the Hawaiian 

Islands, now an important food source for an endangered turtle species (Russell & Balasz 1994). 

A shadowing effect due to the cultivation of seaweed has been reported by Eklöf et al. (2006), 

who observed a negative effect on the local meiofauna. Whereas nutrient uptake can be 

beneficial for anthropogenically influenced aquatic environments, nutrient depletion of 

naturally occurring nutrients is also a concern because it may disrupt the natural food cycle 

(Campbell et al. 2019).  

Further threats associated with growing seaweed aquaculture activity in Europe are disease 

outbreak and the introduction of non-indigenous pathogens and pests. It is therefore important 

to study the epidemiology of potential seaweed pathogens and farm management needs to 

implement early disease outbreak systems (SAPEA 2017). Cultivation at sea also has physical 

adverse effects. Farming sites may compete with other use of marine space and can be visually 

disturbing, especially in sight of the coast (Stévant, Rebours & Chapman 2017). 

A recent study on the impacts of seaweed cultivation on ecosystem services in Sweden came to 

the conclusion that “no significant impacts are expected, except for the provisioning of space 

and waterways which is negatively affected” (Hasselström et al. 2018, p.59). A study conducted 

in Panama on the introduction of seaweed to non-native habitats did observe a spread of algae 

away from the cultivation site but “did not observe significant changes in K. alvarezii cover 

over a six-month period” (Sellers et al. 2015, p.7). Yet another study from Sweden found that 

“algal shading, emergence stress and mechanical abrasion were identified as likely 

contributors” to lower seagrass epiphyte cover and abundance changes in the taxa (Hasselström 

et al. 2008, p.73). These examples underline that the impact of seaweed farming is very site 

specific and depends on the cultivation and lastly on the characteristics of the species that is 

being cultivated and ideally should be analyzed specifically for each farming site. This has been 
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confirmed by a recent study on the knowledge gaps on environmental risks associated with a 

growing European seaweed industry, suggesting monitoring to reduce uncertainty (Campbell 

et al. 2019).  

Cultivating seaweeds in open systems reduces the possibilities to control the growth conditions 

and changes in water quality. Varying conditions can directly influence quality and quantity of 

seaweed biomass and toxins or other hazardous substances can accumulate in the seaweed. 

However, for the seaweed´s use in the food and feed industry high, steady and safe quality are 

of uttermost importance. This underlines the need to carefully select a suitable site a-priori to 

cultivation. Monitoring water quality and testing the seaweed for toxins prior to selling could 

be additional means to solve this.  

In this type of cultivation, economic threats for the farmer are the degradation or loss of biomass 

through heavy weather events like storms, or through fouling or grazing organisms besetting 

the seaweeds. Even though money can be saved by avoiding artificial aeration, harvesting of 

seaweeds cultivated at sea can be labor and energy intensive and may pose additional financial 

stress (Van den Burg et al. 2016).  

2.3.2. Cultivation in land-based systems 

The ecological benefits associated with seaweed culture at open sea are not all applying for 

cultivation in land-based systems, since there is no direct interference with the natural 

environment. This, however, also limits some of the risks and adverse effects associated with 

this type of culture. An example of a semi-closed system would be cultivating seaweeds in 

outdoor tanks or ponds (e.g. earth ponds) where Ulva can be cultivated unattached (Carl, Nys 

& Paul 2014). These systems are in direct contact with the atmosphere and can use atmospheric 

carbon and natural sunlight to grow.  

Fully closed systems have the great advantage that all factors influencing the biomass 

productivity and quality can be optimized. This type of system also allows to control seaweed 

quality and to reduce the risks that are associated with production in offshore conditions. This 

is especially important to obtain high value products and assure a steady supply. However, this 

type of cultivation may be additionally cost intensive, since all parameters have to be artificially 

created. Tank and pond seaweed culture is often preferred for small-scale intensive cultivation, 

due to high harvest and risk control (Campbell et al. 2019; Pereira, Yarish, Critchley 2015).  

However, investment costs are too high at current development stage to be economically 

feasible. Cost for building infrastructure and for energy often are too high for an economical 

production (Hafting et al. 2012). When reviewing literature on seaweed culture in ponds or 
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tanks, this almost entirely includes the integration of seaweeds with already existing 

aquaculture facilities, reducing costs (Friedlander & Levy 1995; Shipgel et al. 1993; Neori et 

al. 1996). 

2.3.3. Cultivation in Integrated-Multitrophic Aquaculture  

Integrated Multi-Trophic Aquaculture (IMTA) is the concept of combining the cultivation of 

fed species with that of filter organisms such as mollusks, bivalves or seaweeds in one site or 

in close proximity and can be operated in land-based or offshore systems (see Figure 6). The 

underlying concept of IMTA is to achieve nutrient cycling of the effluents of fed species and to 

increase water quality overall (Chopin 2001). Acknowledged benefits of this practice is the 

reduction of adverse effects of aquaculture and economic benefits by enhancing and 

diversifying production (Neori 2004). IMTA systems are also energy and water efficient and 

reduce the ecological footprint of aquatic animal farms (Winberg, Ghosh & Tapsell 2009).  

That seaweeds are suitable candidates for IMTA has been proven in various trials. Introducing 

seaweeds in IMTA systems improves water quality by balancing pH and increases the available 

oxygen in the water. Nutrient rich effluent waters containing, high levels of e.g. phosphate 

ammonium, were efficiently removed from the water and improved algae growth. Valuable, 

marketable biomass for various different industries can be created and reduced the cost of water 

treatment (Neori et al. 1996; Shipgel et al. 2017). Biomass can also directly be re-used in the 

farm as protein-rich fishmeal replacement (Shpigel et al. 2017).   

 
Figure 6: Integrated-multitrophic aquaculture approach in an open cultivation system farming non-fed-species in 

close proximity to fed-species; image source: https://steemit.com. 
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The seaweed Ulva has been proven to be especially suitable candidates in IMTA systems due 

to their high growth rates, their capability to outcompete epiphytes, their high nutrient uptake 

capacity and tolerance to changing culture conditions (Winberg, Ghosh & Tapsell 2009). A test 

on Ulva lactuca´s nutrient removement performance in a land-based IMTA culture showed 

efficient removal of ammonia. This did not only increase the water residence time but also 

contributed to the environmental performance of the mariculture system tested (Neori et al. 

1996). Various studies on replacing conventional feed partially with Ulva have proven 

successful e.g., in the case of gilthead seabream, sea urchin, abalone or shrimp feed and can be 

directly reused in the farm (Shipgel et al. 2017; Laramore et al. 2018; Bolton et al. 2009).  

 

Table 1 displays and summarizes the major findings on the benefits and adverse effects of the 

different cultivation systems discussed. It compares open- to closed cultivation systems in terms 

of ecological impacts and market value. In the third row the additional benefits and adverse 

effects associated with cultivation of seaweeds in an IMTA are summarized. Grey colour was 

used to indicate the overlaps between systems.  
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Table 1: Summary of the findings on the sustainability performance of different seaweed cultivation systems. 

Grey colour indicates overlap between systems. 

 

 

2.4. Seaweed cultivation in the context of global climate change 

Discussing seaweed cultivation in the context of global climate change, an interesting interplay 

of seaweeds both playing a role in climate change mitigation but also being affected by it can 

be observed (Chung; Sondak & Beardall 2017). 

On the one hand, seaweed cultivation can be a means to combat climate change. Seaweed 

culture can contribute to blue carbon by removing CO₂ from the water and thereby increase the 

absorption potential of atmospheric CO₂ Seaweed biomass can also reduce emissions from 

fossil fuels when used as an energy source (Chung et al. 2011; Duarte et al. 2017). Seaweed 

cultivation may also reduce negative impacts that are foreseen through increasing climate in the 

future, by reducing coastal eutrophication, ocean acidification and deoxygenation (Msuya 

2008; Duarte et al. 2017).  

Research on reducing methane emissions from livestock has found that by replacing 2% of 

livestock feed with seaweed can cut their entire methane emissions (Machado 2015). 
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On the other hand, the cultivation at sea can be influenced by a changing marine environment 

in plenty of ways: changing water parameters, such as increasing temperatures, can make a site 

unsuitable for a certain species and thus hinder production. A study on the effect of climate 

change on Ulva rigida growth and composition showed that elevated temperatures, 

acidification and nitrate availability accelerated reproduction and thereby shortened the life 

history. Whereas lipid and protein content increased under these conditions, carbohydrate 

content decreased (Gao et al. 2017). Therefore, to ensure a steady supply of the target 

compounds, the effect of climate change on the nutritional composition in seaweeds needs to 

be considered. Under these changing conditions, a steady biomass supply in terms of 

biochemical composition in open-systems or through harvest becomes even more challenging 

and climate change effects should be considered by producer and harvester.  

Although CO₂ is absorbed by the seaweed, the whole cultivation process, from nursery 

operation to harvesting and processing or extraction also demands energy and creates 

emissions. This needs to be taken into consideration when assessing the net carbon sink 

potential of seaweeds. 

  

2.5. Consumer information - prerequisite for successful marketing of 

seaweed   

In western society, the demand for nutritious, high value food products and increasing 

environmental awareness has led to renewed research effort and the development of new 

foodstuff (Admassu et al. 2015). “Novel foods” is a term describing all aliments newly entering 

the European food market. To ensure consumer safety, the REGULATION (EU) 2015/2283 on 

novel foods has been established in 2015, ensuring traceability and safety of new products 

entering the European food market. Seaweeds and seaweed derived products fall under this 

umbrella.  

The conscious consumer will be confronted with two aspects of seaweed products: that of health 

aspects associated with their consumption and that of sustainability aspects associated with their 

production. In both cases, the first step is improving market information by creating awareness 

of the benefits and adverse effects of seaweed production, which is currently halting 

commercialization (SAPEA 2017; Hendison 2017). Only well-informed consumers, aware of 

the health benefits and the possible adverse effects of seaweed consumption have the option to 

make profound purchasing choices. Therefore, marketing of seaweed products should include 

consumer safety information and the implication of sustainability standards.   

Another bottleneck the consumer is experiencing, is the low knowledge on how to cook with 
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seaweeds or incorporating them in the diet. Information on their nutritional value as well as 

cooking recommendations could increase interest and facilitate market entry (Forster & 

Radulovich in Tivory & Troy 2015, p. 308).  

 

2.5.1. Sustainability standards 

According to the International Social and Environmental Accreditation and Labeling 

Association (ISEAL) “sustainability standards are a powerful market-based approach for 

creating positive social, environmental, economic change, and driving transformation in how 

goods and services are produced” (ISEAL 2015). The more adverse effects of a practice are 

covered through a certification process and the more attention is given to them, the more it can 

be expected that these will be addressed and improved by the suppliers. Seaweed products 

entering the market can be provided with a certification or seal that allows the consumer to 

identify products that are compliant with sustainability norms and standards. The organic seal 

of the EU assures ecological production of food and feed and can be applied to seaweed 

products. The organic council regulation ((EC) No 834/2007 (1)), describes organic production 

as “an overall system of farm management and food production that combines best 

environmental practices, a high level of biodiversity, the preservation of natural resources, the 

application of high animal welfare standards and a production method in line with the 

preference of certain consumers for products produced using natural substances and 

processes“ (European Union 2007). The aquaculture and marine stewardship councils 

(ASC/MSC) have recently developed a seaweed standard, certifying harvest operation and 

farming sites. Standards can be obtained through third party auditing. Certification can also be 

a means to raise awareness of environmental issues associated with the production of seaweeds. 

The ASC/MSC standard comprises five guiding principles, each comprising a set of 

performance indicators. For the certification process, the entire supply chain needs to be 

transparent. The five guiding principles of the ASC- MSC Seaweed standard are listed in Table 

2.  
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Table 2: ASC/MSC seaweed standard. Source: https://www.asc-aqua.org/wp-content/uploads/2017/06/BC2146_ASC-

MSC_A4_6pp_ARTWORK_LRES.pdf. 

Principle Description 

Sustainable wild 

populations 

Seaweed harvesting and farming must be conducted in a manner that does not 

lead to depletion of the exploited wild populations. For depleted populations, 

harvesting operations must be conducted in a manner that demonstrably leads to 

their recovery. Where appropriate, stock status, harvest strategy and the genetic 

impact of the assessment site on the wild stock are also assessed.  

Environmental impacts Seaweed harvesting and farming activities must allow for the maintenance of the 

structure, productivity, function and diversity of the ecosystem (including habitat 

and associated dependent and ecologically related species) on which the activity 

depends. Seaweed operations must also adhere to criteria related to habitat, 

ecosystem structure and function, species status, species management, waste 

management and pollution control, energy efficiency, disease and pest 

management practices, and introduced species management.  

Effective management Seaweed harvesting and farming operations must have an effective management 

system in place that respects local, national and international laws and standards. 

Beyond the legal framework, operators are required to review farm/ fishery 

specific objectives, decision-making processes and compliance and enforcement 

arrangements.  

Social responsibility Seaweed harvesting and farming activities are required to operate in a socially 

responsible manner. Operators must ensure that workers are protected from 

harmful practices including child labor, any degree of forced labor or 

discrimination, while supported in their rights to collective bargaining, fair 

disciplinary practices, health and safety, fair and decent wages, and appropriate 

working hours. Environmental training must also be provided. 

Community relations and 

interaction 

Seaweed harvesting and farming activities must operate in a manner that 

minimizes impacts on other farms, activities and communities. Operations must 

adhere to strict requirements regulating the appropriate positioning and 

orientation of farms or water-based structures, identification and recovery of 

substantial gear, good management of noise, light and odour, and the proper 

decommissioning of abandoned farms or other water-based structures.  

 

From a European sight there arise a lot of advantages if seaweeds are cultivated in Europe 

which means that consumer and producer are close together. 

Seaweed farmed in the EU can be marketed from a sustainability perspective, by stating that it 

supports local economy, reduces emissions through proximity of production and consumption 

and, depending on the cultivation system, benefits local ecosystems, reduces adverse effects of 

aquaculture and helps mitigate climate change. Farm management, procedures and practices 

can be adapted to ensure maximal sustainability of the marketed seaweeds. This might be 
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associated with higher production cost for the farmer, which can be compensated by obtaining 

a standard that will encourage the consumer to pay a little bit more for a conscious choice. 

Through good communication and representation of sustainability aspects, European products 

could become more competitive than imports, e.g. from Asia. 

Effective marketing and labeling of sustainable products could result in the following benefits 

for sustainability:  

 

a: support behavior changes in consumption patterns in favor for sustainably farmed seaweeds. 

b: facilitate the right purchasing choices.  

c: pressure providers to apply ´best practices ́ in order to get certified and sell their products. 

 

2.5.2. Consumer health and safety 

Seaweed standards, such as the ASC-MSC seaweed standard or the EU organic seal, cover 

sustainability aspect associated with the production of seaweed. However, they do not provide 

information about the nutritional value, nor the health hazards associated with seaweed 

consumption. This can mislead the consumer. The variability in seaweeds nutritional value has 

been pointed out in the first chapter and shows that generalized statements on the health benefits 

derived from seaweed consumption can barely be made. The influence of abiotic and biotic 

factors on seaweed quantity and quality is so big, that for every species and for each cultivation 

site, the biochemical composition must be individually defined to ensure steady quality. To 

claim health benefits of seaweed consumption and adequately position them in the food market 

requires more research and in vitro studies. That it is too early to make generalized health 

claims, can be shown by the example of vitamin B12. Algae have been marketed as a good 

source of vitamin B12. Whereas this seems to be true for some algae, it is only a pseudo vitamin 

B12, an inactive coronoid that is found e.g. in Spirulina, a microalga marketed for their vitamin 

B12 (Watanabe et al. 2002). The current state of knowledge does not allow for such generalized 

statement and can lead to confusion and mistrust on the consumer side.  

Regarding toxins that can accumulate in the seaweed tissue, it is important that these are 

regularly checked, especially for seaweeds harvested from the wild, where water quality is 

unknown (Chen et al. 2018). For consumers, quality certification and information resources are 

key means to improve marketability of seaweeds. One major health concern is the high iodine 

content which should be stated on the packaging, together with a daily intake recommendation. 
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For seaweeds cultivated in the EU an advantage could be higher product traceability and the 

fact that the production is underlying local food safety regulations.  

 

2.6. Chapter summary  

The second chapter has clearly highlighted that the environmental impact of seaweed 

cultivation varies greatly, depending on the cultivation system and whether or not the 

cultivation of seaweed co-occurs with other species. Cultivation in open systems is associated 

with many more ecological benefits than is the cultivation of seaweeds in closed systems (Table 

1). However, adverse effects on the ecosystem are also only a concern for open systems. Open 

systems are mostly reduced in their controllability to proper site selection and subject to natural 

forces and fluctuations, whereas closed systems are beneficial for controlled cultivation of 

seaweeds. Whereas open systems reduce availability of coastal space (if not integrated into 

existing structures), closed systems require higher costs e.g. for aeration and additional space 

in the facility. Cultivating seaweeds in IMTA systems comes with ecologic and economic 

benefits but also requires additional work and know-how. 

This chapter also discussed seaweed cultivation in Europe as an addition to current food 

production. It could be shown that that seaweeds have numerous advantages in terms of 

sustainability but also highlighted difficulties and concerns. The economically viable 

cultivation of seaweeds for food and feed purpose depends greatly on a combined effort to 

improve technology, make the entire farming process energy efficient, select for resistant strains 

with high abundance of target compounds, select suitable cultivation sites and improve 

cultivation techniques.   

Outreach campaigns by NGOs or certification and labeling of seaweed products, according to 

environmental standards, can contribute to build consumer trust and help build a sustainable 

European market for seaweeds. The ASC-MSC seaweed standard sets a good incentive and 

covers all concerns raised in this chapter that can occur when cultivating seaweeds, especially 

when it comes to environmental impacts of sea-based systems. Ulva has been identified as a 

suitable candidate for production for the food and feed industry, especially in IMTA systems. 

The findings of this chapter justify the inclusion of seaweed biomass as a resource for a 

sustainable food and feed industry. 
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Chapter three – Study on genetic identification, protein content and fatty 

acid composition in Ulva spp.  

 

When choosing an Ulva species for cultivation for food and feed purposes, several aspects need 

to be considered. In the previous chapters, the importance of knowing the nutritional 

composition of a seaweed for accurate positioning in the food and feed market has been 

highlighted. Depending on the target industry, a species can be more suitable for production 

when it contains higher amounts of a target compound. Polyunsaturated fatty acids and proteins 

are two such target compounds and were chosen to determine the value of Ulva species for food 

and feed purposes in this work. Genetic species identification allowed to see whether there are 

species specific differences that matter for their production for the food and feed industry based 

on the target compounds. Knowing what species are naturally occurring in southern Portugal is 

additionally important to avoid invasiveness when culturing Ulva in the area.  

The aim was further to understand, whether for cultivation, the selection of a specific Ulva 

species has an additional benefit to the optimization of the cultivation conditions for obtaining 

higher yields of target compounds. Therefore, the amount of protein and FAs, especially 

PUFAs, within the same species between coastal and lagoon sampling locations and among 

species within the same sampling location (Ria Formosa) was compared, to see, whether the 

species identity or the environment has a stronger effect on the seaweeds market value.   

 

The work presented in this chapter therefore aimed to answer the following main questions: 

 

● What Ulva species can be found at southern Portugal's coast  

(genetic identification)? 

● What are their fatty acid profiles? 

● How much protein do they have? 

● Are there differences in fatty acid profiles and the amount of protein across species and 

environments? 
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3. Materials and methods 

3.1. Sampling 

The collection of 44 samples was conducted during the months of March and April in 2019.  

The sampling took place at six different coastal and lagoon locations in southern Portugal. Two 

sampling locations were in the Ria Formosa coastal lagoon (A&B), two at the Algarve coast in 

Albufeira and Vilamoura (C & D) and two were further north the Portuguese West coast in 

Praia do Ilha dos Pessegueiro (E) and Arrabida (F). The sampling location are indicated in 

Figure 7 and further specified in Table 3.  

 

 
Figure 7: Ulva sampling locations in southern Portugal indicated by red stars and further specified by capital 

letters referred to under # in Table 3. 
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Table 3: Sampling sites with date of sampling and location. # refers to the different locations marked in Figure 

7.   

# Location Coordinates Date 

A/B Ramalhette 37°00'19.4"N 7°58'02.8"W 

 

18.03.19 

A/B Ria Formosa, Faro 36°59'53.4"N 7°58'40.5"W 

 

19.03.19 

D Praia de Aveiros, Albufeira 37°5'0.68"N 8°13'53.45"W 

 

08.04.19 

C Vilamoura coast 37°7'19.99"N 8°12'52.24"W 

  

10.04.19 

E Praia do Ilha dos Pessegueiro, 

westcoast 

37°49'42.0"N 8°47'30.6"W 14.04.19 

F Praia da Figueirinha, Arrabida 38°29'06.2"N 8°56'32.5"W 

 

14.04.19 

 

At each sampling location the parameters depth, salinity, temperature, attachment style (rock, 

sand, free floating, plastic, shell or epiphytic) and substrate type (soft bottom, sandy, rocky 

pool, ponton) have been determined (see Table 6&7 in Annex A). Collection always took place 

at low tide at locations accessible by foot. For each species identified on general morphology, 

two samples were taken. 

The first sample of about 1.5cm2 of biomass was taken using nitrile gloves to avoid 

contamination and was introduced into autoclaved Eppendorfs for DNA barcoding. The second 

sample for content analysis was put into small ziplock bags. The samples were directly put on 

ice in a cool box for transportation to the laboratory facilities for biogeography, ecology and 

evolution of the University of Algarve, Portugal. At each sampling location a seawater sample 

was collected in a 1l bottle and salinity has been measured after sampling at the Ramalhette 

field station, by measuring the conductive that is equal to the number of parts per million (ppm), 

using a salinometer.  

 

3.2. Genetic species identification  

3.2.1. Sample preparation 

For this work, a total of 44 samples were collected. The tissue for DNA barcoding was stored 

in the Eppendorfs at -80°C and tissue for content analysis was stored in ziplock bags at -20°C 

for later processing. Samples for DNA extraction were lyophilized (Modulyo D Freeze Drier) 

for 48 hours, wherefore the Eppendorfs containing the biomass were prepared by stamping 

holes into the lid with a heated needle, disinfected after each tube. After freeze-drying, samples 
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were grinded for 3min at maximum frequency (30 shakes per second) using the TissueLyser II 

(QIAGEN®). 

 

3.2.2. DNA extraction and samples barcoding 

For DNA extraction, the Quick-gDNA Miniprep kit (Zymo Research®) was used, following 

the manufacturer protocol for solid tissue. A buffer was prepared containing 11.5000μl of 

genomic lysis buffer and 57.5μl of beta mercapto ethanol. 500μl of buffer was added to each 

sample and samples were homogenized and then centrifuged for five minutes at 10.000g After 

centrifuging, 500μl of liquid was transferred from each sample to the corresponding column 

tube. Subsequently, samples were centrifuged for one minute at 10.000g. The column tubes 

were placed into new collection tubes and the liquid discarded. In a next step, 200μl of pre-

wash buffer was added to the column tubes containing the DNA and again centrifuged for one 

minute at 10.000g. After centrifuging, 500μl of wash buffer was added and centrifuged again, 

discarding the buffer afterwards. In a final step, 50μl of elusion buffer was added to release the 

DNA. After a final round of centrifuging at 10.000g for thirty seconds, the tubes containing the 

isolated DNA were stored at -20°C. 

The DNA extraction was performed in two rounds, including 22 samples each round, to process 

all 44 samples.  

Barcoding was done by amplifying the chloroplast gene tufA, which encodes for elongation 

factor TU, using algal specific primers developed by Famà et al. (2002): forward primer at 

position 210 (tufAF 5'-TGAAACAGAAMAWCGTCATTATGC-3') and reverse primer at 

position 1062 (tufAR 5'-CCTTCNCGAATMGCRAAWCGC-3').  

PCR reaction was prepared for a total volume of 20µl consisting of 1x of the 2 PCR Buffer mix 

(already containing MgCl2), 0.25mM of each dNTP, 0.2µM of tufAF and tufAR, 0.2µl of Taq 

DNA Polymerase (Advantage® 2 Clontech™) and 1µl of the DNA template (without dilution). 

Remaining volume was filled out with water (Sigma-Aldrich®). Amplifications were performed 

with the following adaptations to the original protocol, using the 2720 Thermal Cycler (Applied 

Biosystems®) with the following setting: 95°C for 5min for initial denaturation; 37 cycles of: 

denaturation at 95°C for 45s, annealing at 50°C for 1min, and extension at 72°C for 1min and 

a final extension of 72°C for 5min.  

Amplification success was checked in a 1% gel-electrophoresis. The gel was prepared by using 

Tris-EDTA-Acidic acid Buffer (TAE) and regular grade agarose. Successfully amplified PCR 

products were then outsourced for Sanger sequencing and further visualized and edited using 
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Geneious (http://www.geneious.com, Kearse et al. (2012)). The nucleotide sequences obtained 

were evaluated using the Basic Local Alignment Search Tool (BLAST).  

A species name was assigned to the sample based on the highest percentage identity and under 

the consideration of query coverage, the percentage of alignment to a GenBank sequence.   

When results in GenBank had equal percentage identity and query coverage but suggested two 

different species names that are not used as synonyms, European sources were considered most 

reliable and sequences were aligned by their identity to check whether differences in nucleotide 

were correct. The nucleotide BLAST is provided by the National Center for Biotechnology 

Information (NCBI). 

3.3. Content analysis 

For content analysis, samples were prepared for total protein analysis by thermal combustion 

and FAME profile analysis by GC-MS.  

3.3.1. Sample preparation 

The samples for content analysis were lyophilized for 48 hours in opened ziplock bags. The dry 

biomass was transferred into small round bottom Eppendorf tubes containing two Tungstein 

beats for grinding. Each Eppendorf was labeled and weighed empty. After grinding, the beats 

were removed from the tube with a magnet and the Eppendorfs weighed a second time, to 

determine the amount of grinded dry biomass obtained per sample. The tubes were stored in a 

bag with silica.  

3.3.2. Total protein analysis 

For total protein, each sample was analyzed in duplicates for their nitrogen, carbon and 

hydrogen content. Per sample, about 1mg of the freeze-dried biomass was weighed into tin 

containers and loaded into an automatic sampler (Vario EL III). Through external oxygen flash, 

combustion occurred at a temperature of 1800°C. The gaseous combustion products were 

carried by helium gas and released separately through a programmed temperature rise in the 

column.  

By use of a thermal conductivity detector (TCD), the target compounds, producing an electric 

signal proportional to their concentration, were detected. By multiplying the nitrogen content 

by the conversion factor 5, as proposed by Angell et al. (2015), total protein was calculated and 

expressed as percentage.  

http://www.geneious.com/
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3.3.3. Determination of the FAME profile by GC-MS  

Fatty acid methyl ester (FAME) profiles of the Ulva were obtained through a modified protocol 

from Lepage and Roy (1984), as described in Pereira et al. (2012). Around 10mg of freeze-

dried biomass was weighed into vials, in duplicates for each sample. 1.5ml methanol and acetyl 

chloride (20:1 v/v) was added to the vials and homogenized on ice for 90s by use of an Ultra-

Turrax disperser. After adding 1ml of hexane to the homogenized samples, the vials were heated 

at 70°C for one hour for derivatization. After cooling down the samples, 1ml of distilled water 

and 4ml of n-hexane was added and vortexed for 60s. The organic phase separated through 

centrifugation (2000 g for 5min), was then pipetted into a new vessel. After the addition of 

anhydrous sodium sulfate, to remove any residual water, the organic phase was dried and 

concentrated under a stream of nitrogen and subsequently resuspended in 500μL of gas 

chromatography-grade hexane. 

Samples were analyzed using an Agilent GC-MS (Agilent Technologies 6890 Network GC 

System coupled with a 5973 inert Mass Selective Detector) using an Agilent Tech DB-5MS 

column (length: 25m; internal diameter: 0.250mm; film: 0.25μm). Helium was used as the 

carrier gas. The injection temperature was set for 300ºC through a modified protocol from 

Lepage and Roy (1984), as described in Pereira et al. (2012) to volatilize the molecules.   

Compounds were identified by comparison of the retention times of standard samples (Supelco 

37 FAME Mix, Sigma-Aldrich) and the mass spectra compared to the NIST library. Results are 

given in percentage of total FAME. 

 

3.4. Statistical analysis 

For all statistical analysis, RStudio software was used. The significance level (α) was 

determined at 0.05 for all tests. The values for total protein and fatty acids were calculated as 

mean of the technical duplicates.   

Statistical tests were run to test for significant differences in the amount of total protein, PUFA 

content and fatty acid profiles between regions (Ria Formosa and coastal locations) and among 

the species U. compressa (n=4), U. rigida (n=6) and U. fasciata (n=3). For comparison of the 

total protein and PUFA content of U. rigida between coastal and lagoon location, only samples 

from Albufeira (n=8) and Vilamoura (n=1) were joined as coastal locations. 

 

Prior to testing for differences, normality of data was checked with the Shapiro-Wilk test and 

homogeneity of data with the Fligner-Killeen test of homogeneity of variances.  
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Data to test for overall differences of protein and PUFA between coastal (n=11) and Ria 

Formosa (n=14) sampling locations across all Ulva species was normally distributed and had 

homogeneity of variances wherefore a one-way ANOVA was conducted to test for difference 

between locations.  

Data to test for differences in the amount of PUFA between coastal (n=9) and lagoon (n=6) 

locations for Ulva rigida and among the three species U. compressa (n=4), U. rigida (n=6) and 

U. fasciata (n=3) within the Ria Formosa was also normally distributed and had homogeneity 

of variances. Therefore, two one-way ANOVAs were conducted, the first, to test whether the 

amount of PUFA of U. rigida between coastal (n=9) and lagoon (n=6) location differs and the 

second to test, whether the three species U. compressa (n=4), U.rigida (n=6) and U. fasciata 

(n=3) have a different amount of PUFA within the same sampling site (Ria Formosa). 

 

The data to test for differences in total protein content of U. rigida between coastal (n=9) and 

lagoon (n=6) did not meet the assumption of normality. Therefore, the non-parametric 

Wilcoxon rank sum test was used for analysis. A one-way ANOVA was used to test for 

interspecific difference (U. compressa (n=4), U. rigida (n=6) and U. fasciata (n=3)) within the 

Ria Formosa, since assumption of normality and homogeneity of variance was met.  

For comparison of fatty acid profiles among the three Ulva species and between coastal and 

lagoon locations, a PERMANOVA multivariate analysis was used. 

 

3.5. Results  

3.5.1. Genetic species identification 

In total, five genetically distinguishable Ulva species were identified as well as two samples of 

the red seaweed Porphyra umbilicalis collected at the westcoast. The sampling comprised the 

Ulva species: Ulva rigida, Ulva flexuosa, Ulva compressa, Ulva fasciata and Ulva australis. 

The morphotypes of U. rigida and U. australis were blades whereas U. flexuosa, U. fasciata 

and U. compressa were filamentous as visualized in the Herbarium created by Robert Priester 

(see Annex B). 

3.5.2. Total protein & FAME profiles 

Total protein across all identified Ulva species varied between 2.12% - 9.46% DW at a mean 

overall protein value of 4.35% DW across all species and sampling sites. Total protein content 

of Ulva measured at the sampling sites Albufeira, Ria Formosa, Vilamoura and the West coast 

revealed that Ulva from the coastal locations had twice more protein than Ulva from the Ria 
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Formosa (p < 0.01). The average amount of protein for the locations Albufeira, Vilamoura and 

West coast (n=10) was 6.38 ± 1.85% and 3.14 ± 1.22% for samples in the Ria Formosa (n=14). 

  

One exception of the low amount of protein measured in the Ria Formosa was U. flexuosa with 

7.28% total protein, which is notably higher compared to the next highest amount measured for 

U. rigida with 3.87% at an average protein content of 3.19% in the Ria Formosa. Whereas U. 

compressa collected in the Ria Formosa had a protein content around 2.8% for all samples, U. 

compressa collected at the westcoast reached 9.46% protein DW. Protein measured for the 

sample of Porphyra umbilicalis at the westcoast was 6.65% which is just above the average of 

6.40% of all samples from coastal locations (see Table 5, Annex C). 

 

Protein content did not differ among the three species U. compressa, U. fasciata and U. rigida 

within the Ria Formosa (p = 0.363). The highest mean amount of protein was measured for U. 

rigida (3.87%), and the lowest for U. fasciata (2.12%). Total protein of U. rigida differed 

between coastal and lagoon locations (p < 0.01). The amount of total protein of U. rigida 

sampled in coastal locations was more variable and had a higher median of total protein 

compared to samples from the Ria Formosa (Figure 8). The highest amount of protein measured 

for U. rigida in the Ria Formosa was 3.78%.     

 
Figure 8: The amount of total protein content in dry mass (%) between coastal (n=9) and lagoon (n=6) location 

within U. rigida. The thick central line in the boxes represent the median amount of protein, the boxes represent 

50% of the data and the whiskers show the variation in the dataset. The dot represents an outlier in the dataset. 

Total protein in coastal locations was significantly higher than in lagoon locations for U. rigida (p < 0.01).  

 

For all the identified Ulva, SFA make up the highest proportion of FA, followed by PUFA and 

MUFA subsequently (Figure 9). The main fatty acid identified in all Ulva species was palmitic 
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acid (C16:0) ranging between 36.80% - 85.29% of total FA. Another abundant SFA detected 

in all Ulva species was stearic acid (C18:0) ranging between 0.84% - 12.50%. As for MUFAs, 

oleic acid (C18:1) was the most abundant FA in all species ranging between 4.36% - 18.6 %, 

followed by palmitoleic acid (C16:1). All PUFAs in Ulva ranged between 9.82% - 38.00% of 

total FA with linoleic (C18:2n-6) and α-linoleic acid (C18:3n-3) as the most abundant PUFAs. 

C15:0, C20:0, C22:0, C20:1, C18:3n-6, C22:6n-3, C20:5n-3 and C20:4n-6 were also detected 

in smaller amounts, not exceeding values of 2.73%. For the Porphyra umbilicalis sample 

collected at the West coast, fatty acid composition was quite distinct to that described for Ulva. 

The red seaweed FA profile comprises 51.28% PUFA with C20:5n-3 as the most abundant 

PUFA (34.51%) followed by MUFA (26.8%) with C18:1 as the most abundant FA and SFA 

(21.86%) and C16:0 as the most abundant FA (Figure 9 and Table 8, Annex C). 

 

Figure 9: Mean percentage of SFA, MUFA and PUFA of total FAME content of U. rigida (n=15), U. fasciata 

(n=4) and U. compressa (n=5) as well as for U. flexuosa (n=1) and Porphyra umbilicalis (n=1). 

 

Within the Ria Formosa, the mean weight percentage of PUFA was 30.18% for U. compressa, 

20.61% for U. fasciata and 20.63% for U. rigida. Total FA profiles did not differ among the 

three species U. rigida, U. compressa and U. fasciata within the Ria Formosa (p = 0.1064, 

Table 4).  
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Table 4: Mean fatty acid profiles of U. compressa (n=4), U. fasciata (n=3) and U. rigida (n=6) within the Ria 

Formosa. 

 

 

PUFA content did not show interspecific differences among U. compressa, U. fasciata and U. 

rigida within the Ria Formosa (p = 0.0904), though there was a trend for higher amount of 

PUFA in U. compressa (Figure 10). When combining the values of U. fasciata and U. rigida 

to one group, PUFA content of U. compressa was higher compared to U. fasciata and U. rigida 

(p = 0.0245). 
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Figure 10: Mean polyunsaturated fatty acids (%) of total fatty acids among the species U. compressa (n=4), U. 

fasciata (n=3) and U. rigida (n=6) in the Ria Formosa. The thick central line in the boxes represent the median 

amount of PUFA, the boxes represent 50% of the data and the whiskers show the variation in the dataset. 

 

Comparison of the amount of PUFA (Table 5) and FA profiles for U. rigida between lagoon 

and coastal locations revealed no difference (p = 0.739).  There was also no difference between 

locations for the entire FA profile of U. rigida (p = 0.6713). The total dataset showed regional 

differences (all samples pooled across species) in fatty acid profiles only between West coast 

locations and Ria Formosa (p < 0.01).   

 

Table 5: Fatty acid profile of U. rigida in lagoon and coastal location; sample size: Coast (n=9),  

Ria Formosa (n=9). 
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3.6. Discussion 

3.6.1. Genetic species identification 

 

All species identified, except for U. australis, have previously been reported at the Portuguese 

coast (Araújo et al. 2009). In the Mediterranean, U. australis was identified as an introduced 

species from the north-western Pacific region (Verlaque et al. 2015). To my knowledge, it is 

the first time that U. australis has been reported at the Portuguese coastal region. Unfortunately, 

U. australis could not be included in further analysis, because the biomass for content analysis 

was mixed with other species. U. flexuosa, U. rigida, U. fasciata and U. compressa are 

identified species that meet the criterion of non-invasiveness and are thus suitable for 

cultivation in southern Portugal (Krupnik et al. 2018).  

 

Ulva identity is no longer based on morphology alone but has been replaced by genetic species 

identification. The tufA gene is a well-established DNA marker to identify Ulva seaweeds on 

species-level (Kirkendale, Saunders & Winberg 2013). To identify Ulva species, the obtained 

nucleotide sequences through DNA barcoding can be matched to those obtained by other 

studies in GenBank, a database for genetic sequences.  

Matching the obtained nucleotide sequences of the samples with those in GenBank revealed 

that often there is the same percentage identity and query cover for different species names.   

The difficulties in obtaining clear results from GenBank mainly concerned sequences of the 

species: U. lactuca, U. laetevirens, U. rigida and U. fasciata.   

In Ulva nomenclature, U. fasciata is an accepted synonym for U. lactuca and U. rigida is 

taxonomically accepted as U. lactuca var. rigida (Guiry 2019). Also noteworthy is the 

difference in species names assigned to matching sequences by country. Generally, species 

names differed, e.g. for sources from oversea countries as compared to European sources, e.g. 

U. rigida identified by a German research group, has the same sequence an Australian research 

group used to identify U. laetevirens.  To bring order into the Ulva nomenclature, it seems 

reasonable to suggest increased effort to genetically identify species and have a sequence 

assigned to each species accepted in Ulva nomenclature. This would also improve comparison 

of research findings across countries and avoid confusion.  
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3.6.2. Protein & FAME profiles 

The numbers for total protein detected are within, but at the lower end, of what has been 

reported for Ulva, with numbers usually ranging between 8.5% - 27.6% of DW when using the 

Khiedal-method for protein determination (Yaich et al. 2011; Moustafa & Eladel 2015). The 

reported numbers for total protein used for comparison of data all used the Khiedal-method 

with the traditional Nitrogen to protein conversion factor of 6.25 which has been adjusted to 5 

for this work because it has been proven to give a more accurate estimation total protein in Ulva 

(Angell et al. 2015; Shuuluka, Bolton & Anderson 2012). Since numbers are compared to 

studies using the traditional factor of 6.25, it is an aspect that can to some degree explain the 

overall low amount of protein found in this study compared to other numbers reported. 

 

As was true for total protein, for U. fasciata and U. rigida, the mean amount of PUFA found in 

this study (20.61% and 20.63% respectively) was within but at the lower end of what has been 

reported for Ulva species with numbers ranging from 23.65 ± 0.26 - 41.8 ± 15.6% PUFA 

(McCauley et al. 2016; Pereira et al. 2012; Kendel et al. 2015; Shanab et al. 2018).   

The comparably low amount of PUFA detected can be related to the low amount of protein 

found in these samples. In both cases, temperature (timing of sampling) and nutrient availability 

(location and season) might explain the overall low values and the regional difference with 

significantly higher amounts of protein in coastal sampling locations. The amount of protein in 

Ulva is namely directly correlated to the amount of nitrogen stored in the tissue and the FA 

profile of Ulva comprises the highest amount of PUFA under nitrogen sufficiency (Rosenberg 

& Ramus 1984; McCauley et al. 2016). 

A study on the nutrient inputs in the Ria Formosa showed that in the Faro area, the input of 

nutrients through anthropogenic influence is generally low and that nutrients mainly enter the 

Ria Formosa through rainfall and wastewater treatment plants. During the tourism peaks in 

summer and rainfalls toward the end of the year, these nutrient sources, especially of nitrogen, 

are at their peak (Malta et al. 2017). Since samples were taken in spring, nutrients might have 

been low in the Ria Formosa. Explaining the difference in protein content between coastal and 

lagoon location based on difference in nutrients between the locations remains an assumption, 

since data supporting higher nutrients in coastal locations is lacking.  

Lower water temperatures have also been reported to negatively affect the amount of total 

protein as well as the amount of fatty acids of total lipids in Ulva (Gao et al. 2018; McCauley 

et al. 2016).  
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The water temperature in the Ria Formosa ranger from lowest temperature of 14°C in March to 

25°C in September (Malta et al. 2017). Again, the timing of sampling earlier in the year and 

thus at lower water temperatures, might explain the low amounts of protein and PUFA 

compared to other studies. 

Whereas low water temperature and nutrient availability can be regarded as two likely causes 

of low numbers of protein and PUFA obtained in this study, there seems to be a difference in 

the effect of environmental conditions on the amount of protein and PUFA in Ulva. This 

statement is based on the findings that the amount of protein was significantly higher in coastal 

locations than in lagoon locations (p < 0.01), whereas PUFA was not different between 

locations (p = 0.739). 

Even though the ANOVA comparing PUFA among U. rigida, U. fasciata and U. compressa 

revealed no significant difference (p = 0.0904), looking at the data (see Figure 13) suggested 

higher PUFA of U. compressa compared to U. rigida and U. fasciata. To increase group sample 

size, the two species U. rigida and U. fasciata, two species closely related, were grouped 

together and compared, which indeed revealed a significantly higher amount of PUFA (p = 

0.0245) for U. compressa (Krupnik et al. 2018). This finding suggests that U. compressa is a 

more suitable candidate for PUFA production and that the environmental conditions have a 

stronger effect on the amount of protein in the Ulva seaweeds than on the PUFA content.  

 

One exception to the significantly lower amount of protein measured in the Ria Formosa 

compared to coastal areas is the sample identified as U. flexuosa, collected in the Ria Formosa. 

This sample stands out due to its higher protein content in the dataset, with 7.28% total protein. 

This finding contradicts the above-mentioned, since it shows that equally high amounts of 

protein can be reached in the Ria Formosa and coastal areas (where highest amount of protein 

measured was  7.47% for U. rigida) and that in fact not the environment but also the Ulva 

species itself might also be important to consider when targeting protein. This might also 

suggest that U. flexuosa is a potentially good Ulva candidate for targeting protein. However, 

sample size is so small and comparative literature is lacking so that this finding only allows for 

an estimation.   

 

The FAME profiles obtained in this study match those of other studies (Cardoso et al. 2017; 

Pereira et al. 2012; Kendel et al. 2015). For the food and feed industry, it is especially the 

PUFAs that are targeted for their health benefits (see Chapter one). All Ulva species had a fatty 

acid profile comprising LA, ALA, DHA and EPA which makes them an exception within the 
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Chlorophyta (Pereira et al. 2012). DHA and EPA are two especially important FAs that are 

only found in fish oil, justifying the cultivation of Ulva for PUFA (Lopez - Huerta 2010).

  

The Ulva fatty acid profile is quite distinct from that of other phyla (Pereira et al. 2012). 

Porphyra umbilicalis fatty acid profile comprised about 50% PUFA, including high amounts 

of C20:5n-3 (34.5%) and C20:3n-3 (6.45%). These results show that there are distinct fatty acid 

profiles amongst phyla, even if from the same region. The fatty acid profile obtained for the 

Porphyra umbilicalis sample matches those of other studies for the red seaweed (Blouin et al. 

2006). When targeting PUFAs, especially EPA, Porphyra seaweed seems to be the better choice 

for cultivation than Ulva.   

Overall, the results might suggest that coastal locations can be regarded as a more suitable site 

for Ulva cultivation for protein than the Ria Formosa and that suitable site selection is more 

important than species selection when cultivating Ulva for protein. The same cannot be said 

when cultivating Ulva for PUFA, because indeed, U. compressa seems to be the most suitable 

candidate for PUFA production amongst the Ulva species identified, whereas generally 

Porphyra species are higher in PUFA and thus favorable.   

The results give a first hint that the Faro area of the Ria Formosa in springtime is not ideal for 

Ulva production for the food and feed industry, especially for protein. Industrial activity and 

rainfall have been identified as the two main sources of nutrients in the Ria Formosa, both of 

which are low in springtime (Malta et al. 2017). This seems reflected in the low amount of 

protein detected in samples from the Ria Formosa, justifying low nutrient availability as an 

explanation of low total protein. However, the suitability of the Ria Formosa as a cultivation 

site for Ulva may change due to increased anthropogenic influences and water temperature rise 

through climate change in the future as well as when cultivation is integrated into existing 

aquaculture structures through IMTA cultivation. 

 

Throughout this work, it became evident, that repeated sampling throughout the year´s seasons 

as well as measuring the nutrient composition of the waterbody at time of sampling would have 

allowed to draw better conclusions on the effect of changing environmental parameters on the 

protein and fatty acid composition. Without knowing the nutrient profile of the water bodies in 

which sampling took place, it is not possible to draw final conclusions on the cause of variance 

in total protein between locations and explain the different finding for PUFA and protein 

between lagoon and coastal locations.  Experiments e.g. of the effect of temperature, light or 
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nutrient availability on the amount of protein and the fatty acid composition for the identified 

species would increase knowledge on the cause mechanisms of difference in biochemical 

profile amongst locations.  

As for improving the data, collecting more biomass per sample would have allowed to work 

with triplicates instead of duplicates for higher statistical accuracy and increased sample size 

overall would have led larger group size per identified species and thus increased the accuracy 

of statistical results. Ultimately, if more biomass had been collected, further analysis such as 

amino acid composition and the amount of total lipids would have been interesting for Ulva 

potential in the food and feed industry. 

4. Conclusions 

 

The overarching purpose of this thesis was to identify the potential that the cultivation of Ulva 

in southern Portugal can have to contribute to a more sustainable food and feed production 

system in the future. 

Next to highlighting the importance of understanding the effect of environmental parameters 

on the biochemical composition of seaweeds to accurately position them in the food and feed 

market, the first chapter showed that generally, Ulva biomass can be used for multiple purposes 

within the food and feed industry and that their consumption can have various health benefits. 

Their potentially high amount of protein and their PUFA content, comprising ALA, LA, DHA 

and EPA, justify their use, e.g. in high value markets, such as the production of algae-based oil 

products or their use in animal feed formula. The European market is still in its infancy 

wherefore increased knowledge on species abundances and their biochemical composition can 

enhance market development in Europe.  

 

The second chapter revealed that seaweed cultivation indeed stands out to current food 

production techniques in terms of sustainability performance. The fact that there is no need for 

arable land or freshwater for production becomes increasingly relevant in times of land water 

scarcity that is expected to increase in times of overpopulation and global warming. Ecological 

benefits of cultivating seaweeds are greater in open-cultivation systems, or when combined 

with the production of other species in an IMTA culture, where environmental concerns 

associated with aquaculture can be reduced. Since global fisheries are at their sustainable limit 

and feed crop production is controversially discussed, Ulva can indeed be regarded as a valuable 

source of protein and PUFA and as a sustainable substitute to current agricultural production. 
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Cultivating seaweeds under controlled conditions allows to assure consumer safety and accurate 

statement of the biochemical composition of the seaweed. Cultivation also does not tap on 

natural resources so overharvesting is avoided. Since the seaweed industry is still at its early 

stages in Europe, it seems especially important now to avoid consumer mislead and establish a 

clear regulatory body for cultivation, labeling systems and consumer information to facilitate 

the market entry for European seaweed products, assure consumer safety and information to 

avoid false health claims. Increased effort to make the entire seaweed production process more 

efficient, improve extraction methods and increase research efforts on understanding the 

metabolic pathways of the seaweeds bioactive compounds are crucial for further market 

development in Europe, including Portugal (Chapter 2).  

 

The sampling performed in coastal and lagoon locations in southern Portugal showed the 

presence of five Ulva species across 44 samples: U. rigida, U. flexuosa, U. compressa, U. 

australis and U. fasciata. U. australis has been reported for the first time in southern Portugal 

and, as an introduced species, was not identified as a potential Ulva species for cultivation.  

The species-specific differences (More PUFA in U. compressa than in U. fasciata and U. rigida 

within the same environment) and the variation of the nutritional profile due to different 

cultivation environments (higher protein in coastal areas than in lagoon locations) that have 

become evident in this work, support that general statements on seaweeds health benefits should 

be treated with caution. It also showed that whether one Ulva species is favorable for production 

based on higher protein or PUFA content could only be answered for PUFA, since for U. 

compressa results clearly suggested that when targeting PUFA the species stands out compared 

to U. fasciata and U. rigida.  

For protein content however, no significant difference among species was observed, whereas 

protein content was significantly higher in coastal locations compared to Ria Formosa. This 

finding suggests that site selection and/or cultivation parameter optimization seems to be more 

important for protein production than for PUFA production, where no difference between 

locations was observed. The different results for PUFA and protein suggest that protein content 

in Ulva is more susceptible to environmental conditions than PUFA and PUFA being 

potentially more species dependent.   

In the discussion of the results, temperature and nutrient availability were the main factors 

chosen to explain differences in findings. Here it became evident that whereas the effect of 

nutrient availability on metabolic pathways in seaweed is well studied and many comparative 

studies were found, the same cannot be said for the effect of temperature on protein and PUFA 
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content in Ulva. I therefore suggest more research on the effect of temperature on protein and 

PUFA metabolism in Ulva, to enhance understanding on how to optimize Ulva cultivation for 

food and feed purposes.  

 

Due to the low overall amount of protein and PUFA found and the lower numbers in lagoon 

locations (except for PUFA in U. compressa), I suggest that when cultivating Ulva for protein 

and fatty acids in southern Portugal, cultivation in an IMTA system (where nutrient flow is 

high) or in a closed system (where all cultivation parameters can be controlled) is beneficial 

compared to cultivating Ulva in open-systems alone. Within the marine- and brackish water 

aquaculture activity in Portugal, 34% of production is intensive and 11.1% semi-intensive (INE 

2016). Integrating Ulva in existing aquaculture structures in Portugal in the form of IMTA can 

reduce the adverse effects of aquaculture, whilst creating new valuable biomass and is therefore 

concluded as the currently best option for production of Ulva biomass in Portugal. This does 

not imply that when integrating Ulva in existing aquaculture structures, the entire aquaculture 

activity becomes biological, since it still depends on other factors such as animal welfare or the 

fish-feed.  

The additional benefit of open-system seaweed cultivation of reducing excess nutrients in 

highly anthropogenically influenced areas does not seem to apply to the Ria Formosa area 

around Faro, at least not in springtime. At the same time, seaweed abundance and their 

biochemical composition are a good bioindicator of the pollution level in the lagoon. However, 

with increasing anthropogenic influence and temperature rise associated with climate change, 

the situation may change and make cultivation of Ulva in the Ria Formosa more beneficial for 

the environment, whilst obtaining increased amounts of target compounds through elevated 

temperature and higher nutrient input into the coastal lagoon.  

To conclude, drawing our attention to a more ocean-based food system may not only improve 

overall human health but also that of our planet. I conclude that Ulva is a currently 

underexploited crop in southern Portugal and that its cultivation is one of the many puzzle 

pieces of rethinking our food system.  
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6. Annexes 

 

Annex A 
 

Table 6: Information on the sampling locations of all 44 samples including date, coordinates, water temperature, 

salinity, substrate type, water body, depth and attachment. 
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Table 7: Table 6 continued. 
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Annex B 
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Sample R3 - Identified as Ulva rigida.  
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Sample R1 - Identified as Ulva flexuosa. 
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Sample R7 - Identified as Ulva compressa. 



91 

 

 
 

Sample R11 - Identified as Ulva fasciata. 

 
Sample Ar41 - 44:  Identified as Ulva australis. 
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Annex C 

Table 8: Average (%) of the fatty acid composition of each sample expressed in (%) of total fatty acids and total 

protein (%). 
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