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About one third of patients with epilepsy have seizures refractory to the medical
treatment. Electrical stimulation mapping (ESM) is the gold standard for the identification
of “eloquent” areas prior to resection of epileptogenic tissue. However, it is time-
consuming and may cause undesired side effects. Broadband gamma activity (55–200
Hz) recorded with extraoperative electrocorticography (ECoG) during cognitive tasks
may be an alternative to ESM but until now has not proven of definitive clinical value.
Considering their role in cognition, the alpha (8–12 Hz) and beta (15–25 Hz) bands
could further improve the identification of eloquent cortex. We compared gamma, alpha
and beta activity, and their combinations for the identification of eloquent cortical areas
defined by ESM. Ten patients with intractable focal epilepsy (age: 35.9 ± 9.1 years,
range: 22–48, 8 females, 9 right handed) participated in a delayed-match-to-sample
task, where syllable sounds were compared to visually presented letters. We used a
generalized linear model (GLM) approach to find the optimal weighting of each band for
predicting ESM-defined categories and estimated the diagnostic ability by calculating
the area under the receiver operating characteristic (ROC) curve. Gamma activity
increased more in eloquent than in non-eloquent areas, whereas alpha and beta power
decreased more in eloquent areas. Diagnostic ability of each band was close to 0.7 for
all bands but depended on multiple factors including the time period of the cognitive
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task, the location of the electrodes and the patient’s degree of attention to the stimulus.
We show that diagnostic ability can be increased by 3–5% by combining gamma and
alpha and by 7.5–11% when gamma and beta were combined. We then show how
ECoG power modulation from cognitive testing can be used to map the probability of
eloquence in individual patients and how this probability map can be used in clinical
settings to optimize ESM planning. We conclude that the combination of gamma and
beta power modulation during cognitive testing can contribute to the identification of
eloquent areas prior to ESM in patients with refractory focal epilepsy.

Keywords: electrical stimulation mapping, broadband gamma frequency, alpha frequency band, beta frequency
band, drug-resistant epilepsy, epilepsy surgery, electrocorticography-based functional mapping, frequency-
based cortical mapping

HIGHLIGHTS

- Gamma, alpha and beta band activity have significant
diagnostic ability to identify electrical stimulation mapping
(ESM)-defined eloquent cortical areas.

- We present a novel method to combine gamma and lower
frequency activity for enhanced identification.

- We quantify how identification is dependent on
analysis time window, cortical function, and patient’s
attentional engagement.

- We show how ECoG responses can be used to make a
probabilistic map, useful for the improvement of patient-
specific planning of ESM.

INTRODUCTION

Invasive cortical mapping for the precise characterization of
“eloquent” cortical areas is necessary to minimize neurological
or cognitive complications following resection of pathological
tissue. In the current gold standard “electrical cortical stimulation
mapping” (ESM, Penfield and Boldrey, 1937; Hamberger, 2007),
electrical stimulation of subdural electrode-pairs that disrupts
function (e.g., speech production) or produces neurological
symptoms (e.g., paraesthesia) indicates that the stimulated cortex
is “eloquent” and should be preserved during resection. Despite
its usefulness (Ojemann et al., 1989), ESM can elicit after-
discharges, seizures (Lesser et al., 1984; Lee et al., 2010), or
pain (Lesser et al., 1985). Furthermore, it requires the patient’s
continuous compliance, rendering it challenging to use in some
patients (Arya et al., 2015). ESM is also time consuming,
requiring individual testing of each implanted electrode-contact,
restricting the number of electrodes that can be tested and
precluding the use of high density arrays (Bouchard et al., 2013;
Mesgarani et al., 2014; Muller et al., 2016) thereby limiting
the spatial resolution of ESM (Hermiz et al., 2018). These and
other factors motivate the search for alternative ways to identify
eloquent cortex (Crone et al., 2006, 1998a,b; Brunner et al., 2009;
Lachaux et al., 2007; Vansteensel et al., 2010).

Abbreviations: DMTS, Delayed match-to-sample; ESM, Electrical Stimulation
Mapping; ROC, Receiver Operating Characteristic curve; AUROC, Area Under the
Receiver Operating Characteristic curve; GLM, Generalized Linear Model.

Activation of neuronal networks leads to a change in the
spectral power of electrical field potentials of local neuronal
populations (Buzsaki, 2004; Fries et al., 2007; Buzsáki et al., 2012).
For example, an enhancement of gamma band power (>30 Hz)
during visual (Gray et al., 1989) and auditory (Brosch et al.,
2002) processing, motor preparation (Pfurtscheller et al., 1993;
Vansteensel et al., 2013), and sensorimotor integration (Murthy
and Fetz, 1992). Gamma power varies with high temporal and
spatial resolution, such that increasing gamma power is specific to
active neuronal populations (Crone et al., 1998a, 2006; Aoki et al.,
1999, p. 199; Sinai et al., 2005; Leuthardt et al., 2007; Miller et al.,
2007; Nagasawa et al., 2010; Wu et al., 2010; Buzsáki et al., 2012;
Arya et al., 2018; Hamilton et al., 2018). Consequently, gamma
modulation has been proposed as an alternative for ESM (Crone
et al., 1998a, 2006; Aoki et al., 1999; Lachaux et al., 2003; Sinai
et al., 2005; Leuthardt et al., 2007; Miller et al., 2007; Brunner
et al., 2009; Wu et al., 2010; Vansteensel et al., 2013; Wang et al.,
2016; Arya et al., 2017) whereby a task-dependent increase in
gamma power indicates eloquent cortex. However, results are
mixed and gamma band-based mapping typically has insufficient
accuracy in replicating ESM results, with some studies (Wu
et al., 2010) reporting high sensitivity but low specificity, while
others report the opposite (Bauer et al., 2013). In a recent review
Arya et al. concluded that mapping based on gamma was not
sufficient, and also highlighted the heterogeneity in the diagnostic
threshold and the cognitive task employed (Arya et al., 2018).
Thus, there is scope for improvement both in the implementation
and interpretation of ECoG response based mapping.

Activation of neuronal networks is typically accompanied by
a reduction in power in the alpha (8–12 Hz) and beta (15–25
Hz) frequency bands. Recent empirical evidence demonstrates
that alpha and beta power is related to active inhibition processes
(Jensen and Mazaheri, 2010) and can be highly spatially specific
to activated populations (de Pesters et al., 2016; Muller et al.,
2016). Thus, power modulation in lower frequency bands
represents a plausible source of additional information for
cortical mapping. Moreover, given that different frequency bands
have different functions (Scheeringa and Fries, 2017) and are
not directly correlated to each other (Bonaiuto et al., 2018),
additional information may come from the combination of
bands. A limited number of studies have investigated the use of
lower frequency bands for cortical mapping (Crone et al., 1998b;
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Sinai et al., 2005; Leuthardt et al., 2007; Wu et al., 2010; Hermes
et al., 2012; Bauer et al., 2013; Vansteensel et al., 2013). The results
from these studies have been variable in terms of the reported
diagnostic ability of the low frequency bands. Some studies have
also investigated the combination of frequency bands (Leuthardt
et al., 2007; Wu et al., 2010). These studies showed that accepting
electrodes with a high response in either the gamma band, the
beta band, or in both, as potentially eloquent yielded better results
than using either band alone, especially in the language cortex.
Likewise, machine- and deep- learning approaches (Prakash et al.,
2017; RaviPrakash et al., 2020) have shown that using the entire
frequency spectrum, rather than only the gamma band, yields
better mapping results, although it was not made clear which
part of the spectrum offered the most additional information.
In addition, while there is considerable heterogeneity in the task
employed between studies, few studies have directly compared
different tasks in the same group of patients. Thus, little is known
about how the cognitive engagement of the patient, i.e., the
task performed during cortical mapping, impacts the quality of
ECoG based mapping.

We hypothesized that alpha and beta band power modulation,
either on their own or in combination with the gamma power
modulation, could enhance the accuracy of the identification
of eloquent cortex compared with the use of gamma alone. To
investigate this, we registered (recorded) ECoG signals from
subdural electrodes in 10 patients with drug-resistant focal
epilepsy who underwent ESM. Patients performed a delayed
match-to-sample (DMTS) task or listened to the same stimuli
without an active task. We show that beta power generally had
equal diagnostic ability to gamma, while alpha power was less
effective. Withdrawing attention from the stimuli reduced the
diagnostic ability. The combination of gamma and beta frequency
bands, using a Generalized Linear Model (GLM) was consistently
better than either band individually.

MATERIALS AND METHODS

Participants
We included 10 patients (age: 35.9 ± 9.1 years, range: 22–
48, 8 females, 9 right handed, native Dutch speakers with
normal cognitive ability, with normal or corrected to normal
vision, and normal hearing) with drug-resistant focal epilepsy,
who underwent continuous, extraoperative ECoG with subdural
electrodes and ESM as part of pre-surgical evaluation for
resective epilepsy surgery. The electrode implantation scheme
was strictly chosen according to the clinical criteria (see
Supplementary Material section “1.1 Electrode implantation
procedure”) for a complete implantation description of all
patients. All patients scheduled for epilepsy surgery were invited
to join the study during preoperative consultation. No financial
incentive for joining the study was given. Those who volunteered
as participants for the study signed an informed consent form
and performed the DMTS task similar to that used in Archila-
Meléndez et al. (2018) (see Supplementary Material section “1.4
Delayed Match-to-Sample Task”). The used audiovisual stimuli
and the delayed match-to-sample (DMTS) task performed by the

patients were designed to test hypotheses about the processing
of acoustic properties of speech in the language network under
conditions of varying selective attention, yet we reasoned that,
considering the multimodal nature of the task which engaged
language listening, reading, working memory and a motor
response, the ECoG data collected during the performance
of the DMST task might be also useful to test our current
hypothesis. The task was performed during the first 5 days after
surgical implantation, when clinical condition (alertness, pain
level, no recent seizure activity) allowed and when the patient
was willing to participate. One patient performed poorly in the
DMTS task (Table 1), however her data was included in our
analyses. The study complies with the Declaration of Helsinki
for research studies in humans and was approved by the Medical
Ethical Committee of the Maastricht University Medical Center,
Maastricht, The Netherlands.

Electrical-Cortical Stimulation Mapping
(ESM)
ESM was performed using bipolar stimulation between electrode
pairs sequentially, selecting neighboring electrode pairs of the
subdural grid and/or strips. The procedure for ESM differs
between centers, with consequences for the reproducibility of
comparisons between ESM and ECoG response-based mapping
approaches (Mooij et al., 2018). Therefore, we provide a detailed
description of our ESM procedure in Supplementary Material.
No patients included in the study experienced immediate evident
impairments following resection surgery.

Data Pre-processing, Time-Frequency
Analysis and Filtering
Data were analyzed in MATLAB (R2017b version 9.3.0.713579;
The Mathworks Inc.; Natick, MA, United States) using the
FieldTrip toolbox (Oostenveld et al., 2011) and custom scripts.
Data were first cut into epochs from 1 s before the sound
onset until 1 s after the behavioral response with a maximum
data length of 8 s. We then applied a discrete time filter at
50, 100, and 150 Hz to remove line noise and down-sampled
the data from 2048 to 500 Hz. Data were re-referenced to
the average signal recorded in all electrodes, after excluding
electrodes with high noise.

Time-frequency representations (TFR) were calculated in 2
Hz steps from 6 to 250 Hz using Hanning tapers (7 cycles) and
10 ms step size, 6 Hz being the lowest frequency that could be
reliably measured in the trial structure composing our DMTS
task. Power was expressed as the normalized change, where the
change was defined as the difference between post-stimulus time
window and pre-stimulus “baseline” period -700 to -100 ms
before sound onset. To better represent the spectral response
around each trial event, TFRs were aligned and cut around the
onset of each event. Thus, we represent −0.5 to 1 s around the
onset of the sound, −0.2 to 0.7 s around onset of the letters and
−0.3 to 0.7 s around the onset of the behavioral response. For
frequency specific analysis, data were filtered at alpha (8–12 Hz),
beta (15–25 Hz) and broad gamma band (55–200 Hz) using a
4th order Infinite impulse response (IIR) Butterworth two-pass
filter. Power was calculated per trial as the absolute values of the
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TABLE 1 | Demographic information and clinical summary of the patients included in the study.

Patient Age
(y)

Sex Electrode
implantation

scheme

Seizure
frequency

Cognitive
status

Education Wada fMRI Handedness % correct
trials

Total number
of trials

1 42 F Grid temporal L Daily Average* Medium
professional

Not performed Not performed Right 90 1,126

2 39 M Grid temporal L Weekly Low average* Lower
vocational

Not performed Left dominance Right 87.1 644

3 22 F Grid temporal L Daily High average Higher
professional

Not performed Right
dominance

Right 98.5 810

4 28 F Grid frontal L Twice per
week

Average Higher
professional

Not performed Left dominance Right 89.3 486

5 33 F Strips ventro-
latero-temporal L

and R

Daily Average* Lower
vocational

Not performed Not performed Right 93.3 972

6 38 M Grid temporal R Weekly to
daily

Low averge Higher
professional

Right
dominance

Not performed Left 96.6 1,134

7 23 F Grid temporal and
perieto-frontal L

Weekly Average Higher
professional

Not performed Left dominance Right 99 810

8 39 F Grid
parieto-Occipital R

Daily No data Medium
professional

Not performed Not performed Right 96.9 773

9 48 F Grid temporal and
perieto-frontal L

Twice per
month

Average Lower
vocational

Not performed Not performed Right 53.8 236

10 47 F Grid parieto-
temporo-occipital
+ ventro-temporal

strips R

Twice per
month

Average Medium
professional

Not performed Not performed Right 98.3 810

*Deterioration from previous evaluation. L: left, R: right.

Hilbert transform and the resulting time courses were expressed
as normalized power change. For non-time resolved analysis,
average power was first calculated per trial and then across trials.

Generalized Linear Model (GLM) Fitting
and Validation
We aim at testing if a linear combination of different frequency
bands results in a better diagnostic ability, as compared to single
frequency bands. We used a GLM with binomial likelihood and
logit link function (McCullagh and Nelder, 1998), where for each
electrode the dependent variable (y) was the ESM category (i.e.,
eloquent and non-eloquent) and the predictors were the ECoG
power change in each frequency band. The estimated model was
used to determine the optimal weighting of power change per
frequency band as regression coefficients to predict the ESM
response. The process was performed in k-fold cross-validation,
in k-1 partitions. The resulting model was used to predict the
ESM category in a remaining k-partition. The process was then
repeated 20 times with random partitions and compared with the
ground truth ESM and the results were averaged (see details in
Supplementary Material).

Area Under the Receiver Operating
Characteristic Curve Analysis and
Bootstrap Procedure for Statistical
Testing
We aimed to calculate the diagnostic ability of the three frequency
bands, and of their combination. We calculated the area under

the curve (AU) from the receiver operating characteristic (ROC)
curve (Green and Swets, 2000). This procedure calculates the
ratio of sensitivity to specificity for all potential discrimination
thresholds. The resulting AUROC represents the maximum
performance (i.e., correct discrimination) of an “ideal observer”
using the optimal threshold. To facilitate the comparison of
AUROC with changes in power spectrum for alpha and beta
frequencies, we display significant AUROC values below 0.5
where power in eloquent channels is suppressed more strongly
than power in non-eloquent channels (see Supplementary
Material section “1.6 Area Under the Receiver Operating
Characteristic Curve Analysis”). Foe statistical testing we
implemented a bootstrap procedure with replacement for
statistical testing in which we constructed a distribution of
AUROC values for each model (i.e., frequency bands and
their combination; see Supplementary Material section “1.7
Bootstrap Procedure for Statistical Testing Receiver Operating
Characteristic Between Models”).

Function-Specific and
Attention-Dependent Analyses
We were interested in studying whether different functional
areas might exhibit characteristic power spectra, however we
were limited by the low numbers of electrodes representing
some ESM categories. We therefore grouped electrodes into
two broad categories, which we call “input,” being mostly
involved in processing cortical inputs (i.e., sensory processing)
and “output” as being mostly concerned with cortical outputs
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(motor function). This categorization is based on the concept
that one of the nervous system’s fundamental functions is
the processing of sensory input to guide behavioral (motor)
output. Those electrodes labeled as auditory, visual, sensory,
language-Wernicke, and language-temporobasal were grouped
into the “input” category as being more functionally involved
in processing incoming sensory events. Those labeled as motor,
mixed-sensorimotor, and language-Broca were grouped into
the “output” category as being more involved in generating
behavioral responses. Two neighboring electrodes in one patient
labeled as emotion were excluded from the function-specific
analysis as they did not seem to fit in either category.

Anatomical Segmentation and
Intracranial Electrode Localization
Presurgical T1-weighted MRI were segmented using FreeSurfer
(version 6.0)1 (Dale et al., 1999; Fischl et al., 1999a). Briefly,
this procedure includes removal of non-brain tissue using
a hybrid watershed/surface deformation method, automated
Talairach transformation, intensity normalization, tessellation of
the gray/white matter boundary, automated topology correction,
and surface deformation following intensity gradients. After
the process was finished, quality control was performed by
visually inspecting each subject’s brain and the overlay of the
tissue boundaries. Remaining errors were manually corrected
using ITK-SNAP software (version 3.4.02; Yushkevich et al.,
2006). After segmentation, the postsurgical CT scan was
coregistered to the presurgical T1-weighted MRI using rigid
affine transformations via FSL’s FLIRT algorithm (Jenkinson and
Smith, 2001). To localize the intracranial electrodes, we used
the MATLAB toolbox iELVis following the procedure described
by Groppe et al. (2017). Briefly, the locations of the electrodes
in the postsurgical CT scan were manually identified using
intensity thresholding in BioimageSuite3. To correct for post-
implantation brain shift, electrodes were projected to the nearest
point on the dural surface reconstructed from the presurgical
MRI (Dykstra et al., 2012). Finally, for visualization purposes,
electrodes of all patients were projected to the brain average
surface of FreeSurfer (Fischl et al., 1999b, see Figure 1A using
iELVis; Groppe et al., 2017).

Probabilistic Map of Eloquence
We considered how our analysis could be clinically useful without
providing a diagnostic test. A probabilistic map, that shows the
likelihood of eloquence for each electrode and that does not
require the ESM labels but only the ECoG signal during the
DMST task (and thus could be obtained before the ESM), could
be used to optimize the planning of the sequence of electrode
pairs for ESM testing. We took GLM-calculated probabilities
for each patient separately using only data from the remaining
patients to calculate the GLM beta weights. This procedure
represents a special case of our standard analysis in which data
was separated into training and test datasets: In the standard

1http://surfer.nmr.mgh.harvard.edu/
2www.itksnap.org
3http://www.bioimagesuite.org

analysis the separation was done randomly, thus data from all
patients could be included for training and the same could be
done for testing; in the current analysis the data separation
was performed according to the patient identity. In this way
we show how a probabilistic map of eloquence during ESM
can be generated for an individual patient without reference
to the ESM results of that patient. This procedure allows, in a
new patient, the creation of a probabilistic map of eloquence
using only data from the DMTS task that is acquired before the
ESM, enabling the incorporation of the probabilistic map in the
planning of the ESM.

RESULTS

Relationship Between Electrical Cortical
Stimulation and Frequency Modulation
As a descriptive analysis, we selected all electrodes from
all ESM categories as defined by the electrophysiologist (see
Supplementary Material) and projected them into a common
brain space (Figure 1A). We registered in total 129 eloquent
and 443 non-eloquent electrodes (Table 2). Eloquent electrodes
were located bilaterally over the temporal neocortex (superior
and middle temporal gyri), over the inferior frontal gyrus, and
over the pre- and post-central gyri.

We represented the change in power spectral density, relative
to the baseline period (−0.7 to −0.1 s from sound onset) across
time (time-frequency representation, TFR) of the ECoG signal
during each epoch of the DMTS task (Figure 1B). ESM categories
exhibited characteristic response patterns during the task. For
example, electrodes labeled as “auditory” exhibited increased
gamma activity and decreased alpha/beta power after sound
onset. Likewise, electrodes labeled as “visual” exhibited increased
gamma and decreased alpha/beta after letter onset. Electrodes
labeled as “motor” exhibited an increase gamma activity and a
decrease in alpha/beta around the button press. Interestingly,
“language temporobasal” and “language Broca” electrodes were
active after sound onset and letter presentation possibly pointing
toward covert rehearsal of the sound and silent reading of the
letters. For further analysis, we grouped all electrodes labeled as
eloquent for comparison with all electrodes that were tested using
ESM but labeled as non-eloquent.

Receiver Operating Characteristic (ROC)
Curve Analysis
We compared the power spectrum of eloquent and non-
eloquent electrodes’ ECoG during the DMTS task. Power
was generally increased relative to baseline for frequencies
above 50 Hz, and generally decreased for frequencies
below 30 Hz (Figure 2A). This effect was larger in
eloquent- (red) than non-eloquent electrodes (blue). To
test the diagnostic ability of this difference we calculated
AUROC (Figure 2B) and applied a permutation test for
statistical assessment. AUROC was significant (darker
line, P < 0.05, two-sided test, uncorrected for multiple
comparisons) for frequencies between 50 and 180 Hz and
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FIGURE 1 | ESM categories and ECoG responses. (A) Electrodes tested during electrical-cortical stimulation mapping (ESM) in 10 patients projected in the common
space, color coded according to the ESM category. LH, left hemisphere; RH, right hemisphere; Ventral, ventral (caudal) view of left and right hemispheres; Dorsal,
dorsal (cranial) view of left and right hemispheres. (B) Time frequency representations (TFR) of time periods of the delayed match-to-sample task from all tested
electrodes grouped by the ESM category. The TFRs represent the three different trial events (i.e., sound onset, letter onset, and button-press), which are illustrated
by the three vertical dotted lines in each TFR). (C) Illustration of the time course in the task (upper cartoon, events are represented at their average time after sound
onset) and the “exaggerated” time between the events used for display time (lower cartoon).
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TABLE 2 | Electrode details.

Patient Total
stimulated

Total non-
eloquent

Total
eloquent

Seizure
onset

Sensory Motor Mixed
sensorimotor

Language
(Wernicke)

Language
(Broca)

Language
(temporobasal)

Auditory Visual Emotion

1 39 35 4 5 2 0 0 1 1 0 0 0 0

2 39 39 0 2 0 0 0 0 0 0 0 0 0

3 40 29 11 0 4 0 0 1 0 0 6 0 0

4 74 59 15 12 0 8 0 0 7 0 0 0 0

5 29 29 0 0 0 0 0 0 0 0 0 0 0

6 40 26 14 8 4 2 0 1 0 2 3 0 2

7 79 43 36 7 5 14 2 7 7 0 1 0 0

8 74 63 11 3 1 0 3 1 0 0 2 4 0

9 80 57 23 1 2 14 3 3 1 0 0 0 0

10 78 63 15 3 4 8 0 0 0 0 0 3 0

Total 572 443 129 41 22 46 8 14 16 2 12 7 2

Number of electrodes in each ESM functional category, electrically stimulated and seizure onset per patient.

A B

C D

E F

G H

FIGURE 2 | AUROC analysis. (A) Normalized change in ECoG signal power spectral density from baseline from eloquent (red) and non-eloquent electrodes (blue).
Shading shows standard error, center line shows mean. (B) AUROC values across frequencies, pale green, non-significant, dark green significant. Black lines show
2.5 and 97.5 percentiles from permutation distribution. Dotted line shows chance performance. Background shading indicates filter boundaries for each band.
(C) Gamma power modulation during each task event (icons indicate sound onset, letter onset, and button-press). (D) AUROC values across time for gamma. (E,F)
Alpha power and AUROC values, as in (C,D). (G,H) Beta power and AUROC values, as in (C,D).

for frequencies between 6 and 30 Hz, indicating significant
diagnostic ability, with a performance of 65–70% for
an ideal observer.

To represent the time courses of gamma-, alpha- and beta
bands over the trial we filtered the ECoG signal in each band
(gray background shading, Figures 2A,B) and calculated the
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absolute value of the Hilbert transform, which was subsequently
represented as the normalized change against the pre-sound
baseline. We found stronger gamma increase in eloquent than
non-eloquent electrodes (Figure 2C) during the three task
epochs. The AUROC values across time (Figure 2D) were larger
than 0.5 and significant for all three events.

Alpha power (Figure 2E) decreased in all three events
(Figure 2E) especially in eloquent electrodes. The AUROC values
were significantly below 0.5 for all three events (Figure 2F)
indicating that power for eloquent electrodes was lower than non-
eloquent electrodes according to the definition of our AUROC
calculation (see Supplementary Material section “1.6 Area
Under the Receiver Operating Characteristic Curve Analysis”).
A similar pattern was observed for beta power (Figures 2G,H),
however, the decrease in power was especially prominent around
the button-press. AUROC values were generally lower for beta
than for alpha band, indicating greater diagnostic ability for beta,
especially around the button-press.

Next, we combined the responses from different bands
using a GLM including 10-fold cross-validation (methods) and
calculated AUROC values across time using the GLM response
(Figure 3A). For smoothing, and to reduce processing time, we
used a sliding time window of 100 ms with 50 ms step size.
The GLM based AUROC values for gamma-only closely matched

standard AUROC values (Figure 3A, green line). For alpha-
only (red) and beta-only (blue) the GLM based AUROC values
also closely matched the standard AUROC, except that values
were above 0.5 rather than below due to the fitting procedure.
Interestingly, time courses for the three individual band models
peaked at different times in the trial. The gamma-only model
performed best after the sound onset while the beta-only
model performed best around the button-press. The alpha-
only model performed generally worse than the other models,
but interestingly outperformed the gamma-only model around
the letter onset and late after the button-press. The combined
model AUROC values (Figure 3A–dashed lines) tended to be
either higher than, or equal to, whichever individual curve
was highest at any given time point. This was especially true
for the beta&gamma model (blue dashed lines), although the
alpha&gamma (red dashed) model also tended to outperform the
gamma-only model. Interestingly the three-band model (black
dashed) did not outperform the beta&gamma model indicating
that including alpha brought no additional information.

To statistically test the AUROC results of each model against
chance performance and against each other, we first reduced the
dimensionality of the data by calculating average power for each
electrode, collapsing over the time dimension. Using this data
we conducted a bootstrap analysis in which we constructed a

A

B C

D E

FIGURE 3 | Temporal AUROC and model comparison. (A) AUROC values using GLM approach for gamma, alpha, and beta (solid lines), and their combinations
(dashed lines). (B) Distribution of the AUROC values from 1000 bootstrap samples for single models. Vertical lines show AUROC values without resampling.
(C) Pairwise comparison from bootstrap distribution of alpha (red) and beta (blue) AUROC values against gamma. Vertical lines show mean percentage change from
gamma-only model. (D,E) Distribution of AUROC values for combination models, as in (B). (E) Pairwise comparisons of combination models with gamma-only
model.
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distribution of 1000 AUROC values for each model by creating
multiple datasets of the same size as the original, while randomly
drawing electrodes with replacement. For each dataset, and
the original, we computed the AUROC for each model using
10-fold cross-validation. Histograms in Figure 3B show the
distribution of AUROC values of the single band models, vertical
lines show the AUROC values from the original dataset. All
three models performed better than chance, with 100% of the
resampled datasets returning AUROC values greater than 0.5.
Of the three models the alpha-only model (red) performed the
worst, with an AUROC of 0.64 in the original dataset, the
gamma-only (green) and beta-only (blue) performed similarly.
The gamma-only approach has previously been used most widely,
therefore, to test the usefulness of alpha- and beta bands we made
pairwise comparisons of those models against the gamma-only
model (Figure 3C), i.e., using the same selection of randomly
chosen channels for each model. The alpha-only model was
worse than the gamma-only model in 98% of datasets, which we
consider to show a significant difference. The mean performance
reduction was 8.8% (vertical red line). While the beta-only
model offered a slightly increase performance (1.3%), which
was not significant. We next compared the performance of the
combination models (Figure 3D). These generally outperformed
the individual-band models although the alpha&gamma (red
dashed) model performed the worst. The beta&gamma (blue
dashed) and three-band (black dashed) model performed equally.
In pairwise comparisons with the gamma-only model, all three
models offered enhanced performance although this just failed to
meet the threshold of significance for the alpha&gamma model
(94% of datasets improved). The beta&gamma and three-band
models both performed significantly better than the gamma-only
model (in 100% of datasets) offering respectively 7.6 and 7.4%
average improvement. Their distributions overlapped indicating
again, that there was no advantage to including the alpha band to
the beta&gamma model.

Taken together these results show that the alpha-only model
generally performed worse than the other single-band models,
whereas the beta-only and gamma-only models performed
about equally. Combining alpha with gamma provided some
improvement, whereas combining beta and gamma provided a
larger improvement.

AUROC Performance Depends on
Functional Category
Alpha-, beta- and gamma bands have been ascribed different
functional roles, with gamma associated with feedforward
processes and alpha associated with feedback (Scheeringa
and Fries, 2017). The beta-band has been associated with
motor activity, whereby beta power drops in preparation for
motor output. Thus, these bands may have relatively different
importance in different cortical areas, depending on the area’s
place in the cortical hierarchy (Felleman and Van Essen, 1991).
Specifically, we can anticipate that input areas, early in the
hierarchy, may have a high dependence on gamma, while output
areas, late in the hierarchy may be more dependent on alpha
and beta. Importantly, this implies for our current question that,

in patients with many output electrodes, alpha or beta may be
more informative, or their combination with gamma may give
greater improvement.

To test this hypothesis we divided all eloquent electrodes into
two broad categories which we defined as output and input and
repeated our analysis (Figure 4) for each group. Notice that this
grouping was intended as a procedural means to split the data
into denominated groups. With the possible exception of primary
areas, all cortical areas have roles in both processing incoming
stimuli and generating responses, thus the distinction between
output and input areas is only an approximation.

Descriptively, gamma power increased in the first task epoch
for all electrodes (Figure 4A). Input electrodes (red) showed
the highest power followed by output electrodes (green). Non-
eloquent electrodes (blue) showed the weakest response. After
letter onset, gamma power increased for all electrodes. While
power in input electrodes peaked soon after letter onset, power
in output electrodes continued to increase, peaking shortly
before the button-press. Non-eloquent electrodes showed low
power after a weak response to letter onset and button-press.
Alpha power (Figure 4B) was suppressed in all channels with
greater suppression for eloquent than non-eloquent channels.
Interestingly, alpha power suppression in both output and
input channels was approximately equal for the majority of the
time course. Only at the end of the trial did output channels
show somewhat greater suppression. By contrast, beta band
(Figure 4C) suppression was considerably stronger in output
channels than input channels at all-time points, especially after
the button press. With our stated caveat about the distinction
between output and input areas, these data supported our
grouping, as “ input” electrodes seemed most involved during
stimulus processing and “ output” electrodes seemed most
involved near the behavioral response.

We calculated AUROC values for the three bands separately
and for the three combination models using the time-averaged
responses and tested significance of the difference using
the bootstrap method. In input (Figure 4D) electrodes the
distribution of gamma (green) AUROC values was higher than
the alpha-only (red) or beta-only (blue) models, however the
distributions heavily overlapped and this difference was not
significant in pairwise comparisons (Figure 4E). In output
electrodes (Figure 4F) the beta-only model outperformed both
gamma-only and alpha-only models. Pairwise comparisons
(Figure 4G) showed that this difference corresponded to a 6.1%
increase but did not pass significance (93% of datasets showed
an increase). The alpha-only model performed significantly worse
than the gamma-only model, corresponding to a 11% drop.

Analysis of the combination models showed that in input
channels all three models offered approximately equal
performance (Figure 4H), which was somewhat, but not
significantly, better than the individual band models (Figure 4I).
Among output channels the combination models offered better
performance (Figure 4J) and a greater improvement over the
gamma-only model (Figure 4K): The alpha-gamma model
mean improvement was 3% but failed to reach significance,
while the beta-gamma and three-band models both showed an
improvement in 100% of dataset with a mean improvement of
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FIGURE 4 | AUROC analysis per functional category. (A–C) Gamma, Alpha and Beta power modulation and SE (shades) for three subtypes of electrodes (input,
output and non-eloquent) during the three events of the task. (D) Distribution of the AUROC values from 1000 bootstrap samples for single models and input
channels. (E) Pairwise comparison from bootstrap distribution of alpha (red) and beta (blue) AUROC values against gamma for input channels. (F,G) Same as (D,E)
for output channels. (H–K), same as (D–G) using combined models.

11%. These results were in line with our expectation that output
electrodes, being higher in the cortical hierarchy, would be most
sensitive to low frequency power modulations. Taken together
these results suggest that eloquent areas may be best mapped
using gamma or beta-band power depending on the distribution
of electrodes in an individual patient. However, irrespective
of the ESM functional category, the combination of beta and
gamma bands was reliably the best measure for the identification
of eloquent electrodes.

Influence of Attention on AUROC Values
Most patients performed well in the task, however, one patient
performed poorly and withdrew early from the experiment.
This experience prompted us to question how well ECoG
mapping would perform in a less demanding task, which
might be particularly relevant when applying ECoG mapping in
pediatric populations, patients with low general cognitive ability

(Ruiz-Rizzo et al., 2018, 2019) or patients who are otherwise
unable or unwilling to engage in demanding cognitive testing
(Haupt et al., 2020; Ruiz-Rizzo et al., 2020). Our cognitive
experiment included a passive condition in which the same
auditory stimuli were presented without any explicit task. We
repeated our analysis using the ECoG response, from eloquent
(red, Figure 5) and non-eloquent electrodes (blue), during the
sound presentation in the active (solid lines) and passive tasks
(dashed lines, Figure 5). Gamma band (Figure 5A) responses
were weaker in the passive task compared to active task for
both eloquent and non-eloquent electrodes. Alpha and beta
band suppression (Figures 5B,C) was weaker in the passive task
compared to the active task, especially late in the response.

As before, we calculated AUROC values of the GLM models
and tested significance using the time-averaged responses,
however, here we used only the period from sound onset to
900 ms which could be compared for both tasks. In the active
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A B C

D E F

FIGURE 5 | Influence of attention on AUROC values. (A–C) Gamma, Alpha and Beta power across time for eloquent (red) and non-eloquent (blue) electrodes during
the active (DMTS, solid lines, darker shading-SE) and the passive (dashed lines, lighter shading-SE) tasks. (D) Effect of attention on diagnostic ability per model.
Vertical lines show 5 and 95 percentiles from 1000 bootstrap samples, horizontal offset to aid visibility. (E) Pairwise comparison between active and passive tasks
per single band models. Negative values imply a better performance in the active task. (F) Same as (E) but using combination models.

task AUROC values were unsurprisingly lower than in previous
analysis (Figure 4H) where we had used the response during
the entire trial. However, when comparing the performance
of the three bands and the combination, the pattern matched
our previous findings. Comparing the two tasks (Figure 5D)
showed that withdrawing attention in the passive task lowered
performance of all models. In pairwise comparisons between the
two tasks we found that performance of the models dropped by as
much as 11.9% in the three-band models (Figure 5F). The drop
was significant (p < 0.05) for all models except the alpha-only
model (p = 0.19).

These data showed that an active task which engages attention
is required for optimal mapping using ECoG, with important
implications for studies which attempt to classify eloquent
cortex without explicit cognitive tasks (Vansteensel et al., 2013).
Nevertheless, the GLM approach combining gamma and beta
band activity offered a significant improvement over single-
band models.

Probabilistic Map of Likely Eloquence
We aimed to use the GLM fitting to calculate a map showing the
probability that each electrode would be eloquent given the ECoG
power modulation during the DMTS task. Such a map could be
used to optimally plan the sequence of ESM mapping. For this
analysis we used data from the full trial and full dataset (i.e., data
presented in Figure 3) and the beta&gamma model. As in the

main analysis we estimated GLM weights on a training dataset
and applied those weights to a test dataset. However unlike
in the main analysis, here the training dataset comprised all
electrodes from nine patients, and the testing dataset comprised
all electrodes from the remaining tenth patient. Thus, this
analysis could be performed for a new patient using data available
before the ESM. After calculating the prediction of all electrodes
in the dataset the AUROC for this procedure was 0.73, as
compared to 0.76 using the K-fold approach, in line with the
results from the standard analysis.

The GLM response corresponds to a prediction of the
binomial probability that an electrode is eloquent or not. To
visualize the relationship between GLM prediction and the
empirical probability of eloquence we binned electrodes into
10 equally spaced bins (with 50% overlap) according to the
GLM response. Figure 6A shows the number of electrodes
per bin (black line, rightward Y axis) and the proportion of
those electrodes with a positive ESM response (blue line and
colored dots, leftward Y-axis). The proportion of eloquent
channels across the whole population is shown by horizontal
line. We then showed how the GLM could be used to map
five representative patients. The probability of eloquence was
represented by color-coding the electrode locations, with darker-
red colors indicating higher probability of eloquence (see dot
colors in Figure 6A). For comparison, electrodes that were
eventually labeled as eloquent by the ESM were marked with
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non-eloq mn = 0.43, SD(0.097); eloq mn = NA, SD(NA)
 AUROC = NA

non-eloq mn = 0.34, SD(0.093); eloq mn = 0.53, SD(0.14)
 AUROC = 0.89

non-eloq mn = 0.36, SD(0.074); eloq mn = 0.047, SD(0.14)
 AUROC = 0.79

non-eloq mn = 0.36, SD(0.045); eloq mn = 0.38, SD(0.036)
 AUROC = 0.7

non-eloq mn = 0.43, SD(0.15); eloq mn = 0.51, SD(0.18)
 AUROC = 0.64

non-eloquent

seizure onset

Patient 4

Patient 3Patient 2

Patient 8Patient 7

A B

FIGURE 6 | Probabilistic maps of eloquence. (A) Relationship between GLM response (i.e., prediction of the binomial probability that an electrode is eloquent) and
probability of eloquence (leftward axis) and numbers of electrodes (rightward axis). Dot colors indicate color-scale used in other panels. (B) Electrode locations
projected onto the individual patient MRI in five patients. Dot color indicates GLM response, dot centers indicate ESM results, white: non-eloquent, black: eloquent.
Red rings; seizure onset zones. Bodies in the lower left of each panel indicate the brain orientation. Values above each brain show the quantification of the
performance of the GLM. This is given in terms of the mean and standard deviation GLM response of ESM positive (eloquent) and negative (non-eloquent)
electrodes, and an AUROC value where patients have both positive and negative electrodes. Non-eloq, non-eloquent; mn, mean; SD, standard deviation; eloq,
eloquent; AUROC, area under the receiver operating characteristic curve.

a central black dot while electrodes eventually labeled as non-
eloquent were marked with a central white dot. For completeness,
seizure onset sites were labeled with a red ring. Patient 4 and 8
appear to have a good match between ESM and ECoG prediction,
in that darkest colored dots also have black centers. Eloquent
areas were far from seizure onset zones, allowing a safe resection.
Patient 7 also had a good match between ESM and the ECoG
prediction, however, the overlap between eloquent areas and
seizure onset precluded a safe resection. Patient 3 showed a
good match between ESM and ECoG, however, notice that
the estimated probabilities were generally low in this patient
such that ESM-positive electrodes were found at a level of
ECoG response that would be negative in other patients. This
observation indicates that a fixed diagnostic threshold applied
to all patients may not be the ideal approach. Patient 2 showed
the reverse pattern. In this patient, no eloquent electrodes were
found with ESM despite quite high ECoG responses. In this
patient the seizure onset zone was located at the temporal pole,
while ESM results do not contra-indicate a full resection of
the temporal lobe, the ECoG response suggests active cortex
above the 5th row of the grid. Taken together, results from the
probabilistic map suggest that such a map might be useful as an
additional source of information when planning a resection for

the removal of epileptogenic tissue, while preserving regions with
high ECoG responses.

DISCUSSION

We found that activity in the alpha, beta and gamma bands could
be used to identify eloquent cortex at above chance level, and with
rates in line with previous reports (Arya et al., 2018). In line with
our hypothesis, combining frequency bands via a generalized
linear model (GLM) enhanced the information given by each
band alone, thereby increasing the performance in predicting
ESM results. Combining beta and gamma was found to be
more useful than combining alpha with gamma. Time-resolved
analysis showed that the different frequency bands alternated as
the “better” measure throughout the trial. Likewise segregating
the signal from the eloquent electrodes into cortical input and
cortical output groups showed that the relative performance of
alpha, beta and gamma depended on the cortical area, whereby
gamma gave better results in input areas and beta band gave
better results in output areas, in line with previous results by Wu
et al. (2010). These analyses reveal that the identification of ESM
positive electrodes with a specific frequency band (i.e., alpha,
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beta or gamma) or any frequency combination are not mutually
exclusive options. Moreover, our analysis suggests that whether
alpha, beta or gamma power are the “better” measure, will depend
on several factors, including the patient’s implantation scheme,
the task performed, and the selected analysis window. Thus,
depending on the implantation scheme, some patients might have
additional benefits in the identification of ESM positive electrodes
by including beta power modulation. Our GLM approach cuts
through this complexity because, regardless of which band
provided the better diagnostic ability, the combined approach
allowed a performance at least as good as the best individual
frequency band and typically offered a significant improvement.

Previous studies have investigated whether ECoG recording
could be used as an alternative to ESM by setting a significant
response as a diagnostic criterion for identifying eloquent cortex.
Here we investigated the diagnostic ability without implementing
a diagnostic test. After demonstrating that ECoG responses
can reliably predict the probability of a positive ESM response,
we showed how a probabilistic map could be constructed that
could be used to guide ESM. Guided ESM may reduce the
time and effort required of both the patient and clinical team
to stimulate all possible neighboring pairs of electrodes. The
time-consuming aspect of ESM becomes especially problematic
as the number of electrodes increases, for example when using
high-density grids. These are becoming more widely used as
they increase the spatial resolution of the mapping procedure,
thereby increasing surgical precision and decreasing the risk of
postsurgical neurological deficits (Escabí et al., 2014). However,
cortical mapping using ESM in a high-density grid is time
consuming and becomes impractical. In contrast, identifying
eloquent cortex using the frequency modulation responses
during a cognitive task processes all channels simultaneously.
Thus, this approach has the potential to significantly improve
the general time efficiency of the mapping procedure. Because
ESM can cause seizures, after-discharges (Blume et al., 2004;
Aungaroon et al., 2017) and, in some cases, pain (e.g., in the
proximity of parieto-opercular cortex; Mazzola et al., 2012),
frequency modulation mapping also reduces the chance of
stimulation side-effects. Our procedure to create a probabilistic
map could be used to guide ESM mapping in a high-density grid
such that boundaries between eloquent and non-eloquent cortex
could be identified with ECoG and confirmed with ESM.

Although the DMTS task was not designed for cortical
mapping, we found that these data were able to be used to
identify the eloquent electrodes with performance similar to
that reported in previous studies. This aspect points to the
wide cortical network that is recruited even when performing
a relatively simple task. The used DMTS task involved auditory
processing of the syllable, maintenance of the auditory stimulus
in short term memory, visual perception of the written cue,
comparison of the auditory and visual stimuli for a match-to-
sample decision, a motor response, and error monitoring post-
response. It hence engages multiple different relevant stages of
cognition. Nevertheless, we do not argue that the DMTS task
used here is the optimal task. An optimal task would presumably
include a wider range of motor actions (our task included only the
index and middle finger of the right hand), a wider range of visual
stimuli (to activate e.g., face-, place-, and motion-sensitive areas),

and a language production section—and has to be feasible in the
limited time the patient is available. Our main finding is a proof of
concept that the inclusion of low frequency bands, especially the
beta band, improves the identification of eloquent electrodes. We
would expect that a similar analysis in a dataset acquired during
the performance of a structured cognitive task explicitly designed
to activate eloquent cortex would result in better performance
of ECoG mapping.

The possibility also exists, however, that including low
frequency power was only useful in the context of a non-optimal
task. It may be that, in an optimal task all eloquent cortices may
be sufficiently activated, such that they can be readily identified
using the gamma band alone. Our finding that the beta band
was more useful in identifying output areas than input areas
argues against this possibility, since the task was arguably better
tuned for identifying input areas than output areas (e.g., auditory
cortex was adequately activated, while IFG (Broca’s area) was only
weakly involved during covert rehearsal and reading). Ultimately,
additional data or re-analysis of data collected by other groups
will be required to clarify this aspect.

In order to better understand the validity of cortical mapping
with ECoG, it is relevant to evaluate whether false positives
identified by ECoG mapping are in fact false positives or perhaps
may be ESM false negatives. The true test of whether an area
is eloquent or not is the effect of surgical resection of that area
on the neuropsychological function. Currently, ESM is the best
predictor of the effect of resection (Arya et al., 2018), however
to control for the possibility of false negatives in ESM, it will
be important to evaluate the cognitive performance of a large
cohort of patients after surgical resection. A large, multi-center
effort will likely be required to identify false positive and negative
electrodes after both ECoG and ESM mapping. These data were
not available in our study.

In our analysis we used the power of gamma, alpha
and beta bands as indicators for the eloquence of cortex
beneath subdural electrodes. However, with the cross-validation
procedure implemented in our analysis it is possible to include
a multitude of indicators. Other factors that might further
improve mapping could include power, adding modulations from
other frequency bands such as theta or delta (Daume et al.,
2017; Grooms et al., 2017), power modulations recorded during
additional tests, and responses measured in other modalities
(e.g., functional mapping using fMRI; Picht et al., 2013; Trimmel
et al., 2019, 2020—or transcranial magnetic stimulation). Prior
predictions about the likelihood of eloquence at a particular
cortical area may also be of interest and help to increase
mapping accuracy.

Given the relatively small number of patients included in the
present study and the task used, which was developed to study
language processing rather than cortical mapping, the method
described is a proof of concept not ready to be used as a diagnostic
clinical test. In order to further develop our findings into a reliable
diagnostic test it will be important to replicate our analysis in
a larger patient population, e.g., multi-center clinical trial, in
which we would be willing to contribute. It is also important to
compare the results with the presence of neurological or cognitive
impairments after neurosurgical resection. The optimized ECoG
test should clearly outperform ESM in predicting presence
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of neurological or cognitive impairments after neurosurgical
resection. However, inspection of the probabilistic maps seems to
argue against this scenario since the maps suggest that between-
patient variability in the overall level of ECoG responsiveness is
too large to instigate a universal diagnostic criterion. Thus it is
more likely that any future ECoG test will be of use in addition
to, or as a screening before, ESM.

CONCLUSION

Using advanced signal analysis in combination to functional and
attentional specific analysis we have shown that including alpha
and especially beta power modulations from a DMTS task can
improve the diagnostic ability in the identification of eloquent
cortical areas over the use of gamma-band power alone. We
provided a method to construct probabilistic maps of eloquence
based on cortical activity during a DMTS task that can be used
as a clinical tool to optimize the planning of electrical cortical
stimulation mapping. We conclude that cortical mapping with
power modulation is a useful clinical tool to identify potentially
eloquent cortical areas (ESM positive) but does not replace the
need for electrical cortical stimulation mapping. Further studies
using tasks specifically designed for eloquent cortical function
identification, the use of tailored individual frequency bands, and
comparison of different models with post-resection outcomes will
elucidate whether this approach could replace or enhance ESM in
clinical settings.
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