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Abstract. The purpose of this work is to study the generalized Navier-Stokes equations with nonlinear
viscosity that, in addition, can be fully anisotropic. Existence of very weak solutions is proved for the
associated initial and boundary-value problem, supplemented with no-slip boundary conditions. We show
that our existence result is optimal in some directions provided there is some compensation in the remaining
directions. A particular simplification of the problem studied here, reduces to the Navier-Stokes equations
with (linear) anisotropic viscosity used to model either the turbulence or the Ekman layer in atmospheric
and oceanic fluid flows.
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1. Introduction

In the literature of large-scale flows, Navier-Stokes equations with anisotropic viscosity are used to model
oceanographic and atmospheric fluid flows for which the horizontal extents are much larger than the vertical
ones. For instance, a simple model used to describe turbulence in large-scale flows considers the Reynolds-
averaged Navier-Stokes equations,

div u = 0,(1.1)
∂u
∂t

+ div(u⊗ u) = f − 1
ρ

∇p+ ν div(D(u)) + div(R),(1.2)

with the Reynolds stresses R modelled as follows,

(1.3) R =


2AH ∂u1

∂x1
AH

(
∂u2
∂x1

+ ∂u1
∂x2

)
AH

∂u3
∂x1

+AV
∂u1
∂x3

AH

(
∂u1
∂x2

+ ∂u2
∂x1

)
2AH ∂u2

∂x2
AH

∂u3
∂x2

+AV
∂u2
∂x3

AV
∂u1
∂x3

+AH
∂u3
∂x1

AV
∂u2
∂x3

+AH
∂u3
∂x2

2AH ∂u3
∂x3

 .
It should be noted that all non constant quantities in the equations (1.1)-(1.3), as the velocity vector field
u = (u1, u2, u3), the pressure p and the external forces field f = (f1, f2, f3) are, in fact, averages that
result by the application of the Reynolds average decomposition. For instance, the velocity field, say v, is
decomposed into an average velocity u and a fluctuating velocity u′: v = u + u′, with u := v. The averaged
tensor D(u) is the symmetric part of the averaged gradient ∇u, and the positive constant ν is the kinematic
viscosity and expresses the ratio of the internal forces in the fluid (dynamic viscosity) to the mass density
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ρ, assumed here to be constant and positive. The extra term in (1.2) results as an output of the Reynolds
average decomposition of the original Navier-Stokes equations and accounts for the average changes in u′
due to the particle transport with the fluid movement: R := −u′ ⊗ u′. The coefficients AH and AV given
in (1.3) denote the horizontal and vertical turbulent viscosities, which are supposed to be both nonnegative.
Estimates of the turbulent viscosity in the atmosphere and in the ocean show that the values of AH and AV
greatly exceed the kinematics viscosity ν. Therefore the viscosity terms can be neglected from (1.2) so that
the mean flow can be fairly described by the following equation,

(1.4) ∂u
∂t

+ div(u⊗ u) = f − 1
ρ

∇p+
(
AH4Hu1, AH4Hu2, AV ∂

2
3u3
)
,

where 4H := ∂2

∂x2
1

+ ∂2

∂x2
2
and ∂2

3 := ∂2

∂x2
3
. Note that if AH = AV = A, then the mean flow equation (1.2) is

identical to that of the classical Navier-Stokes equations with an effective viscosity ν+A, or with an effective
viscosity of just A if we neglect the viscosity terms as in (1.4). Similar equations to (1.4) also appear in the
study of the friction region, called the Ekman layer, in geophysical fluid dynamics. Such friction layers, in
conjunction with the constraints of the Taylor-Proudman theorem are shown to exert a profound influence
on the dynamics of the flow far from the regions which are directly affected by viscosity. See, for instance,
[20, Chapter 4] for the application of (1.4) in the governing equations of atmospheric and oceanic flows.

Motivated by these applications, we will consider in this work the following equation that encompasses many
other situations of anisotropic diffusion,

(1.5) ∂u
∂t

+ div(u⊗ u) = f −∇p+
N∑
i=1

νiDi

(
|Diu|qi−2Diu

)
.

The directional derivative Diu is defined by Diu = (∂iu1, . . . , ∂iuN ), where ∂iuj = ∂ uj
∂ xi

, and N ≥ 2 is a
general space dimension that we are now considering. The exponents qi and the coefficients νi are assumed
to be constant with possible distinct values and such that 1 < qi < ∞ and νi > 0 for all i ∈ {1, . . . , N}. If
we let N = 3, q1 = q2 = q3 = 2, ν1 = ν2 = ν3 = ν, then we obtain from (1.5) the classical Navier-Stokes
equations for a renormalized pressure P = p

ρ . On the other hand, if besides N = 3 and q1 = q2 = q3 = 2,
we consider ν1 = ν2 = AH and ν3 = AV , and we neglect the second-order cross derivatives between the
horizontal and vertical components, i.e. if we assume ∂2u3

∂ x2
i

= ∂2ui
∂ x2

3
= 0 for all i ∈ {1, 2}, we can recover from

(1.5) the momentum equation (1.4), again for a renormalized pressure. In fact, neglecting these second-order
cross derivatives can be justified by a dimensional scale analysis in the governing equations of large-scale
flows (see e.g. [6, Chapter 4]).

We consider the system formed by the equations (1.1) and (1.5) in a cylinder QT := Ω×[0, T ], where Ω ⊂ RN
is a bounded domain with its boundary denoted by ∂Ω, and T > 0 is some fixed time. The boundary of QT
shall be denoted by ΓT := ∂Ω × [0, T ]. System of equations formed by (1.1) and (1.5) is supplemented by
the following initial and boundary conditions,

u = u0 in Ω for t = 0;(1.6)
u = 0 on ΓT .(1.7)

A generic element of Ω shall be denoted by x = (x1, . . . , xN ), while the elements of QT are denoted by (x, t).
The problem we study in this work is the following: given two vector fields f = f(x, t) and u0 = u0(x), to
find a vector field u = u(x, t) and a scalar field p = p(x, t) satisfying the system of equations posed by (1.1),
(1.5) and (1.6)-(1.7)

To our best knowledge, the anisotropic problem formed by (1.1), (1.5) and (1.6)-(1.7) have been studied by
the first time by Antontsev and Oliveira [2, 3]. In [2] it was studied the existence of weak and very weak
solutions for the stationary problem, whereas in [3] we have studied the evolutionary problem with respect
to the existence of weak solutions and their asymptotic behavior. The present work is devoted to study
the existence of very weak solutions to the problem posed by the equations (1.1), (1.5) and (1.6)-(1.7). We
distinguish the notion of very weak solutions from the notion of weak solutions in the following sense. In the
definition of weak solutions, solutions and test functions belong to the same function space, whereas, in the
definition of very weak solutions, test functions belong to a much smoother function space then solutions.
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A distinct type of anisotropic Navier-Stokes equations was studied by Soltanov in [24]. Motivated by a
problem suggested earlier in [15, Problem 2.11.24], the equations considered in [24] have the anisotropic
diffusion term written in the form

∑N
i=1Di

(
|u|qi−2Diu

)
instead. There are also some other works that

use the functional framework of anisotropic function spaces, but the considered problem is based on the
(isotropic) classical Navier-Stokes equations (see e.g. [11]). However, in three dimensions, the particular case
of considering (1.4) in the governing equations has been studied firstly by Chemin et al. [4] and Iftimie [12],
and then by many other authors (see e.g. [5, 18, 19, 29, 30]).

The isotropic version of the problem formed by (1.1), (1.5) and (1.6)-(1.7), i.e. the case when in equation
(1.5) νi = ν and qi = q for all i ∈ {1, . . . , N}, is being studied in the context of Rheology, at least since the
experimental works by Ostwald [17] and de Waele [27]. In this case, the momentum equation is

(1.8) ∂u
∂t

+ (u ·∇)u = f − 1
ρ

∇p+ ν div
(
|D(u)|q−2D(u)

)
,

where, here, q is the power-law index that characterizes the flow. Existence and uniqueness results to the
correspondingly problem for the momentum equation (1.8), were established by many authors, among them
the breakthroughs achieved by Ladyzhenskaya [13, 14], Lions [15], Wölf [28] and Diening et al. [7] (see also
Málek et al. [16] and Zhikov [31]).

Navier-Stokes equations with other anisotropic terms have been studied in the literature. For instance,
Navier-Stokes equations with small initial data in suitable anisotropic function spaces were considered in [11],
and with anisotropic feedback forces fields have been studied in [1]. There are also some works in which some
anisotropic regularity criteria for the Navier-Stokes equations, extending the well-known Serrin condition,
were considered (see e.g. [21]).

The plan of this paper is the followings. Section 2 is dedicated to introduce the main concepts of the
anisotropic function spaces we are going to work with, as well to define the notion of very weak solution to
our problem. In Section 3 is presented the main result of this work in Theorem 3.1, but first we make there
a brief historical review of past results related to our. The rest of the article, i.e. from Section 4 onwards,
is devoted to the proof of Theorem 3.1.

The notation used throughout this article and the main notions of the considered (isotropic) function spaces
are largely standard in the literature of Partial Differential Equations and in Mathematical Fluid Mechanics
as well. We address the reader to the monographs [9, 14, 15, 16] for any question related to that matter.

2. Anisotropic function spaces

Due to the presence of possibly different exponents qi for distinct directions, we need to consider the solutions
to the problem formed by (1.1), (1.5) and (1.6)-(1.7) in some anisotropic Sobolev space. We define the vector
q in RN , whose components are the exponents of the anisotropic diffusion term considered in (1.5), by

q := (q1, · · · , qN ), 1 < qi <∞ ∀ i ∈ {1, . . . , N}

and let us set
β := max

i∈{1,...,N}
qi and α := min

i∈{1,...,N}
qi .

To avoid any confusion that q is in fact multi-component, in the rest of our work we will emphasize this
meaning by writing an arrow over q: −→q . For simplicity, we assume throughout the text that the components
of −→q = (q1, q2, . . . , qN ) satisfy to

α = q1 ≤ q2 ≤ · · · ≤ qN = β .

Considering the unidirectional Sobolev spaces

W1,qi
i (Ω) =

{
v ∈W1,1(Ω) : Div ∈ Lqi(Ω)

}
, i ∈ {1, . . . , N},

which are Banach spaces for the norm

‖v‖W1,qi
i

(Ω) = ‖v‖L1(Ω) + ‖Div‖Lqi (Ω) , i ∈ {1, . . . , N},
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we define the anisotropic Sobolev space W1,−→q (Ω) as follows,

W1,−→q (Ω) :=
N⋂
i=1

W1,qi
i (Ω) ,

with the norm defined by

‖v‖W1,−→q (Ω) = ‖v‖L1(Ω) +
N∑
i=1
‖Div‖Lqi (Ω).

An important limitation of the anisotropic Sobolev space W1,−→q (Ω), is that, for bounded domains Ω, the
validity of Sobolev imbeddings is restricted to rectangular domains (see e.g. [10]). In fact, for rectangular
domains Ω, the following imbedding is continuous (cf. [23, Theorem 1])

(2.1) W1,−→q (Ω) ↪→ Ls(Ω) for any s :
{

1 ≤ s ≤ q ∗ ,
∑N
j=1

1
qj
> 1

1 ≤ s <∞ ,
∑N
j=1

1
qj
≤ 1 ,

where q ∗ denotes the Sobolev conjugate of q, the harmonic mean of q1, . . . , qN :

q ∗ := Nq

N − q
, q := N∑N

j=1
1
qj

,
N∑
j=1

1
qj
> 1 ⇒ q ∗ = N∑N

j=1
1
qj
− 1

.

Moreover, the imbedding (2.1) is compact (cf. [23, Theorem 2]), and we denote this fact by writing

(2.2) W1,−→q (Ω) ↪→↪→ Ls(Ω) for any s : 1 ≤ s < q ∗.
In some situations it is possible to remove the restrictions on the shape’s domain and to enlarge the interval
of s for the validity of (2.1) and (2.2). Let us see this fact by defining

W1,−→q
0 (Ω) := closure of C∞0 (Ω) in the anisotropic norm of W1,−→q (Ω) .

In this case, we have (cf. [8, Theorem 1]), in the interesting case of
∑N
j=1

1
qj
> 1, that

W1,−→q
0 (Ω) ↪→ Ls(Ω) for any s : 1 ≤ s ≤ q∗a ,(2.3)

W1,−→q
0 (Ω) ↪→↪→ Ls(Ω) for any s : 1 ≤ s < q∗a ,

where q∗a is the critical exponent defined by
(2.4) q∗a := max {q ∗, β} .

Remark 2.1. Note that, for N = 2, q ∗ > β and therefore q∗a = q ∗. But, if N > 2, it may well happen that
β > q ∗. In fact, for N > 2,

β > q ∗ ⇔ q <
β N

β +N
⇔

N∑
j=1, qj,β

1
qj
> 1 + N − 1

β
.

This means that, in typical situations when N > 2, q∗a = β if, at least, one of the components qi of −→q is
too far apart from the others. For instance, when N = 3, −→q =

( 10
7 ,

20
7 , β

)
, we have β > q ∗ if and only if

β > 40. In this example, the first two components q1 and q2 are relatively close to each other, but we may
have all the three components q1, q2 and q3 sufficiently far apart one from each other, as shows the example
−→q =

( 1001
1000 ,

1001
2 , β

)
for which β > q ∗ if and only β > 2002.

As a particular case of (2.3), it can be derived the following result, essentially due to Troisi [26] and extended
in [8, 22].

Lemma 2.1. Let Ω ⊂ RN be an open bounded domain with a Lipschitz-continuous boundary ∂Ω. Then for
any u ∈W1,−→q

0 (Ω)

‖u‖Ls(Ω) ≤ C

(
N∏
i=1
‖Diu‖Lqi (Ω)

) 1
N

for s ∈ [1, q ∗a ] if
∑N
i=1

1
qi
> 1, or s ∈ [1,∞) otherwise, and where C = C(Ω, N, s, qi) is a positive constant.
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Proof. The proof combines Theorem 1.2 of [26], Theorem 3.1 of [22] and Theorem 1 of [8]. �

Let us now recall the classical function spaces of Mathematical Fluid Mechanics,
V := {v ∈ C∞0 (Ω) : div v = 0},
H := closure of V in the norm of L2(Ω),
Vq := closure of V in W1,q(Ω).

We define the anisotropic analogue of Vq as follows,

V−→q :=
N⋂
i=1

Vqi ,

where Vqi :=closure of V in the norm of W1,qi
i (Ω). Now we consider the unidirectional Bochner space,

Lqi(0, T ; Vqi) :=
{
v : [0, T ]→ Vqi | v ∈ L1(QT ), Div ∈ Lqi(QT ) ∀ i ∈ {1, . . . , N}

}
,

which is a Banach space for the norm
‖v‖Lqi (0,T ;Vqi

) := ‖v‖L1(QT ) + ‖Div‖Lqi (QT ) .

Then we define the anisotropic Banach space

L
−→q (0, T ; V−→q ) :=

N⋂
i=1

Lqi(0, T ; Vqi) ,

whose norm is defined by

‖v‖L−→q (0,T ;V−→q ) := ‖v‖L1(QT ) +
N∑
i=1
‖Div‖Lqi (QT ) .

Note that, for a bounded domain Ω and for a finite T , the following continuous imbeddings hold

Lβ(0, T ; Vβ) ↪→ L
−→q (0, T ; V−→q ) ↪→ Lα(0, T ; Vα) .

Therefore, as a closed subspace of Lα(0, T ; Vα), the anisotropic parabolic space L−→q (0, T ; V−→q ) is separa-
ble and reflexive. By Lq′i(0, T ; V′qi) and L−→q ′(0, T ; V′−→q ), we denote the dual spaces of Lqi(0, T ; Vqi) and
L−→q (0, T ; V−→q ), respectively, and where V′qi and V′−→q stay for the dual spaces of Vqi and V−→q .

3. The main result

Regarding the issue of existence, which is our main goal in this work, we take some time to make a histor-
ical review of known results for the isotropic problem corresponding to the momentum equation (1.8). In
Ladyzhenskaya [13, Theorem 1.1] was established the existence of weak solutions for q ≥ 12

5 , in the case
of N = 3 and under the assumptions that u0 ∈ H and f ∈ L2(QT ). Then, Lions [15, Section 2.5] has
improved and extended, to a general dimension N ≥ 2, the existence result of [13]. Under the assump-
tions that u0 ∈ H and f ∈ Lq′(0, T ; V′q), [15, Théorème 2.5.1] asserts the existence of weak solutions
u ∈ Lq(0, T ; Vq) ∩ L∞(0, T ; H). Both proofs in [13] and [15] use Galerkin approximations and compactness
arguments together with the theory of monotone operators. The improvement of [15, Théorème 2.5.1] relies
in the fact that the continuous imbedding

(3.1) Lq(0, T ; Vq) ∩ L∞(0, T ; H) ↪→ Lq
N+2
N (QT )

implies the boundedness of u⊗ u : D(v) in L1(QT ) for all u, v ∈ Lq(0, T ; Vq)∩ L∞(0, T ; H), provided that

(3.2) q ≥ 3N + 2
N + 2 .

A demand in the search of results of existence for lower values of q was subsequently carried out by several
authors. In particular, Nečas and his collaborators developed a systematic program with much more Fluid
Mechanics insights to analyze the shear thinning case, i.e. the case for which 1 < q < 2 (see e.g. [16]).
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However, it was only almost 40 years later, that Wolf [28] has proved the existence of very weak solution,
i.e. solutions satisfying to

−
ˆ
QT

u ·ϕt dxdt+
ˆ
QT

(S(D(u))− u⊗ u) : D(ϕ) dxdt

=
ˆ
QT

f ·ϕ dxdt+
ˆ

Ω
u0 ·ϕ(0) dx,

(3.3)

but now for all ϕ ∈ C∞(QT ), with divϕ = 0 and suppϕ ⊂⊂ Ω× [0, T ). In (3.3), S is a generic monotonous
tensor function of the symmetric part D(u) of the velocity gradient ∇u, satisfying to suitable growth and
coercivity conditions, and of which the (isotropic tensor) |D(u)|q−2D(u), with 1 < q < ∞, is a particular
case. The author has used the assumptions that u0 ∈ H, f = −div F and F ∈ Lq′(QT ) and observed the
imbeddings (3.1) and Lq(0, T ; Vq)∩ LqN+2

N (QT ) ↪→ Ls(QT ) imply that div(u⊗ u) ·ϕ is bounded in Ls(QT )
for all L∞–truncation ϕ of u and for some s > 1, provided that

q > 2N + 1
N + 2 .

In his proof, the author has used harmonic decomposition of Lq-functions to decompose the pressure, into a
measurable function and a singular part, to carry out the passage to the limit in the pressure terms. Finally
in Diening et al. [7], the authors have improved the result [28] for smaller values of q,

(3.4) q >
2N
N + 2 .

In that work the main tool was a well succeeded application of the Lipschitz–truncation method, but it was
also very important the technique developed by Wolf to decompose the pressure.

Mathematically speaking, anisotropic models are good because allow one to improve known results for
the isotropic models, at least in some directions of diffusion or for particular choices of all the diffu-
sion coefficients. In particular, in [3, Theorem 3.1] we have proved the existence of weak solutions u ∈
L∞(0, T ; H) ∩ L−→q (0, T ; V−→q ) to the problem formed by (1.1), (1.5) and (1.6)-(1.7), satisfying the following
integral identity in the sense of distributions on (0, T ),

d

d t

ˆ
Ω

u(t) · v dx +
N∑
i=1

ˆ
Ω
|Diu(t)|qi−2Diu(t) ·Div dx +

ˆ
Ω

[(u(t) ·∇) u(t)] · v dx =
ˆ

Ω
f(t) · v dx,

for any v ∈ V−→q ∩Lθ(Ω) and where θ is such that 1
q∗a

+ 1
α + 1

θ = 1. The main assumption to prove [3, Theorem
3.1], was a restriction on the lower bound of the critical anisotropic Sobolev exponent q∗a,

(3.5) q∗a ≥ q∗ :=


2α(α− 1)

(α+ 1)(α− 2) , 2 < α < 3,
2α
α− 1 , α ≥ 3.

On the basis of the lower bound given by (3.5), are the anisotropic imbedding V−→q ↪→ L2α′(Ω), which follows
from (2.1), and the anisotropic counterpart of (3.1),

(3.6) L∞(0, T ; H) ∩ L
−→q (0, T ; V−→q ) ↪→ Lρ(QT ) for ρ := 2 + α− 2α

q∗a
,

which follows from (2.1) and parabolic interpolation. Observe that, by virtue of (3.5), [3, Theorem 3.1]
improves the existence results [13, 15] in some directions of diffusion or for particular choices of all the
diffusion coefficients (see the final part of [3, Section 3.4]). However, as observed in [3, Remark 3.2], if qi = q
for all i ∈ {1, . . . , N}, then condition (3.5) reduces to (3.2). On the other hand, the result [3, Theorem 3.1]
cannot be compared with the results of [7, 28], because the notions of weak solutions these papers deal with
are distinct. The goal of this work is to extend [3, Theorem 3.1] for lower bounds of α smaller than those
provided by (3.5), introducing for that purpose the notion of very weak solution to the anisotropic problem
posed by (1.1), (1.5) and (1.6)-(1.7).
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Definition 3.1. Let N ≥ 2 and assume that u0 ∈ H and f ∈ L1(QT ). A vector field u is a very weak
solution to the problem {(1.1), (1.5), (1.6)-(1.7)}, if:

(1) u ∈ L∞(0, T ; H) ∩ L−→q (0, T ; V−→q );
(2) u(0) = u0;
(3) For every ϕ ∈ C∞(QT ), with divϕ = 0 and suppϕ ⊂⊂ Ω× [0, T ),

−
ˆ
QT

u ·ϕt dxdt+
N∑
i=1

ˆ
QT

νi|Diu|qi−2Diu ·Diϕ dxdt−
ˆ
QT

u⊗ u : ∇ϕ dxdt

=
ˆ
QT

f ·ϕ dxdt+
ˆ

Ω
u0 ·ϕ(0) dx .

We shall see in this work that, by considering the notion of very weak solutions stated at Definition 3.1, the
lower bound of q∗a given at (3.5) can be considerably decreased. In fact, as we shall see in the proof of the
our main result written bellow, we will establish the existence of very weak solutions in the case of

(3.7) q∗a > β .

Observe that, due to (2.4), the validity of (3.7) implies that q∗a = q ∗. According to Remark 2.1, this case
corresponds to a situation in which at least one of the components of −→q is too far apart from the others.

Theorem 3.1. Let Ω be a bounded domain in RN , N ≥ 2, and assume that

(3.8) f = −div F, F ∈ L
−→q ′(QT ),

(3.9) u0 ∈ H.

If the critical exponent q∗a satisfies to

(3.10) q∗a > max{2, β} ,

then there exists a very weak solution u ∈ Cw([0, T ]; H)∩L−→q (0, T ; V−→q ) to the problem formed by (1.1), (1.5)
and (1.6)-(1.7) in the sense of Definition 3.1.

Here, by Cw([0, T ]; H) we denote the subspace of L∞(0, T ; H) consisting of functions which are weakly
continuous from [0, T ] into H.

Remark 3.1. Note that if qi = q for all i ∈ {1, . . . , N}, then, from condition (3.10), we recover the main
restriction (3.4) on the existence of very weak solutions (see [7]) for the isotropic version of the problem
formed by (1.1), (1.5) and (1.6)-(1.7).

In some parts of the proof of Theorem 3.1, we shall make use of the following relation to better identify each
anisotropic diffusion component

(3.11) Di

(
|Diu|qi−2Diu

)
= div

(
|Diu|qi−2Diu⊗ ei

)
,

where {e1, . . . , eN} denotes the canonical basis of RN .

Proof. The proof of Theorem 3.1 will be carried out in the rest of this paper which will be split into several
sections for better understanding. In the proof we use a regularization technique in the spirit of [31], we
adapt the technique of decomposing the pressure developed in [28] and we use the Lipschitz approximation
in the spirit of [7].
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4. Existence of approximate solutions

Without loss of generality, we assume in the rest of this work that

νi = 1 for all i ∈ {1, . . . , N}.

For ε > 0, we consider the regularized problem

div uε = 0 in QT ,(4.1)

∂ uε
∂ t

+ div(uε ⊗ uε) = f −∇pε +
N∑
i=1

Di

(
|Diuε|qi−2Diuε

)
+ εdiv

(
|∇uε|γ−2|∇uε|

)
in QT ,(4.2)

uε = u0 in Ω for t = 0,(4.3)
uε = 0 on ΓT ,(4.4)

where γ is an exponent so large that, by one hand the convective term becomes a compact perturbation of
the anisotropic Stokes problem, and on the other

ˆ
Ω

u⊗ u : ∇v dx ∈ L1(0, T ) for u ∈ L∞(0, T ; H) ∩ L
−→q (0, T ; V−→q ), v ∈ Lγ(0, T ; Vγ) .

Moreover, γ should be chosen in a way such that Lγ(0, T ; Vγ) ↪→ L−→q (0, T ; V−→q ). In consequence of all this,
we consider

(4.5) γ > γ := max
{

2N
N + 2 , β,

2q∗a
α(q∗a − 2) + 1

}
.

A vector function uε ∈ L∞(0, T ; H) ∩ Lγ(0, T ; Vγ) is a (very) weak solution to the problem (4.1)-(4.4), if

−
ˆ
QT

uε ·ϕt dxdt+
N∑
i=1

ˆ
QT

|Diuε|qi−2Diuε ·Diϕ dxdt+ ε

ˆ
QT

|∇uε|γ−2∇uε : ∇ϕ dxdt

=
ˆ
QT

uε ⊗ uε : ∇ϕ dxdt+
ˆ
QT

f ·ϕ dxdt+
ˆ

Ω
u0 · ϕ(0) dx

(4.6)

for all ϕ ∈ C∞(QT ), with divϕ = 0 and suppϕ ⊂⊂ Ω× [0, T ).

Proposition 4.1. Let the assumptions of Theorem 3.1 be fulfilled and, in addition, assume that γ obeys to
(4.5). Then, for each ε > 0, there exists a very weak solution uε ∈ L∞(0, T ; H)∩Lγ(0, T ; Vγ) to the problem
(4.1)-(4.4). In addition, every weak solution satisfies the following energy equality:

(4.7) 1
2‖uε(t)‖

2
H +

N∑
i=1

ˆ
Qt

|Diuε|qidxdt+ ε

ˆ
Qt

|∇uε|γdxdt = 1
2‖u0‖2H +

ˆ
Qt

F : ∇uε dxdt

for all t ∈ (0, T ).

Proof. The choice of γ according to (4.5) allows one to use the theory of monotone operators (see e.g. [15,
pp. 209-217]) to prove the existence. The energy relation (4.7) holds true, because, since the solutions and
test functions are in the same function space, it is possible to test (4.2) by a solution uε. �

Let uε ∈ L∞(0, T ; H) ∩ Lγ(0, T ; Vγ) be a weak solution to the problem (4.1)-(4.4). From (4.7), we obtain,
by using Young’s inequality, that

(4.8) ‖uε‖2L∞(0,T ;H) +
N∑
i=1
‖Diuε‖qiLqi (QT ) + ε‖∇uε‖γLγ(QT ) ≤ C,
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where, by the assumptions (3.8)-(3.9), C is a positive constant and, very important, does not depend on ε.
The inequality (4.8) ensures that

‖Diuε‖Lqi (QT ) ≤ C ∀ i ∈ {1, . . . , N},(4.9)

‖uε‖2L∞(0,T ;H) +
N∑
i=1
‖uε‖qiLqi (0,T ;Vqi

) ≤ C,(4.10)

‖|Diuε|qi−2Diuε‖Lq
′
i (QT )

≤ C for all i ∈ {1, . . . , N}.(4.11)

On the other hand, by using (4.10) and the imbedding (3.6), we can prove that

(4.12) ‖uε‖Lρ(QT ) ≤ C for ρ = 2 + α− 2α
q∗a

.

As a consequence of (4.12),

(4.13) ‖uε ⊗ uε‖L
ρ
2 (QT )

≤ C.

Note that the constants in (4.9)-(4.13) are distinct and do not depend on ε. It should be stressed that
the assumption (3.10) assures that ρ > 2 and therefore L

ρ
2 (QT ) is a reflexive Banach space. Thus, from

(4.9)-(4.13) and by means of reflexivity, there exists a sequence of positive numbers εm such that εm −→ 0,
as m→∞, and

Diuεm ⇀ Diu in Lqi(QT ), as m→∞, for all i ∈ {1, . . . , N},(4.14)
|Diuεm |qi−2Diuεm ⇀ Si in Lq′i(QT ), as m→∞, for all i ∈ {1, . . . , N},(4.15)
uεm ⇀ u in L−→q (0, T ; V−→q ), as m→∞,(4.16)
uεm ⇀ u in Lρ(QT ), as m→∞,(4.17)
uεm ⊗ uεm ⇀ G in L

ρ
2 (QT ), as m→∞.(4.18)

Moreover, it can be proved that

(4.19) εm|∇uεm |γ−2∇uεm ⇀ 0 in Lγ′(QT ), as m→∞.

Indeed, for ϕ ∈ Lγ(0, T ; Vγ), we have by the application of Hölder’s inequality and (4.8) that∣∣∣∣ˆ
QT

εm|∇uεm |γ−2∇uεm : ∇ϕ dxdt
∣∣∣∣ ≤

Cε
1
γ
m

(ˆ
QT

εm|∇uεm |γ dxdt
) 1
γ′

‖∇ϕ‖Lγ(QT ) ≤ Cε
1
γ
m −→ 0, as m→∞.

Then, using the convergence results (4.16)-(4.19), we can pass to the limit εm −→ 0 in (4.6), with uε replaced
by uεm , to obtain

(4.20) −
ˆ
QT

u ·ϕt dxdt+
N∑
i=1

ˆ
QT

Si ·Diϕ dxdt−
ˆ
QT

(G + F) : ∇ϕ dxdt =
ˆ

Ω
u0 ·ϕ(0) dx

for all ϕ ∈ C∞(QT ), with divϕ = 0 and suppϕ ⊂⊂ Ω×[0, T ). Now, using the identity (4.20) and proceeding
analogously to [28, p. 123], we can prove that

(4.21) u ∈ Cw([0, T ]; H).

The main difficulty here is to prove, from (4.20), that, for the distributional time derivative ut,

ut ∈ L
N+1
N (0, T ; Y′), Y :=

N⋂
i=1

Vqi ∩Vκ ∩H, κ :=
(
N + 2
N

)′
.

To prove this we first observe that LN+1
N (0, T ; Y′) denotes the dual space of LN+1(0, T ; Y). Due to (4.15),

we can prove that DiSi ∈ LN+1
N (0, T ; V′qi) and due to the assumption (3.8), we can also prove that F ∈

LN+1
N (0, T ; V′qi) for all i ∈ {1, . . . , N}. That div G ∈ LN+1

N (0, T ; V′κ) follows exactly in the same way as it
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was done in [28]. Next, using (4.10) and the definition of the distributive time derivative ∂uεm
∂ t , that is also

in LN+1
N (0, T ; Y′), we can prove analogously to [28] that for every t ∈ [0, T ]

uεm(t) ⇀ u(t) in H, as m→∞.

Whence (4.21) holds, in particular u(0) = u0 and, owe to this and to (4.3),

(4.22) uεm(0) = u(0).

5. Convergence of the approximated convective term

In this section, we shall prove that G = u⊗ u. To do it so, we first consider a fixed but arbitrary domain ω
for which we may well assume the existence of another domain ω′ such that

ω ⊂⊂ ω′ ⊂⊂ Ω : ∂ω is Lipschitz-continuous and ∂ω′ ∈ C2.

For these domains, we fix the notations ωT := ω × (0, T ) and ω′T := ω′ × (0, T ). We start by observing that
from (4.6) with uεm in the place of uε, and using the notations (3.8) and (3.11), we can write

−
ˆ
ω′
T

uεm ·ϕt dxdt+

ˆ
ω′
T

(
N∑
i=1
|Diuεm |qi−2Diuεm ⊗ ei − uεm ⊗ uεm − F

)
: ∇ϕ dxdt = 0

(5.1)

for all ϕ ∈ C∞0 (ω′T ), with divϕ = 0. From the assumption (3.8) and the estimates (4.11) and (4.13), we
verify that

(5.2)
N∑
i=1
|Diuεm |qi−2Diuεm ⊗ ei − uεm ⊗ uεm − F ∈ Lr(ω′T ),

where

(5.3) 1 < r ≤ min
{ρ

2 , β
′
}
, with ρ given at (3.6).

Observe that by assumption (3.10), ρ > 2 and consequently min
{
ρ
2 , β
′} > 1. Using (5.2)-(5.3), we can

obtain, from (5.1), that the weak time derivative

(5.4) u′εm ∈ Lr(0, T ; W−1,r(ω′)).

Now, we observe from (2.4) and since, by assumption (3.10), q∗a > ρ, there always exists γ > 1 such that the
following Sobolev compact and continuous imbeddings hold

(5.5) W1,−→q
0 (ω′) ↪→↪→ Lγ(ω′) ↪→W−1,r(ω′), ((r′)∗)′ ≤ γ < q∗a.

Then, using the Aubin-Lions compactness lemma (see [15, p. 58]), we obtain from (4.16) together with (5.4)
and (5.5), and passing to a subsequence, that

(5.6) uεm −→ u in Lr(0, T ; Lγ(ω′)), as m→∞.

Using parabolic interpolation, we obtain from (4.10) and (5.6) that

(5.7) uεm −→ u in Ls(0, T ; Lγ(ω′)) ∀ s : 1 ≤ s <∞, as m→∞.

Since, from assumptions (3.10), q∗a > ρ > 2, we can choose γ ∈ [ρ, q∗a) such that, in view of (5.7),

(5.8) uεm −→ u in Ls(ω′T , ), s = ρ, as m→∞,

and in consequence

(5.9) uεm ⊗ uεm −→ u⊗ u in L
ρ
2 (ω′T ), as m→∞.

From (4.18) and (5.9), we conclude that

(5.10) G = u⊗ u.



GENERALIZED NAVIER-STOKES EQUATIONS WITH NONLINEAR ANISOTROPIC VISCOSITY 11

6. Decomposition of the pressure.

First of all, we observe that by combining (4.20) with (5.1) and using (3.8) together with (4.22) and (5.10),
we get

−
ˆ
QT

(uεm − u) ·ϕt dxdt+
N∑
i=1

ˆ
QT

[(
|Diuεm |qi−2Diuεm − Si

)
⊗ ei

]
: ∇ϕ dxdt =

ˆ
QT

(uεm ⊗ uεm − u⊗ u) : ∇ϕ dxdt
(6.1)

for all ϕ ∈ C∞(QT ), with divϕ = 0 and suppϕ ⊂⊂ Ω × [0, T ). Now, the results (4.15), (4.21), (5.9) and
(6.1) allow us to apply directly [28, Theorem 2.6] with the modifications introduced in [7, Theorem 2.2]. By
these results, we can infer the existence of unique functions

p1
εm ∈ Lq

′
1(ω′T ), . . . , pNεm ∈ Lq

′
N (ω′T ),(6.2)

p⊗εm ∈ L
ρ
2 (ω′T ),

phεm ∈ Cw([0, T ]; W1,2(ω′)),

with

(6.3) 4phεm = 0 and phεm(0) = 0,

and such that

−
ˆ
ω′
T

(uεm − u) ·ϕt dxdt+
N∑
i=1

ˆ
ω′
T

[(
|Diuεm |qi−2Diuεm − Si

)
⊗ ei

]
: ∇ϕ dxdt =

ˆ
ω′
T

(uεm ⊗ uεm − u⊗ u) : ∇ϕ dxdt+

N∑
i=1

ˆ
ω′
T

piεm divϕ dxdt+
ˆ
ω′
T

p⊗εm divϕ dxdt+
ˆ
ω′
T

∇phεmϕt dxdt

(6.4)

for all ϕ ∈ C∞(ω′T ) with suppϕ ⊂⊂ ω′ × [0, T ). In addition, the following estimates also hold

‖piεm‖Lq′i (ω′
T

)
≤ Ci

∥∥|Diuεm |qi−2Diuεm − Si
∥∥

Lq
′
i (ω′

T
)
∀ i ∈ {1, . . . , N},(6.5)

‖p⊗εm‖L ρ2 (ω′
T

)
≤ C⊗ ‖uεm ⊗ uεm − u⊗ u‖

L
ρ
2 (ω′

T
)
,(6.6)

‖phεm(t)‖W1,2(ω′) ≤ Ch ‖uεm(t)− u(t)‖L2(ω′) ∀ t ∈ (0, T ),(6.7)

where C1, . . . , CN , C⊗ and Ch are positive constants depending only on N , ω′ and on the correspondingly
Lebesgue exponents. Then, using the local regularity theory together with (5.8) and (6.7), it can be proved
(by the same reasoning used in [7, p.29]), that

(6.8) ‖phεm‖Ls(0,T ;W2,s(ω)) −→ 0 ∀ s : 1 ≤ s <∞, as m→∞.

We now define

vεm :=
(
uεm − u + ∇phεm

)
χωT ,(6.9)

Υi
εm :=

(
Si − |Diuεm |qi−2Diuεm

)
⊗ ei + piεmI , i ∈ {1, . . . , N},(6.10)

Υ⊗εm := uεm ⊗ uεm − u⊗ u + p⊗εmI,(6.11)

Υεm :=
N∑
i=1

Υi
εm + Υ⊗εm ,(6.12)

where χωT denotes the characteristic function of the set ωT . Observe that for (6.9), due to (5.8) and (6.8),
we have

(6.13) vεm −→ 0 in Lρ(ωT ), as m→∞.
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Using (6.9)-(6.12), the integral identity (6.4) can be written in the form

(6.14) −
ˆ
ωT

vεm ·ϕt dxdt =
ˆ
ωT

Υεm : ∇ϕ dxdt

for all ϕ ∈ C∞0 (ωT ). From (6.14) it can be proved that for the distributive time derivative v′εm , we have

(6.15) v′εm ∈ Lr(0, T ; W−1,r(ω)),

where r satisfies to (5.3). In fact, due to (6.13), (4.15) and (6.5), (5.9) and (6.6), we respectively have

‖vεm‖Lρ(ωT ) ≤ C,(6.16)
‖Υi

εm‖Lq
′
i (ωT )

≤ C ∀ i ∈ {1, . . . , N},(6.17)

‖Υ⊗εm‖L
ρ
2 (ωT )

≤ C,(6.18)

where C denote distinct positive constants not depending on m. As a consequence of (6.16)-(6.18), we have

(6.19) Υεm ∈ Lr(ωT )

and, consequently, divΥεm ∈ Lr(0, T ; W−1,r(ω)). Therefore, in view of (6.15) and (6.19), the integral
identity (6.4) can also be written as

(6.20)
ˆ T

0
〈v′εm ,ϕ〉 dt =

ˆ
ωT

Υεm : ∇ϕ dxdt

for all ϕ ∈ Lr′(0, T ; W1,r′
0 (ω)).

7. Construction of a Lipschitz-continuous truncation

In order to construct the Lipschitz truncation we shall work with in the rest of the proof, we consider the
functions Υi

εm and Υ⊗εm defined at (6.10)-(6.12) as being extended to RN+1 by zero. First of all, we observe
that in view of (6.13),

(7.1) vεm −→ 0 in Lρ(RN+1), as m→∞,

Using (4.16), (6.7) and (6.9) on one hand, and using (6.17) on the other, we have for every i ∈ {1, . . . , N}

‖Divεm‖Lqi (RN+1) ≤ C,(7.2)
‖Υi

εm‖Lq
′
i (RN+1)

≤ C,(7.3)

for distinct positive constants C not depending on m. Moreover, (5.9) together with (6.6), justify that

Υ⊗εm −→ 0 in L
ρ
2 (RN+1), as m→∞.

Let us now set

fεm :=M∗(|vεm |) ,

giεm :=M∗(|Divεm |) +
(
M∗(|Υi

εm |)
) 1
qi−1 , i ∈ {1, . . . , N},

hiεm :=
(
M∗(|Υ⊗εm |)

) 1
qi−1 , i ∈ {1, . . . , N},

where M∗ := Mt ◦ Mx. Here Mt and Mx denote the Hardy-Littlewood maximal operators, which are
defined, for some function f ∈ Lp(RN+1) with 1 < p <∞, respectively by

Mt(f)(x, t) := sup
0<r<∞

1
2r

ˆ t+r

t−r
|f(x, s)| ds,

Mx(f)(x, t) := sup
0<R<∞

1
LN (BR(x))

ˆ
BR(x)

|f(y, s)| dy,
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where BR(x) denotes the ball of RN centered at x with radius R > 0, and LN stands for the N -dimensional
Lebesgue measure. Then due to the boundedness of the operator M∗ from Lp(RN+1) into Lp(RN+1) for
any p > 1 (see e.g. Stein [25, Theorem I.1.1]), it can be proved that

‖fεm‖Lρ(RN+1) −→ 0, as m→∞,(7.4)
‖giεm‖Lqi (RN+1) ≤ C ∀ i ∈ {1, . . . , N},(7.5)
‖hiεm‖L

ρ
2 (RN+1)

−→ 0 ∀ i ∈ {1, . . . , N}, as m→∞,(7.6)

for some positive constant C not depending on m. To prove (7.4) we have used (5.8) and (6.8), to prove
(7.5) we used (4.16), (6.7) and (6.17), whereas to prove (7.6) we used (5.9). Next, by the reasoning of [7,
p. 31] (see also [2, Lemma 5.2]), we can infer, for every i ∈ {1, . . . , N} and for every j, m ∈ N, the existence
of λm,j ∈

[
22j+1, 22j+1

]
such that

LN+1
(
Gim,j

)
≤ C2−jλ−qim,j ‖g

i
εm‖Lqi (RN+1) , Gim,j :=

{
(x, t) ∈ RN+1 : |giεm | > λm,j

}
,(7.7)

LN+1
(
Hi
m,j

)
≤ C2−jλ(1−qi) ρ2

m,j ‖hiεm‖L
ρ
2 (RN+1)

, Hi
m,j :=

{
(x, t) ∈ RN+1 : |hiεm | > λm,j

}
.(7.8)

On the other hand, for every j, m ∈ N, we also have, by virtue of (7.1) and (7.4),
(7.9) LN+1 (Fm,j) ≤ C‖fεm‖Lρ(RN+1) , Fm,j :=

{
(x, t) ∈ RN+1 : |fεm | > 1

}
.

Gathering (7.5) and (7.7), we have
(7.10) LN+1

(
Gim,j

)
≤ C2−jλ−qim,j ∀ i ∈ {1, . . . , N}.

Moreover, we also have
Gim,j ⊃ {M∗(|Divεm |) > λm,j} ∪ {M∗(|Υi

εm |) > λqi−1
m,j } ∀ i ∈ {1, . . . , N}.

Now, since λm,j ∈
[
22j+1, 22j+1

]
, we observe that (7.4) and (7.9) on the one hand and (7.6) and (7.8) on the

other, imply, respectively, that
lim sup
m→∞

LN+1(Fm,j) = 0,(7.11)

lim sup
m→∞

LN+1(Hi
m,j) = 0 ∀ i ∈ {1, . . . , N}.(7.12)

On the other hand, since M∗ is subadditive (see e.g. Stein [25]), we get from the definitions of Gim,j and
Hi
m,j (see (7.7)-(7.8)) that, for each i ∈ {1, . . . , N},

(7.13) Gim,j ∪Hi
m,j ⊃ Oi ,

where
Oi :=

{
(x, t) ∈ RN+1 :M∗(|Divεm |) + %im,j

(
M∗

(∣∣Υi
εm

∣∣)+M∗
(∣∣Υ⊗εm ∣∣)) > 3λm,j

}
,

%im,j := λ2−qi
m,j .

For each i ∈ {1, . . . , N}, we set
(7.14) Eim,j :=

(
Fm,j ∪Gim,j ∪Hi

m,j

)
∩ ωT ,

Then, we can readily see that due to (7.10) and (7.11)-(7.12), we have
(7.15) lim sup

m→∞
LN+1(Eim,j) ≤ C2−j lim sup

m→∞
λ−qim,j , i ∈ {1, . . . , N} .

Moreover, due to (7.13), we have, for each i ∈ {1, . . . , N},
(7.16)

(
Oi ∪ U

)
∩ ωT ⊂ Eim,j ⊂ ωT ,

where here U is the set Fm,j defined in (7.9).

We are now in conditions to define the truncation we shall consider here. For each i ∈ {1, . . . , N}, we
consider the following Whitney covering of Eim,j formed by the cubes

(7.17) Q
%im,j
rn ≡ Q%

i
m,j
rn (xn, tn) :=

{
(y, s) ∈ RN+1 : d%i

m,j
((xn, tn), (y, s)) < rn

}
,
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where rn > 0, n ∈ N and d%i
m,j

is the metric defined by

(7.18) d%i
m,j

((xn, tn), (y, s)) := max
{
|y− xn|,

1
%im,j

√
|s− tn|

}
,

and {ψin : n ∈ N} is the associated partition of unity (see e.g. Stein [25]). Following [7, Section 3], we define,
for each i ∈ {1, . . . , N}, the Lipschitz truncation of vεm subordinated to the Whitney covering (7.17)-(7.18)
by

T i
m,j(vεm) :=


vεm in ωT \ Eim,j
∞∑
n=1

ψinvεmχ
Q
%i
m,j
rn

in Eim,j ,

where χ
Q
%i
m,j
rn

denotes the characteristic function of the set Q%
i
m,j
rn . Here, we observe that for i , k the

irregularity sets Eim,j and Ekm,j are not necessarily the same. Therefore, we may have T i
m,j(vεm) = vεm in

all Ekm,j or just in part of it, if Eim,j ∩ Ekm,j = ∅ or Eim,j ∩ Ekm,j , ∅, respectively. Taking this into account
and defining

(7.19) Em,j :=
N⋂
i=1

Eim,j ,

with the help of all T i
m,j we can build the following Lipschitz truncation of vεm

(7.20) T m,j(vεm) :=



vεm in ωT \ Em,j

T i
m,j(vεm) in Ekm,j \ (Ekm,j ∩ Eim,j), if Ekm,j ∩ Eim,j , ∅

N∑
i=1

∞∑
n=1

ψinvεmχ
Q
%i
m,j
rn

in Em,j ,

.

Note that if Ekm,j ∩ Eim,j , ∅, than T i
m,j(vεm) = vεm in Ekm,j \ (Ekm,j ∩ Eim,j). Now, let ξ ∈ C∞0 (ωT ) be a

fixed cut-off function such that 0 ≤ ξ ≤ 1 in ωT and let us consider the following admissible test function

(7.21) φm,j := ξ T m,j(vεm).

In order to establish the main properties of the Lipschitz truncation (7.20) we are interested in, let us set

(7.22) ωξT := supp ξ, ξ is the cut-off function of (7.21).

Note that ωξT is strictly contained in ωT , because 0 ≤ ξ ≤ 1 in ωT . Let also C0,1
d%m,j

(ωξT ) be the space of
Lipschitz-continuous functions with respect to the metric (7.18). From the definition of vεm (see (6.9)), using
(4.16) together with (6.6), we can prove that

vεm ∈ L∞(0, T ; L2(ω)) ∩ L
−→q (0, T ; V−→q ).

Then, owing to (7.11)-(7.16), we can apply directly [7, Theorem 3.9, (i)-(iii)] to obtain:

(7.23) T m,j(vεm) ∈ C0,1
d%m,j

(ωξT ),

with the norm depending on N , ωξT , ‖vεm‖L1(Em,j), ‖vεm‖L1(ω̃T ), where ω
ξ
T ⊂⊂ ω̃T ⊂⊂ ωT ;

‖∇T m,j(vεm)‖L∞(ωξ
T

) ≤ C
(
λm,j + %−1

m,jδ
−N−3
d%m,j ,ω

ξ
T

‖vεm‖L1(Em,j)

)
,(7.24)

‖T m,j(vεm)‖L∞(ωξ
T

) ≤ C
(

1 + %−1
m,jδ

−N−2
d%m,j ,ω

ξ
T

‖vεm‖L1(Em,j)

)
,(7.25)

where the constants denoted by C depend only on N , and

(7.26) δd%m,j ,ω
ξ
T

:= d%m,j (ω
ξ
T , ωT ) > 0 due to (7.22);
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∥∥

L1(ωξ
T
∩Em,j)

≤

C%−1
m,jLN+1(Em,j)

(
λm,j + %−1

m,jδ
−N−3
d%m,j ,ω

ξ
T

‖vεm‖L1(Em,j)

)2
,

(7.27)

where the constant C depends only on N . In addition,
(7.28) ‖T m,j(vεm)‖Ls(ωT ) ≤ C‖vεm‖Ls(ωT ) ∀ s : 1 ≤ s ≤ ∞,

where C depends only on N (see [7, Lemma 3.5] and [25, Section VI.3]).

8. Convergence of the anisotropic diffusion term

Observing that, by virtue of (7.23)-(7.25) and of the definition of ξ, our admissible test function φm,j ∈
Lr′(0, T ; W1,r′

0 (ω)), then, from (6.15) and (6.20), we infer thatˆ T

0
〈v′εm(t),φm,j(t)〉 dt =

ˆ
ωT

Υεm : ∇φm,j dxdt.

On the other hand, owing to (7.11)-(7.16) and, in addition, to (6.19), we can apply [7, Theorem 3.9, (iv)] to
prove that for every ξ ∈ C∞0 (ωT )ˆ T

0
〈v′εm(t),φm,j(t)〉 dt =1

2

ˆ
ωT

(
|T m,j(vεm)|2 − 2vεm · T m,j(vεm)

)
ξ′ dxdt

+
ˆ
Em,j

T ′m,j(vεm) · (T m,j(vεm)− vεm) ξ dxdt.
(8.1)

Now, gathering (6.20) and (8.1), and expanding the notations (6.10)-(6.11), we obtain
N∑
i=1

ˆ
ωT

(
|Diuεm |qi−2Diuεm − Si

)
⊗ ei : ∇T m,j(vεm) ξ dxdt =

N∑
i=1

ˆ
ωT

(
Si − |Diuεm |qi−2Diuεm

)
⊗ ei : T m,j(vεm)⊗∇ξ dxdt

+
ˆ
ωT

(uεm ⊗ uεm − u⊗ u) : ∇ (T m,j(vεm) ξ) dxdt

+
N∑
i=1

ˆ
ωT

piεmT m,j(vεm) · ∇ξ dxdt

+
N∑
i=1

ˆ
ωT

piεm div(T m,j(vεm)) ξ dxdt

+
ˆ
ωT

p⊗εm div(T m,j(vεm) ξ) dxdt

+ 1
2

ˆ
ωT

(
2vεm · T m,j(vεm)− |T m,j(vεm)|2

)
ξ′ dxdt

+
ˆ
Em,j

T ′m,j(vεm) · (vεm − T m,j(vεm)) ξ dxdt

:=
N∑
i=1

J i1 + J2 +
N∑
i=1

J i3 +
N∑
i=1

J i4 + J5 + J6 + J7.

We claim that, for a fixed j,

(8.2) lim sup
m→∞

N∑
i=1

∣∣∣∣ˆ
ωT

(
|Diuεm |qi−2Diuεm − Si

)
⊗ ei : ∇T m,j(vεm) ξ dxdt

∣∣∣∣ ≤ C2−
j
2 .

To prove this, we will carry out the passage to the limit m→∞ in all absolute values |Jl|, l = 1, . . . , 7.
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• lim supm→∞
∑N
i=1(|J i1| + |J i3|) = 0. Due to (4.15) and (6.2),

(
Si − |Diuεm |qi−2Diuεm

)
⊗ ei and piεm are

uniformly bounded in Lq′i(ωT ) for all i ∈ {1, . . . , N}. Then, using Hölder’s inequality and (7.28), led us to

|J i1|+ |J i3| ≤ C1 ‖T m,j(vεm)‖Lqi (ωT ) ≤ C2 ‖vεm‖Lqi (ωT ) ≤ C3 ‖vεm‖Lβ(ωT )

for all i ∈ {1, . . . , N}. The assertion follows by the application of (5.7) with s = γ = β and (6.8) with s = β,
and observing that, from assumption (3.7), β < q∗a.

• lim supm→∞(|J2|+ |J5|) = 0. In fact,

|J2|+ |J5| ≤ ‖u⊗ u− uεm ⊗ uεm‖L1(ωT )‖∇ (T m,j(vεm)ξ) ‖L∞(ωξ
T

)+

‖p⊗εm‖L1(ωT )‖ div (T m,j(vεm)ξ) ‖L∞(ωξ
T

).

Then, due to (5.9) and (6.6), lim supm→∞(|J2| + |J5|) = 0 if, for a fixed j ∈ N, both second multiplying
terms on the right-hand side of the above inequality are uniformly bounded with respect to m. This is true,
because, according to (7.24) and (7.25), we get

‖∇ (T m,j(vεm)ξ) ‖L∞(ωξ
T

) ≤

‖∇T m,j(vεm)‖L∞(ωξ
T

) + C‖T m,j(vεm)‖L∞(ωξ
T

) ≤

C1

λm,j + %−1
m,j

‖vεm‖L1(Em,j)

δN+3
d%m,j ,ω

ξ
T

+ C2

1 + %−1
m,j

‖vεm‖L1(Em,j)

δN+2
d%m,j ,ω

ξ
T

 .

Now, observe that from (6.16), vεm is uniformly bounded in L1(Em,j). Moreover, (7.18) and (7.26) implies
that

inf
m∈N

δd,ωξ
T
> 0.

On the other hand, for a fixed j ∈ N, the sequence λm,j lies in the interval
[
22j+1, 22j+1

]
and therefore %−1

m,j

is also uniformly bounded (from above) with respect to m.

• lim supm→∞
∑N
i=1 |J i4| ≤ C2−

j
β . By the definition of the Lipschitz truncation (see (7.20)) together with

the fact that div vεm = 0 (see (6.9) and (6.3)), we can write for each i ∈ {1, . . . , N}

J i4 =
ˆ
ωξ
T
∩Em,j

piεm div T m,j(vεm) dxdt ∀ i ∈ {1, . . . , N} .

Using Hölder’s inequality, (6.5), (4.15) and (7.22) together with the same reasoning of the previous bullet,
we have

lim sup
m→∞

|J i4| ≤ C lim sup
m→∞

‖∇T m,j(vεm)‖Lqi (ωξ
T
∩Em,j)

≤ C lim sup
m→∞

[
LN+1(Em,j)

1
qi

(
λm,j + %−1

m,jδ
−N−3
d%m,j ,ω

ξ
T

‖vεm‖L1(Em,j)

)]
≤ C lim sup

m→∞

(
LN+1(Em,j)

1
qi λm,j

)
≤ C lim sup

m→∞

(
LN+1(Eim,j)

1
qi λm,j

)
Then, by the definition of Em,j (see (7.19) and (7.14)) and (7.15) together with (7.2) and (7.3), we get the
desired result.

• lim supm→∞ |J6| = 0. By Cauchy-Schwarz’s inequality and (7.28),

|J6| ≤ C‖vεm‖2L2(ωT ) ≤ C‖vεm‖2L2(ωT ).

Here the assertion follows by the application of (5.7) with s = γ = 2 and (6.8) with s = 2, and observing
that 2 < q∗a by the assumption (3.10).
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• lim supm→∞ |J7| ≤ C2−j . Using (7.27), arguing as we did for |J i4| and using the definition of Em,j (see
(7.19)), we can prove that

lim sup
m→∞

|J7| ≤ C lim sup
m→∞

[
%−1
m,jLN+1(Em,j)

(
λm,j + %−1

m,jδ
−N−3
d,ωξ

T

‖vεm‖L1(Em,j)

)2
]

≤ C lim sup
m→∞

[
%−1
m,jLN+1(Em,j)λ2

m,j

]
≤ C lim sup

m→∞

[
%−1
m,jLN+1(Eim,j)λ2

m,j

]
.

Then, by the definition of %m,j and (7.15) together with (7.2) and (7.3), we get lim supm→∞ |J7| ≤ C2−j .
As a consequence, claim (8.2) follows.

On the other hand, arguing as we did for |J i4|, we can prove also that, for a fixed j,

(8.3) lim sup
m→∞

N∑
i=1

∣∣∣∣∣
ˆ
Em,j

(
|Diuεm |qi−2Diuεm − Si

)
⊗ ei : ∇(T m,j(vεm))ξ dxdt

∣∣∣∣∣ ≤ C2−
j
β .

In consequence, from the definition of T m,j (see (7.20)), (8.2) and (8.3), we prove that

(8.4) lim sup
m→∞

N∑
i=1

∣∣∣∣∣
ˆ
ωT \Em,j

(
|Diuεm |qi−2Diuεm − Si

)
⊗ ei : ∇(T m,j(vεm))ξ dxdt

∣∣∣∣∣ ≤ C2−
j
β .

Using the definition of vεm (see (6.9)) and the strong convergence property of phεm (see (6.8)), it can be
derived from (8.4) that

(8.5) lim sup
m→∞

N∑
i=1

∣∣∣∣∣
ˆ
ωT \Em,j

(
|Diuεm |qi−2Diuεm − Si

)
⊗ ei : ∇(uεm − u)ξ dxdt

∣∣∣∣∣ ≤ C2−
j
β .

In the final part of the proof, we consider an arbitrary i ∈ {1, . . . , N}. Due to (8.5) and (7.11), and since
Em,j ⊂ Eim,j , for each j ∈ N we can find a number mj ∈ N such that

(8.6)

∣∣∣∣∣∣
ˆ
ωT \Eimj,j

(
|Diuεm |qi−2Diuεm − Si

)
⊗ ei : ∇(uεmj − u)ξ dxdt

∣∣∣∣∣∣ ≤ C2−
j
β ,

(8.7) LN+1(Fmj ,j) ≤ C2−j and LN+1(Hi
mj ,j) ≤ C2−j .

Setting ξij := ξχωT \Eimj,j
, where χωT \Eimj,j denotes the characteristic function of the set ωT \ Eimj ,j , it can

be proved (see [7, pp. 36-37]), using (7.7), (8.7) and the fact that λmj ,j ≥ 1, that

(8.8) ξij −→ ξ a.e. in ωT as j →∞.

From (8.8), (4.14) and (4.15), we have, by appealing to Lebesgue’s theorem of dominated convergence, that

Diu ξij −→ Diu ξ in Lqi(ωT ), as j →∞ ,(8.9)

Si ξij −→ Si ξ in Lq
′
i(ωT ), as j →∞ .(8.10)

Then, from (8.6)-(8.7) and (8.9)-(8.10), and appealing once more to (4.14), (4.15) and Lebesgue’s theorem
of dominated convergence, we obtain

(8.11) lim
j→∞

ˆ
ωT

|Diuεm |qi−2Diuεm ⊗ ei : ∇uεmj ξ
i
j dxdt =

ˆ
ωT

Si ⊗ ei : ∇uξ dxdt

for all i ∈ {1, . . . , N}. Finally, taking into account (4.14), (4.15), (8.8) and (8.11), we can use the Minty trick
in the spirit of [28, Lemma A.2] to establish that Si ξ = |Diu|qi−2Diu ξ a.e. in ωT . Due to the arbitrariness
of ξ, Si = |Diu|qi−2Diu a.e. in ωT , which concludes the proof of Theorem 3.1. �

Remark 8.1. It is possible to consider unbounded domains Ω. In this case, proceeding as in Wolf [28,
Section 3], we can prove that the regularized problem (4.1)-(4.4) has a unique weak solution for such Ω. As
a consequence the original problem has a solution for these domains as well.



18 H.B. DE OLIVEIRA

9. Analysis of the existence result

We recall that the main restrictions on the lower bounds of the anisotropic exponents qi to prove Theorem 3.1
are stated at (3.7) and (3.10),
(9.1) q∗a > β and q∗a > 2.
As mentioned in Section 3, due to (2.4) and to Remark 2.1, we have

(9.2) q∗a > β ⇒ q ∗ > β ⇔ q >
Nβ

N + β
⇔

N∑
j=1

1
qj
< 1 + N

β
.

In this case, the second relation of (9.1) reads as

(9.3) q∗a > 2⇔ q ∗ > 2⇔ q >
2N
N + 2 ⇔

N∑
j=1

1
qj
< 1 + N

2 .

Combining (9.2) with (9.3), lead us to

N∑
j=1

1
qj
< min

{
1 + N

β
, 1 + N

2

}
=


1 + N

β
, if β > 2,

1 + N

2 , if β ≤ 2.

Let us consider the case of β ≤ 2 which corresponds to the most difficult situation to analyze. Note that
in the isotropic problem, i.e. when qi = q for all i ∈ {1, . . . , N}, the range 1 < q < 2 corresponds to the
shear-thinning case for which the result of [7] has still left a gap, in the case of 1 < q ≤ 2N

N+2 and N ≥ 3.
The following example is very clear about the scope of the outcome established in Theorem 3.1.

Example 9.1. Let us consider β ≤ 2 and q1 = q2 = · · · = qN−1 = α but distinct of qN = β. In this case,
(3.7) and (3.10) are satisfied if

N − 1
α

+ 1
β
< 1 + N

2 ⇔ α >

(
1 + N

2 −
1
β

)−1
(N − 1)

↗ 2N − 2
N + 1 when β → 2−,

↘ 2N
N + 2 when β → 2N

N + 2

+
.

Observe that when β → 2N
N+2

+, we end up with α > 2N
N+2 which in a certain sense corresponds to assume

that qi = q for all i ∈ {1, . . . , N} and to the recovery of the lower bound q > 2N
N+2 for the isotropic problem

analyzed in [7]. But, when β → 2− in the particular case of N = 3, we achieve the optimal condition α > 1,
which means that if for one component, say q3, we have q3 = 2, then the other two components satisfy the
optimal condition qi > 1, for i = 1, 2, and as long as q2 = q1.

The example above shows that Theorem 3.1 improves the result of [7] in order to be optimal in some
directions of anisotropy, provided that in other directions there is a compensation. Theorem 3.1 improves
also the result [3, Theorem 3.1] for the same anisotropic problem.
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