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Abstract

This work investigated how to address the Google Translate’s gender-bias when trans-
lating from English to French. The developed solution is called GT gender-bias cor-
rector that was built based on combining natural language processing and machine
learning methods. The natural language processing was used to analyze the original
sentences and their translations grammatically identifying parts of speech. The parts
of speech analysis facilitated the identification of three patterns that are associated
with the gender bias of Google Translate when translating from English to French.
The three patterns were labeled simple, intermediate and complex to reflect the struc-
ture complexity. Samples of texts that represent the three patterns were generated.
The generated texts were used to build a decision-tree-based classifier to automati-
cally detect the pattern to which a text belongs. The GT gender-bias corrector was
tested using a survey completed by participants with diverse levels of English and
French fluency. The survey analysis showed the success of the corrector in address-
ing the Google Translate gender-bias for the three patterns identified in this work.

Keywords:

Thesis Supervisor: Dr. El Sayed Mahmoud
Title: Professor, School of Applied Computing

2



Acknowledgments

This aknowledges Dr. El Sayed Mahmoud’s efforts in making this work possible

through his guidance.

3



Contents

1 Introduction 8

1.1 Problem Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Organizations of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature Review 14

2.1 Machine Translation (MT) . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Why high quality Machine Translation is important . . . . . . 14

2.1.2 Statistical Machine Translation (SMT) . . . . . . . . . . . . . 17

2.1.3 Rules Based Machine Translation (RBMT) . . . . . . . . . . . 17

2.1.4 Hybrid Machine Translation (HMT) . . . . . . . . . . . . . . 17

2.1.5 Neural Machine Translation (NMT) . . . . . . . . . . . . . . . 18

2.2 Translation of Grammatical Gender research . . . . . . . . . . . . . . 18

2.2.1 Importance of Grammatical Gender . . . . . . . . . . . . . . . 18

2.2.2 Determiners/Articles . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Nouns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Adjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4



2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 BLEU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 NIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 METEOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Methodology 21

3.1 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Overview of system . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Noun swapping . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 Determiner swapping . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.4 Adjective swapping . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.5 Machine learning model . . . . . . . . . . . . . . . . . . . . . 25

3.1.6 Example for applying the corrector . . . . . . . . . . . . . . . 26

3.1.7 Determining word endings . . . . . . . . . . . . . . . . . . . . 27

3.2 Testing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Automated tools . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Feasibility of the solution . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Language ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Findings 34

4.1 The GT gender bias corrector perfectly address the Google Translate

gender bias of simple and Intermediate cases . . . . . . . . . . . . . . 35

4.2 The GT gender-bias corrector moderately fixes the Google Translate’

gender bias of complex cases . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion 43

5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5



5.1.1 Extending the GT gender bias corrector to other Romance lan-

guages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2 Benefits for Google Translate . . . . . . . . . . . . . . . . . . 44

5.1.3 Expanded survey . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.4 Using more complex machine learning algorithms to improve

the performance . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 The system can process two sentences only . . . . . . . . . . . 45

5.2.2 Reverse lemma instead of manually getting word endings . . . 45

Bibliography 46

6



List of Figures

1-1 Speakers of different languages present at Google I/O Challenge . . . 9

3-1 General view of the system . . . . . . . . . . . . . . . . . . . . . . . . 22

3-2 Detailed system view . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3-3 Translation issue example . . . . . . . . . . . . . . . . . . . . . . . . 26

3-4 Group 1: Simple case . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3-5 Group 2: Intermediate case . . . . . . . . . . . . . . . . . . . . . . . 30

3-6 Group 3: Complex case . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4-1 Simple cases responses Google Translate . . . . . . . . . . . . . . . . 35

4-2 Simple cases responses GT gender-bias corrector . . . . . . . . . . . . 36

4-3 Intermediate cases responses Google Translate . . . . . . . . . . . . . 37

4-4 Intermediate cases responses GT gender-bias corrector . . . . . . . . 39

4-5 Complex cases responses Google Translate . . . . . . . . . . . . . . . 40

4-6 Complex cases responses GT gender-bias corrector . . . . . . . . . . . 41

7



Chapter 1

Introduction

1.1 Problem Context

When French or Romance language speakers with limited English skills need help

to correctly communicate their ideas in English, Google Translate seems to be the

go-to tool that these speakers flood towards. This has been shown after a 10 year

review of Google’s Translate success in 2016 where it was found that 92% of Google

Translate users were from outside the United States indicating that many users are

not native English speakers [1]. This shows that many individuals rely on Google

Translate’s algorithm for their communication. The main reason for this reliance on

Google Translate is its accessibility to users as Google is available worldwide and does

not require the translation service to be downloaded or purchased.
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Figure 1-1: Speakers of different languages present at Google I/O Challenge

This graph illustrates the native language of participants at Google I/O Trans-

late Community Challenge. We can see a staggering number of participants speak

languages that are part of the Romance languages which is very representative of

Google Translate’s user base [2]. This large user base often relies on Google Translate

to communicate a message to a native or non-native English speaker. The resulting

translation can often be distorted or incoherent compared to the meaning of the text

in the original language. This incoherence is evident when translating between French

and English because French includes a large number of idioms and employs various

rules that have no corresponding rules in the English language such as an acute em-

phasis on the masculine and feminine gender. Idioms, sentiment and grammatical

gender are essential to understand the meaning of a French sentence. This work fo-

cused on building an add-on system to identify and address translation shortcomings

caused by Google Translate’s grammatical gender bias.
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1.2 Terms and Definitions

1. Google Translate: Software used for translation of many languages developed

by Google.

2. Grammatical gender: Class system, composed of two or three classes, whose

nouns that have human male and female referents tend to be in separate classes.

3. Romance languages: Languages that originated from Latin such French, Span-

ish, Italian and Portugese.

4. Natural Language Processing: Field that concerns itself with how machines

interpret and use human language.

5. Python: Commonly used programming language.

6. Spacy: Python library for Natural Language Processing.

7. Decision tree: Predictive modeling approach used in Machine learning.

8. Determiner / Article: Word that determines the references of a noun or nouns

groups.

9. Noun: Word other than a pronoun that identifies a class of people, places or

things.

10. Common noun: Noun used to refer to a class of entities such as a profession

(Nurse).

11. Proper noun: Noun used to refer to a single entity such as city names (Toronto).

12. Verb: Words that indicate actions, occurrences and state of being.

13. Adjective: Words that indicate qualities or states of nouns.

14. Accent: Alternative spelling of a letter that can indicate a different sound or a

distinction.
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1.3 Problem Statement

It is difficult for French speakers with limited English skills and vice versa to commu-

nicate without using automatic translation services. However, automatic translation

tools often distort the meaning when translating from English to French. This often

leads to confusion and false information, especially when it comes to grammatical gen-

der as it affects determiners, articles, nouns and adjectives which can result in a very

awkward translation. This work developed an add-on system to Google Translate

that addresses the gender issue. The system is called GT gender-bias corrector.

1.4 Purpose

The purpose of this thesis was to develop a new add-on system to identify and ad-

dress misrepresented grammatical gender in translations from English to French using

Google translate. It aims to facilitate translation from English to French so that the

meaning and context of the original text is not altered during the translation process.

This would help in maintaining the meaning clear to the people involved in com-

munications that rely on such translation. The system will promote communication

between English and French speakers which will have positive impacts on trades and

social activities.

1.5 Motivation

The commercial and social positive impacts of improving the English-French or other

Romance language translation quality is the main motivation of this research. The

progress of various Natural Language Processing techniques is another motivation

because this improves the feasibility of addressing these translation issues. A third

motivation is the ability to extend the system to other Romance languages such

as Spanish, Portuguese and Italian. Currently, English is well established as the

universal language in business and technology and requires individuals in those fields

to be able to have a certain proficiency in the language. By creating a system that can
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help people supplement their language skills in order to make themselves more clear in

business or in colloquial conversations, we can boost productivity and avoid misguided

decision making due to low quality translations. As translation blunders can have an

enormous impact on a business such as with HSBC’s 2009 slogan translation fiasco

where millions of dollars needed to be spent on marketing to fix a simple mistake that

could have easily been avoided [3]. This research aligns with the current National

Research Council of Canada correcting machine translation for the Chinese language

family using a software known as YiSi [4].

1.6 Proposed Work

This work consists of the development of an add-on system to Google translate includ-

ing the design of an experiment to evaluate it. The system consists of an algorithm

that combines NLP techniques and a decision tree model. The NLP algorithm ana-

lyzes the text to be translated into tokens identifying the parts of speech. The tokens

are entered to the decision tree model to detect the text structure complexity. De-

termining the structure complexity facilitates identifying how to address the gender

bias because the detected structure implies the gender of the subject and the objects

with their associated parts of speech. The system is a gender-bias corrector that en-

sures that gender is correctly translated from English to French. The importance of

the system is the fact that French makes major distinctions between masculine and

feminine which can change the meaning and semantics of linguistic features. This

research includes human participants who are shown various translated texts in order

to evaluate the ability of the system to address the gender bias.

1.7 Thesis Statement

An add-on system can be developed to maintain the integrity of grammatical gender

when translating from English to French using Google Translate. The system com-

bines NLP and a decision tree model to analyze the text and identify the changes

12



needed to address the gender-bias. The text analysis includes identifying the parts of

speech to show the structure and the gender of the subjects and objects with their

associated parts of speech. The decision tree model detects the structure pattern

to which a text belongs which in turn facilitates identifying the required changes to

address the gender bias.

1.8 Contributions

This work shows us how to use gender correction for the goal of improving translation

quality between English and French. The contribution of this work is:

1. Developing the GT gender-bias corrector.

2. Developing a testing strategy that is extensive enough to determine translation

quality.

3. Create guidelines to expand findings to other Romance languages

1.9 Organizations of Thesis

The rest of this thesis includes a literature review, a methodology chapter, findings

and a conclusion. The literature review focuses on the prior research made in the

field of Machine Translation, Natural Language Processing and their use cases. The

literature examines the different paradigms of Machine Translation and the challenges

faced when using these methods when it comes to grammatical gender. The method-

ology describes in details the methods that are applied in this work. This includes

the selection of the right data and test scenarios and building the GT gender-bias

corrector. The methodology also includes testing performance through the use of

human participants with surveys and automated test tools metrics. The findings

present the results of the survey and automated testing metrics in determining if the

GT gender-bias corrector was successful. The conclusion chapter concludes this work

and present the future work and limitations of this research.
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Chapter 2

Literature Review

The heavy use and reliance on Google Translate worldwide for communication has

been a growing phenomenon in various fields, such as education, business and health-

care. Many users report inconsistent context of translated messages compared to the

original ones, especially when translating to French and Romance languages [5, 6].

The extensive use of Google Translate has even been observed in emergency health-

care contexts where patients have had issues getting their message across and where

staff members rely on Google Translate due to non-availability and cost of a human

translator[7]. This has prompted many domain experts to investigate the accuracy

of translation methods to the English language.

This work investigates the sources of inconsistencies in machine translation meth-

ods and identifies a solution to address them. This chapter reviews Machine Transla-

tion methods, grammatical gender rules in English and French and evaluation metrics

for the translation quality.

2.1 Machine Translation (MT)

2.1.1 Why high quality Machine Translation is important

Machine Translation and its application such as Google Translate have been at the

core of general communication in many domains for various purposes such as Higher
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Education, Healthcare and Business [8, 7, 9]. The advantages of ameliorated Machine

Translation are numerous. A research from the European Parliament in 2016 revealed

that communication in common languages whether official or spoken leads to an

increase of 44% in trade flows [10]. In order to take advantage of this economic increase

that transcends borders and cultural differences, a robust Machine Translation system

must be implemented in order to get a high quality translation where grammatical

gender is persevered for impactful decision making [10]. Such system would remove

the language barrier many businesses have when it comes to expansion in emerging

markets as business operations are increasingly becoming global.

The importance of high quality Machine Translation is not only confined to the

world of business but is also a concern in education settings [8, 11, 12]. As numerous

research papers and articles are written in different languages, it is important to

have a reliable Machine Translation system that does not alter the research and

the message it is trying to convey. According to Klaus Mundt and Michael Groves,

Google Translate has been extensively used by the student body and educators alike

to submit work and teach respectively [13]. The major concern of Google Translate

use in higher education is transformation of content and use of the tool as a crutch for

lack of writing skills [12, 13]. In order for students or educators to properly learn and

extract insights from material written in a different language: grammatical gender

must be preserved. As current Machine Translation often distorts meaning when it

comes to intricate text, this is of utmost importance.

Machine Translation has also been extensively used in healthcare and medicine

[7, 14]. As medicine is a very critical subject where miscommunication can have effects

of a catastrophically high magnitude, good communication is key to avoid malpractice.

According to CRICO Strategies, medical miscommunication was the cause of 30% of

medical malpractice cases in the United States between 2009 and 2013 with 24%

of those cases leading to death [15]. These miscommunication cases incurred $1.7

billion in costs [15]. Google Translate has proven itself as a semi effective tool for

very simple medical translation that medical practitioners should not trust for critical
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medical communication [14, 16]. Improving Machine Translation in this domain would

allow various medical practitioners worldwide to communicate diagnosis with ease to

patients in their mother tongue without the worry of malpractice for the healthcare

provider. This would also remove the often cumbersome process of having to call

translators and deal with scheduling issues especially during emergency situations

[7].

Machine Translation also has shortcomings when it comes to colloquialism and

common dialects [17]. There is current research being done on Arabic dialect handling

using Hybrid Machine Translation which normalizes dialect into standard language

as dialects and colloquialism do not follow the same structure as written standard

language [18, 17]. As individuals tend to express themselves in colloquial terms for

sake of simplicity, it is important that a Machine Translation system can intercept

and interpret such terms without giving an erroneous translation in return. Such

examples of colloquialism include Verlan which is a common argot in the French

language where partial backwards spelling of a word can be used to identify the word

itself [19]. A common example of Verlan is the word for “Woman” which in French is

“Femme”, Verlan uses partial backwards spelling and turns the word into “Meuf” [20].

A Machine Translation system that can adapt to colloquialism and dialects can be

very useful in the domain of tourism as the industry often deals with a lot of colloquial

terms when performing domain specific tasks such as tours, recommendations and

talking to locals.

The purpose of Machine Translation (MT) research is to bridge gaps between

various languages for different use cases in a plethora of industries [21]. Many meth-

ods have been developed in the field of computational linguistics to produce machine

translation [22]. These methods are based on four paradigms: Statistical Machine

Translation (SMT), Rules Based Machine Translation (RBMT), Hybrid Machine

Translation (HMT) and Neural Machine Translation (NMT) [23, 24, 25, 26]. The

category of Hybrid Machine Translation (HMT) between French and English using
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grammatical gender rules as tools for improved translation will be the focus of this

research.

2.1.2 Statistical Machine Translation (SMT)

Statistical Machine Translation is a paradigm of Machine Translation where transla-

tion is derived from statistical models that use large text corpuses of different lan-

guages [23]. The main benefit of Statistical Machine Translation is the efficiency of

the resources used in carrying out the translation as it is not dependant on specific

languages [23]. The main drawbacks of the method are the lack of corpus available to

create significant statistical models and limited fluency that does not always interpret

linguistic rules between languages appropriately [23].

2.1.3 Rules Based Machine Translation (RBMT)

Rules Based Machine Translation is another paradigm of Machine Translation that

encompasses other Machine Translation paradigms such as transfer-based, dictionary

based and interlingual machine translation [27]. Rules Based Machine Translation

uses syntactic and grammatical rules of both languages it intends to translate in

order to perform semantic analysis [23]. The advantages of RBMT include: No need

for large corpus of texts, each error can be addressed with a new rule, simple to refine

as rules are hand written and modular depending on the language [28]. There are

certain drawbacks to this method that include: Domain adaptability as new lexical

rules have to be written for certain domains which can be often costly and cost of

dictionary building [23].

2.1.4 Hybrid Machine Translation (HMT)

Hybrid Machine Translation is a paradigm of Machine Translation that blends various

other Machine Translation paradigms, most commonly SMT, RBMT and recently

NMT [29]. HMT attempts to use the best techniques of each paradigm in order to

get close to a perfect translation [18]. A common way to use HMT is one that Dr.
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Hassan Sawaf developed by blending SMT and RBMT into the same process [25].

The most common approach is to use a Rule-Based engine for any preprocessing and

applying statistical analysis after in order to reduce resource usage and get a more

accurate output [18]. This also helps reduce the labor associated with RBMT as

after the rules are in place statistical methods take over and do the grunt work which

reduces human error [30].

2.1.5 Neural Machine Translation (NMT)

Neural Machine Translation is the most recent paradigm of Machine Translation that

has been developed. NMT uses neural networks to carry out translation tasks [31]. It

does not use sub components as the model gets trained on various texts and derives

its own conclusions, from this definition NMT is considered an end to end solution

[32].

2.2 Translation of Grammatical Gender research

This section presents the relevant research made about grammatical gender and high-

lights the gap in this research area

2.2.1 Importance of Grammatical Gender

Grammatical gender is a very important component of the French language and flu-

ency in grammatical gender rules is necessary for an authentic translation [33]. As

English lacks grammatical gender in its grammatical rules [34], this issue may not

seem of critical importance, but it has been shown that mishandling of grammatical

gender in translation can compromise the integrity of the sentence [35]. Such ex-

amples are of the sentence “I am happy”, which in French depending on the gender

can be “Je suis hereux” for masculine and “Je suis heureuse” for feminine [35]. Eva

Vanmassenhove from Cornell University has proven that using a gender feature for

Machine Translation which uses language pairs improves quality of translation for
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languages that heavily use grammatical gender which tend to be Romance languages

[35]. Gabriel Stanovsky attempted to use gender neutral words in English such as

“doctor” and “nurse” in order to evaluate bias in Machine Translation systems in

eight languages [36]. The research concluded that the 6 Machine Translation systems

tested were prone to bias error in all eight languages [36].

Grammatical gender affects different parts of speech in a sentence such as de-

terminers/articles, nouns and adjectives. French and Romance languages rely on

Masculine and Feminine (No neuter) for word endings.

2.2.2 Determiners/Articles

Determiners and articles are words used to indicate if a following noun is singular/-

plural and masculine/feminine [37]. Current research is currently focused on the

Japanese language’s determiners system, Francis Bond built three algorithms that

perform text analysis using referential Japanese phrases to determine the appropriate

article when translating to Japanese [38].

2.2.3 Nouns

Nouns are words that designate a class of beings, things, places or particular unique

parts of the class. In French or Romance languages, each noun has a gender [39].

Some research has been done for Romanian which is an eastern Romance language.

Silviu Cucerzan and David Yarowsky from John Hokins University used noun seeding

of common nouns that traditionally lean towards one gender in order to model suffixes

for translation through context. [40].

2.2.4 Adjectives

Adjectives are words that are used after nouns and verbs to qualify or describe a

subject [41]. Gabriel Stanovsky’s research investigates biases in certain adjectives such

as pretty and handsome which are commonly used for women and men respectively
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and evaluates bias when used with traditionally masculine and feminine nouns [36].

Such method reduced bias for Spanish, Russian, Ukrainian [36].

2.3 Metrics

Even though translation and natural language is often nuanced and up to interpre-

tation, machine translation still has metrics that need to be attained in order to be

considered high quality. The main subjective metric that should always be prioritized

is the understanding of the individual on the receiving end of the translation, but due

to the fact that we cannot survey every individual the metrics that can be used are

BLEU, NIST and METEOR [42].

2.3.1 BLEU

Bilingual Evaluation Understudy Score is a metric to evaluate machine translations

from a reference text. It compares the N grams from the reference text with the ones

of the hypothesis. From there a score between 0% and 100% is given [43]. 100%

indicating a perfect match and 0% indicating no match.

2.3.2 NIST

NIST is another method to evaluate machine translation which is based on BLEU

but assigns weight to specific N grams depending on its rarity [44].

2.3.3 METEOR

METEOR is another machine translation metric, it is different from BLEU and NIST

due to the fact that it uses stemming and synonymy. It uses precision and recall with

a higher emphasis on recall [45].
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Chapter 3

Methodology

This chapter presents the methods for building and evaluating the add-on system and

its machine learning model in order to address the gender bias of google translate

when translating from English to French. The chapter also presents the details of the

testing strategy including testing data, test cases, survey structure and automated

testing.

3.1 Proposed System

The add-on System identifies issues related to misinterpreted gender and fixes them.

The system’s algorithm analyzes the original text and its Google translation to iden-

tify how to alter the Google translation output in a way that corrects the translation

of gender grammar to match the original text. The algorithm is a corrector because

it aims to review the grammar related to the gender when translating from English

to French and correct it properly using a machine learning model and dependency

parsing that classifies the parts of speech and issues that need to be fixed. The algo-

rithm identifies the gender in the French translation based on analyzing the text using

parts of speech and a decision tree model that detects the complexity of identifying

the gender then makes the appropriate changes in the translated text according to

the requirement in order to respect the grammatical gender rules. The algorithm uses

tokenization, vectors and dependency parsing through the Spacy library in addition
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to a customized decision tree model built using Weka to identify the class of changes.

Figure 3-1 and Figure 3-2 shows the flowcharts of a general and a specific view of the

system respectively.

Figure 3-1: General view of the system
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Figure 3-2: Detailed system view
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3.1.1 Overview of system

In Figure 3-1, the flow of the system starts with receiving the original text as an

input, the system checks the language of the text through the Google Translate API.

The system accepts English original text only. The system uses the Google API to

translate the text in French then forwards the original text and the french translation

to the GT gender-bias corrector for further analysis to address gender related issues

in the translation. Figure 3-2 shows a detailed view of the corrector, the first step

is to analyze the text and its translation through a decision tree that identifies the

changes that need to be made through the dependency parser. If a text has no

feminine support words such as “she”, “elle” or “her” there is no feminine subject and

therefore no modifications need to be made as Google Translate defaults to masculine

translation. When the decision tree gives the result of the changes that need to be

made, the parts of speech that are tagged will need to go through modification. If

the subject is a masculine noun, the word ending will need to be modified which

triggers the need to modify determiners and adjectives associated with that noun

per grammar rules, this process is called swapping. The Spacy library uses vectors

after swapping the tagged part of speech in order to determine if it is a valid word in

the French language using its own model. After finishing all the required swaps, the

final output text that respects grammar gender rules is delivered. More details of the

components are in the following subsections.

3.1.2 Noun swapping

After text analysis, if there are no feminine support words, no modifications need

to be made due to Google Translate’s bias to masculine. If feminine support words

are found, nouns affected by the feminine support words are the first words to be

modified due to the fact that they affect other groups of words such as determiners

and adjectives. Gender of a noun can be accurately determined by the noun ending.
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3.1.3 Determiner swapping

If a noun needs to be swapped to the feminine gender, the determiner needs to also

change to reflect the noun gender. The only exception is for plural determiners as

they remain the same for masculine and feminine (unisex).

3.1.4 Adjective swapping

If a noun is swapped and is followed by an adjective, the adjective has to reflect the

noun gender. Just like nouns, gender can be determined by word endings.

3.1.5 Machine learning model

A decision tree needs to be built for this solution, its complexity is associated with

the number of nouns and pronouns. A simple translation has only one noun in its

first sentence which is by default the subject and what the feminine pronoun in the

next sentence refers to. An intermediate case has 2 nouns which are the subject

accompanied by an object or complement, the system needs to be able to know which

of these nouns is the feminine pronoun referring to which requires training of the

model to be able to distinguish the subject with the help of the Spacy dependency

parser. Complex translations have at least 2 nouns and more than one pronoun which

makes the task more complex in order to identify what parts of speech are affected

by which and what needs to be modified. In order to fix a simple case, we only need

to change the noun ending and the determiners and adjectives associated with it.

For an intermediate case we need to distinguish the subject from the object in order

to perform the proper modification. For the complex cases, we need to distinguish

which pronouns affect which subject or object in order to translate the proper groups

of nouns, determiners and adjectives.

The training is done using a CSV file with attributes that are put through Weka

using a J48 decision tree to predict the class of changes needing to be done in a text.

The French texts that are part of the model are French text that were put through

Google Translate and came out erroneous. Some of the sentences are also English
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text containing the word “her” that does not have a direct counterpart in French but

still needs to be treated for Grammar gender issues. The attributes of the model are

as follows.

1. s: Subject

2. c: Object

3. ds: Determiner of the subject

4. dc: Determiner of the object

5. as: Adjective of the subject

6. ac: Adjective of the object

7. ps: Pronoun of the subject

8. pc: Pronoun of the object

9. class: Combination code of what needs to be changed

3.1.6 Example for applying the corrector

Figure 3-3: Translation issue example

As seen in the figure above, the word “boss” defaults to the French masculine “patron”

as there is no common English word for “female boss” which in French is “patronne”.
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This example demonstrates an erroneous translation that needs to be modified in

order to respect gender grammar as the noun, determiner and adjective all default to

masculine when the subject is feminine when separated by a period.

3.1.7 Determining word endings

Through sanitization of the Google Translate text by replacing Hex values that repre-

sent accents in the French alphabet to Unicode characters, we can tokenize sentences

and words. We can proceed to load the large French model from Spacy that allows

us to get more information from the words through a doc object. This allows us to

extract what is known as a tag and a dep, which has all the information about the

words, such as word family, gender, number and dependency to other parts of speech.

From this we can extract endings of targeted words and pass the necessary changes

based on such. We then validate the word through vector checks. Below are common

word endings with their gender counterpart.

1. Word endings

2. Masc: ”-on” — Fem: ”-onne”

3. Masc: ”-in” — Fem: ”-ine”

4. Masc: ”-eur” — Fem: ”-euse”

5. Masc: ”-ien” — Fem: ”-ienne”

6. Masc: ”-ou” — Fem: ”-olle”

7. Masc: ”-x” — Fem: ”-se”

8. Masc: ”-c” — Fem: ”-che”

3.2 Testing Strategy

The testing strategy involves evaluating the performance of Google Translate and the

add-on translation correction system based on three scenarios. The scenarios include:
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(1) Simple cases, (2) Intermediate cases and (3) Complex cases. This work collects

four samples per each scenario to recruit a reasonable base to evaluate the quality

of the translations. As English and French are natural languages, we cannot solely

rely on automatic analysis and evaluation algorithms. The testing of the solution

relies on human participants from diverse backgrounds through surveys. Each reader

completes a survey after reading the original sentence in English and rates the Google

translate output and the add-on system output. The survey questions collect infor-

mation that identify and quantify the improvement in translating grammatical gender

and the general readability (clarity) of the translated text.

3.2.1 Data

The data that is used for this work is gathered from Larousse and Oxford dictionaries,

the two standard dictionaries for French and English respectively. Articles from

French newspaper Le Monde were also used in order to generate more cases.

3.2.2 Survey

The survey consists of three sections where each section collects information about

the gender bias of one of the three gender-bias patterns identified in this work. Each

section includes four diverse questions to test the correctness of our system transla-

tion. Each question presents the original sentence and the two translations (without

identifying the translator) and asks the participant to select the most correct one (

the one with less errors in translating the gender). The questions are shuffled in a

certain way so that participants cannot see a pattern. Below are some screenshots

showing highlights of the survey.
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Figure 3-4: Group 1: Simple case
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Figure 3-5: Group 2: Intermediate case
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Figure 3-6: Group 3: Complex case

31



The evaluation of the survey is divided by group, from there the system that has

the least wrong responses is considered superior to the other system.

3.2.3 Automated tools

Automated testing and scoring are also applied to the testing strategy of this work.

Bilingual Evaluation Understudy (BLEU) is aslo used to score translations the users

are given in order to rule out human bias but is not the major decision factor of

translation quality, a minimum score of 80 is acceptable. The Machine learning

model is evaluated by its ability to classify text properly.

3.3 Feasibility of the solution

There is a large corpus in both languages in order to gather more test cases for

grammatical gender due to the variance of word endings and structure. This allows

us to build a better machine learning model by providing more examples.

3.4 Trials

The decision of using manual processing for suffix swapping was done after trying to

build a Lemma lookup for the Spacy library. A Lemma lookup prototype was possible

to create for versions of Spacy below 2.2 but is not compatible with the latest version

used in this research. Therefore until a reverse lookup can be built for the newest

version of Spacy, manual swapping was the only viable option. Also a decision tree

was chosen because of its simplicity and speed in order to improve feasibility in the

times given as the use of more complex methods would lead to longer time training

and a steeper learning curve.
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3.5 Language ambiguity

The system addresses language ambiguity by following standard french rules as de-

scribed by the normalization institutions such as “l’Académie française” and “l’Office

québécois de la langue française” which are the two main boards that regulate stan-

dard French. This variety of French is the lingua franca of all Francophones and is

considered proper written text.
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Chapter 4

Findings

This chapter introduces and discusses the results of the survey conducted to evaluate

the output of the GT gender bias corrector developed in this work compared to Google

translate. Fifteen unique participants with diverse levels of fluency in English and

French have completed the survey presented in the methodology chapter.

The survey consists of twelve texts divided into three groups based on the com-

plexity of text structures. The first group includes text with simple structure that

contains a single subject and a single pronoun. The second group includes texts with

an intermediate structure that has a single subject, single object and a single pronoun.

The third group includes texts with complex structure that has a subject, object and

multiple pronouns. The GT gender-bias corrector performed very well on texts with

simple cases, and texts with intermediate cases while it performed moderately on

the texts with complex structure. In all three groups the GT gender-bias corrector

significantly improved Google Translate’s output by addressing the gender bias. The

participants were asked to rate the sentences using:

1. Totally wrong - Blue

2. Partially wrong - Red

3. Perfect - Orange
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The remaining parts of this chapter present and discuss the participants evalu-

ations to the gender bias identified in the three translation groups presented in the

survey.

4.1 The GT gender bias corrector perfectly ad-

dress the Google Translate gender bias of sim-

ple and Intermediate cases

Figure 4-1: Simple cases responses Google Translate

About 63% of respondents found Google Translate’s translation of simple cases to

be completely wrong when it came to gender grammar. About 31% of respondents

found some translations to be perfect with the bulk of these being translations that did

not contain feminine pronouns that default to masculine which required no changes.
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5% of respondents found them to be partially wrong. According to The Bilingual

Evaluation Understudy Score which uses a correct translation as a reference and

the Google Translate translation as a hypothesis, on simple cases Google Translate

performed like this:

1. 44.18%

2. 54.39%

3. 100.00%

4. 72.27%

This indicates that Google Translate has the bulk of translations correctly in terms

of general grammar but still lacks the gender grammar. In the next figure the simple

findings of the GT gender-bias corrector findings are illustrated.

Figure 4-2: Simple cases responses GT gender-bias corrector
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Around 97% of respondents believed that the system had a perfect translation of

the gender grammar rules in the sentences provided. Included are the translations

that kept masculine sentences as is. Only 3.4% believed that the translations were

wrong. According to The Bilingual Evaluation Understudy Score, on simple cases the

system performed like this:

1. 100.00%

2. 100.00%

3. 100.00%

4. 100.00%

These scores indicate that the system matched exactly with the reference sentence

with a score of 100%. Below are the findings for intermediate cases.

Figure 4-3: Intermediate cases responses Google Translate
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In intermediate cases we see a very similar pattern to the simple cases with about

58% of respondents claiming Google Translate’s translations were totally wrong with

ferminine pronouns and 36% found them to be perfect with the bulk of them being

translations that did not need gender grammar changes. BLEU score for the following

sentences is as follows:

1. 54.14%

2. 75.4%

3. 58.43%

4. 100.00%

In intermediate cases Google Translate performed slightly better than on simple

cases due to BLEU favoring larger texts in its algorithms that Google has mostly

right minus the gender grammar. Below are the statistics for the intermediate cases

with the GT gender-bias corrector.
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Figure 4-4: Intermediate cases responses GT gender-bias corrector

Similarly to simple cases, the GT gender-bias corrector outperformed stand alone

Google Translate with about 93% of respondents claiming the sentences were perfect

and only around 6% claiming them to be partially wrong with none saying they

were totally wrong. These results include masculine gender sentences that remain

unchanged. BLEU scores for them are as follows:

1. 100.00%

2. 100.00%

3. 100.00%

4. 100.00%

These scores indicate that the system matched exactly with the reference sentence

with a score of 100%.
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4.2 The GT gender-bias corrector moderately fixes

the Google Translate’ gender bias of complex

cases

Figure 4-5: Complex cases responses Google Translate

We see a clear pattern here with 60% of respondents claiming Google Translate was

totally wrong and about 36% claiming that the translations were perfect with the

bulk being masculine gender that needed no modifications. Only about 3% claimed

some were partially wrong. Their BLEU scores is as follows:

1. 100.00%

2. 84.09%

3. 85.35%
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4. 56.81%

Google Translate performs better in the BLEU score here due to the larger trans-

lation of a complex case where Google gets the bulk of the Translation correctly minus

the gender rules. Below is the GT gender-bias corrector findings for complex cases.

Figure 4-6: Complex cases responses GT gender-bias corrector

Here the GT gender-bias corrector did not perform as well as in the previous cases

with more diverse responses which indicates a less precise gender grammar correction

but remains more correct than Google Translate. 55% believed the translations were

perfect with about 37% believing it was partially wrong and 8% as totally wrong.

Their BLEU scores is as follows:

1. 100.00%

2. 80.59%
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3. 90.45%

4. 82.55%

Even though Google Translate’s BLEU score improved in complex cases, the GT

gender-bias corrector still has the upper hand. The reason for lower scores of complex

cases is attributed to certain determiners being changed when they were not supposed

to. All nouns were properly modified which is the main part of speech that needs to

be modified.

4.3 Analysis

In all three categories of translation that were surveyed, the GT gender-bias corrector

performed much better than stand alone Google Translate which indicates that Google

translate is erroneous and biased towards masculine gender when it comes to multi

sentence gender grammar. Such is seen through the survey results, BLEU score and

professional translation. The certain disparities in survey responses can be attributed

to many factors such as fluency levels as certain candidates are not native speakers

and learned French as a second language and are not as fluent with gender rules in

French grammar. Another explanation for these disparities is the misunderstanding

of the survey instructions and lack of attention to the sentences which is why at least

15 participants were selected.

The reason for the lower accuracy for complex cases might be attribute to cer-

tain parts of speech that did not undergo perfect modification which could lead to

a sentence not being totally wrong but half wrong hence the higher percentage of

partially wrong responses in that category compared to the intermediate and simple

cases which would only undergo the modification of only three parts of speech while

a complex case could undergo six.
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Chapter 5

Conclusion

This research is the first to propose an add-on solution to the Google translate gender-

bias problem that negatively impacts a large number of French speakers and speakers

of similar languages. Although it cannot process large corpus of texts yet, the de-

veloped solution can be fine tuned to process gender of larger corpus by generating

more training data to build machine learning models that can process larger text

with complex structure. The developed system significantly outperforms Google on

all cases tested in this work . This system is the first step towards changing the way

we use Google Translate because this is the first tool that communicates with Google

translate to address a problem. The need for such gender bias correctors was raised

by several stakeholders such as business executives, diplomats and regular language

learners. The pressing need of these stakeholders will promote the future of the GT

gender-bias corrector.

5.1 Future work

5.1.1 Extending the GT gender bias corrector to other Ro-

mance languages

This research focused specifically on French, but all other Romance languages such

as Spanish, Portuguese, Italian and Romanian suffer from the exact same issue. The
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methods and findings of this research can create the framework for fixing gender

grammar in these languages as they follow very similar grammar patterns due to

their common ancestor, Latin. Delving into techniques to properly translate complex

cases and applicability to other languages will be investigated.

5.1.2 Benefits for Google Translate

Google Translate can benefit from the add on system by making users more trustwor-

thy of the system which will promote its use and make it less erroneous in the eyes

of its users and stakeholders. This will allow the reduction of mistranslation which

promotes trades and social activities.

5.1.3 Expanded survey

An expanded use of the survey can allow us to learn more about the reasons why

users rated answers in a certain fashion in order to gain more insights into natural

language and machine translation evaluation methods. This allows us to extract how

they use the system and their frame of mind when doing so. From there we can also

find out why people use Google Translate in order to tailor the system.

5.1.4 Using more complex machine learning algorithms to

improve the performance

This work used a J48 decision tree and we achieved 75% accuracy, in the future

we should test using more sophisticated models such as CNN (Convolutional Neural

Network). The decision tree is a very simple and rudimentary method that was used

to prove that the proposed solution had some type of feasibility. Such a solution

can be kept for simple and intermediate cases. When it comes to complex cases and

beyond, we need a more expandable solution such as Convolutional Neural Networks.

With this method we can feed larger texts and tag more parts of speech in order to

account for many more scenarios and patterns that the simple attributes we currently

have. Neural networks also help us derive deeper insights into what parts of speech
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need to be processed in our text in order to account for more complex cases. There are

more patterns that can be extracted from different texts which incur more attributes

that need to be accounted for. The bigger the text, the more parts of speech need to

be tagged with the main ones being subjects and objects as they cause other parts

of speech to be dependent on them. The number of subjects and objects determines

the complexity of a text.

5.2 Limitations

5.2.1 The system can process two sentences only

Some improvements to the system can be done for tagging parts of speech on complex

cases and the ability to determine grammar gender changes on large text that contain

more sentences. In order to process more sentences we would need more time and

available technology for large processing of text and rigorous machine learning model

training. We were able to extract patterns on a simple model and made it applicable

to many cases, therefore with more examples and better training we can achieve an

even more robust system.

5.2.2 Reverse lemma instead of manually getting word end-

ings

Another improvement is the building of a reverse Lemma lookup for the Spacy library

which would reduce manual processing for fetching word endings. The Lemmatizer

contains all the words related to a specific token in a sentence and therefore from

there we can fetch the feminine equivalent of the specific word we are trying to modify

without going through rigorous manual processing. This would drastically improve

efficiency.
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récapitulatif. The French Review, pages 308–324, 2008.

[21] William John Hutchins and Harold L Somers. An introduction to machine trans-
lation, volume 362. Academic Press London, 1992.

[22] Sandeep Saini and Vineet Sahula. A survey of machine translation techniques
and systems for indian languages. In 2015 IEEE International Conference on
Computational Intelligence & Communication Technology, pages 676–681. IEEE,
2015.

47



[23] Philipp Koehn. Statistical machine translation. Cambridge University Press,
2009.

[24] Remya Rajan, Remya Sivan, Remya Ravindran, and KP Soman. Rule based
machine translation from english to malayalam. In 2009 International Conference
on Advances in Computing, Control, and Telecommunication Technologies, pages
439–441. IEEE, 2009.

[25] Hassan Sawaf, Mohammad Shihadah, and Mudar Yaghi. Hybrid machine trans-
lation, October 24 2017. US Patent 9,798,720.

[26] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

[27] Sergei Nirenburg. Knowledge-based machine translation. Machine Translation,
4(1):5–24, 1989.

[28] Budditha Hettige and Asoka S Karunananda. Computational model of grammar
for english to sinhala machine translation. In 2011 International Conference on
Advances in ICT for Emerging Regions (ICTer), pages 26–31. IEEE, 2011.

[29] John Hutchins. Machine translation: A concise history. Computer aided trans-
lation: Theory and practice, 13(29-70):11, 2007.

[30] Eduard H Hovy. Deepening wisdom or compromised principles?-the hybridiza-
tion of statistical and symbolic mt systems. IEEE Expert, 11(2):16–18, 1996.

[31] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1700–1709, 2013.

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

[33] Virginia M Holmes and B Dejean de la Batie. Assignment of grammatical gender
by native speakers and foreign learners of french. Applied Psycholinguistics,
20(4):479–506, 1999.

[34] Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan Titov. Context-
aware neural machine translation learns anaphora resolution. arXiv preprint
arXiv:1805.10163, 2018.

[35] Eva Vanmassenhove, Christian Hardmeier, and Andy Way. Getting gender right
in neural machine translation. arXiv preprint arXiv:1909.05088, 2019.

[36] Gabriel Stanovsky, Noah A Smith, and Luke Zettlemoyer. Evaluating gender
bias in machine translation. arXiv preprint arXiv:1906.00591, 2019.

48



[37] Academie Francaise. article. https://www.dictionnaire-
academie.fr/article/A9A2699, 2020. [Online; Accessed 2020-10-5].

[38] Francis Bond. Determiners and number in English contrasted with Japanese, as
exemplified in machine translation. University of Queensland, 2001.

[39] Academie Francaise. nom. https://www.dictionnaire-
academie.fr/article/A9N0540, 2020. [Online; Accessed 2020-10-5].

[40] Silviu Cucerzan and David Yarowsky. Minimally supervised induction of gram-
matical gender. In Proceedings of the 2003 Human Language Technology Con-
ference of the North American Chapter of the Association for Computational
Linguistics, pages 40–47, 2003.

[41] Academie Francaise. nom. https://www.dictionnaire-
academie.fr/article/A9A0539, 2020. [Online; Accessed 2020-10-5].

[42] Mirjam Sepesy Maucec and Gregor Donaj. Machine translation and the evalua-
tion of its quality. In Natural Language Processing-New Approaches and Recent
Applications. IntechOpen, 2019.

[43] Jason Brownlee. A gentle introduction to calculating the bleu score for text
in python. https://machinelearningmastery.com/calculate-bleu-score-for-text-
python/, 2017. [Online; Accessed 2020-11-23].

[44] P. S. Bronsart Gregory A. Sanders Mark A. Przybocki, Kay Peterson. The nist
2008 metrics for machine translation challenge - overview, methodology, met-
rics, and results. https://www.nist.gov/publications/nist-2008-metrics-machine-
translation-challenge-overview-methodology-metrics-and, 2010. [Online; Ac-
cessed 2020-11-23].

[45] Alon Lavie Michael Denkowski. Meteor. https://www.cs.cmu.edu/ alavie/ME-
TEOR/, 2014. [Online; Accessed 2020-11-23].

49


	An investigation of Grammar Gender-bias Correction for Google Translate When Translating from English to French
	Recommended Citation

	Introduction
	Problem Context
	Terms and Definitions
	Problem Statement
	Purpose
	Motivation
	Proposed Work
	Thesis Statement
	Contributions
	Organizations of Thesis

	Literature Review
	Machine Translation (MT)
	Why high quality Machine Translation is important
	Statistical Machine Translation (SMT)
	Rules Based Machine Translation (RBMT)
	Hybrid Machine Translation (HMT)
	Neural Machine Translation (NMT)

	Translation of Grammatical Gender research
	Importance of Grammatical Gender
	Determiners/Articles
	Nouns
	Adjectives

	Metrics
	BLEU
	NIST
	METEOR


	Methodology
	Proposed System
	Overview of system
	Noun swapping
	Determiner swapping
	Adjective swapping
	Machine learning model
	Example for applying the corrector
	Determining word endings

	Testing Strategy
	Data
	Survey
	Automated tools

	Feasibility of the solution
	Trials
	Language ambiguity

	Findings
	The GT gender bias corrector perfectly address the Google Translate gender bias of simple and Intermediate cases
	The GT gender-bias corrector moderately fixes the Google Translate’ gender bias of complex cases
	Analysis

	Conclusion
	Future work
	Extending the GT gender bias corrector to other Romance languages
	Benefits for Google Translate
	Expanded survey
	Using more complex machine learning algorithms to improve the performance

	Limitations
	The system can process two sentences only
	Reverse lemma instead of manually getting word endings


	Bibliography

