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Methodological advances for studying gamma motor neurons
Katherine A Wilkinson

The muscle spindle is an important sense organ for motor

control and proprioception. Specialized intrafusal fibers are

innervated by both stretch sensitive afferents and g motor

neurons that control the length of the spindle and tune the

sensitivity of the muscle spindle afferents to both dynamic

movement and static length. g motor neurons share many

similarities with other skeletal motor neurons, making it

challenging to identify and specifically record or stimulate

them. This short review will discuss recent advances in genetic

and molecular biology techniques, electrophysiological

recording, optical imaging, computer modelling, and stem cell

culture techniques that have the potential to help answer

important questions about fusimotor function in motor control

and disease.
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Introduction
The mammalian muscle spindle is a unique somatosen-

sory mechanoreceptor in that it is innervated by both

stretch sensitive sensory neurons and g motor neurons

that modulate its length to maintain stretch sensitivity.

Muscle spindle afferents report muscle length and

movement and provide the primary sensory input for

proprioception, or the sense of body and limb position

in space. Group Ia muscle spindles also comprise the

sensory arm of the myotatic stretch reflex. By tuning both

the dynamic and static sensitivity of muscle spindle

afferents to stretch, g motor neurons play an important

role in motor control, locomotion, and balance [1,2]. The

three types of skeletal motor neurons can be distin-

guished based on their muscle targets. The a motor

neurons innervate the force-generating extrafusal fibers,

the g motor neurons the intrafusal fibers of the muscle

spindle, and the b motor neurons both intrafusal and

extrafusal fibers. g motor neurons comprise roughly 30%

of the motor pool, typically have smaller soma than a
motor neurons, have simpler and less branched dendritic

trees, and do not receive Group Ia monosynaptic input

[3]. Functionally, g motor neurons can fire at increased

rates, are more excitable than a motor neurons, and have

other electrophysiological differences that likely vary

based on age and species [4–6]. The neuromuscular

junction and the g motor neuron endplate are functionally

similar and share a common molecular basis for develop-

ment [7]. Static g motor neurons innervate the bag2 and/or

chain intrafusal fibers and dynamic g motor neurons

innervate the bag1 fibers [8]. Co-activation of a and g
motor neurons is thought to maintain muscle spindle

afferent sensitivity during planned movements and to

allow the muscle spindle afferents to provide a sensory

template of the expected movement [2,9]. In cats, there is

strong evidence for independent control of dynamic and

static g motor neurons during locomotion and other

behaviors [2], but in humans the role of independent

fusimotor control seems to be more modest [10]. There

are many unanswered questions about g motor neuron

function in motor control and disease progression, but

technical challenges in identifying, recording, and

manipulating them independently from other skeletal

motor neurons mean they are relatively understudied.

Here I will review recent advances in genetic and

molecular biology techniques, electrophysiological

recording, optical imaging, computer modelling, and stem

cell culture techniques which provide additional avenues

for the study of g motor neuron function.

Identification of molecular markers for
gamma motor neurons and transgenic tools
While adult g motor neurons tend to have smaller soma

than a motor neurons, using size to identify g motor

neurons is not definitive, especially during development

[11] and disease when cell size may be altered [12]. Size is

also not clearly differentiating in certain motor nuclei like

the dorsolateral Trigeminal Motor Nucleus where there is

a physiologically distinct group of a motor neurons of

similar size to the g motor neuron population [6,13]. In

the past decade, a variety of molecular markers for g
motor neurons have been identified (recently reviewed in

Ref. [14]), including high expression of the nuclear hor-

mone receptor Err3 [11], the GDNF receptor Gfra1 [15],

the secreted signaling protein Wnt7a [16], the serotonin

receptor 1d (5Ht1d) [5], and a low expression of neuronal

nuclear protein (NeuN) and homeobox protein Hb9::

GFP transgene [11,15]. These markers have been iden-

tified using mouse genetic technologies including gene

reporter mice that can be used to identify cells expressing
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a gene of interest or by using mouse models that lead to

the reduction or absence of specifically g motor neurons

[11,15,16].

However, most of the markers are best used in combination

and may have residual expression in other motor neuron

subtypes. Recent advances in single cell profiling allow for

high-throughput searches for identifying additional and

more-specific molecular markers. Candidate markers for

a and g motor neurons have been identified in the early

postnatal spinal cord using a novel and relatively low cost

split-pool ligation-based transcriptome sequence method

[17�]. These markers still need to be validated for specific-

ity, as others have already identified a few of the candidate

markers in other subtypes of motor neurons [18��,19].
Motor neurons comprise only a small percentage of cells

in the spinal cord and their size makes them hard to

dissociate into single cells, so using a sample of only the

choline acetyl transferase (ChAT) positive pool of spinal

cord nuclei is a more promising approach. Two groups have

independently used mice with fluorescently tagged ChAT

expressing neurons to increase the number of motor neuron

nuclei they sequence and restrict their profiling to visceral

and skeletal motor neurons and ChAT positive interneur-

ons. Both groups found three main clusters of skeletal motor

neurons, although there were differences in the subgroup

markers they identified that will need to be studied further.

Both groups hypothesize that these clusters may correspond

to a, b, and g motor neurons [18��,19], however they may

alternatively correspond to a, static g, and dynamic g motor

neurons if — as Banks has postulated — the b motor neurons

represent a motor neurons that innervated intrafusal fibers

because during development their axons encountered them

by chance [8]. The analysis of ChAT-enriched motoneuron

pools shows great promise not only for identifying molecular

markers, but also for identifying functionally important

genes for g motor neuron function and development, and

as a tool to compare transcriptionprofiles following disease or

development. Identifying a gene that is uniquely expressed

in g motor neurons is a prerequisite for uniquely targeting

other transgenic tools like expression of optogenetic

channels [20], chemogenetic tools [21], genetically encoded

calcium- [22] or voltage indicators [23], or marker proteins

(Figure 1).

Tools to study gamma motor neuron
physiology
The majority of electrophysiological recordings of g motor

neurons have been done in the cat using laborious single

fiber recordings [2]. The cat is an excellent model in that

concurrent recordingsofg motorneuronsandproprioceptive

afferentscanbeaccomplishedduring locomotorbehaviors.A
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Promising transgenic tools for the study of g motor neurons. Many technologies available in the mouse could allow for targeted recording, control,

or identification of g motor neurons, especially if a suitable g motor neuron-specific driver was identified. Examples include fluorescent marker

proteins like GFP, optogenetic channels like channelrhodopsin or halorhodopsin, Designer Receptors Exclusively Activated by Designer Drugs

(DREADD) or other chemogenetic technologies, or genetically encoded calcium or voltage indicators. Figure created in BioRender.com.
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method for identifying and stimulating multiple dynamic

and static g motor neurons while recording the response of

muscle spindle afferents has even been described [24].

However, the transgenic tools available in mice make it

an attractive study species. Neonatal mouse spinal cord slice

preparations have been used to record and compare mem-

brane properties between skeletal motor neurons by using

the presence of 5Ht1d-GFP fusion protein to identify g
motor neurons [5]. Motor neurons and spinal circuits are not

completely developed at that point, though, so thin slice

preparations for recording in adult mice are more suitable for

experimental questions regarding mature motor neurons

[25]. Muscle spindle afferent responses to passive stretch

are relatively easy to record in a mouse muscle-nerve prepa-

ration and targeted expression of the light activated channel

rhodopsin 2 would allow for g motor neuron stimulation [26].

Electrophysiological recordings of motor neurons in intact

mice is extremely challenging due to their small size,

although some groups have successfully recorded a motor

neurons from anesthetized [27] or decerebrate mice [28].

Electrophysiological recordings of g motor neurons in mice

should be theoretically possible, but technically very chal-

lenging. Imaging activity of motor neuron populations using

genetically encoded indicators for calcium or voltage is a

promising approach as is using genetically encoded fluores-

cent tags to study cellular dynamics or interactions. For

instance, two-photon imaging of GFP-tagged microglia

has been used in adult ex vivo spinal cord slices to study

microglia interactions with a motor neurons following nerve

injury [29]. Imaging in the deeper layers of the intact spinal

cord is very difficult due to the light-scattering dorsal white

matter, but two-photon laser scanning microscopy and a

ventrolateral surgical approach allows for the acute imaging

of motor neurons in the ventral horn in vivo [30��]. Further

advances in three photon excited fluorescence imaging and

chronic imaging chambers may allow for long-term imaging

of the ventral horn [31]. The ability to image populations of g
motor neurons in vivo could allow for a better understanding

of fusimotor control during different types of movement as

well as how disease states affect g motor neurons.

Some important differences exist between fusimotor con-

trol in animal models and humans, including lower firing

rates and smaller fusimotor-induced changes in firing in

muscle spindle afferents, and less evidence for indepen-

dent fusimotor control in humans [10]. There has been only

one reported electrophysiological recording of g motor

neurons in humans [32] and fusimotor activity is normally

extrapolated from changes in muscle spindle afferent firing

rates. However, central reflex facilitation or fusimotor-

independent peripheral changes in muscle spindle tension

cannot be completely ruled out in these studies [33].

Muscle movement makes holding recordings difficult

and limits the use of microneurography during many natu-

ral movements. Only superficial nerves can be recorded,

limiting the muscles that can be studied [10], although

recently a group has published methods to record from

spindle afferents in the foot during standing [34�]. Coupling

experimental recordings of muscle or spindle afferent

activity with computer modeling is a promising approach

to test hypotheses about fusimotor control [35�,36]. For

instance, EMG recordings of physiological tremor at

different muscle lengths were used to determine that

shorter muscle lengths were accompanied by larger tremor

amplitudes in human subjects. Using a closed-loop model

of an afferented gastrocnemius muscle, increased static g
motor neuron drive was identified as the likely causal factor

[36]. A similar computer model of the proprioceptive circuit

was coupled with servo motor control of a cadaver finger to

test hypotheses about altering g motor neuron drive on the

stretch reflex using realistic muscle and tendon forces

[37,38]. Computer models hold great promise for testing

hypotheses about the role of fusimotor control in normal

movement and disease, but they would benefit from a

greater understanding of the biophysical properties of g
motor neurons [39]. Future advances in recording techni-

ques, experimental paradigms, and computer models can

shed further light on human fusimotor control.

Cell culture tools to study gamma motor
neurons
Advances in cell culture and stem cell technology have

increased the utility of cell culture systems for studying

motor neurons in vitro, which is a useful platform for

studying the effect of disease mutation and development,

or high throughput screening of drugs. Mature motor

neurons are most useful for studying motor neuron behav-

ior during age-related diseases [40] and methods for

isolating spinal motor neurons from embryonic and adult

mice as well as selecting for g motor neurons have been

developed [41,42]. However, yields from these techni-

ques are relatively low and the cells recovered are likely

to be the most resistant motor neurons and not those

vulnerable to disease [40]. Using both rat and human stem

cells, 2D co-culture systems have been created with

intrafusal fibers and innervating muscle spindle afferents

[43–45]. A human stem cell culture model with both bag

and chain intrafusal fibers, innervating g motor neurons,

and functional neuromuscular junctions has also been

developed [46]. These models show promise, however,

the complex structure of the muscle spindle is not

completely recapitulated and delivering reproducible

stretches is difficult in vitro. Additionally, 2D monolayers

can cause alterations in gene transcription and don’t

model in vivo characteristics as well as 3D cultures, nor

do they replicate the microenvironments seen by differ-

ent cell types as well as compartmentalized microfluidic

culture systems [47]. A 3D motor unit model in a com-

partmentalized microfluidic device has been developed

using human induced pluripotent stem cells from a

healthy control and an ALS patient and will be useful

for screening therapeutic drug candidates [48��]. The

development of a similar 3D culture system with intra-

fusal fibers, proprioceptive neurons, and g motor neurons

Methods to study gamma motor neurons Wilkinson 137

www.sciencedirect.com Current Opinion in Physiology 2021, 19:135–140



would provide a powerful tool to test questions about

proprioceptive circuit development and potentially

disease progression.

Conclusion
There are many unanswered questions about how the

fusimotor system contributes to motor control and is

affected by disease. For instance, the importance of

independent fusimotor control in animal and human

models during a variety of behaviors is still not well

understood [2,10]. Why g motor neurons are preferen-

tially spared from degeneration in two neuromuscular

disorders, amyotrophic lateral sclerosis (ALS) and spinal

muscle atrophy (SMA), and how the surviving g motor

neurons may exacerbate disease progression is still

unclear [12,49]. In contrast, g but not a motor neurons

are lost in a mouse model of Spinal Muscular Atrophy

Lower Extremity Predominant (SMALED) [50�]. Excit-

ing advances in genetics and molecular biology have led

to better tools to identify-specific molecular markers for g
motor neurons that can be leveraged to target expression

of other genetic technologies, including light-gated ion

channels or genetically encoded calcium or voltage sen-

sors. Coupled with advances in imaging technologies,

these could allow for the control and/or recording of

activity in populations of g motor neurons, potentially

even during normal behavior. There are important

differences between human and animal model fusimotor

control, so coupling computer modeling with electrophys-

iological recordings can overcome some of the limits to

direct manipulation in human subjects. Stem cell

technology allows for the development of more physio-

logically relevant 3D culture systems derived from

patient cells which can be used to screen drug candidates

and study disease progression. In short, the expanded

toolbox for studying g motor neurons should lead to

exciting new discoveries about the fusimotor system.
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