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ABSTRACT

LSTM-ENABLED LEVEL CURVE TRACKING IN SCALAR FIELDS USING
MULTIPLE MOBILE ROBOTS

by Kunj J. Parikh

Autonomous mobile sensor networks are ideal candidates for exploring large-scale

unknown fields with tasks ranging from source seeking, level curve tracking, mapping an

unknown field, and many more. In this work, we investigate the problem of level curve

tracking in unknown scalar fields using a limited number of mobile sensors. The level

curve tracking problem has been studied in many applications such as monitoring the

propagation of fire boundaries and the algae blooms. We design and implement a long

short term memory (LSTM) enabled control strategy for a mobile sensor network to

detect and track the desired level curve. We develop on top of existing research which

uses cooperative Kalman Filter as part of its motion control strategy. This existing method

is theoretically proven to converge. The LSTM enabled strategy has some benefits such as

it can be trained offline on a collection of level curves in known fields prior to

deployment, where the trained model will enable the mobile sensor network to track level

curves in unknown fields for various applications. So we can train using larger resources

to get a more accurate model, while we can utilize a limited number of resources when

the mobile sensor network is deployed in the production. We design and implement an

LSTM-enhanced cooperative Kalman Filter that utilizes the sensor measurements and a

sequence of past fields and gradients to estimates the current field value and gradient. We

also design an LSTM model to estimate the Hessian of the field. We utilize these

estimates of the field characteristics with motion controllers to track the desired level

curve in an unknown field with the center of the sensor network. Simulation results show

that this LSTM enabled control strategy successfully tracks the level curve using a mobile

multi-robot sensor network.
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1 INTRODUCTION

Individual sensors or a wireless sensors network (WSN) can be deployed in a fixed

area to monitor the environment for a long period of time. Example applications of such

an arrangement include climate monitoring, monitoring humidity and pressure of

redwoods in a forest to analyze the micro-climate around those trees, monitoring vibration

of machines in semiconductor fabrication facilities to learn about the machine’s health [1].

Taking a step forward we can work with mobile wireless sensor networks (MWSN) like

satellites that can monitor charted locations periodically. Other examples of MWSN

include attaching sensors to animals to study migratory patterns, sensors attached to

manned vehicles, sensors attached to people in hospitals to monitor health signals.

Recently, with the development of technology in the field of sensors and unmanned

vehicles, a new field of research in sensor networks has emerged. It involves using a

swarm of unmanned autonomous robots within the network. Specifically, the group of

robots is asked to simultaneously sense an unknown environment, and autonomously

decide their trajectory. Some examples of autonomous MWSN include a swarm of

unmanned aerial vehicles (UAVs) or unmanned underwater vehicles (UUVs) which are

ideal candidates for exploring large-scale environments such as those encountered in the

fields of ocean science and meteorology. We can’t deploy an unlimited number of robots

at static locations to sense the whole large-scale environment (field). As an alternative, we

deploy a few robots to study and explore the field.

The autonomous MWSNs are involved in tasks including source seeking, level-curve

tracking, mapping an unknown field, and many more. An example of source seeking is

climbing gradients of a scalar field [2], [3] to reach the food source, oil spill source, a

point at which the temperature is 150F, etc. An example of level-curve tracking is tracking

environmental boundaries [4] as in monitoring the perimeter of a wildfire spreading over
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the land, tracking the perimeter of oil spills, understanding algae blooms, etc. Such a

swarm can also sample a large-scale environment in order to chart an unknown field.

MWSNs have to address a few general challenges as described by Cullar et al. [1].

MWSN robots typically have constrained compute hardware resources to perform limited

processing on the collected measurements. Depending on the application we need to

select sensors to install on the robots; examples of sensors include photocells, fog,

temperature, analog-digital converters, micro-electromechanical systems (MEMS), etc.

Networking hardware involving radios is a major energy consumer so the design of the

network is critical. Another important decision is how will we aggregate data. Do we send

raw data or data processed on the edge and at what interval? Next, we have to solve

systems challenge, for example using features available in TinyOS operating system.

Finally, we need to decide on a power source depending on the consumption and the

period of deployment, for example using AA batteries. Autonomous MWSN has

additional specific challenges that we address in this thesis. Specifically, we are working

in unknown fields so we don’t have a way to design a map of the field apriori. We need to

design a way to control the trajectory of the autonomous MWSN. Additionally, individual

robots of the autonomous MWSN need to cooperate with each other to collect and share

the measurements in order to learn the characteristics of the unknown field optimally.

Autonomous MWSNs has many benefits. We can finely distribute the sensors as they are

not large individually. If designed well and with an appropriate power source or recharge

method, they can be deployed for the long term to continuously monitor the environment.

Due to their autonomous nature, we don’t need anyone explicitly controlling their motion.

And in addition, they can be deployed in large scale fields to autonomously explore the

unknown field. We use autonomous MWSN for the level-curve or the boundary tracking

problem and improve upon existing work.
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There is considerable existing literature which solves some of the challenges involved

in the level-curve tracking problem [5], [6], [7]. The robot sensors have the capability to

only take measurements at discrete locations and they have limited communication

resources to share this information with each other. Zhang and Leonard [6] design a

cooperative Kalman Filter which uses the measurements of all the robots to cooperatively

estimate the field gradient and the field hessian. They also design control strategies for the

swarm trajectory and its shape which uses these estimated field parameters. If we consider

the two basic tasks of the level-curve tracking problem, design a control-law which

specifies the motion of multiple robots cooperatively, and collect (sense) the data in a

cooperative manner, in fact, these two problems are not independent of each other [8]. As

an illustration, we need to sense data among multiple robots while cooperating to process

the data to calculate the gradient. In parallel, we need to control the motion of each robot

cooperatively to maximize data collection. There are additional complexities like

time-varying fields that are modeled using advection-diffusion dynamics [9], avoiding

obstacles [10], noisy measurements, minimizing update latency, maximizing accuracy by

interpolation [11], and many others which we don’t discuss in this thesis. We focus on the

step which uses cooperatively collected data and state dynamics to estimate the state of

the system. Traditionally, a cooperative Kalman Filter is employed to make use of the

information dynamics to estimate the state of the system, and it uses instantaneous

measurements for this purpose.

In addition to the instantaneous measurements (i.e. data about the current step), we

can possibly use a sequence of historical data to infer the next step. Thus we apply

machine learning technology to this problem in our current work. Specifically, we apply

Long Short Term Memory (LSTM) to study the collected state dynamics to produce state

predictions. These state predictions are used with the sensor measurements to generate the

state estimates, which are then used to control the trajectory and shape of the swarm
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(formation). In this work, we train the machine learning enhanced system in a set of

known fields, and then it is deployed in another set of unknown fields for testing. We keep

data collected by the robots for a predefined number of steps and use current and a set of

past data to predict the current state estimate. These estimated states are provided to the

motion controllers to decide the trajectory of the autonomous MWSN such that it tracks

the desired level-curve.

We study the pros and cons of each approach. The traditional cooperative Kalman

Filter has benefits. First, we don’t need to collect data or train the model separately.

Additionally, the convergence of the cooperative Kalman Filter is theoretically proved

under certain assumptions. Using LSTM provides us with certain benefits. First, we don’t

need to explicitly derive the model or the state equations unlike the traditional approach in

which we need to model the feedback control which is non-linear and it needs to be

designed such that it converges; this needs experience and knowledge of the system. If we

follow the machine learning data-driven approach to collect, train, and simulate the

system, without knowing a specific model we can accomplish the same task. Second, for

complex dynamic fields, these equations are complicated and using input-output data to

train an LSTM model is more practical. As a third point, using non-linear machine

learning models we can relax the assumptions made in traditional approaches and thereby

address more complex fields. Finally, using historical data and machine learning can allow

us to reduce the number of required sensors to perform level-curve tracking. Ideally, it can

also allow us to use a single robot to track the trajectory instead of a system of robots.

There is existing literature we discuss in Subsection 2.2 in which researchers have used

LSTM-enhanced Kalman Filter to tackle various challenges such as handling colored

noise while taking measurements [12], tracking level-curve without using localization

data [13], etc. Given the sensor measurements, we consider both a pure LSTM model and

a hybrid model in which the cooperative Kalman Filter is enhanced using LSTM to
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estimate the state. The benefit of the hybrid model is that we can depend on the

cooperative Kalman Filter to correct LSTM predictions to make them more accurate,

while the benefit of a pure LSTM model is its simplicity.

We make two contributions through this thesis. First, we design and implement an

LSTM enabled control strategy for a mobile sensor network to detect and track the

desired level-curve. Here we use estimates produced by LSTM-enhanced cooperative

Kalman Filter in the controllers used to track the level-curve. This has benefits while

working with limited resources. Second, we employ a third LSTM to estimate the hessian

for the unknown curve. In the LSTM-enhanced cooperative Kalman Filter, we replace the

first two estimating equations in the cooperative Kalman Filter developed in [6] with two

LSTM models. This allows us to use multiple steps of historical data to predict (estimate)

the next state and error values. We describe this in detail in the subsequent sections. The

hessian estimated by the 3rd LSTM is used as an input to the cooperative Kalman Filter

and also used in the formation-center model. The benefit of this approach is that we can

train the three LSTM models using multiple robots (eg. 4) to more get accurate data.

However, when we deploy them in an unknown field we can use fewer robots (eg. 2) to

track the curve. We can enable this because we use the pattern information that is

available to the LSTM due to its use of long-term historical data. First, we show that if we

train the models on a set of field shapes using four robots, and then deploy the models in

un-seen field shapes, while still using four robots, we are able to track the curve using

four robots. This shows that the model is able to generalize well. Second, we show that

instead of using four robots if we use two robots, the model is still able to track the curve,

although by trading off some accuracy.

The thesis is organized as follows. In Section 2, we review existing technology and

related work. In Section 3, we provide the problem statement. In the next Section 4, we

cover some theoretical background, which includes some background about Control
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Theory and Machine Learning LSTM concepts, and the scope of the current project. In

Section 5, we first describe our theoretical solution, then we describe the experimental

setup. Next, we provide results and analysis in Section 7. Finally, we make some

concluding remarks in Section 8.
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2 LITERATURE REVIEW

In this chapter, we provide an overview of mobile sensor networks, and we review

some multi-robot exploration techniques which are used for level-curve tracking problem.

Additionally, we review some time series forecasting methods as applicable to our work

of forecasting the state of the multi-robot system.

2.1 Multi Robot Exploration

Fixed wireless sensor networks (WSN) are already deployed in many applications [1]

like climate temperature, humidity, pressure monitoring in redwood forests, and

monitoring motion and vibrations to infer wear and tear in semiconductor fabrication

machines. Cullar et al. [1] provides these examples and also gives an overview of the

compute (embedded hardware), sensor (MEMS and efficient microsensors), networking

(radio energy consumption), system (TinyOS), and power (battery supply) challenges

involved in WSNs. They also describe how the data are aggregated across various sensor

nodes for analysis. The benefit of WSN, as opposed to wired networks, is they are smaller

in size so they can be distributed in a fine manner, and because of lower power

requirements, they can be used for long-term monitoring. We are dealing with a special

form of WSN - mobile WSN. This is because we are interested in large-scale fields like

monitoring temperature in oceans, or monitoring the perimeter of a spreading wildfire.

It is not practical to distribute fixed wireless sensor nodes across large-scale and

possibly dynamic fields to form a fixed WSN. Thus, we use a collection of mobile sensor

nodes (robots) that forms a mobile wireless sensor network. A mobile wireless sensor

network has multiple applications like source seeking, boundary tracking, environmental

sampling, etc. Liu et al. [10] describe two algorithms for source seeking applications.

First, in which all the robots can communicate with each other, they prove convergence of

formation center to the source analytically. Second, in which the robots have limited

communication with only neighboring robots, they use a consensus filter to estimate the

7



parameters at the formation center. These parameters are then used by controllers to seek

the source. Ogren et al. [3] develop a control strategy to perform source seeking. They

adapt the sensor array configuration to maximize the gradient climb. A large robot with

multiple sensors can’t achieve this reconfiguration and so a swarm of robot sensors is

superior. In addition to source seeking, another set of applications deals with boundary

tracking.

Srinivasan et al. [11] provide a high-level survey of various collaborative boundary

tracking techniques. This includes fixed and mobile sensors, networks in which the

sensors estimate and track the boundary, and other networks in which sensors

cover/surround the boundary, using sensors ranging from in situ, range and remote

sensing capabilities, techniques dealing with dynamic boundaries, different field

estimation techniques such as calculating contours after sampling an entire field or

localized sampling (large-scale fields) close to the boundary and finally different

techniques of mobility models ranging from randomized, partially coordinated,

approaches that minimize communication cost, swarm-based collective motion and others.

Marthaler and Bertozzi [4] apply the ’Snake’ algorithm from the field of image

segmentation for boundary tracking problems. The algorithm is used to find the boundary

of the object in an image. Williams and Sukhatme [7] propose a probabilistic method to

map a field using Markov random field to model the system and then they develop control

laws to track the level-curve using gradient and hessian estimation. Wang et al. [9] use

two cooperating robots to track a dynamic level-curve (plume tracking) in which one

robot estimates the gradient, based on measurements, and the second robot patrols the

developing plume front. Liu et al. [10] tackle the problem of obstacle avoidance by

reframing the cooperative level-curve tracking problem as a constrained optimization

problem. They develop an objective function to minimize formation errors. Finally, in

addition to the challenges captured by previous level-curve tracking related works,
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Leonard et al. [8] show that the balance between distributed sensing and trajectory

planning is a key problem in planning mobile sensor network missions. They define an

error metric (measuring statistical uncertainty of the model) to reduce during simulation

while sampling data, which captures how well the sensor array samples the field. They

also provide control laws for a family of superellipses.

Most of the related works we have discussed talk up to some extent the problem of

controlling the trajectory and the formation. Jadbabaie et al. [14] describe a graph theory

approach to coordinate the group of robots. In their model, the estimated update of

heading for each robot is based on the historical value of its own heading and the headings

of nearest-neighbor robots. The set of nearest-neighbor robots dynamically changes as the

formation moves along the trajectory. They prove convergence of a model in which the

robots are moving with a unit speed but with different headings/directions. Desai et

al. [15] describe the control of a nonholonomic mobile robot system using a graph theory

approach. They consider one of the robots as a lead robot and model the relationship of

other follower robots as a directed graph. They study the transitions between different

representations of these control graphs. Orgen et al. [16] address the control of a

multi-agent system by first developing Lyapunov functions for individual robots, thereby

ensuring formation stability, and then they use the concept of virtual leader to control the

trajectory of the formation. Zhang et al. [17] theoretically prove an important result that

the motion of the formation center can be decoupled from the motion of formation shape.

Modeling the formation as a controlled Lagrangian system and using Jacobi vectors they

design shape controllers using Lyapunov functions and independently allow the formation

center to climb the gradient or tracks a level-curve. Both the shape and the formation

center controllers need accurate estimates of field parameters such as gradient and

curvature. Such estimates are produced by filters by observing the sensor measurements.

In addition, the controllers need to be designed to optimally collect data for filtering.
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Assuming the unobservable states of the system are related to another process that

produces the measurements and which can be observed (Hidden Markov model), there are

many filters to accurately estimate the hidden states such as the Zakai equation, Wiener

filter, Kalman Filter, and its variants. Olfati-Saber and Shamma [18] describe a way to

fuse multiple sensor measurements using consensus filters. Their idea is to run a micro

Kalman Filter on the edge sensors, and then a consensus filter is used to combine the

results calculated on each node. They also discuss the required size of the sensor network

and how it relates to the consensus accuracy for fast signals. Ma et al. [19] approach the

consensus problem using a different method. They propose a game-theory approach to the

problem, in which they argue that in order to balance a global task with individual

interests the problem can be framed as a game. They prove that the game has a Nash

equilibrium and they derive the convergence speed to consensus. Rosero and Esteban [5]

describe a task combining cooperative source seeking and cooperative level-curve

tracking in which they design the formation controllers taking into account limited

communication between sensors. In order to estimate the gradients for the controllers,

they assume the sensors know each other’s relative location and sensor measurements.

They model the system of robots using different methods such as single integrator, double

integrator, and Linear Time-Invariant system. They also provide stability analysis for each

of their algorithms.

Zhang and Leonard [6] develop cooperative Kalman Filter to estimate the state of the

system by combining sensor measurements. They also prove the convergence of the

cooperative Kalman Filter. In addition, they design controllers to cooperatively determine

the formation shape, and another controller to track a level-curve and explore the field.

The controllers are designed independently of the Kalman Filter. They only need to meet

a set of minimum requirements for the cooperative Kalman Filter to converge. These

minimum requirements will have an important role when we discuss two robot systems.
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We study this design in detail in Section 4. Wu and Zhang [20] expand this work to the

3D field by deriving the model for 3D fields and proving its convergence. They apply a

modified version of Taubin’s algorithm (used in surface smoothing) to estimate the

curvature of the surface. They also derive the minimum number of robot sensors required

to perform level-curve tracking in a 3D field.

2.2 Time Series Forecasting

Using series or sequence data we can either perform time series analysis or time series

forecasting. Time series analysis deals with understanding a data-set by developing

mathematical models, and decomposing the time series to understand the underlying

processes. This understanding can be used for many purposes, including classifying the

time series. Time series forecasting is about extrapolating historical data to predict the

future. The primary concern in forecasting is how close predictions are to the actual

future values, and not about describing underlying processes. Brownlee [21] provides a

very good background on time series, including many traditional statistical methods

useful for time series forecasting. Any time series, in general, can be decomposed into

four components: level (bias), trend (increasing/decreasing), seasonality (monthly, annual,

etc.), and noise. The statistical methods work on these four components. For example,

some methods apply transforms on the time series like square-root, log, or a combination,

like Box-Cox [22] transforms to model the trend better.

The statistical methods also provide different ways to visualize and better understand

the time series. For example, using density plots to understand the distribution of the time

series - to see if it is Gaussian distribution. Another example is to plot lag scatter, lag

correlation, and autocorrelation plots to understand how much of the time-series history is

relevant to predict the current step. We use some of these methods in our analysis to

decide the lag-window hyper-parameter. There’s another important concept of stationary

time series. A time series that has no trend or seasonality is considered stationary, i.e. the
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observations don’t depend on time. For a practical dataset like airline passenger dataset

trend, the seasonality can be removed to make it stationary. A stationary time series can

be modeled using statistical methods like auto regressive moving average (ARMA), which

was developed by Box et al. [23]. Here the auto regression (AR) portion models the

relationship between the current observation with the historical observations. And,

moving average (MA) portion models the relationship between the current observation

and the residual error we obtain after applying the moving average model to the historical

observations. If the time series not stationary, we can add a integration step which

differences a historical observation from the current observation. Thus we can use the

auto-regressive integrated moving average (ARIMA) model. This difference step can

remove the trend and the seasonality. There are extensions to the ARMA model to handle

the multi-variate time series called vector auto regression (VAR) model. For our work, the

time-series is multi-variate.

In addition to the statistical methods described above, we can use neural networks to

model time series for forecasting. Brownlee [24] discusses various ways in which deep

neural networks (DNN) are applied to time series forecasting. The benefits of neural

network models are that they are non-linear, so we don’t have to worry about stationary

data. Additionally, we don’t need to make assumptions like Gaussian distribution for the

data. They inherently support multiple variables as multiple input features, so we don’t

need special vector models. The simplest machine learning model is the multi-layer

perceptron (MLP), which is an input layer followed by a hidden neural layer, and finally

an output layer. Here, the historical time-series data is simply passed as extra features to

the input layer. For example, if we have 3 features at each time-step, and we are

considering a lag-window of 4, for MLP we provide 12 features as input to predict 3

features. We consider a similar model containing fully connected dense layers as part of

our experiments. Similar to the MLP, we can use convolutional neural network (CNN), in
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which we provide historical data as extra features, and the trained CNN’s weights assign

importance to features. Recurrent neural networks (RNN), specifically LSTM were

designed specifically for sequence data, such as time series, a series of words in a

sentence for language translation, a series of images as in the video, etc. An LSTM

contains a series of unit cells which are described in detail in Subsection 4.6. These unit

cells maintain a state that is passed on to the next unit cell, in which some information is

added, removed or updated, and the modified state is passed on to the subsequent unit

cells. This state models the series, and remembers the effect of historical data on current

prediction. Traditional RNNs suffered from a problem, in which they can’t learn long

term dependencies. LSTMs are designed to solve this problem, and they have shown

considerable success in many problems like language translation [25], speech

recognition [26], video recognition and narration [27], time series forecasting [28] [29]

and many others. LSTMs can also be arranged to create more complex networks like

stacked LSTM, in which two LSTM layers (each containing multiple units) are connected

back to back. This enables it to learn both the short-range and the long-range patterns.

Examples of even more complex LSTM networks include bidirectional LSTM (useful for

translation to see both the preceding and the following words), CNN-LSTM, and

ConvLSTM (which are useful for video analysis to extract image features using CNN and

then use LSTM on those features). We consider both a simple LSTM layer and a stacked

LSTM for this thesis.

There’s a lot of existing research in the field of motion control and state estimation

using neural networks. Yang and Luo [30] propose a neural network model for complete

coverage path planning problems including obstacle avoidance. Here, they use inputs

from the dynamic landscape and the previous location of the robot to decide the robot’s

trajectory. Choi et al. [12] tackle the problem of simultaneous localization and tracking

(SLAM) using the neural network aided extended Kalman Filter (NNEKF). For colored
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noise, the extended Kalman Filter diverges, so they model the noise using a neural

network, and use a combination of EKF and NN to control the motion. In their proposal,

the NN is trained online, so it can handle un-modeled dynamics too. Krishnan et al. [31]

propose deep Kalman Filters to deal with the problems faced while modeling

non-linearity using standard Kalman Filter, and to deal with long-range temporal

interactions. They assume the distribution of the latent state is normal and can be modeled

using a sequence of actions and observations. They parameterize these functions and train

the parameters using deep neural networks to effectively learn a broad range of Kalman

Filters. Doshi [32] applies a similar concept to estimate the pose of the vehicle using

video data. Here, they use CNN to extract the features, and RNN to estimate the velocity.

They show better performance than the multi-state constraint Kalman Filter. Masti and

Bemporad [33] use another machine learning model - deep autoencoders - as a way to

learn nonlinear state-space representation given the input/output dataset. Zhang et al. [34]

apply deep RNNs for state estimation (non-linear dependency) and forecasting in the field

of power system. This has traditionally been solved using extended Kalman Filters or

vector auto regression (VAR). Coskun et al. [35] present the LSTM Kalman Filter

(LSTM-KF) design for pose identification, for which traditionally a Kalman Filters have

been used for regularization. But for pure a Kalman Filter the models need to be designed

apriori. Their LSTM-KF design replaces three matrices with LSTMs: the state transition

matrix, the process covariance matrix, and the measurement covariance matrix. Then they

use the output of the three LSTMs in KF’s gain and update equations, in which they also

use observed measurements. Zhang et al. [36], [13] also employ a similar LSTM-KF

design for problems related to collecting data in a 2D spatio-temporal varying field for

underwater gliders. They track a level-curve without using the localization data. For this

work, we use a similar LSTM-KF design to the problem of estimating state to perform

level-curve tracking. We use the historical data and the observed field values to estimate
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the field gradients. These are used in the motion controllers to track the desired

level-curve. We describe this design in detail in Section 5.
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3 PROBLEM FORMULATION

In the following subsections, we describe the components tha. Theye up tproblem

statement. Fir using thest, we define what we mean by a scalar field and a level-curve we

desire to track. Second, we describe the mobile sensor network (or the swarm of robot

sensors), we define some related terms like formation center and format. Theseape, and

we discuss the assumptions we make relating to the robot’s capabilities. Finally, using the

definition of the level-curve and mobile sensor network, we define the three sub-problems

we work on in this thesis: estimating field and gradient, designing a controller for the

formation center, and designing an independent controller for the shape of the formation.

3.1 Scalar Field and Level Curve

We can model temperature in the ocean or in a wildfire using a scalar function of

three dimensions. In order to simplify the problem, we assume this function is a static

field as opposed to a time-varying dynamic field. Then, temperature at each point in the

ocean can be represented as a function over R3 , i.e. f (x,y,z). In this work, we focus on

2-dimensional fields so we consider functions of the form f (x,y). This function (or

temperature field) is not known apriori, but our problem is also not to fully estimate this

field ∀(x,y) ∈ R2. We assume the field is smooth and that the field can be approximated

using second-order variations. Thus the field characteristics at any location (x,y) can be

defined using the field value, the field gradient, and the curvature of the field (i.e. hessian)

at that location. We denote the three characteristics of field by z(r), ∇z(r) and H(r) where

r is a (x,y) point in 2D space (i.e. r ∈ R2). We assume that the field is smooth, its gradient

is well-defined and bounded by a min and max value at all locations, i.e.

∇zmin < ∇z(r)< ∇zmax,∀r ∈ R2.

Let us consider the definition of a level-curve. A level set Lc( f ) of a function f with n

variables is defined as a set of inputs for which the function takes a constant value c, i.e.

Lc( f ) = {(x1, ..,xn)| f (x1, ..,xn) = c}. For a two dimensional field (i.e. n = 2) this level
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set is called a contour or a level-curve. Our problem is to find and track a level-curve

given a desired constant value of the field. To again note, the field is not known to us, the

only capability we have is to measure the field value at a given location. That is, we can

measure z1 at (x1,y1) such that z1 = f (x1,y1)+ ε . The measurements are not accurate so

we add the ε term to model the error. In addition, we deal with large-scale fields such as

oceans, large wildfires, etc. so we can’t sample all possible locations to measure the field.

3.2 Mobile Sensor Networks

With these constraints, we consider a scenario in which we deploy N robots in this

field, and each robot has a sensor to measure the field at its own location. We also call this

collection of robots a swarm or a formation. We make the following three assumptions

regarding the robot sensor’s capabilities. First, we assume that the measurements are

taken at discrete intervals, and we denote these local measurements by individual robots

as zi where i ∈ {1, ..,N}. Second, we assume the robots can communicate with each other,

so they can share their local field measurements with each other. Third, in this current

work, we also assume that the robots know the relative locations of each other, which they

can also communicate with others. This group of mobile robots which can measure the

field and communicate with each other forms what we call the mobile wireless sensor

network. We denote individual robot locations as ri where i ∈ {1, ..,N} and ri ∈ R2, and

we denote the center of the formation using rc, where rc = ∑(ri)/N. Any or each of the

robots can then use the collection of measured local field values and corresponding

relative locations to estimate the characteristics of the overall field using methods we will

describe in subsequent sections.

3.3 Three Subproblems

The first problem is to accurately estimate z(r),∇z(r), and H(r) using the collection

of measurements zi and corresponding locations ri close to r. We take the center rc as the

point close to all the individual ri to represent the formation. The second problem is to
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design a motion controller, which uses these estimates at the center zc,∇zc and Hc, so that

the formation center can detect and track a level-curve with the desired field value, i.e.

design a controller for the formation center so that zc = zdesired . The third problem is how

to control the motion of individual robots. Zhang et al. [17] have shown using the Jacobi

transforms we can decouple the motion of the formation center rc from the motion of the

formation shape (i.e. individual ri in relation to each other). They use this to design a

controller to control the formation shape, which is independent of the controller designed

to ensure that the formation center tracks the level-curve. The individual locations decided

by this controller will affect the measurements taken and thus the field estimate at the

next step, so this controller needs to be designed to get optimal field estimates.

Therefore, we end up with three main components to achieve motion control to track

a level-curve: a way to estimate field characteristics, a controller to control the formation

center, and a controller to control the formation shape. In Section 4 we describe these

three components in detail, and in Section 5 we propose a method that utilizes historical

measurement data instead of just the current measurements and we discuss its benefits.
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4 THEORETICAL BACKGROUND

We first describe an overview of the method used to model the robot measurements to

estimate the field and the field gradients, which make up the state of the system. Next, we

describe the cooperative Kalman Filter used to estimate the state. After this, we describe a

method to cooperatively estimate the hessian of the field. Then we describe the two

controllers used to plan the motion. Fig. 1 describes how the components fit together to

use robot measurements to track the level-curve. Finally, we describe a neural network

used for current work.

Estimate Field
value and gradient

State Estimation
Kalman Filter

Level Curve
Tracking 

Formation Center
Controller

Update
Individual Robot

Locations 

Formation Shape
Controller

zi

ri

zc, dzc 

Hessian
Estimation

rc ri

H

ri, zi, zc, dzc

Fig. 1: Motion control components used for level-curve tracking problem. Cooperative
Kalman Filter and hessian estimation provides estimates of field characteristics, which are
used by the formation center controller and formation shape controller to update the robot
locations to track the level-curve.

4.1 Multi Robot Exploration

We need a way to estimate field characteristics zc, ∇zc and Hc, given robot

measurements zi and ri. The unknown field can be modeled as a Hidden Markov Model

(HMM) system of which we observe measurements in the form of field measurements.

This system has a latent state which transitions with time, and the hidden process

produces measurements corresponding to this latent state which we observe. The latent
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state is composed of field value z(r) and the field’s gradient in X and Y directions ∇xz(r)

and ∇yz(r). We observe the measurements and use them to estimate the subsequent state

of the system, i.e. to estimate the field values and the field gradients.

Zhang and Leonard [6] describe the dynamics of this modeled system. They first

consider the field observations having measurement errors. Then they approximate the

actual field value at the individual robot locations as a function of the formation center.

They combine these to relate observed measurements to the system state consisting of zc

and ∇zc. Lastly, they describe the state transition as the formation tracks the level-curve.

An overview of the equations is presented below. We model the measurement p taken by

each robot i at time k as:

pi,k = zi,k +wi,k +ni,k, (1)

where z is the actual value of the field, n is random noise, w is spatially correlated noise.

Assuming the field is smooth with respect to location r, we can approximate z around

formation center rc,k by its second-degree Taylor expansion.

zi,k ≈zc,k +(ri,k− rc,k)
T

∇zc,k +
1
2
(ri,k− rc,k)

T
∇

2zc,k(zi,k− rc,k), (2)

where zc,k is the field value at the formation center rc,k, ∇zc,k is the gradient of the field at

rc,k, ∇2zc,k is the second derivative of the field at rc,k, and zi,k is the field value at the ith

robot’s position.

The state of the system can be defined as sk = [zc,k,∇xzc,k,∇yzc,k]. The measurements

pi,k of all the robots can be combined as a vector pk. Similarly, combining noise elements

for each robot’s measurement, we get vectors wk and nk. The second derivative of the

field ∇zc,k can be estimated using hessian Hc,k. The error in estimating the hessian is

represented by ek .
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Using these notations and combining (1) and (2), we get,

pk =Cksk +DkHc,k +Dkek +wk +nk, (3)

where

Ck =


1 (r1,k− rc,k)

T

. .

. .
1 (rN,k− rc,k)

T

 ,
and Dk is a Nx4 matrix whose ith row is defined by 1

2((ri,k− rc,k)⊗ (ri,k− rc,k))
T .

As the formation moves, the state s evolves following the below equation,

sk = As
k−1sk−1 +hk−1 + εk−1, (4)

where

As
k−1 =

[
1 (rc,k− rc,k−1)

T

0 I2x2

]
,

hk−1 =
[
0 E[Hc,k−1(rc,k− rc,k−1)]

T ]T ,
and εk−1 is noise (independent of n or w). This noise εk−1 accounts for the positioning

errors, hessian estimation error and error caused by omitting higher order terms in the

Taylor expansion.

4.2 Cooperative Kalman Filter

Knowing the model for measurements and the state transition model, we can combine

these to estimate the subsequent state using the measurements. Using Equations (3) and

(4) we can design a cooperative Kalman Filter. The convergence of this Kalman Filter is

proved by Zhang and Leonard [6]. The Kalman Filter contains five equations: The first

equation provides one-step state prediction using previous state sk−1 and hessian. The
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definitions of As
k−1 and hk−1 are the same as in previous Subsection 4.1.

sk(−) = As
k−1sk−1(+)+hk−1. (5)

The second equation estimates the error covariance in the one-step prediction. Here Pk−1

is the updated error covariance in the last iteration,

Pk(−) = As
k−1Pk−1(+)A

sT
k−1 +Mk−1. (6)

The third equation calculates the optimal gain using the error covariance estimated above.

The matrices Ck, Dk are defined in the Subsection 4.1. Uk = E[ekeT
k ] and Rk = E[nknT

n ],

where ek and nk are defined in Equation (3)

Kk = Pk(−)C
T
k [CkPk(−)C

T
k +DkUkDT

k +Rk]
−1, (7)

The fourth and the fifth equations use the robot measurements pk and the calculated

optimal gain Kk to obtain updated the estimates of state and error covariance sk(+) and

P−1
k(+)

.

sk(+) = sk(−)+Kk(pk−Cksk(−)−DkHc,k), (8)

P−1
k(+) = P−1

k(−)+CT
k [DkUkDT

k +Rk]
−1Ck. (9)

In summary, we first predict the state using the equation for s(−), then we calculate

the predicted measurement P(−). We use actual measured value and calculate the Gain K.

Then we update our predicted estimates to s(+) and P(+). And thus we obtain estimates of

field value zc and field gradient ∇zc at rc.
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4.3 Level Curve Tracking Controller Design

We can use the field characteristics at the formation center to find a new formation

center, such that the field value at the new formation center is the same as the current field

value at the formation center. That is, given estimates of zc,k,∇zc,k and Hc,k, we can find

rc,k+1 such that zc,k = zc,k+1, where k is the current step and k+1 is the next step. Using

the new formation center calculated thus ensures that we track the same field values (i.e.

the level-curve) using the formation center. We use the controller described in Zhang et

al. [8] which uses estimated zc,∇zc,Hc,zdesired and the current trajectory of the center rc

to update the trajectory. They model the formation as a unit mass Newtonian particle and

represent the system in Frenet-Serret form which allows them to separate the steering

control from the speed control. As described in the Fig. 2, at any point along a level-curve,

we can define an angle φ formed between the direction tangent to the field x1 and the

current heading of the formation center x. Here y1 is the same as the direction of the field

gradient ∇zc estimated earlier, and y is the direction orthogonal to current heading x.

Fig. 2: Formation center controller design. Angle φ between the heading of the formation
(represented by −→x ) and the tangent to the level-curve (represented by −→x1 ) is used by the
control law as shown in Equation (10). Direction of field gradient −→y1 is used to determine
tangent −→x1 .
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Using the angle φ described above and assuming unit speed, the steering control law

can be described by the following equation,

uc = κ1 cosφ +κ2 sinφ −2 f̃ (z)||∇z||cos2(
φ

2
)+K4 sin(

φ

2
). (10)

Here κ1 =−
xT

1 ∇2zx1
||∇z|| ,κ2 =

xT
1 ∇2zy1
||∇z|| in which ||∇z|| is obtained using estimated field

gradient ∇zc. ∇2zc is obtained using hessian estimation. f̃ (z) = 0 if the formation center

rc is on the level-curve, otherwise it models the external force which drives the formation

towards the desired field value zdesired. K4 is a constant gain parameter we can tune. The

calculated steering control can be used to update the heading of the formation center, and

calculate the new formation center rc,k+1.

4.4 Formation Control

We use a controller described by Zhang and Leonard [6] to control the shape of the

formation. This controller is designed independently of the formation center controller

which tracks the level-curve. They derive the guidelines for designing formation shape

controller which yield successful cooperative Kalman Filters. For N ≥ 3, we can fix the

formation shape, but we need to ensure that the formation is not singular. That is, don’t

arrange all the robots in a straight line or at a point. In this work, for a network of four

robots (N = 4) we specify the desired relative distance between the robots. We attain this

relative distance when we achieve a steady-state, in which the four robots form a static

formation taking four corners of a rhombus. Fig. 3 describes the formation for N = 4

robots in the steady-state. Here, 2b is the desired steady-state distance between r1− r2,,

and 2a is the distance between r3− r4. r2− r1 are oriented along fixed lab frame direction

e2, and r3− r4 is oriented along e1. Additionally, e2 is orthogonal to e1. The steady-state

values a and b can be numerically calculated by solving the Riccati equation, which

minimizes steady error covariance P∞ of the cooperative Kalman Filter. Given the
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symmetry of the formation shape and the values ak and bk (where ak −→ a,bk −→ b in the

steady-state), the matrices Ck and Dk can be reduced to a simpler form.

Ck =


1 −bk 0
1 bk 0
1 0 ak
1 0 −ak

 ,

Dk =


b2

k 0 0 0
b2

k 0 0 0
0 0 0 a2

k
0 0 0 a2

k

 .

Fig. 3: Formation shape arranged around the center. Four robots r1,r2,r3 and r4 are
arranged around the center rc, such that (r1− r2) ⊥ (r3− r4). The relative distance
between r3,r4 and rc is denoted by a, between r1,r2 and rc as b. The values a and b are
derived to optimally collect data for cooperative Kalman Filter and ensure its convergence.

For a network of two robots (N = 2), we can similarly derive a steady state value of

distance between two robots ak, but the controller is slightly different. In order to keep all

the matrices non-singular we need to rotate the two robots around the center. Intuitively,
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we need to measure enough information to be able to calculate gradients in two directions,

so we need to rotate the two robots around the formation. Using less number of robots

also affects the accuracy of how close the formation is able to track the trajectory.

Using this formation shape controller, once we know the new formation center rc,k+1

using the formation center controller, we can calculate new locations of individual robots

ri,k+1. We need special care in calculating these new individual ri,k+1 to ensure that the

new measurements the robots take zi,k+1 will provide a good estimate of the field

characteristics at the new formation center zc,k+1,∇zc,k+1. We ensure this by reducing the

Kalman Filter estimate’s error covariance while deriving steady state values of a and b.

Repeating this procedure iteratively, we will end up with a sequence of formation centers

rc. This sequence should be one of the desired level-curves represented by a set of points

{(x,y) : f (x,y) = zdesired,(x,y) ∈ R2}, where zdesired is a user-defined constant.

4.5 Hessian Estimation

The cooperative Kalman Filter and the formation center controller requires the second

derivative ∇2zc), which can be obtained by estimating the hessian Hc of the field using

sensor measurements. Fig. 4 describes the algorithm used by Zhang and Leonard [6] to

estimate hessian of the field using a formation of four robots. In the Fig. 4, r1,r2,r3,r4 are

the sensor robots moving in a formation around the center rc. First, find centers of robots

taken three at a time, i.e. find point rE which is the center of r1, r2 and r4. Similarly, find

rF which is a center of r1, r2 and r3.
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Fig. 4: A method used to cooperatively estimate the hessian of the field. Four robots
r1,r2,r3 and r4 are arranged around the center rc similar to Fig. 3. rE is the center of
sensors r1,r2 and r4. rF is the center of sensors r1,r2 and r3. rJ and rK are on the desired
level-curve along with rc. rJ and rK are determined using field and gradients at rE and rF
respectively.

Using the field measurements at the robot locations zi and the previous hessian

estimate, we can calculate the field and the field gradient at rE and rF .

zi = zE +∇zE ∗ (ri− rE)+
1
2
(ri− rE)

T HP(ri− rE),∀i = 1,3,4.

We can solve for three variables zE , ∇X zEand ∇Y zE in the above set of equations.

Similarly, we can obtain zF and ∇zF . Using zE and ∇zE , we can find a point rJ on the

level-curve and again calculate the gradient ∇zJ using the previous hessian HP
c . Similarly

find rK and ∇zK . Now that we have gradients at three points along the level-curve ∇zK ,

∇zc and ∇zJ , we can estimate the hessian at rc. We can use this estimated hessian Hc and

repeat the steps using this hessian, instead of previous hessian estimate HP
c to get a even
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better estimate of hessian. Thus, the algorithm described above becomes a iterative

numerical algorithm.

4.6 Long Short Term Memory

RNN are a type of neural network in which the directed graphs are used to model a

temporal sequence of data. RNN maintains an internal state to learn the sequence input to

the network. Fig. 5 [37] shows the structure of a RNN. he left side shows x given as input

to the RNN unit cell, h is the hidden layer, and o is the output. Matrices U , W and V

contain the weights learned when we train the RNN. They control how the data is

transformed while passing from the input layer to the hidden state U,. That is, how the

internal state is used for the next time step V, and how the internal state is transformed to

the observed outputs W . The RNN can be unfolded along the time axis to understand how

the input sequence xt−1,xt ,xt+1 is transformed in the hidden layer. It also explains how

the hidden layer connects across the different time-steps ht . Finally, it also explains how

the sequence inputs and hidden layer states are related to observed output sequence ot .

Fig. 5: Unrolled RNN structure. The unrolled (or unfolded) RNN shows how the
information flows for different time-steps. The weights of the RNN unit cell doesn’t
change for different time steps. At time-steps t−1, t and t +1, xt−1,xt and xt+1 shows
the external input, ot−1,ot and ot+1 denotes the external output, and ht−1,ht and ht+1
represents the internal state respectively. Matrices U and W represent the input and output
weights respectively. Matrix V contains the weights that control how state information
from one time-step is passed onto the next time-step.
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RNNs don’t handle long-term dependencies very well. That is, the older the data gets,

the less affect it has on the current output. Hochreiter and Schmidhuber [38] introduced

the design for LSTM in 1997. LSTM is a type of RNN that focuses on retaining

long-term past information/learning by maintaining state, and using the saved state with

current input at any step. LSTMs do this by introducing various gates in the LSTM unit

cell. Intuitively, the gates help to short through the unimportant time steps, and thus

remember the data longer.

Fig. 6 [39] shows the structure of one LSTM cell and how it is connected in a chain.

The LSTM unit cell maintains the cell state Ct in addition to what the RNN unit cell does.

The unit cell takes the inputs Xt , the previous cell state Ct−1 and the previous output ht−1.

After performing some operations (described next) it generates the current output ht and

the updated cell state Ct . In the figure, we can see the LSTM is composed of 4 gates in

orange. Olah [40] provides a good overview of the LSTM unit cell structure. The first

gate f is the forget gate. It decides how much information from the previous state Ct−1

needs to be passed on to the subsequent states Ct . Second is the input gate i. It decides

which of the state values Ct−1 needs to be updated by the current stage’s input Xt . The

third gate C′ scales the current input Xt before passing it in to update the state Ct . The last

gate is the output gate o. It takes the current input Xt and the updated state Ct and

produces the current stage’s output ht . The updated state Ct and the output ht are given as

input to the next stage. Here, σ is the sigmoid function σ(x) = ex

ex+1 having the range

[0,+1]. tanh is the hyperbolic tangent function tanh(x) = e2x−1
e2x+1 with the range [−1,+1],
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Fig. 6: The LSTM unit cell. xt and ht represents external input and output at the time-step
t. ht−1 denotes the output of previous time-step which is passed in as input for time-step
t. Ct−1 and Ct represents the cell state at t−1 and t respectively. Forget gate f controls,
depending on the inputs xt ,ht−1, how much of the Ct−1 needs to be passed on as Ct . Input
gate i controls what inputs needs to be added to Ct . Cell gate C′ scales the inputs to
prepare them to be added to Ct . Output gate o controls mapping from Ct to output ht using
inputs xt and ht−1.

The LSTM structure is represented mathematically by the following Equations (11).

Here the first three equations represents output of the forget gate f , the input gate i and

the cell update gate C′ respectively. The fourth equation describes how the inputs of the

first three gates are combined to update the cell state. This is represented by the +

operator in Fig. 6. The fifth equation is the output ot of the output gate o,. And the last

equation combines ot and cell state Ct to compute output of the cell ht . The matrices W

are the weights of each gate, and b is the bias term of each gate. The bias and the weights
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will be adjusted during LSTM training.

ft = σ(Wf .[ht−1,Xt ]+b f ),

it = σ(Wi.[ht−1,Xt ]+bi),

C̃t− tanh(Wc.[ht−1,Xt ]+bC),

Ct = ft ∗Ct−1 + it ∗C̃t ,

ot = σ(Wo.[ht−1,Xt ]+bo),

ht = ot ∗ tanh(Ct).

(11)

LSTM and its variants like gated recurrent units (GRU, introduced by Cho et al. [41])

have seen huge success in the fields of speech recognition [42], text generation [43] ,

handwriting generation [44], and machine translation [45]. In the next Section 5, we

propose a solution that combines LSTM with the cooperative Kalman Filter described

earlier to solve the overall problem of tracking a level-curve using a group of robots.
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5 PROPOSED SOLUTION

In the Sections 3 and 4 we described how the problem of tracking a level-curve in an

unknown field is handled by a group of robots capable of locally measuring the field at

discrete intervals. We showed how the measurements can be used with the cooperative

Kalman Filter to estimate the field and the field gradient at the center of the formation.

Using these field estimates we described the design of the controller used to make the

formation center track the desired level-curve. Another controller is used to update the

shape of the formation independent of the formation center controller. We also discussed

how hessian estimation provides the curvature estimates required by the cooperative

Kalman Filter and the formation center controller. This traditional approach involving

cooperative Kalman Filter uses the current measurements and previous state of the system

to estimate the current state. We propose that if we can use deeper historical data with

LSTMs to estimate the current state of the system, we can use fewer robots to measure

the field at each step and consequently fewer robots to track the overall level-curve. We

also propose a new way to estimate hessian of the field using deeper historical data

through LSTMs which allows us to handle more complex fields.

We have three possible model choices to estimate the field and gradient using

measurements. 1) The traditional cooperative Kalman Filter as described in Subsection

4.2. 2) A pure LSTM model which takes as input a sequence of measurements

(additionally we can also provide other parameters like a sequence of estimated field and

gradient values, a sequence of hessian) and estimates the field and gradient. 3) A hybrid

model combining LSTM with the cooperative Kalman Filter. There are benefits to each

approach. The cooperative Kalman Filter doesn’t need data collection or separate training.

Additionally, the cooperative Kalman Filter is mathematically proved to converge under

certain assumptions [6]. Using LSTM has many benefits. 1) We don’t need to explicitly

model or design the state equations which needs domain expertise. 2) For complex
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dynamic fields these equations get unwieldy, LSTM would help us here by learning the

model from data. 3) As we have a separate training step with LSTM, we can train offline

using larger resources, but deploy the trained model using fewer resources. Using a pure

LSTM model is ideal to estimate the field and gradient given a sequence of sensor

measurements as input. The hybrid model combining LSTM with the cooperative Kalman

Filter has some benefits. Here, we use LSTM to predict the state which helps with

modeling complex fields and handling a different number of robot sensors, but we still

rely on (or take benefit of) the Kalman Filter to correct/tune the LSTM prediction. Next,

we describe this hybrid model combining LSTM with the cooperative Kalman Filter in

more detail. We compare the experiments between pure LSTM and the hybrid LSTM

model in Section 7.

We use the modified LSTM Kalman Filter (LSTM-KF) [35], [36] described by the

following Equations (12) - (16). The first two Equations of the cooperative Kalman Filter

(5), (6) are replaced by two LSTMs. The LSTMs are given current and previous states

and measurement errors as the input. In addition to the current data-point, we provide a

number of previous data-points to the model. This is controlled by a hyper-parameter

called lag-window. The lag-window can range from 1 (giving only current data) to for

example 50 (giving 50 previous data-points). The LSTMs estimate the state and

measurement error through the first two equations giving us sk(−),Pk(−). The next three

Equations are left the same as in the cooperative Kalman Filter (7), (8), (9), and they use

the measurements taken by the robot sensors pk and updated the estimates to give us final

state and measurement error sk(+) and Pk(+) .

sk(−) = LST MState(sk−1(+)), (12)

Pk(−) = LST MError(Pk−1(+)), (13)
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Kk = Pk(−)C
T
k [CkPk(−)C

T
k +DkUkDT

k +Rk]
−1, (14)

sk(+) = sk(−)+Kk(pk−Cksk(−)−DkHc,k, (15)

P−1
k(+) = P−1

k(−)+CT
k [DkUkDT

k +Rk]
−1Ck. (16)

As we have seen in Section 4.1, we need zc, ∇zc and Hc to estimate the updated state

using cooperative Kalman Filter. We have also seen in Subsection 4.3 that we need Hc to

design a controller for the formation center to track the level-curve. The approach

described in Subsection 4.5 is an iterative numerical algorithm, which we need to repeat

to obtain improved hessian estimates and it is derived for smooth fields. If we use deeper

historical data along with LSTM (which is inherently non-linear), we can get more

accurate estimates of the hessian, and also expand hessian estimation to more complex

curves. So, we use a third LSTM to predict the hessian at the current step. Similar to the

other two LSTM models we use a hyper-parameter called lag-window to control how

much of the history is presented to the LSTM to predict the current hessian. We use the

traditional hessian estimation method described in Subsection 4.5 to decide the inputs for

the LSTM to predict the hessian. Specifically, our 3rd LSTM’s inputs are comprised of

formation center rc, field zc, gradient ∇zc, and previous hessian value at the center HP
c ),

robot locations ri, and measurements zi. This is denoted by:

Hc,k = LST M(rc,zc,∇zc,ri,zi,Hc,k−1).
(17)
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This predicted hessian Hc,k is used in the Kalman Filter Equation (15) and formation

center control law (10) described earlier. The flowchart of the complete proposed model is

captured in Fig. 7.

Hessian 
LSTM

State 
LSTM

Measurement
Error 
LSTM

Kalman 
Filter 

Update
Equations

Formation
Center
Control

Formation
Shape 
Control

s, p rc r

s = (zc, dzc)

p

se

pe

rc H

zr

Fig. 7: The proposed motion control flow using estimates generated through LSTM-KF. r
represents sensor locations and zr represents sensor measurements. zc and dzc represents
field and gradient at the center rc. s represents the state of the system. p is the error
co-variance matrix for state estimation. H represents estimated hessian of the field. s and
p are passed in from the previous time-step k−1, the LSTMs generate predicted estimates
se and pe. The cooperative Kalman Filter uses zr to update the predictions and provide s
and p for current time-step k. Formation center and formation shape controllers use these
estimates to calculate updated rc and r for time-step k.

We have considered multiple LSTM structures while evaluating the accuracy of the

results. In the figure below, we provide an overview of some of the models which are

trained to predict field and field gradients, i.e. zc, ∇xzc, ∇yzc. In combination, these three

values make up the state of the system. The first model (Fig. 8) consists of a single LSTM

layer containing 40 neuron units followed by a dense layer to combine the LSTM results

and predict three values. This model captures the LSTM-KF described in Equations (12),

(13), the model only uses historical states and no actual measurements to predict the

future state.
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Fig. 8: Single LSTM layer model containing 40 LSTM units. 60 represents the batch size,
50 is the lag window, i.e. LSTM is given sk−50,sk−49, ..,sk−1 as inputs to predict sk. This
LSTM has 3 features zc,∇xzc,∇yzc.

The next model (Fig. 9) contains two LSTMs in parallel. The first LSTM uses the

historical three state values zc,∇xzc,∇yzc as input. The second LSTM uses formation

center rc, sensor measurements zr and hessian Hc values to predict the state. Finally, the

two predictions are combined using a dense layer. This was an attempt to use robot

measurements and incorporate the fourth equation of the cooperative Kalman Filter

(Equation (8)) inside the LSTM model. This model uses the sequence of measurements

directly in the LSTM, and so it can be used as a pure LSTM model without having the

cooperative Kalman Filter to update the predictions.
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Fig. 9: Independent LSTMs using state and measurements. The left branch shows LSTM
similar to Fig. 8 that uses sk−i to predict state estimate sk. The right branch shows LSTM
that uses 10 features (4 features of hessian H, 2 features containing rc, 4 features of zr)
to predict sk - this mimics cooperative Kalman Filter’s update equation (Equation. (8)).
There are 21 total features in the dataset of which 3 and 10 are selected for the left and
right branch respectively. The final dense layer combines the outputs of two LSTMs to
estimate final sk. Batch size is 60, lag window is 50, and the LSTMs contain 3 unit cells
each.

The third model (Fig. 10) doesn’t use LSTM, it uses fully connected dense layers. We

collect field value at the center and robot measurements zc andzr (i.e. 5 features) for the

previous three steps (i.e. lag-window = 3). Next, we flatten the 5 features over 3

time-steps to get 15 features. These 15 features are passed to the fully connected layer

which combines them using trained weights and predicts the current state. The intuition

behind this model is that we hope to train the weights of the fully connected layer, which

will result in a set of non-linear equations that can predict the current state using the given

data from previous time-steps as input.
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Fig. 10: Combine field and measurements using a fully connected layer. First we collect 5
features (1 feature as zc, and 4 measurements zc). We collect 5 features over 3 time-steps
and flatten to form a vector of 15 values. We apply a fully connected dense layer to
combine the 15 values to predict the state se.

The last model (Fig. 11) contains three LSTMs running in parallel and independent of

each other - one for each of the state variables zc,∇xzc,∇yzc . The state is predicted using

previous state values zc,k−i. The gradients are predicted for X and Y direction using

historical gradients (∇xzc,k−i and ∇yzc,k−i respectively) and historical formation centers

rc,k−i. Here i ranges from 1 to (lag window−1). This model was chosen to account for

the fact that when the formation center takes a sharp turn on the level-curve we need to

tune field gradients considerably, as we will notice in the gradient plots in the Section 7.

With independent LSTMs for the gradients, the loss of each LSTM can be reduced to

make each gradient prediction more accurate, rather than increasing the overall accuracy

of combined field and gradient prediction.
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Fig. 11: Field and gradients independent LSTMs. This is similar to simple one layer
LSTM model (Fig. 8) except we have 3 independent LSTMs for each of the state feature
zc,∇xzc,∇yzc

In the Section 6, we discuss in more detail how we collected the data using traditional

cooperative Kalman Filter enabled motion control strategy (Subsection 6.2.1). We then

describe how we trained the various LSTM models on the collected data, including steps

of data preparation (Subsection 6.2.2). And finally, we describe the framework used to

test the model in unseen fields (Subsection 6.2.3). We also describe in detail the error

metric we observed to compare various hyperparameters. We tune various

hyperparameters like batch-size, lag-window, number of LSTM, and dense layer neurons

in each layer, amount of data used to train the model and variations of the four models we

described in this section. We perform a manual grid-search over these parameters and

select the best performing model.
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6 IMPLEMENTATION DETAILS

We use the proposed solution described in Section 5 and design an experiment to first

train the LSTM models, and then test it in unknown fields. We compare these results with

the results we get using existing technology. We first provide an overview of the

experiment, and then we describe the software used to collect data from the experiments

and train the LSTM models for the state and measurement errors. Lastly, we describe how

we train the hessian estimation model.

6.1 Overview

We need data for training the three LSTM neural networks. For this reason, we first

start with the existing cooperative Kalman Filter and generate data for a smooth 2D field.

For the equations described by Zhang and Leonard [6], we need 4 robots for a static

formation and at the minimum, we need 2 robots. If we use 2 robot formation, we need to

constantly oscillate the robots around the formation center. This oscillation is necessary so

that we can compute the gradients in both X and Y direction. Without the oscillations we

end up with a singular matrix in the Kalman Filter. Using such a formation of 2 robots

also leads to a slight loss in accuracy in comparison to the 4 robots static formation.

Additionally, Wu et al. [20] proved that we need at least 6 robots in a 3D field to

sufficiently measure the required data and for the Kalman Filter to converge.
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In this project for 2D fields, we consider 4 robot formation to simulate the traditional

Kalman Filter and to collect the training data. One such training field is shown in Fig. 12.

The figure shows an irregular field obtained using a 4th order 2D polynomial. To collect

data for training the LSTMs, given a starting point for the 4 robots, we set the desired

field value to 144. At each point, the sensors measure field values. The previous state and

measurements are passed to the cooperative Kalman Filter (Equations (5) - (9)) to

estimate the current state. The estimated state is passed to the formation center

(Subsection 4.3) and formation shape (Subsection 4.4) controllers to update the trajectory

to track desired the level-curve.
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Fig. 12: Irregular field tracked by 4 robots. The figure shows one of the training level-
curve shapes. The sensor formation starts with the formation center at (-2, -6). Green
dots represent sensors r1 and r2, the green line is an imaginary line connecting them and
passing through rc. Similarly yellow represents r3 and r4 sensors. The trajectory traced by
the formation center is shown in blue (minimally visible).

Once we have the training data, we feed the current and a number of historical states

sk−i(+) and errors Pk−i(+) to the LSTM models as described in the first two Equations

(12), (13) of the LSTM-KF model. The LSTM models predict the next state sk(−) and
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error Pk(−). The actual next state and error collected as data earlier (sk(+),Pk(+)) are given

as feedback to the LSTM to back-propagate the weights and learn the cooperative filter.

The LSTMs are trained to minimize the root mean square error while predicting the state

matrix and the error matrix.

Finally, to test the system (Fig. 7), we use the LSTM-KF model equations which are

described next. Given the current and historical data, the LSTM models (Equations (12),

(13)) predict the estimated current state sk(−) and the error matrix Pk(−). Then the robot

measurements pk update the state sk(+) and error matrix Pk(+) - correcting them with

actual field values using Equations (15), (16). These final values are provided to

subsequent controllers to correct the formation-center’s trajectory (Equation (10)) and to

correct the shape of the formation (Subsection 4.4) for optimal data collection. The

algorithm 1 describes the overall algorithm.
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Algorithm 1 Motion Control using LSTM-KF

// Use previous state, error covariance, current robot measurements, and estimated hessian to estimate
the state.

1: procedure TRADITIONAL-KF(sk−1,Pk−1,zi,Hk) . Estimate the state
2: sk(−)⇐ Predict using sk−1 in Equation (5)
3: Pk(−)⇐ Predict using Pk−1 in Equation (6)
4: Kk⇐ Calculate optimal gain using Equation (7)
5: sk(+)⇐ sk(−), pk. Update the prediction using Equation (8)
6: Pk(+)⇐ Pk(−). Update the prediction using Equation (9)
7: return sk(+)

// Use historical states, error covariances, current robot measurements, and estimated hessian to estimate
the state.

8: procedure LSTM-KF(sk− j,Pk− j,zi,Hk) . Estimate the state
9: sk(−)⇐ Predict using sk− j in Equation (12)

10: Pk(−)⇐ Predict using Pk− j in Equation (13)
11: Kk⇐ Calculate optimal gain using Equation (14)
12: sk(+)⇐ sk(−), pk. Update the prediction using Equation (15)
13: Pk(+)⇐ Pk(−). Update the prediction using Equation (16)
14: return sk(+)

15: procedure MOTIONCONTROL . Track Level Curve
// Use lag-window as 50, i.e. 50 historical datapoints.

16: lw← 50 . Initialize lag-window
17: for k = 1, ..,10000 do . Iterate over level-curve.
18: zk,i⇐ rk,i Measure field at current sensor locations . Measure field

// Rearrange collected data. Present data for last lw time-steps to LSTM
19: sk− j← [sk−lw,sk−(lw−1), ...sk−1]
20: Pk− j← [Pk−lw,Pk−(lw−1), ..Pk−1]

// Estimate hessian.
21: Hk⇐ Estimate hessian using Equation (17) . hessian estimation

// Estimate state using Traditional-KF or LSTM-KF
22: sk⇐ LSTM-KF(sk− j,Pk− j,zi,Hk) . Estimate State
23: zc,∇zc⇐ sk(+). Estimated state gives us field and gradient estimates.

// Level curve tracking formation center controller
24: rk,c⇐ r(k−1,c),zc,∇zc,Hc. Using Equation (10) . Formation Center Controller

// Level curve tracking formation center controller
25: rk,i⇐ rk,c,r(k−1,i),zc,∇zc Using the algorithm described in Subsection 4.4 . Formation Shape

Controller
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6.2 Motion Control

We use python and associated libraries like Sklearn, Keras for our simulations. We

first implement motion control using the cooperative Kalman Filter as described in [6].

The motion control has four main procedures (specifically hessian estimation, cooperative

Kalman Filter, formation center controller, formation shape controller) which are

repeatedly called at each point along the trajectory.

Next, we describe the three main phases in which the whole program is run: Data

Collection, Training model, Testing.

6.2.1 Data Collection

First, we measure field value at the location of the robots zr using the polynomial

function representing the field f and the x,y coordinates of individual robots ri,k−1, this

mimics real sensors in simulation. Next, we calculate the hessian at the center of the

formation. During training, we use the true second derivative of the polynomial function

∇2 f to calculate the hessian at the formation center Hc.

Next, we call the kalmanFilter procedure (Algorithm line 1) which consists of the five

equations that make up the Kalman Filter (Equations (5) - (9)). This provides the updated

state of the robot system sk(+): this consists of field zc and gradient values ∇zc at the

formation center. The cooperative Kalman Filter also returns the error covariance matrix

Pk(+), which we hold on to, to it back to the Kalman Filter for the next iteration when we

are on the next point along the trajectory.

We pass these field and field gradient values to the formationCenter function

(Algorithm line 24). The function uses the previous formation center location rc,k−1 and

the estimated field gradients to calculate the updated formation center rc,k which tracks

the desired field value zdesired . After this we call formationControl function (Algorithm

line 24) which updates the formation shape of the four robots, i.e. individual robot’s
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location ri,k. For these two functions, we use the controllers described in Subsections 4.3

and 4.4 .

Below we list the inputs and outputs to each of the three main functions Kalman

Filter, formation-center controller, formation-control controller.

zc,∇zc, p = kalmanFilter(zc,∇zc,r,zr,rc,rc,old, p,Hc,model)

rc,x2,y2 = f ormationCenter(rc,zc,∇zc,Hc,x2,y2,mu f ,zdesired)

r,q,dq,ur,velq = f ormationControl(rc,r,q,dq,ur,velq)

Here, z is the field value, dz is the field gradient value (same as ∇zc), r is the robot

locations, zr is sensor measurements, c stands for formation center, p is the error matrix.

The rest of the variables like x2,y2,mu f ,q,dq,ur,velq are necessary for the controllers

and they maintain the state of the controller, but they are not notable for our purposes.

Some of those variables are like x2,y2 which represents the heading of the formation,

q,dq,velq denoting the Jacobian representation of the formation shape. For LSTM-KF the

trained model is also passed in as an input to the kalmanFilter to predict the new state and

error matrix.

Once we have these new robot locations we go back to the first step of calculating

field values at the robot locations zi,k and repeat all the steps. Thus, we end up with a set

of points traced by the robots after say 10000 iterations. This set of points form the

level-curve along the chosen field at the desired field value zdesired .

Thus we first simulate tracking the level-curve with autonomous MWSN, in which we

use cooperative Kalman Filter to estimate the state and motion controllers to decide the

trajectory. Throughout this simulation at each of the 10000 time-step k, we save the field

values zc,k, gradients ∇zc,k, error matrix Pk, hessian Hk, sensor measurements zi,k, robot

locations ri,k and formation center rc,k. We store this in a Python dataframe on disk. Next,
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we repeat this experiment for other field shapes. Thus we end up with multiple dataframes

- one for each shape. This series of dataframes is stored in a pickled file on disk. This

gives us a sequence of data to train LSTMs. We consider a variety of shapes like circles

of different polynomial degrees, ellipses with different coefficients, a few 4th order 2D

irregular polynomial shapes with varying coefficients. For example, one of the 4th order

polynomial shapes is:

(x2 +2y−12)2 +(K ∗ x+ y2−17)2 = 400,

where 400 is the desired field value zdesired . K is the coefficient we vary to generate more

shapes.

6.2.2 Training Model

The data is collected through simulation and not observed from real world

measurements. We have total control in the simulation over which variables are collected.

So, the data doesn’t have to be cleaned up for missing values, removing anomalies,

resampling, etc. We perform three main steps in data preparation for LSTMs. First, we

flatten all the various vectors and matrices like state se, hessian Hc, formation center rc,

robot locations ri, sensor measurements zr, error covarience matrix P into a single vector

of 21 features for each time-step. Therefore, we get a 10000×21 matrix corresponding to

the 10000 timesteps for a single level-curve shape. Second, we scale each feature using

MinMaxScaler down to [−1,+1] range. Finally, we reframe the data for supervised

learning in the form of data X and labels Y . This reframing procedure is described next.

For LSTMs, we need to decide on a hyper-parameter called lag-window. Lag-window is

the amount of historical data we show to the LSTM to predict the current state. In the

analysis section, we provide some insight into how we can get a range for this parameter

in order to tune it. For example, if we choose lag-window to be 50, for the label at

time-step k (yk) we need to provide data from 50 previous time-steps
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([xk−50,xk−49, ..,xk−1]). We re-organize the data in this fashion using a sliding window

method. We end up with data X and labels Y matrices of the following format for training

the state estimation LSTM:

X =


[zc,0,∇xzc,0,∇yzc,0] [zc,1,∇xzc,1,∇yzc,1] .. [zc,49,∇xzc,49,∇yzc,49]
[zc,1,∇xzc,1,∇yzc,1] [zc,2,∇xzc,2,∇yzc,2] .. [zc,50,∇xzc,50,∇yzc,50]

. . .

. . .
9950rows..

 ,

Y =


zc,50 ∇xzc,50 ∇yzc,50
zc,51 ∇xzc,51 ∇yzc,51
. . .
. . .

9950rows..

 ,
where X is of the shape (9950×50×3) and Y is of the shape (9950×3). For training the

error co-variance LSTM, in which each error co-variance is a (3×3) matrix, we Similarly

we obtain X and Y matrices for error co-variance of the shape (9950×50×9) and

(9950×9) respectively.

The entire set of level-curves, each having X and Y matrices as described above, is

split into three parts. One set is used to train the model, another for model validation, and

the last set of level-curves are withheld from the model during the training. The last set of

level-curves will be used during the testing phase. Now we train the state and error LSTM

models using the prepared training data. We use standard methods like early stopping,

model checkpoints to save only the best model. We use model validation to improve the

generalization of the trained model. We train for 200 epochs with early-stopping patience

of 40 epochs, so if the validation-loss doesn’t improve for 40 consecutive epochs we stop

training further on that shape. Here, an epoch means going once over all the 9950 data

points for a shape. This will be repeated 200 (epoch) times to improve the learned weights.

The LSTM is trained using the Keras model.fit method with the objective to reduce mean

squared error on validation loss, and we use the Adam optimizer for gradient descent.

47



There are a few unique points we need to consider while training LSTMs. First is we

can’t shuffle the data because the pattern of the data matters. So, we train through each

shape and used the learned model weights (instead of random weights) when starting with

the next shape. This means by the end each shape, which is part of the training data-set,

has contributed to the learned weights. LSTM also maintains an internal state across all

neurons, we flush this internal state after each epoch, and when we move from one shape

to another. Second, for each step of LSTM training, we need to provide the data X in the

(batch-size, lag-window, num-features) format and labels Y in (batch-size, num-features)

format. Batch-size is selected to be 60 after manual grid-search to speed up the training

but still derive a well-trained model. In order to account for the batch-size, the matrix X

and Y described above need to be reorganized to be given 60 rows at a time.

6.2.3 Testing

Finally, for the testing phase, we use LSTM-KF as described through Equations (12) -

(16) . We replace the first two equations of Kalman Filter with LSTM predictions from the

trained model. This is described in the Algorithm line 8. The rest of the flow remains the

same as when we collected the data (Subsection 6.2.1). If the lag-window hyperparameter

is 50, during the testing phase, we remember the previous 50 feature values. For the state

LSTM at any time step, 50 historical state values are passed in to predict the current state,

and similarly for the error covariance LSTM to predict Pk. These state and error

covariance predictions are passed into the cooperative Kalman Filter’s update equations to

generate the updated state and error matrix. These matrices are cached for use with the

next 50 time-steps. The state estimate is then passed on to the formation center controller

which updates rc to track the level-curve with the field value of zdesired . This updated

formation center and gradient estimates are passed to the formation shape controller to

update the individual sensor locations. Additionally, the third LSTM predicts the hessian

at the formation center Hc, which is used by the cooperative Kalman Filter’s update
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equation and the motion controllers. We iterate these steps 10000 times and plot the

trajectory of the formation to note whether the formation tracks the desired level-curve.

We evaluate the results by manual inspection of the trajectory. Additionally, we define

an error metric to evaluate the performance of the trained LSTM-KF model in regards to

the overall motion control objective to track the level-curve. We plot the ideal field and

gradient values over 10000 iterations and compare that with the plot of estimated field

and gradient values by the LSTM-KF model. One such plot is shown in Fig 16. We

calculate the numerical root mean square error (RMSE) summing up the between actual

and real values over the entire trajectory. We use these three RMSE errors one for each of

the field and the gradient in each direction to compare the performance of the trained

LSTM-KF model.

One sample error metric result of an experiment is shown in Fig. 13. This error metric

is used internally to perform experiments quickly while varying hyper-parameters and we

have found it to be useful, but it is not our final deciding factor. We also depend on

manual inspection of the plot of the trajectory for final acceptance. We perform many

experiments with different variations such as training different LSTM models (as

described in Section 5), increasing or decreasing the lag-window, increasing the number

of LSTM units, down-sampling the training data during data-preparation to focus on

long-term trends, varying the size of dense layers and even varying controller parameters

such as K4 in Eq. 10.
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Fig. 13: Error metric for evaluating the trained model. The figure shows error over
three test level-curves: circle, ellipse and a irregular shape. For each shape we calculate
three RMSE errors: for field z, and for gradients in the X and Y direction dzx and dzy
respectively. We also specify the min and max of each variable to compare the RMSE
error against the range of these variables.

While testing we try two important experiments, first we test on shapes unseen during

training and validation. Second, we also try changing the number of robots N. We trained

using four robots, but we test using two robots. Succeeding in the first experiment shows

that we can handle unknown shapes, i.e. the trained LSTM model generalizes well. The

second experiment shows that we can get away with using a lesser number of robots

during testing, even though we used a higher number of robots during training to collect

more accurate data.

6.3 Hessian Estimation

We train the hessian LSTM separately. For collecting data for hessian estimation we

bypass the Kalman Filter and use true values of the field, gradient, and hessian values at

each time step. We collect all the required variables in a dataframe for each shape and we

end up with a similar series of dataframes for a set of shapes. We discussed the required

variables and the reasons for selecting them for the hessian LSTM in the proposed
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solution Equation (17). The following variables are given as the input to the LSTM:

rc,zc,∇zc,r,zr,Hc,k−1

Next, we train a third LSTM network on the data. The network has an LSTM layer of

22 units followed by a dense layer of 4 units to output the four hessian values. Similar to

the motion control LSTM, we use lag-window as a hyper-parameter, and train for 200

epochs with early stopping with the patience of 40 epochs. This trained LSTM is then

used to predict the hessian values and the estimates are then used with the LSTM-KF.

This hessian values are also necessary for the formation-center controller.
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7 RESULTS

Here we present some of the results generated by trained LSTM models. First, we

discuss 4 robot formations in which we see that the LSTM model can generalize outside

of shapes seen during training. After that we see a two robot oscillating formation for the

circle shape, in which the model was trained using a 4 robot formation but tested on 2

robot formation.

Through experimentation we observe that out of the four models proposed in Section

5, the first model (Fig. 8) works the best. It consists of a single LSTM layer containing 40

neurons followed by a dense layer. We use the same configuration for all the three LSTMs.

We observe that the state LSTM is the most important, and any inaccuracy in state LSTM

has a large effect on the results. We also tried a stacked LSTM model which consists of

back to back LSTMs followed by a dense layer. The benefit of such a structure is that it

would be able to learn both the short and the long term patterns. However, we don’t see

much improvement in using the stacked LSTM. We have tried pure LSTM models very

similar to model shown in Fig. 9, but we observe that without the cooperative Kalman

Filter’s state-update equation (15). The trajectory taken by the autonomous MWSN

diverges from the desired level-curve after some time-steps when the level-curve takes a

turn. Thus, we focus mainly on tuning the hybrid LSTM-KF model for best performance.
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The trajectory traced by 4 robot formation robots using estimates produced by the

traditional cooperative Kalman Filter is shown in Fig. 14. In this figure, the violet line

shows the desired level-curve, and the blue line shows the trajectory taken by the robots.

The trajectory traced by 4 robot formation robots using the field estimates predicted the

trained LSTM model is shown in Fig. 15. We see that the robots don’t trace the curve

well for some of the concave curves. We see that for these shapes the traditional

cooperative Kalman Filter performance is better than LSTM-KF for the field and gradient

estimates. However, the plots show a proof of concept that LSTM-KF can be used for

estimating the field characteristics for level-curve tracking problems. The benefit of

LSTM-KF is that it doesn’t require explicitly deriving or modeling the state system, so for

more complex scenarios such as dynamic time-varying fields the LSTM-KF method is

more practical. We further show that LSTM-KF can be trained using larger resources and

deployed with limited resources.
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Fig. 14: Field traced by robots using traditional Kalman Filter. The figures show 4 robots
formation, green representing robots r1 and r2, yellow representing robots r3 and r4. The
desired level-curve is shown in violet. The formation starts with the center rc at (-2, -6).
The blue level-curve is the actual trajectory followed by the simulated sensor network.
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Fig. 15: Field traced by robots using the predictions by LSTM-KF. The figures show 4
robots formation, green representing robots r1 and r2, yellow representing robots r3 and
r4. The desired level-curve is shown in violet. The formation starts with the center rc at
(-2, -6). The blue level-curve is the actual trajectory followed by the simulated sensor
network. We use the proposed motion control strategy (Fig. 7) for simulation which uses
the LSTM-KF design.
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We also plot in Fig. 16 (for the irregular1 8 shape in Fig. 15) the field and field

gradients to show the error between actual shape and modeled trajectory. Here red plot

shows the values we get if we follow the actual level-curve which is obtained using

traditional Kalman Filter, green are the values we get using LSTM. The error (vertically)

at each point (X-axis) determines the root mean square error. We try to reduce this root

mean square error when we train the LSTM model.
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Fig. 16: Field and field gradients for actual and predicted trajectory. z,dzx and dzy
represents the field value and field gradients respectively. The x-axis represents iteration
number (time-steps) as the formation tracks the level-curve. Red line shows the values
followed by traditional cooperative Kalman Filter. Green line shows the values generated
using LSTM-KF model. The vertical separation at each time-step shows the error which
we try to reduce during LSTM training.

We plot field value zc over the number of iterations in Fig. 17 for various shapes

covered in Fig. 15. The plots show how long it takes for the formation to find the

level-curve with a desired field value, and how good it tracks the level-curve once the

formation is on the level-curve.
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Fig. 17: zc vs number of iterations for actual and predicted trajectory. zc represents the
field value at the formation center rc. The x-axis represents iteration number (time-steps)
as the formation tracks the level-curve. Red line shows the values followed by traditional
cooperative Kalman Filter. Green line shows the values generated using LSTM-KF model.
The figures show that the formation first approaches the level-curve and then tracks it. For
some of the irregular shapes we observe noise because of which the formation deviates
from the desired field value. These disturbances correspond to the errors observed in Fig.
15. The trajectory repeats the closed level-curve multiple times over 10k iterations, so we
observe periodic behavior. The period for each curve is different.

Next, we show a density plot in Fig. 18 of the field and the field gradients obtained

while tracing the ellipse level-curve. This is the distribution on which LSTM is trained.

Instead of a machine learning LSTM model, if we want to use traditional time series
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statistical methods like auto regression moving average (ARMA) these densities should

have a Gaussian distribution. That is, the series should be stationary (containing no

trend/seasonality), which is not the case here. Besides, here we are dealing with multiple

time series, so simple ARMA would not suffice, we would have to use vector auto

regression (VAR). We considered applying some of these statistical methods, but LSTM

offers the greatest flexibility while making minimal assumptions on the input data.

Fig. 18: Density plot for ellipse. The density plot shows the distribution of field zc (blue)
and gradient values (green for ∇xzc, orange for ∇yzc). The distribution is not Gaussian.

We look at how to decide lag-window hyper parameter. We plot the correlation across

lagged values to judge for which values to train the LSTM on, i.e. how far into the history

we need to go. For Fig. 19 the more diagonal the plot the higher the correlation. We see

that till t-40 there’s very high correlation, as we go back in history at t-160 the plot is

pretty diffused, i.e. low correlation.
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Fig. 19: Correlation with different lags. Each of the 8 plots shows the correlation between
the field gradient ∇xzc at the current time step vs ∇xzc at t− t ′ time-step. A diagonal plot
represents high correlation, while a diffused plot shows no correlation. As we increase the
time-lag t ′ we observe vanishing correlation.

Similar information can be obtained from the auto-correlation plot for different lag

values (Fig. 20). If the auto-correlation falls into the blue shaded cone it means the

correlation can be a statistical fluke. If auto-correlation is outside the cone, there’s a high

chance that the correlation is not a statistical fluke. We see that until about 400 lags there

is detectable auto-correlation for field gradients. The field value doesn’t matter much

because we are tracing a constant field value, but we see that up to about 200 lags field

value has statistical auto-correlation. Note that in our data-set we also have the portion of

the trajectory for which the robots have not reached the desired field value, so not all the

field values are constant. We can see that in Fig. 16, we start with a high field value and

approach the desired field in a limited number of steps.

Using the data from lag-correlation (Fig. 19) and auto-correlation (Fig. 20) plots, we

decided to try 50 lag-steps as a good starting point to train LSTM on. That is we provide

50 historical state values to predict the single next state.
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Fig. 20: Auto correlation plot. From top to bottom, the plot shows auto-correlation for
zc (1st plot), ∇xzc (2nd plot), ∇yzc (3rd plot) along the y-axis. The x-axis shows lag
for auto-correlated sequence. The light blue cone represents the area within which the
correlation is a statistical fluke. We observe that for lags k < 200 the auto-correlation is
outside the light blue cone and hence can be modelled.

Finally, we show the results for two robot formation. This state and measurement

LSTMs were trained using 4 robot formation. Initially while testing this model for 2 robot

formation, the formation would diverge away from the circle. However, after tuning some

of the formation-center and formation-shape controller parameters the LSTM model was

able to track the circle-shaped level-curve. Through experimentation for 2 robot formation,

we find that a lag-window of 4 and 100 neurons in each LSTM layer works the best.

Fig. 21 shows the trajectory taken by 2 robot formation around the circle. As we can

see there’s some loss in accuracy especially towards the end of the circle, i.e. as we come

closer to the starting point. We believe the reason is that LSTM is not able to learn long

term relationship very well. We didn’t see this in 4 robot formations but we see it in 2

robot formation. We think this is because of the Kalman Filter step in which we

update/correct the LSTM estimate. With only 2 robots, it doesn’t have enough effect with

only 2 measurements in comparison to 4 measurements in the 4 robot case.
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Fig. 21: Trajectory traced by two robot formation around circular level-curve. Yellow dots
represent the 2 robot sensors. An imaginary line connects them to the formation center
rc. Violet curve denotes the real level-curve. Blue shows the trajectory followed by the
formation. Here the LSTM-KF model was trained using four robots and tested using two
robots.

Fig. 22 shows the field and the field gradient errors for the same trajectory. We see

large error for Y direction gradient dzy when the formation is towards the end of the

circle. We also see noisy behavior during this phase. This is because the LSTM output is

oscillating in an unstable manner.
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Fig. 22: Field and field gradients for actual and predicted 2 robot formation trajectory. Red
line shows the real field and gradient values at rc over iteration count. Green line shows
the values predicted by LSTM-KF trained using 4 robots. The disturbance in green lines
correspond to the locations at which the formation veers off the level-curve in Fig. 21.
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8 CONCLUSIONS AND FUTURE WORK

In this work, we develop a LSTM-enabled cooperative level-curve tracking strategy,

which allows a mobile sensor network to detect and track a level-curve in a scalar field

with a desired level value. We have shown that using cooperative LSTM-enhanced

Kalman Filter allows us to use a sequence of states from history along with sensor

measurements to estimate the current state. We have used two LSTMs one for predicting

the state and another for predicting the estimation error covariance. We use the sensor

measurements in the KF to update the LSTM predictions which are solely based on the

sequence of states and errors. By combining these LSTM-KF estimates with the formation

center and shape controllers we show that a group of robots using this combined motion

control flow tracks the desired level-curve. We show that the LSTM can be trained on a set

of known fields and deployed in unknown fields, i.e. the LSTM generalizes well outside

of training data. Using a sequence of states with LSTM-KF opens up the possibility to

deploy a trained LSTM model into an unknown field using a lower number of robots,

while we can still use a larger number of robots to increase the model training accuracy.

We show that the LSTM can be trained using four robots and deployed for testing using

two robots, the resulting two robot formation tracks the level-curve although with some

loss in accuracy. We also show that we can use an LSTM to estimate the hessian of the

field which is used by the cooperative LSTM-KF and formation center controller.

In the future, we can improve the accuracy of the LSTM so that the two robot

formation tracks the level-curve more closely. For the two robot formation tuned the

controller parameters to achieve level-curve tracking, in the future we can consider

training these parameters using a machine learning model. We have considered static

fields for this work, we can expand it to dynamic or time-varying fields.
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