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ABSTRACT

INFLUENCE OF SOCIAL CIRCLES ON USER RECOMMENDATIONS

by Chaitanya Krishna Kasaraneni

Recommender systems are powerful tools that filter and recommend content relevant

to a user. One of the most popular techniques used in recommender systems is

collaborative filtering. Collaborative filtering has been successfully incorporated in many

applications. However, these recommendation systems require a minimum number of

users, items, and ratings in order to provide effective recommendations. This results in the

infamous cold start problem where the system is not able to produce effective

recommendations for new users. In recent times, with escalation in the popularity and

usage of social networks, people tend to share their experiences in the form of reviews

and ratings on social media. The components of social media like influence of friends,

users’ interests, and friends’ interests create many opportunities to develop solutions for

sparsity and cold start problems in recommender systems. This research observes these

patterns and analyzes the role of social trust in baseline social recommender algorithms

SocialMF - a matrix factorization-based model, SocialFD - a model that uses distance

metric learning, and GraphRec - an attention-based deep learning model. Through

extensive experimentation, this research compares the performance and results of these

algorithms on datasets that these algorithms were tested on and one new dataset using the

evaluations metrics such as root mean squared error (RMSE) and mean absolute error

(MAE). By modifying the social trust component of these datasets, this project focuses on

investigating the impact of trust on performance of these models. Experimental results of

this research suggest that there is no conclusive evidence on how trust propagation plays a

major part in these models. Moreover, these models show slightly improved performance

when supplied with modified trust data.
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1 INTRODUCTION

The amount of information available over the web has become immeasurable with the

proliferation of Internet usage. With this availability of huge amounts of data, it has

become progressively necessary to present the users with relevant online content based on

their interests. Recommender systems (RS) do this task by predicting preferences or

ratings that the users would give to a set of items [4]. These ratings are predicted based on

users’ interests. RS are used in diverse areas such as song or playlist recommendations on

music apps like Pandora and Spotify, video recommendations on over-the-top (OTT)

streaming platforms like Netflix and YouTube, product recommendations on e-commerce

websites like Amazon and eBay, and posts or content recommendation on social media

platforms such as Twitter, Facebook, Pinterest, etc. [4]

Each RS contains a set of users and set of items, in which each user u gives a rating r

to an item i. The task of the RS is to predict rating r′ that user u would give to a non-rated

item i′ or to recommend user u with some items based on the ratings that are already

given by user to other items.

Collaborative filtering (CF) is one of the most widely used techniques in

recommender systems. CF has two senses [5].

1) Narrower sense: CF makes automatic predictions of users’ interests based on the

preferences collected from several users.

2) General Sense: CF is a technique that filters information or content using

mechanisms that involve collaboration between multiple data sources, users/agents,

etc. [5]

Applications of CF involve processing of very large datasets. CF techniques can be

applied to different kinds of data: sensor data, financial data, e-commerce data, web

application data, etc.
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1.1 Types of Collaborative Filtering Recommender Systems

Collaborative Filtering RS are generally classified into the following types:

1) Memory-based CF

2) Model-based CF

3) Hybrid CF

4) Deep Learning-based CF

1.1.1 Memory-based Collaborative Filtering

Memory-based CF systems explore the user-item rating matrix and recommend based

on the ratings of item i by a set of users whose rating profiles are most similar to that of

user u [6].

1.1.2 Model-based Collaborative Filtering

Model-based approaches learn and only store the parameters of a model. As a result,

these algorithms have no need to explore the rating matrix. Model-based approaches are

fast after the algorithms learn parameters of the model.

The performance bottleneck for model-based approaches is the training phase whereas

memory-based approaches have no training phase. However, the prediction is slower as

user-item matrix needs to be accessed several times.

1.1.3 Hybrid Collaborative Filtering

Many applications combine both memory-based and model-based collaborative

filtering algorithms. These hybrid models improve the performance of predictions and

overcome the limitations of traditional collaborative filtering algorithm. Most of the

commercial recommender systems are hybrid, such as Google News Recommender

System [7].
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1.1.4 Deep Learning-based Collaborative Filtering

In recent years, with the increase in usage of deep learning and neural networks, many

deep learning-based recommendation techniques have been developed. Some of these

algorithms generalize the traditional matrix factorization algorithms by utilizing nonlinear

neural networks [8] or leverage other techniques like autoencoders [9]. While deep

learning has been used in different scenarios of recommendations, the effectiveness of

deep learning models is questioned when used in traditional collaborative filtering [10].

Analysis on papers published in top conferences such as SIGIR, KDD, WWW, RecSys,

etc. shows that very few papers and articles are reproducible [10].

1.2 Cold Start Problem

The cold start problem is one of the most well known and researched problems in

recommender systems. In a typical recommender system, a user u’s profile is compared to

some reference characteristics related to his or her behavior or items. Depending on the

type of recommender system, user u is associated with various characteristics such as

ratings, interests, page visits, purchase history, etc. Cold start problem specifically occurs

when a recommender system cannot infer these characteristics to user u. In RS, cold start

users are users who are either new to the platform or have given only a few ratings. Using

similarity-based approaches, it is infeasible to find corresponding similar users since the

cold start users only have a few ratings.

1.2.1 Cold Start Problem and Social Networks

In present day, with the rapid increase in the popularity and usage of social networks,

there is a dramatic growth in the number of registered users and various products, which

also leads to an intractable increase in the cold start problem and the sparsity of datasets.

Collaborative filtering works effectively when users have expressed a minimum number

of ratings to have common ratings with other users in the dataset. For relatively new users,

the performance suffers due to the cold start problem.

3



The interpersonal relationships, especially the friends circles in social networks make

it possible to solve the cold start and sparsity problem. The richness of social media gives

us some valuable insights to drive user recommendations, especially for items such as

music, movies, news, brands, and travel. Many social network-based models for

recommender systems have been developed to refine the performance but only a handful

have considered social circles in their respective approaches. This gap motivates the

development of an RS that considers the personal interests of users, interpersonal

similarity [11] of interests with their friends, and influence of these interpersonal interests.

1.3 Social Rating Networks

A social rating network consists of a social network with ratings expressed by each

user to some items apart from creating social relations to other users. A sample social

rating network is depicted in Fig. 1. The icons, under users, in Fig. 1 indicate the items

and the number under each icon indicates the rating that a user has given to that particular

item. Table 1 shows the matrix representation of the user-item ratings, and Table 2 shows

the user-user relationship. Here ’1’ indicates that user u trusts v. The terms “trust network”

and ”social network” are used synonymously in this paper.

Fig. 1. Sample social rating network showing users’ interests and relations between users.

4



Table 1
Sample User-Item Rating Matrix

Sports Technology Movies Writing Books
U1 4 2 2
U2 4 1
U3 3 5
U4 3 5 1 2
U5 3 5 2

Table 2
Sample Social Trust Matrix

U1 U2 U3 U4 U5
U1 1 1
U2 1
U3 1 1
U4 1
U5 1 1

1.3.1 Social Rating Networks and Recommender Systems

A number of RS techniques have been proposed using social rating

networks [12] [13] [14] [15] [16] [17]. Of these techniques, [12] [13] [16] [17] are

memory-based approaches which explore a social network and find neighborhoods of

direct or indirect trusted users and recommend to users by aggregating ratings. These

techniques utilize transitive property for obtaining trust from indirect neighbors. These

memory-based algorithms are slower compared to model-based approaches in the test

phase since they have to traverse the entire social network.

Model-based RS techniques using social rating networks have been developed

in [14] [15]. These techniques utilize the matrix factorization to obtain latent features for

each user and item from the ratings observed. Experiments show that these model-based

approaches perform better compared to state-of-the-art memory-based algorithms. But the

major setback is that these algorithms do not take account of trust propagation. To solve

5



this issue, SocialMF [1], a matrix factorization technique-based recommendation model,

was proposed. This model includes trust propagation to improve the quality of

recommendations. Another method called SocialFD [2] that incorporates distance metric

learning alongside matrix factorization was proposed to optimize performance.

With the recent increase in use of attention, deep learning, and graph neural networks,

an attention-based deep learning model known as GraphRec [3] was developed. This

model contains two components. The first one is to learn user latent factors that contains

two separate aggregations, one for learning interactions between users and items in the

user-item graph and the other for social aggregation. The second component is extracting

item latent factors which contains user aggregation. Finally, model parameters are learned

via predictions by integrating both the components.

The rest of this paper is arranged as follows: Section 2 discusses some related works.

Section 3 gives an overview of this research. Section 4 summarizes the SocialMF [1],

SocialFD [2], and GraphRec [3] models. Section 5 explores experiment methodology and

datasets used in this research. Section 6 compares experimental results. Finally, Section 7

concludes the paper with some directions for future work in Section 8.

6



2 RELATED WORKS

This section reviews some of the works in recommendation mechanisms that utilize a

social network in addition to the user-item data. Trust propagation is widely considered in

memory-based approaches whereas model-based recommendation approaches broadly use

matrix factorization [18] [19] [20]. The major setback with these techniques is that they

do not take the social network of users into consideration while recommending or filtering

content. Model-based techniques utilize matrix factorization approach for recommending

content in social networks [14] [15], but these approaches do not examine trust

propagation. In this section, some model-based works in social networks are discussed

after reviewing memory-based models.

Using a modified breadth-first search technique on the trust network, a memory-based

algorithm called TidalTrust [12] was proposed to determine a prediction. TidalTrust tries

to find users who rated particular items (raters) with the shortest distance from the user

and combines their ratings weighted with trust between the user and these raters [12].

TidalTrust combines the trust value between user u’s direct neighbors and v weighted by

the trust values of u and its direct neighbors to compute the trust value between users u

and v who are indirectly connected [12].

Another approach called MoleTrust, which is similar to TidalTrust, was introduced

in [16]. The major difference is that MoleTrust [16] considers all raters until

maximum-depth of the input irrespective of a specific user or item. Backward exploration

is used in MoleTrust to compute the trust between users u and v. For example, the

calculated trust value is an aggregation of trust between user u and users who directly

trust user v weighted by their direct trust values.

In [21], the authors proposed a maximum flow trust metric called Advogato. This

approach helps in discovery of trusted users in an online community. Input for Advogato

will be the total number of users to be trusted, n. The Advogato algorithm needs to

7



understand the whole network structure in order to assign capacities to the edges of the

network. Furthermore, Advogato only calculates the nodes to trust but not different

degrees of trust. This technique is not suitable for trust-based recommendations as the

trusted users are independent of users and items in the network and the distinction

between trusted users is negligible.

To consider enough ratings and exclude noisy data, a random walk approach called

TrustWalker was proposed in [13]. This approach combines both item-based and

trust-based recommendations. This method not only considers ratings of the required item,

but also the ratings of similar items. The likelihood of considering these similar items

increases with the increase in walk length. Additionally, this framework contains both

trust-based and item-based recommendations as special cases. Experiments show that this

algorithm outperforms other existing memory-based techniques allowing them to

calculate confidence of predictions.

In [14], authors proposed an approach called STE which is a matrix

factorization-based approach for recommendations in social networks. This approach is a

sequential combination of basic matrix factorization technique [20] and a social

network-based technique. Experimental results show that this approach excelled the

existing basic matrix factorization based recommendation techniques. However, the

feature vectors of direct neighbors of user u affect the ratings of u instead of affecting the

feature vector of u in this model [1]. Also, this model does not address trust propagation.

Although a social network is integrated, real world recommendations are not reflected in

this model. Furthermore, this model’s interoperability is difficult as two sets of dissimilar

feature vectors is considered.

In recent years, there have been many developments in deep neural networks for

graph data, especially social network data [22]. These are known as Graph Neural

Networks (GNNs). Works like [23] [24] [25] have been proposed to learn meaningful
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insights and representations for graph data. The main idea in these works is to use neural

networks for aggregating features from local graph neighborhoods iteratively. Some of

these models use graph neural networks. DANSER [26] is one of the most recent

algorithms that uses dual graph attention networks to learn representations for two-fold

social effects, where one is modeled by a user-specific attention weight and the other is

modeled by a dynamic and context-aware attention weight [26].

There are some deep learning models that use AutoEncoders for dimensionality

reduction in making recommendations. AutoTrustRec [27] is one such algorithm that uses

AutoEncoders for social trust based recommendations. In this algorithm, a shared layer is

applied on user and item layers which synchronize user-item ratings matrix and user-user

trust matrix [27]. Also this algorithm utilizes both direct and indirect trust in the trust

layer. The ratings and social trust are given as input to encoder and corresponding shared

layer where trust and item values are encoded. These encoded values are then

synchronised such that the output of encoder layer is formed. This output contains only

values where user-user trust value pair matches with user-item value. Then activation

function and neural networks are used to approximate any continuous functions and

discontinuous functions respectively. In the decoder layer, social trust and item values are

reconstructed, and predicted ratings are given as output.

There are some other social recommender models. Of them, SocialMF [1],

SocialFD [2], and GraphRec [3] are focused in this paper.
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3 RESEARCH OVERVIEW

The main aim of this research is to investigate how modifying social trust affects the

recommendations in a social rating network. To understand this in depth, we compared

the performance of some baseline algorithms, GraphRec [3], RSTE [14], SoRec [15],

SoReg [28], Singular value decomposition (SVD) [19] based RS, SocialFD [2], and

SocialMF [1]. Fig. 2 indicates the performance of these algorithms on Epinions,

CiaoDVD, FilmTrust and TwitterEgo datasets in terms of root mean squared error

(RMSE) and mean absolute error (MAE).

Fig. 2. Performance comparison of various recommender algorithms.

10



These results are obtained by performing k-Fold cross validation and taking average

of errors RMSE and MAE. These algorithms performed better for lower learning rates in

the range 0.001 to 0.01. The performance of social algorithms is dependent on a social

regularization parameter (which is given as a hyperparameter).

Of these seven algorithms, we explore three social recommender algorithms that

performed better on these datasets, SocialMF [1], SocialFD [2], and GraphRec [3], both

in the presence and the absence of social trust and we also evaluate the performance of

these models using metrics like MAE and RMSE. More accurately, the contributions of

this project are:

• Create a new large dataset, extending a prior dataset called TwitterEgo [29], with

high quality social circle information extracted from Twitter

• Perform extensive experiments on the SocialMF, SocialFD, and GraphRec

algorithms with the datasets that these algorithms were tested on and the new dataset

based on TwitterEgo

• Compare the results of these experiments based on the evaluation metrics including

RMSE and MAE

• Investigate the performance of these models in the following cases additional to the

original trust data:

– When there is no trust between any users i.e., the number of trust statements is 0,

– When the users are friends only with themselves i.e., users trust only themselves,

– When the users are friends with everyone else excluding themselves, and

– When the users are friends with everyone including themselves

11



4 MODELS USED IN THIS RESEARCH

Most of the conventional recommender system algorithms do not consider the social

relations among the users in a network. With the increasing usage of social networking

applications, incorporating this information into recommendation systems has also

become increasingly important. The following are three baseline algorithms that include

these social relations and also use trust propagation in the recommendation process. We

chose these algorithms because SocialMF [1] and SocialFD [2] are usually used as

baselines in new trust-based recommender systems. As a new deep learning algorithm,

GraphRec [3] is a representative algorithm to investigate if deep learning models are

required for making predictions in recommender systems utilizing only trust information.

These models are described in the rest of this section.

4.1 SocialMF Model

Jamali and Ester proposed this method in [1]. This model incorporates propagation of

trust into matrix factorization for recommending a product or an item in social networks

and is closely related to the STE model [14]. This model addresses trust transitivity in

social networks i.e., this model considers propagation of trust. From the graphical

representation of the SocialMF model in Fig. 3 [1], it is evident that feature vector of a

user u is dependent on feature vectors of the user’s direct neighbor. This is a recursive

dependence, i.e., feature vector of direct neighbor depends on feature vectors of his or her

direct neighbors.

In the baseline matrix factorization model [20] and the STE model [14], features are

learned from observed ratings only. However, in real world social networks, most of the

users only participate in social network but do not express ratings to items. This makes it

hard to learn feature vectors from observed ratings. SocialMF model handles these users

by learning to tune the latent features of these users close to their neighbors. Hence, even

if a user does not express any ratings, the feature vectors are learned in a way that these
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vectors are close to feature vectors of their neighbors. As the learned features are typically

based on the retained observed ratings, the evaluation of these learned features for users

who haven’t expressed ratings is difficult.

Fig. 3. Graphical representation of SocialMF model [1].

In Fig. 3, u represents a user belonging to the user set U and i represents an item

belonging to the item set I respectively. The term Tui,u j represents trust between user ui
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and user u j. Ru,i denotes the predicted rating that user u would give to an item i. The user

latent factors are calculated using the formula:

Ûu =
ΣvεNuTu,vUv

| Nu |
(1)

where Ûu is the calculated latent factor of user u based on the known latent feature

vectors of direct neighbors of u denoted by Nu. Tu,v denotes trust between user u and v

and Uu denotes the user u’s original latent vector.

The loss function used in SocialMF is similar to that of SVD with an addition of

social regularization term λT . The loss function can be represented as:

L = SVD loss+ regularization terms+λT/2∗ social graph loss, (2)

where λT is a parameter to tune the influence of the trust matrix on the

recommendation.

In a social network, some users actively participate in rating a product or writing a

review, but most of the users express very few ratings. These users are called cold-start

users. This algorithm has shown improved performance on cold-start users compared to

the STE [14] model. However, the SocialMF model has higher cost in calculation of

social factor and its gradients against user and item feature vectors.

4.2 SocialFD Model

In this sub-section, a social recommender that combines factorization and distance

metric learning, also called SocialFD [2] is discussed. Yu et. al. proposed this model to

make recommendations more reliable. This model is inspired by the concept “distance

reflects likability”. With the success of distance metric learning in classification

tasks [30], [31], Yu et. al. integrated distance metric with matrix factorization in this

model [2]. The main idea of distance metric learning is to “learn a desired distance metric
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that can make data points with the same class label closer and discriminate data points in

different sets with larger distance” [2]. SocialFD model, on the contrary, tries to minimize

the distance between each user and his or her friends and items that are rated positively.

Also, this algorithm maximizes the distance between users and items rated negatively.

The trust propagation in SocialFD model plays an important role and is similar to that

of the collaborative filtering model [1]. Given the information of users’ likes and friends

where user is denoted by u, item by i, and friends by k, SocialFD also pulls user k and

item i relatively closer in addition to pulling user u and item i closer. The sparsity

problem of user k can be overcome by recommending user u’s preferred items. Likewise,

SocialFD model keeps user u away from disliked item j, pushing item j far from user k.

Additionally, the SocialFD algorithm decreases the distance between indirect connections

or users with similar interests.

One major drawback with the matrix factorization in general is that it is hard to

combine a well-trained vector. On contrast, the SocialFD model does flexible inclusion of

the ready-made representation of additional knowledge. All the assumptions till now were

ratings and social network connections. However, in real-time, user profiles contain huge

amounts of texts. These texts can also be accumulated to enhance the quality of

recommendations [32] [33].

The graphical illustration of SocialFD model can be seen in Fig. 4 [2]. Users and

items seen in Fig. 4 are represented on low-dimensional space. Closer the two symbols

are, higher the probability that user prefers that item or trusts another user. Mahalanobis

distance is used in this model and is calculated product of latent features difference and

the distance metric.
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Fig. 4. Graphical Representation of SocialFD model [2].

At training stage of the model, constraints are imposed such that users and preferred

items or friends are closer and distant from disliked items or users. The ratings and social

connections help model to determine the positions of users and items. i.e., if user has

expressed only few ratings, his or her social connections or relations can help

recommending items to the user. These obtained latent features are interpreted as

coordinates and the distance is used to generate meaningful recommendations. The

predicted rating in SocialFD model is defined as:

r̂ui = µ +bu +bi−‖xu− yi‖2
A (3)

where xu denotes latent vector of user u, yi is latent vector of item i, A belongs to

distant metric matrix of k× k dimensions, bu and bu are user regularization and item

regularization terms respectively. The latent factors are learnt by optimizing the formula:
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}
(4)

where P is a set of pairs containing user u and his positively rated items, N is the set

of pairs containing user u and his negatively rated items, the last three terms are

constraints used to adjust the user-user and user-item distance to an appropriate range, λ

is to control bias magnitudes, η controls influence of constraints and α manages trade-off

between user and item distances.

4.3 GraphRec Model

The GraphRec model is adapted and modified from [3]. This model consists of three

components: user modeling, item modeling, and rating prediction [3]. In the user

modeling phase, the latent factors users are learnt by the model. There are two

aggregations in this component, item aggregation and social aggregation. The item

aggregation helps in learning item-space user latent factor from user-item ratings data.

This is learned by considering the items that user u has interacted with and the opinions

i.e. ratings that u has on these items. The item aggregation in user modeling can be

mathematically represented as:

hI
i = σ(W.Aggreitems(xia,∀aεC(i))+b) (5)
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where i indicates an item belonging to item set I, C(i) indicates set of item user u has

interacted with, xia is a vector representing opinion-aware interaction between user u and

item va and Aggreitems is an aggregation function. Fig. 5 shows the graphical

representation of user modeling phase in GraphRec algorithm.

Fig. 5. User modeling phase of GraphRec model [3].

In social aggregation, social-space user latent factor is learned from the social data.

According to social correlation theories [34] [35], users opinions towards an item or

preferences are either influenced or similar to their direct friends in social networks. In
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social aggregation of GraphRec, the authors proposed social-space user latent factors,

which is to aggregate the item-space user latent factors of neighboring users from the

social graph, to incorporate the social correlation theories. Equation 6 denotes the

mathematical representation of social aggregation.

hS
i = σ(W.Aggreneighbors(hI

o,∀oεN(i))+b) (6)

Combining the item-space latent factor and social-space latent factor, the total user

latent factor is learnt. This can be mathematically represented as equation 7

c = [hI
i ⊕hS

i ] (7)

The next component is item modeling. In this component, the item latent factor can be

learnt by user aggregation. User aggregation associates item i with users that interacted

with i and their opinions. These opinions or ratings from different users help in capturing

the features of same item in different ways provided by users. This helps in modeling

item latent factors. Fig. 6 illustrates the item modeling phase graphically and equation 8

gives mathematical representation.

z j = σ(W.Aggreusers( f I
jt ,∀tεB( j))+b) (8)

where B(j) indicates set of users interacted with item v j, f jt represents opinion-aware

interaction of users with item v j
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Fig. 6. Item modeling phase of GraphRec model [3].

Finally in the third component, the model parameters are learned and the ratings are

predicted using the GraphRec model. The graphical representation of this phase can be
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seen in Fig. 7. To learn the model parameters, the authors utilized the most commonly

used objective function which is formulated as:

Loss =
1

2|O| ∑
i, jεO

(r′i j− ri j)
2 (9)

where O is the number of total observed ratings, ri j is rating given by user i to item j.

Fig. 7. Rating prediction phase of GraphRec model [3].

For optimization of objective function, the authors used RMSprop defined in [36]

rather than the vanilla stochastic gradient descent (SGD). This RMSprop, each time,

selects training instance randomly and updates each model parameter towards the

direction of its negative gradient [3]. The three embedding item, user and opinions are

initialized randomly and learned during the training stage.

The latent features users hi and items z j calculated in item modeling and user

modeling phases respectively are now concatenated and fed into a Multi-Layer Perceptron
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(MLP) for rating prediction. The layers in MLP are as follows:

g1 = [hi⊕ z j] (10)

where ⊕ indicates concatenation

g2 = σ(W2 ·g1 +b2) (11)

gl = σ(Wl ·gl−1 +bl) (12)

rating prediction is done using:

r′i j = wT ·gl−1 (13)

where l is the index of a hidden layer, and r′i j is the predicted rating for item v j by user ui.

To avoid overfitting, a persistent problem in optimization of deep neural networks,

dropout [37] - a regularization technique for deep neural networks, is utilized. While

testing, the dropout regularization is disabled which allows the usage of whole network.
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5 EXPERIMENTS

This section gives an overview of the experiments and datasets used in these

experiments. Also included are the evaluation metrics used to evaluate these experiments

done with SocialMF, SocialFD and GraphRec models.

5.1 Approach

In this paper, our goal is to study how the three representative social recommenders,

i.e., SocialMF, SocialFD, and GraphRec, leverage social network information. Towards

this goal, we make the hypothesis that if a recommender system truly captures the social

network information, making perturbations to the social network should have a significant

impact on the performance of these systems. We will study these algorithms on four

datasets and five ways to perturb the social network information, as described in the rest

of the section.

5.2 Datasets

The major bottleneck in research of social network-based recommender systems is the

lack of publicly available social rating network datasets. These models were experimented

on with four datasets. Epinions.com is one of the popular publicly available social rating

network datasets. For experimentation with these models, we used a version of the

Epinions dataset published by the authors of [33]. On average, each user has 8 expressed

ratings and has 7 direct neighbors. The next dataset we used is a version of CiaoDVD by

the authors of [38]. This dataset is a smaller one compared to the Epinions dataset.

Another relevant dataset we used is FilmTrust [39]. FilmTrust is the smallest dataset used

in experimentation crawled from the FilmTrust website in 2011.

We have created an additional dataset to experiment with these models. This dataset is

an extension of the TwitterEgo dataset by the authors of [40]. The basic dataset consists

of social circles from Twitter data which was crawled from public sources. Table 3 shows

the compositions of the datasets used for experimentation in this research.
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Table 3
Data Statistics

Statistics CiaoDVD Epinions FilmTrust TwitterEgo
# Users 7,375 40,163 1,508 10,419
# Items 105,114 139,738 2,071 177,558
# Ratings 284,086 664,823 35,497 367,868
# Trust Statements 111,781 487,183 1,853 566,822
Rating Scale 1.0 – 5.0 1.0 – 5.0 1.0 – 5.0 0.0 - 1.0
Average Clustering coefficient 0.0917 0.1449 0.1354 0.3913
Average Closeness centrality 0.0684 0.1478 0.0417 0.1622
Social Trust Density (%) 0.1850% 0.0201% 0.2428% 0.0762%

The density of a social network graph is a measure of the existing number of ties

between users compared to number of possible ties between users. This is simply

calculated using equation 14 for undirected graphs and equation 15 for directed graphs.

UndirectedGraphDensity =
m

n(n−1)
2

(14)

DirectedGraphDensity =
m

n(n−1)
(15)

where m denotes cardinality of the social network and n denotes the number of nodes

in the social network graph.

The density of a social network helps us understand the comparison of how connected

the network is to how connected the social network might be. Also, density helps in

differentiating two networks with the same number of nodes and the same type of

relationships.
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5.3 Social Network Modifications

Taking the original datasets, we modified the social trust data in each of the four

datasets for our experiments. This sub-section discusses the modifications we made to

these datasets and an example for each.

5.3.1 There is No Trust between any Users - NTU

For this experiment, we modified the social data by removing all the trust statements

and providing number of trust statements as 0. i.e. the social network part of data is not

considered. The sample social trust matrix would look as in Table 4. Table 5 indicates the

change in density of social trust data due to the modifications made.

Table 4
Sample Social Trust Matrix for Users have no Trust

U1 U2 U3 U4 U5
U1
U2
U3
U4
U5

Table 5
Change in Density for NTU

Statistics CiaoDVD Epinions FilmTrust TwitterEgo
# Users 7,375 40,163 1,508 10,419
# Trust Statements 0 0 0 0
Social Trust Density (%) 0.0% 0.0% 0.0% 0.0%

5.3.2 Users Trust only Themselves - UTU

In this experiment, the social data is modified in such a way that user u only trusts or

friends with u and not anyone else. From the example in Fig. 1, the modified social trust
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matrix would look as in Table 6. Table 7 indicates the change in density of social trust

data due to the modifications made.

Table 6
Sample Social Trust Matrix for Users trust only themselves

U1 U2 U3 U4 U5
U1 1
U2 1
U3 1
U4 1
U5 1

Table 7
Change in Density for UTU

Statistics CiaoDVD Epinions FilmTrust TwitterEgo
# Users 7,375 40,163 1,508 10,419
# Trust Statements 7,375 40,163 1,508 10,419
Social Trust Density (%) 0.0232% 0.0020% 0.1366% 0.0037%

5.3.3 Users Trusts Everyone else Except Themselves - UTEU

In this experiment, the social data is modified in such a way that user u1 only trusts or

friends with all other users in the network U. From the example network in Fig. 1, the

modified social trust matrix would look as in Table 8. Table 9 indicates the change in

density of social trust data due to the modifications made.

Table 8
Sample Social Trust Matrix for Users trusts everyone else except themselves

U1 U2 U3 U4 U5
U1 1 1 1 1
U2 1 1 1 1
U3 1 1 1 1
U4 1 1 1 1
U5 1 1 1 1
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Table 9
Change in Density for UTEU

Statistics CiaoDVD Epinions FilmTrust TwitterEgo
# Users 7,375 40,163 1,508 10,419
# Trust Statements 54,390,625 1,613,026,406 2,272,556 108,545,142
Social Trust Density (%) 100.00% 100.00% 100.00% 100.00%

5.3.4 Users Trust Everyone Including Themselves - UTE

In this experiment, the social data is modified in such a way that user u1 trusts or

friends with every other users in the network U including themselves. From the example

social network Fig. 1, the modified social trust matrix would look as in Table 10. Table 11

indicates the change in density of social trust data due to the modifications made.

Table 10
Sample Social Trust Matrix for Users trusts everyone including themselves

U1 U2 U3 U4 U5
U1 1 1 1 1 1
U2 1 1 1 1 1
U3 1 1 1 1 1
U4 1 1 1 1 1
U5 1 1 1 1 1

Table 11
Change in Density for UTE

Statistics CiaoDVD Epinions FilmTrust TwitterEgo
# Users 7,375 40,163 1,508 10,419
# Trust Statements 54,390,625 1,613,066,569 2,274,064 108,555,561
Social Trust Density (%) 100.02% 100.06% 100.13% 100.01%
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5.4 Evaluation Metrics

In these experiments, MAE and RMSE are chosen to evaluate the quality of

recommendations produced by these models.

RMSE is calculated using:

RMSE =

√
1
n

Σu,i(rui− r′ui)
2 (16)

and MAE is defined by:

MAE =
1
n

Σu,i|rui− r′ui| (17)

where n denotes the number of ratings in test set, rui is the actual rating and r′ui is the

predicted rating. Lower MAE and lower RMSE indicate that the missing ratings are

predicted more accurately.

5.5 Hyperparameter Tuning

We tuned the hyperparameters such as learning rate, regularization factors (for users,

items, and social circles), number of factors, batch size, and number of epochs. All three

algorithms are highly dependent on learning rate. These algorithms performed better for

learning rates in the range 0.01 to 0.1. The performance of SocialMF and SocialFD

algorithms is dependent on social regularization parameter. The ideal values for social

regularization parameter are in range 5 to 20. At lower values of social regularization

parameter, the performance of SocialMF and SocialFD algorithms is similar to that of the

baseline matrix factorization algorithms.
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6 RESULTS

In this section, the results of the SocialMF, SocialFD, and GraphRec models are

reported for each dataset and compared using the RMSE and MAE evaluation metrics.

The SocialMF model results are shown in section 6.1, SocialFD model results in

section 6.2, and GraphRec results in section 6.3.

6.1 SocialMF Model Results

Before understanding the results, please note that the code used for implementation of

SocialMF algorithm is a modified version provided by the authors of SocialFD [2]. This

version has an implementation difference and is mostly in terms of the training phase

where the authors of SocialFD have used SGD to obtain the local minimum. The

underlying graphical model is still the same. Results of the SocialMF model can be seen

in Table 12

Table 12
Results of SocialMF Model on 4 Datasets with Modified Social Trust Information

Experiment Metrics CiaoDVD Epinions FilmTrust TwitterEgo

OTD RMSE 1.0269 1.1044 0.8429 0.1015
MAE 0.7718 0.8683 0.6389 0.0234

NTU RMSE 1.0248 1.1455 0.8419 0.0998
MAE 0.7685 0.8425 0.6344 0.0160

UTU RMSE 1.0259 1.1037 0.8399 0.1129
MAE 0.7817 0.8702 0.6389 0.0215

UTEU RMSE 1.0269 1.1549 0.8521 0.0973
MAE 0.7785 0.8524 0.6449 0.0159

UTE RMSE 0.8536
MAE 0.6486

NOTE: Because of the usage of random seed and gradient descent in these

experiments, up to two percent difference in RMSE and MAE is negligible.

Due to lack of sufficient memory while unpacking the social network information into

a social trust matrix, the “UTE” experiment could not be performed on the CiaoDVD,
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Epinions, and TwitterEgo datasets. For this reason, the RMSE and MAE are left blank for

these datasets on the experiment “UTE.”

The difference of RMSE between experiments “OTD” and “NTU” for Epinions

increases to 4%. This increase is slightly higher than our threshold, but the MAE is lower.

As graph density changes for each experiment, there might be some effect of this change

on the SocialMF model.

Although both SVD-based RS [19] and SocialMF utilize matrix factorization in

recommending content or products to users, there are some differences in implementation.

In SocialMF, there is an additional step to update the user u’s latent factors based on the

user u’s neighbors. This implies that only user matrix is updated in SocialMF and the

social trust matrix remains the same. In case of “NTU,” the user matrix does not get

updated and the original user matrix is retained. But compared to SVD-based RS, the

errors decrease significantly. This might be due to the use of user and item regularization

terms. More exploration is needed in understanding how transitivity of trust is affected by

changing the social trust information.

Looking at the way the inference is influenced by the trust matrix, we cannot draw

any formal conclusions about the impact of the trust matrix on the recommendation. This

could be because of multiple reasons. First, based on the fact that social network metrics

for these graphs are varied, it may not have anything to do with the social network

structure itself. It is, however, possible that the dataset itself is not one in which social

influence plays a role. We need further experimentation to verify this formally.

Another reason could be that the modified trust matrices somehow “balanced” out the

user latent vectors or the loss function. Details for each modified social graph are below.

In SocialMF, the user latent feature vector is the weighted average of the latent feature

vectors of adjacent users in the social graph. The implication of the changed social

networks here is that NTU maintains the original latent feature vectors and
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recommendations are solely based on users that are similar in terms of their ratings. The

behavior of NTU is therefore expected to be similar to SVD. However, the presence of the

social factor (which is setup as a hyperparameter) might have scaled the recommendation

scores.

Extending the argument to the UTU social graph, the user latent vectors are weighted

by their own ratings further. We expected that it might have reduced the influence of

similar users in the traditional sense to have lesser influence on a user’s recommendation.

For the UTEU social graph, the user latent vectors are influenced by the average of the

latent vectors of other users. For the UTE social graph, the user latent vectors are

influenced by the average of all the latent vectors. For both these social graphs, we

expected that the average latent vectors might pollute the user similarity with respect to

ratings. All of these social graphs were expected to harm the performance of SocialMF.

However, the experimental results did not show a significant change in performance.

A key reason for this could be the social trust parameter that tunes the influence of the

social network on the recommendation. The authors of SocialMF [1] use a Gaussian prior

to determine this factor, which plays a crucial role in their loss function. For our trivial

social networks, the priors do not hold. The results, however, do highlight the need to

explore the role of the social network further.

In the future, we propose to run further experimentation with random trust matrices to

draw more formal conclusions about the role of the social network in the SocialMF

algorithm.

6.2 SocialFD Model Results

SocialFD algorithm places users close to their preferred items and friends, and far

from their disliked items. The performance of SocialFD model can be seen in Table 13.

From the Tables 12 and 13, it can be inferred that the SocialFD algorithm in general

performs better than the SocialMF algorithm consistently for these diverse datasets. This
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Table 13
Results of SocialFD Model on 4 Datasets with Modified Social Trust Information

Experiment Metrics CiaoDVD Epinions FilmTrust TwitterEgo

OTD RMSE 0.9645 1.0458 0.7806 0.0221
MAE 0.7261 0.7932 0.5948 0.0159

NTU RMSE 0.9641 1.0456 0.7803 0.0161
MAE 0.7260 0.7906 0.5947 0.0069

UTU RMSE 0.9594 1.0485 0.7709 0.0198
MAE 0.7368 0.7899 0.6008 0.0079

UTEU RMSE 0.9590 1.0548 0.7702 0.0159
MAE 0.7160 0.7897 0.5893 0.0068

UTE RMSE 0.7904
MAE 0.6039

indicates that distance metrics may have an important role in social recommendations.

However, when we compare these models between “OTD” and “NTU”, there is no

significant change in the RMSE and MAE. In some cases, there seems to be a marginal

improvement without trust information. Looking back at our hypothesis in Section 5.1,

the results indicate that there is a need for deeper exploration on these lines.

6.3 GraphRec Model Results

GraphRec is a deep learning model that uses attention and graph neural networks. The

results obtained by using GraphRec model can be seen in the Table 14.

GraphRec showed improved performance while considering social trust information

when compared to other models like SocialMF [1], SoRec [15], etc. Although GraphRec

is a more complex deep learning algorithm, we did not observe much difference in RMSE

and MAE as compared to SocialFD. In some cases, these errors increased significantly.

For example, for our TwitterEgo dataset, the MAE increased significantly and for the

FilmTrust dataset both metrics increased. We also observed that for the same model,

performance improves in some scenarios and deteriorates in the others. Regardless, the

difference in performance is very little. This highlights the fact that deep learning
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Table 14
Results of GraphRec Model on 4 Datasets with Modified Social Trust Information

Experiment Metrics CiaoDVD Epinions FilmTrust TwitterEgo

OTD RMSE 1.0022 1.0818 0.9057 0.0209
MAE 0.7611 0.8299 0.6970 0.0149

NTU RMSE 0.9989 1.0786 0.9051 0.0194
MAE 0.7645 0.8255 0.6921 0.0140

UTU RMSE 1.0342 1.1008 0.8975 0.0198
MAE 0.7903 0.8382 0.7108 0.0151

UTEU RMSE 0.9689 1.0983 0.9005 0.0182
MAE 0.7945 0.8356 0.6891 0.0137

UTE RMSE 0.9063
MAE 0.6985

techniques cannot guarantee a better performance even with huge datasets such as

Epinions and TwitterEgo. It is particularly interesting that in most cases, the trivial social

trust datasets perform better than the default “OTD” datasets.

6.4 Performance Comparison and Summary

The RMSE and MAE of TwitterEgo dataset are low compared to other datasets

because its rating scale is binary, i.e., 0 or 1.

Fig. 8 illustrates the performance of these three models on the CiaoDVD dataset. It

can be observed that the performance of each algorithm is similar in all the experiments.

Similar to CiaoDVD, the results for the Epinions (Fig. 9) and FilmTrust (Fig. 10), datasets

show that performance of these algorithms is similar for all perturbations on the social

trust data. Whereas, for the TwitterEgo dataset (Fig. 11), it can be seen that the MAE for

“OTD” experiment is higher for SocialMF and SocialFD models.

All of the above experiments indicate the following key observations. Comparing

social recommendation algorithm with trust information indicates that SocialFD is a

superior algorithm for all the datasets and social trust data compared to SocialMF.

However, from our experiments, social trust information does not significantly improve

33



the performance of these representative models on diverse datasets. Also, we understand

that superior performance of SocialFD algorithm has something to do with the utilization

of distance metric. Further study is needed in the direction of incorporating distance

metric learning into social recommender systems. The computational overhead and

complexity of deep learning models may not make a significant difference to the

performance. It also highlights the importance of studying the interpretability of deep

learning social recommender systems in general.

Fig. 8. Graphs comparing results of experiments on CiaoDVD dataset.
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Fig. 9. Graphs comparing results of experiments on Epinions dataset.
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Fig. 10. Graphs comparing results of experiments on FilmTrust dataset.
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Fig. 11. Graphs comparing results of experiments on TwitterEgo dataset.
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7 CONCLUSIONS

Recommender systems are powerful tools that filter and recommend

content/information relevant to a given user. With the advent of social networks, it has

become very important to utilize the data on social ties between in a social network to

recommend a product to the users who expressed a few ratings. In this paper, we explored

three such social recommender models, SocialMF, SocialFD, and GraphRec. SocialMF is

a model that incorporates trust propagation into matrix factorization, SocialFD model uses

distance metric learning in addition to matrix factorization, and GraphRec is a model that

uses attenttion-based graph neural networks.

Experiments on 4 real life datasets, CiaoDVD, Epinions, FilmTrust, and TwitterEgo,

show that these algorithms outperform the conventional collaborative filtering algorithms

as well as the previously developed social recommender systems. Of these three, the

SocialFD model performs better than the SocialMF model with inclusion of trust. At

lower social parameter values, these models’ performance is similar to the performance of

collaborative filtering algorithms. However, when social trust factor is not given, these

models show similar performance compared to the models that contain social trust

parameter. From these experiments, it can be seen that there is less conclusive evidence

that social recommender systems are influenced by social trust data. The experiments

highlight the need to explore further to gain better understanding of the role of social

networks in recommender systems.
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8 FUTURE WORK

This work suggests some interesting directions for future research. These models can

be extended further to handle zero and negative trust relations. In general, negative trust,

also called distrust, gives more information about a user than positive opinions. Also,

currently, social regularization parameter is given as an input to these models. Future

work can help in the development of a model that incorporates automatic tuning of social

trust. In real-time, user profiles and item profiles contain huge amounts of text data and

other features. These features can also be accumulated into the recommender system to

enhance the quality of recommendations. In the future, we would like to explore a dataset

where social network is explicitly synthesized to have an impact on recommendation and

repeat these experiments on that synthetic dataset.
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Appendix A

GENERATION OF EXTENDED TWITTEREGO DATASET

This dataset is an extension of TwitterEgo dataset by authors of [40]. The basic

dataset consists of social circles information from Twitter data which was crawled from

public sources. Using an open source API known as “Tweepy”, we extracted tweets to

which each of the users reacted. Using the tweet IDs, the tweets to which users reacted

are rated as 1 and the tweets to which the users did not react were rated as 0. Finally, we

created a ratings dataset for the users and tweets. We generated the social relations dataset

using the social circles from the original dataset. We divided the data into train, validation

and test using stratified split technique.

This dataset can be downloaded from this repository. The statistics of TwitterEgo

dataset are:

Table 15
TwitterEgo Data Statistics

# Users 10,419
# Items 177,558
# Ratings 367,868
# Trust Statements 566,822
Rating Scale 0.0 - 1.0
Average Ratings per user 35
Average clustering coefficient 0.3913
Average closeness centrality 0.1622

In a graph network, closeness centrality is a measure used to determine the centrality

of a node. It is calculated as ”the reciprocal of the sum of the length of the shortest paths

between the node and all other nodes in the graph” [41]. A node is closer to all other

nodes if it is more central.
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Appendix B

PREPROCESSING FOR GRAPHREC

Although the authors of GraphRec model [3] made their code public, one problem we

faced was preprocessing data to match the model requirements. Using Python 3.6 version,

we created a script to preprocess the data. This script performs the following actions:

• Ratings data

– Each user is associated with all the items that he/she has rated/preferred/reacted to

– For each user, the ratings that the user has given are also associated

– Each item is associated with all the user that rated/preferred/reacted to the item

– For each item, the ratings that the item has been given are also associated

• Social Trust Data

– Each user is aggregated with all the other users that he/she trusts

• Based on the number of ratings, opinion embedding with 5 different embedding

vectors are randomly initialized. i.e., for a rating scale of 1 to 5, embedding vectors

are randomly initialized based on 5 scores in 1, 2, 3, 4, 5

The entire data, which is in form of Python objects is stored as a byte stream through

a process called “pickling”. This is done using a Python module called “pickle” which

implements binary protocols for serializing and de-serializing a Python object structure.

The “dataset.pickle” file is then loaded to the GraphRec model to calculate, the

user-latent factors, item-latent factors, and perform predictions on the test data.
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Appendix C

MODIFIED GRAPHREC VERSION

While experimenting with the GraphRec model using original source code provided

by the authors, we had to modify it to fit needs of our datasets and preprocessing

techniques. Apart from these changes, we modified the architecture of the GraphRec

model. The architecture of modified model can be seen in Figure 12

Fig. 12. Architecture of modified GraphRec model

In this version, both the user aggregation and item item aggregation are performed in

first step. The item space obtained in user aggregation step and user space obtained in

item aggregation step are then concatenated and passed as input to social aggregation step.
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In social aggregation step, user-item latent factors are calculated. These latent factors are

then used to train the model and make predictions. Table 16 shows the performance of

this modified version of GraphRec algorithm.

Table 16
Results of Modified GraphRec Model on 4 Datasets with Modified Social Trust

Information

Experiment Metrics CiaoDVD Epinions FilmTrust

OTD RMSE 1.0052 1.0759 0.9050
MAE 0.7714 0.8367 0.6979

NTU RMSE 0.9890 1.0668 0.9034
MAE 0.7592 0.8295 0.6891

48


	Influence of Social Circles on User Recommendations
	Recommended Citation

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Types of Collaborative Filtering Recommender Systems
	Memory-based Collaborative Filtering
	Model-based Collaborative Filtering
	Hybrid Collaborative Filtering
	Deep Learning-based Collaborative Filtering

	Cold Start Problem
	Cold Start Problem and Social Networks

	Social Rating Networks
	Social Rating Networks and Recommender Systems


	Related Works
	Research Overview
	Models used in this research
	SocialMF Model
	SocialFD Model
	GraphRec Model

	Experiments
	Approach
	Datasets
	Social Network Modifications
	There is No Trust between any Users - NTU
	Users Trust only Themselves - UTU
	Users Trusts Everyone else Except Themselves - UTEU
	Users Trust Everyone Including Themselves - UTE

	Evaluation Metrics
	Hyperparameter Tuning

	Results
	SocialMF Model Results
	SocialFD Model Results
	GraphRec Model Results
	Performance Comparison and Summary

	Conclusions
	Future work
	Literature Cited
	Appendix A: Generation of Extended TwitterEgo dataset
	Appendix B: Preprocessing for GraphRec
	Appendix C: Modified GraphRec Version

