
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2020

Transfer Learning for Hyperspectral Images Utilizing Channel Transfer Learning for Hyperspectral Images Utilizing Channel

Selection Techniques and Ensemble Methods Selection Techniques and Ensemble Methods

Scott Daniel Vogel
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Vogel, Scott Daniel, "Transfer Learning for Hyperspectral Images Utilizing Channel Selection Techniques
and Ensemble Methods" (2020). Master's Theses. 5167.
DOI: https://doi.org/10.31979/etd.guyn-49n9
https://scholarworks.sjsu.edu/etd_theses/5167

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/389684706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/5167?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

TRANSFER LEARNING FOR HYPERSPECTRAL IMAGES UTILIZING CHANNEL

SELECTION TECHNIQUES AND ENSEMBLE METHODS

A Thesis

Presented to

The Faculty of the Department of Electrical Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Scott Vogel

December 2020

© 2020

Scott Vogel

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

TRANSFER LEARNING FOR HYPERSPECTRAL IMAGES UTILIZING CHANNEL

SELECTION TECHNIQUES AND ENSEMBLE METHODS

by

Scott Vogel

APPROVED FOR THE DEPARTMENT OF ELECTRICAL ENGINEERING

SAN JOSÉ STATE UNIVERSITY

December 2020

Birsen Sirkeci, Ph.D. Department of Electrical Engineering

Robert Morelos-Zaragoza, Ph.D. Department of Electrical Engineering

Guangliang Chen, Ph.D. Department of Mathematics and Statistics

ABSTRACT

TRANSFER LEARNING FOR HYPERSPECTRAL IMAGES UTILIZING CHANNEL

SELECTION TECHNIQUES AND ENSEMBLE METHODS

by Scott Vogel

Hyperspectral images contain information from a wider range of the electromagnetic

spectrum than natural images which gives them potential for better classification ability.

However, hyperspectral datasets are typically small due to the expensive equipment needed to

obtain the images, which can limit classification performance. One solution to this problem is

transfer learning, in which a model trained on one dataset is reused for a separate dataset.

Research has shown that transfer learning between hyperspectral datasets can give improved

performance over models without transfer learning when training data are limited. Since extra

hyperspectral data are not always available, the solution proposed here is to instead use networks

pretrained on natural image (i.e., red, blue, green, or RGB) datasets for transfer learning. By using

various feature selection and feature extraction methods, extracted hyperspectral samples are

transformed into a three-channel format to imitate an RGB image and are used for fine tuning the

well-known ResNet, DenseNet, and VGG networks. Feature extraction methods include

techniques like principal component analysis, which create lower dimensional features from high

dimensional spectral data. Alternatively, feature selection methods aim to find the best set of

existing channels to use for classification. Experimental results are obtained using two well-

known hyperspectral datasets, showing 73.6% accuracy on Pavia University and 82.8% accuracy

on Salinas with 25 training samples per class. Additional ensemble methods are implemented that

utilize multiple networks and show an increase in accuracy of 4.4% and 3% for Pavia University

and Salinas, respectively. These results demonstrate that networks pretrained on RGB datasets are

suitable for transfer learning with hyperspectral image datasets and can achieve desirable

performance given the proper preprocessing technique.

v

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Sirkeci for her guidance throughout this project. Her

knowledge and support made this project enjoyable and allowed me to learn a lot in the process.

Her flexibility in working with me also made it possible to accomplish everything in a timely

manner. I would also like to thank my two other thesis committee members, Dr. Morelos-

Zaragoza and Dr. Chen, for reviewing and verifying the work that I have done.

Finally, I would like to thank my family for their support while writing my thesis and while

obtaining my master’s degree. Without them, it would have been much more difficult.

vi

TABLE OF CONTENTS

List of Tables ... vii

List of Figures ... viii

List of Abbreviations ... ix

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Overview ... 2

2 Background ... 3

2.1 Hyperspectral Images .. 3

2.2 Transfer learning and Pretrained Networks ... 4

3 Related Work ... 10

4 Dataset Description .. 13

4.1 Pavia University and Salinas Hyperspectral Datasets .. 13

4.2 Dataset Generation ... 15

5 Implemented Methods ... 20

5.1 Model Implementation ... 20

5.2 Channel Preprocessing Methods .. 21

5.2.1 Greyscale .. 21

5.2.2 RGB ... 22

5.2.3 K-Means Clustering .. 22

5.2.4 Minimum Misclassification Canonical Analysis .. 24

5.2.5 Principal Component Analysis ... 26

5.2.6 Independent Component Analysis .. 28

6 Experimental Analysis ... 30

6.1 Comparing Pretrained Models and Preprocessing Methods 30

6.2 Model Ensemble Results .. 38

7 Future Work ... 42

8 Conclusions .. 45

References ... 46

vii

LIST OF TABLES

Table 1. Pretrained Models Used in This Paper ... 5

Table 2. Class Distribution for the Pavia University Dataset .. 17

Table 3. Class Distribution for the Salinas Dataset ... 18

Table 4. Data Subsets for the Salinas and Pavia University Datasets .. 19

Table 5. RGB Channels for Pavia University and Salinas ... 22

Table 6. Pretrained Models Ranked by Average Accuracy Across Class Subsets 31

Table 7. Preprocessing Methods Ranked by Average Accuracy Across Class Subsets 32

Table 8. Top and Bottom 5 Model Combinations on the Pavia University 9-Class

 Dataset... 33

Table 9. Top and Bottom 5 Model Combinations on the Salinas 16-Class Dataset 34

Table 10. Preprocessing Methods Ranked by Average Accuracy Across Class Subsets

 (all_ensemble) .. 39

viii

LIST OF FIGURES

Fig. 1. A sample hyperspectral image (left) and the spectral reflectance of pixels...................... 4

Fig. 2. The VGG-19 network architecture ... 6

Fig. 3. The residual unit (left) and bottleneck unit (right) ... 7

Fig. 4. The ‘dense block’ structure of DenseNet ... 7

Fig. 5. The ground truth and two samples channels from the Pavia University dataset 14

Fig. 6. The ground truth and two samples channels from the Salinas dataset 15

Fig. 7. The process of converting 5×5×L shaped samples to 33×33×M 16

Fig. 8. Visualization of the channel ensemble process .. 21

Fig. 9. The best models for each network group on the Pavia University datasets 35

Fig. 10. The best models for each network group on the Salinas datasets 36

Fig. 11. Sample confusion matrix using the 16-class Salinas dataset .. 38

Fig. 12. The best preprocessing methods in each group with the all_ensemble model

 (Pavia University) .. 40

Fig. 13. The best preprocessing methods in each group with the all_ensemble model

 (Salinas) .. 41

ix

LIST OF ABBREVIATIONS

CNN - Convolutional Neural Network

ICA - Independent Component Analysis

ILSVRC - ImageNet Large Scale Visual Recognition Challenge

MMCA - Minimum Misclassification Canonical Analysis

PCA - Principal Component Analysis

RGB - red, blue, green (images)

1

1 INTRODUCTION

1.1 Motivation

With the advancements in deep learning in the last decade, tasks that have seemed impossible

in the past are now achievable. This newly reborn area of machine learning has revolutionized

various fields including computer vision, speech recognition, and natural language processing,

among others. One prominent example is that as of 2015, neural networks have been able to

predict classes of images at a lower error rate than a human, and they have only been improving

since [1]. However, even though these networks can accomplish amazing tasks, the complexity of

training and developing models can be a barrier to entry for those without the proper access to

hardware and large datasets. Although improvements have been made in training speed, efficient

training of deep learning models still requires powerful hardware and a graphics processing unit

(GPU), which can make large scale deep learning unavailable to those without the proper

resources. As recently as 2014, training state of the art deep learning models with multiple GPUs

could take as long as 2-3 weeks on large datasets [2]. In addition, access to large datasets needed

for deep learning is often limited and gathering enough data for a specific application can be a

time consuming and resource heavy task in and of itself. Transfer learning offers a promising

solution to these problems.

Transfer learning is a technique that allows a previously trained machine learning model to be

used on a new dataset with the assumption that the original model’s discriminative abilities will

still be useful. Because of this, transfer learning can be one solution to both of the previously

defined problems. Since most well-performing models have already been through a thorough

training process, the model will likely need less training time to adapt to a new dataset. For the

same reasons, less data will be needed to fine-tune the model on a target dataset, so gathering

large amounts of data may not be as necessary to achieve high performance. Additionally, since

2

the deep learning resurgence began, there have been many pretrained machine learning models

publicly available online for a variety of applications that have been thoroughly tested and

benchmarked, as demonstrated in [1] and [3]. Finding ways to utilize these models to solve new

problems can therefore be an efficient way to develop well-performing models.

Hyperspectral imaging is a technology that can offer improvements in many scientific fields

including remote sensing, agriculture, and medicine due to its ability to capture detailed

information about a scene. Since these images can contain hundreds of spectral channels, they

contain much more information than RGB images and thus have the ability to provide better

image classification performance. However, one issue with these images is that they are difficult

to obtain because of the expensive hyperspectral imaging equipment, which severely limits the

availability of large datasets to use for deep learning applications. This makes hyperspectral

image data a good candidate for transfer learning, and recent research has shown that transfer

learning can improve performance on hyperspectral image classification tasks [4].

1.3 Overview

This work focuses on applying transfer learning principles to hyperspectral imaging datasets.

Specifically, well-known pretrained image classification models are applied to these datasets

while comparing different feature extraction and feature selection methods. Chapter 2 provides

background on hyperspectral images and the pretrained networks utilized in this work. Chapter 3

discusses related literature on hyperspectral imaging that influenced this topic. Chapter 4 will

cover the different hyperspectral image datasets used in this work and the techniques used to

generate the training and testing data from them. In Chapter 5, the implemented deep learning and

preprocessing methods are discussed, and in Chapter 6 the obtained results are analyzed. Finally,

Chapter 7 discusses possible future extensions of this work, and Chapter 8 discusses the

conclusions that are drawn from it.

3

2 BACKGROUND

2.1 Hyperspectral Images

Hyperspectral images are cuboids with hundreds of channels in the spectral dimension, unlike

RGB images that only contain three spectral channels for red, green, and blue wavelengths.

Because of the high dimension of the data, hyperspectral images can capture much more

information about a scene than RGB images. In addition, they are not limited to the visual range

of the electromagnetic range that humans can see. The Airborne Visible / Infrared Imaging

Spectrometer (AVIRIS) developed by NASA’s Jet Propulsion Laboratory, for example, captures

electromagnet radiation in the range of 400-2500 nm with a spectral resolution of 9.375 nm [5].

In these images, each pixel represents the spectral reflectance of that scene at a specific point

throughout a wide range of the electromagnetic spectrum. Fig. 1 shows a sample hyperspectral

image and the spectral reflectance curve of three pixels belonging to different classes in the range

of 450-850 nm. Since each pixel will represent a different point in the scene it is likely that each

pixel will have a different spectral reflectance, although pixels of the same class may share

characteristics. This is the main reason that hyperspectral images can accurately capture various

characteristics of a scene. While the high dimensionality of hyperspectral images can be a major

advantage for image classification, it can also make processing the image a difficult task. It is

well known that certain channels of hyperspectral images can contain little information and can

be completely discarded [6]. Knowing this, simply using all channels of the image may not offer

the best result.

4

Fig. 1. A sample hyperspectral image (left) and the spectral reflectance of pixels from three

different classes (right).

The data-capturing characteristics of hyperspectral images make them suitable for many

applications. One of the most popular uses of hyperspectral image datasets is for remote sensing.

In [7], researchers were able to classify different species of native and non-native trees using

aerial-view hyperspectral images with mean F1-scores ranging from 76%-89%. By using

hyperspectral images of vineyards, researchers in [8] were able to identify areas of water stress

with 83% accuracy, which in turn helped to improve the crop quality and sustainability of

vineyards by preventing crop loss. Apart from remote sensing, another field that has utilized

hyperspectral imagery is medicine. Medical applications include cancer detection and disease

diagnosis, where abnormal cancer tissues or disease symptoms show altered spectral

characteristics that help to improve classification [9]. This wide range of use cases for

hyperspectral images makes them a useful tool that will benefit many different scientific fields.

2.2 Transfer Learning and Pretrained Networks

With the rapid progression of deep learning in recent years, one of the largest areas of

improvement has been in computer vision. The optimization of the convolutional neural network,

or CNN, was one of the main drivers of these improvements. In 2010, an annual computer vision

5

challenge called the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) began that

tested competitors on their ability to correctly classify images in a large dataset containing

thousands of classes and millions of total images [10]. From 2012-2015 alone, the top-5

classification error rate on ImageNet, which is the rate at which the target class was not one of the

top five classes predicted by the network, dropped from 16.42% [1] to 3.47 % [11].

Advancements in neural network architecture were key to this improvement in performance, and

many architectures have become famous since. The architectures used in this paper are listed in

Table 1 and are further described below.

Table 1

Pretrained Models Used in This Paper

Model Architecture VGG ResNet / ResNetV2 DenseNet

Fewest Layers VGG-16 ResNet50 / ResNet50V2 DenseNet121

_ _ ResNet101 / ResNet101V2 DenseNet169

Most layers VGG-19 ResNet151 / ResNet151V2 DenseNet201

The VGG architecture is one of the first network architectures that was able to include a very

deep set of sequential convolutional layers. The main contribution in [2] is the implementation of

CNNs with 16-19 weight layers while using a small convolutional filter size of 3×3. This small

convolutional filter size was a key change that allowed deeper networks to be properly trained

and showed that stacking many layers with a small filter size could perform better than fewer

layers with larger filter size. This was because of the realization that stacking multiple layers of

3×3 filters can produce the same result as a larger filter size while also including additional non-

linear activation functions [2]. Using these methods, the VGG networks were able to accomplish

a top-5 error rate of 7.32% on the ImageNet challenge, a 4.4% improvement over the best

network from the previous year (2013) [1]. An example of this design architecture for VGG-19 is

shown below in Fig. 2.

6

Fig. 2. The VGG-19 network architecture. Here, ‘3×3 conv, 64’, refers to a convolutional layer

with 64 3×3 filters, ‘pool’ refers to a pooling layer that reduces the size of the mapping by 1/2,

and ‘fc 4096’ refers to a fully-connected layer with 4096 neurons.

Building upon the success of the VGG networks in [2], a new network architecture named

ResNet was developed that included a new structure called the residual unit and an extension of

that unit called the bottleneck unit [11]. The addition of these units allowed networks of many

more layers (as many as 1000 layers were tested) to be trained properly by reducing the effect of

the vanishing gradient problem [11]. An example of the two-layer residual unit is shown on the

left in Fig. 3, containing two convolutional layers with 3×3 filters. Essentially, the residual unit

takes the output of a layer and not only sends it through the following layer but also adds it to the

output of the following layer without modification. The bottleneck unit uses this same idea but

creates a three-layer convolutional block with 1×1, 3×3, and 1×1 filters instead of two 3×3 filter

convolutional layers. ResNets designed with this bottleneck structure are regularly referred to as

ResNetV2. These architectures were able to achieve additional improvements on the ImageNet

data set with a 3.57% top-5 error rate, a 3.75% improvement over VGG-19 [11].

7

Fig. 3. The residual unit (left) and bottleneck unit (right). As in Fig. 2, ‘conv 3×3, 64’ here refers

to a convolution layer with 64 3×3 filters.

The third network architecture utilized in this work is the DenseNet architecture that was first

developed in 2017 [12]. This architecture takes inspiration from ResNet and develops the idea of

densely connected blocks where each layer takes the output from every previous layer in the

block. This structure is visualized in Fig. 4, where each block of feature maps is connected to the

next and the convolution operation is skipped for those features. The output of every

convolutional layer is added to the input of every layer, except for the first and last layers that

represent the start and end of the five-layer block. With this technique, researchers were able to

achieve a top-5 error rate of only 5.54% [12].

Fig. 4. The ‘dense block’ structure of DenseNet.

8

While these models have shown great performance, the training process is difficult without

the proper resources. Transfer learning is a growing area of research in the field of machine

learning and more specifically, in the field of deep learning, that can allow these networks to be

reused for different applications. Through transfer learning, model development time greatly

decreases as does the need for very large datasets. The basic concept behind transfer learning with

convolutional neural networks is that networks will tend to learn generic features at the beginning

of the model and learn increasingly specific features towards the end. The first convolutional

layers extract high level features maps that slowly become more specific after each convolutional

layer. Because of this, the convolutional layers can be seen as generic feature extractors that can

work for a variety of data that share similar structure. In the final fully connected layers, the

network combines the newly created features in a way that lets it discriminate between different

classes. Knowing this, one can re-use the convolutional layers of a CNN to extract features and

simply re-structure the fully connected layers and train them on the target dataset. For small

datasets, this can work well since most of the network’s weights have already been learned on a

much larger dataset. This can apply directly to hyperspectral datasets, which suffer from small

sample size. However, significant adaption is needed to utilize pretrained CNNs with these

datasets.

In order to use these pretrained networks with hyperspectral images, either the hyperspectral

image or the network must be adapted for the application. Since nearly all available pretrained

models for image classification are on developed RGB image datasets with three spectral

channels, one of the main issues to solve is dealing with the high dimensionality of the

hyperspectral image data. Some method must be chosen to convert the hyperspectral image

samples into three channel versions, whether that is done by selecting a set of channels or

creating a new set of channels with a transformation. Additionally, hyperspectral samples are

9

typically treated as single pixels from the image, and that is not suitable for a network that takes

in samples with a rectangular shape. This means that other adaptions must occur in the spatial

dimensions. Alternatively, a network could be adjusted to allow for samples with higher

dimension or single pixel inputs by changing the input channels of the network. Although there

are potentially many ways of accomplishing this, the chosen technique will likely have a

significant effect on the model performance, which is makes it an opportunity for exploration.

10

3 RELATED WORK

Applying deep learning models to hyperspectral image classification has been a popular

research area in recent years. CNNs have been particularly popular for hyperspectral image

classification, as seen in [11], [12], and [2], due to their success in various computer vision tasks

and contests like the previously mentioned ILSVRC [1]. Researchers have applied CNNs in many

different ways in order to solve the hyperspectral image classification problem. In [13],

researchers utilized the ResNet architecture and adapted it to be capable of 3-D convolution by

simply inflating the network’s weights to 3-D. This 3-D convolution allows both spectral and

spatial features to be learned, unlike typical CNNs that only perform convolution in the spatial

dimensions. With the high dimensionality of hyperspectral data in the spectral dimension,

including spectral features intuitively makes sense. Using this technique, researchers were able to

show significant improvements in classification accuracy (12-17%) over similar methods that

only implemented 2-D convolution for the Pavia University dataset [13].

Recent research has also shown that there can be improvements in classification performance

for hyperspectral datasets by pre-training networks on not only different hyperspectral datasets,

but also on RGB image datasets. In [4], researchers proposed two methods of transfer learning

using their custom neural network architecture that accepts 3D samples extracted from the

hyperspectral image. In the first method, a 3-D CNN model is first trained on one hyperspectral

dataset, and the final fully connected layers are fine-tuned on a target HSI dataset with a small

number of samples per class (25 and 50). Using this approach, results showed improvements in

the range of approximately 1.19-4.17% over networks without transfer learning when there were

25 samples per class and improvements of 0.05-2.68% when there were 50 samples per class [4].

This implies that transfer learning may show more significant improvements when lower numbers

of samples are available for training on the target dataset, which is consistent with the goal of

11

transfer learning. In the second approach, RGB datasets were used as the source for transfer

learning with a target hyperspectral dataset. In order for the RGB datasets to work with their 3D-

CNN architecture, RGB images were repeated along the third dimension so that the number of

dimensions would be equal to that of the target hyperspectral dataset. With this approach, results

showed improvements of 1.86-8.58% over the network without transfer learning when there were

25 samples per class and improvements of -0.07-2.75% when there were 50 samples per class [4].

These results suggest that transfer learning for hyperspectral datasets can be beneficial with

varied sources of data for pre-training.

Another transfer learning approach in [14] utilized a popular pretrained network, VGG-16

[2], to work as a part of its deep learning system. Their methods also included multiple different

RGB datasets to use for training different parts of the network. In this approach, the VGG-16

network is first trained on the ImageNet dataset for which it was originally developed [2]. Then,

the VGG-16 network is adapted to pixelwise prediction by including multiple new deconvolution

and upsampling layers to reformat the shape of the hyperspectral input data. Third, this adjusted

network is fine-tuned on the PASCAL VOC 2011 datasets, a dataset that includes pixel-level

image segmentation [15], to learn additional pixel-level features that may not be learned in the

hyperspectral dataset. Finally, this pretrained network is used to extract features from the

hyperspectral data to use for training the final prediction layers of the network. Using these

techniques for pretraining, researchers were able match the performance of other well-performing

models that did not use any transfer learning techniques, which further amplifies the conclusion

that transfer learning can be useful for hyperspectral image datasets.

While many deep learning based approaches for hyperspectral image classification use all

channels of the hyperspectral image, other research has aimed to find the best set of channels to

use, since it is likely that some channels will offer poor classification performance. In [16],

12

researchers describe six categories of channels selection methods which are ranking-based,

searching-based, clustering-based, sparsity-based, embedding-learning based, and hybrid scheme-

based methods. While these methods differ in implementation, they all aim to find the best set of

channels to use for classification. The most intuitive methods may be the ranking-based methods,

in which channels are ranked by their estimated classification ability. Channels can be ranked by

many different metrics, including high information criteria or low correlation criteria, to

determine the channels that are best suited for classification [16]. Once channels are ranked, a set

of decorrelated channels can be chosen to give varied sources of data. In clustering methods,

channels are clustered by their similarity, as defined by the algorithm, and from each cluster a

representative channel is chosen that shares the characteristics of the cluster. In this way,

representative channels from separate clusters should be dissimilar and will be likely to hold

different information. By reducing the number of channels, these techniques can help to alleviate

the problem of dimensionality mismatch between hyperspectral images and typical CNN

networks.

13

4 DATASET DESCRIPTION

4.1 Pavia University and Salinas Hyperspectral Datasets

The two datasets used in this paper are the Pavia University and Salinas scenes which are

publicly available online and are widely used in research [6]. Both scenes are aerial views of

ground-level objects including classes like asphalt, meadows, and celery, with nine classes for

Pavia University and sixteen classes for Salinas. For these datasets, samples are organized as

single pixels that cover the entire spectral range of the image. This means that for a hyperspectral

image with shape H×W×L, a single pixel sample will have the shape 1×1×L. One thing to note is

that although each pixel belongs to a single class, a large number of the pixels in these datasets

(79% for Pavia University and 51% for Salinas) are labeled as class zero, which identifies them

as background. Following the practices shown in [14], [17], and [13], the background class is not

included as one of the classes to identify. These datasets are captured by different sensors and

therefore have different spatial and spectral resolutions, which makes them interesting to

compare, since this difference may result in differences in classification performance.

Fig. 5 below shows the ground truth and two sample channels from the Pavia University

dataset, which has dimensions 610×340×103 channels. The ROSIS sensor captured the Pavia

University scene and offers spatial and spectral resolutions of 1.3 meters and 4.0 nm over a

spectral range of 430 to 860 nm [18]. Each color in the ground truth represents a different class,

with the color black representing background (class 0). As seen with the two sample channels, the

characteristics of the data can vary significantly between channels, with some classes being more

distinguishable in channel 96 than in channel 1. This is the key motivation for utilizing feature

selection and feature extraction methods.

14

Fig. 5. The ground truth and two samples channels from the Pavia University dataset.

The Salinas scene was captured by the AVIRIS sensor at NASA’s Jet Propulsion Laboratory

and offers spatial and spectral resolutions of 3.7 meters and 9.375 nm over a spectral range of 400

to 2500 nm, well beyond the range of the visible light spectrum [5]. The original shape of this

hyperspectral image is 512×217×224 channels; however, 20 of the channels (108-112, 154-167,

and 224) provide little information due to water absorption and are removed to result in a

512×217×204 channel image [6]. As shown in the Pavia University dataset, the two sample

channels have much different characteristics. Channel 1 of the Salinas dataset is a very noisy

representation of the scene with hard to distinguish classes, while channel 190 shows a visible

distinction between most classes.

15

Fig. 6. The ground truth and two samples channels from the Salinas dataset.

4.2 Dataset Generation

Because the pretrained networks used here expect a 3-channel image with height and width of

at least 32×32, samples cannot be taken as single pixels and must be transformed into a suitable

shape [3]. One method proposed by [4] is to extract samples as N×N×L (where L is the number of

channels) cuboids from a sliding window across the image’s first two dimensions and select the

center pixel’s class to be the chosen class. As mentioned previously, any samples with class 0 are

labeled as background, so if a sample’s center pixel is class 0 then the sample is discarded. This

creates samples large enough to feed to the network and provides additional context information

to the samples, since nearby pixels are included that will likely have information relevant to the

target class. The authors in [4] used a 27×27 window to extract samples that could be fed into a

custom neural network architecture. Following these practices, a 33×33 (odd to allow a center

pixel to exist) window was originally chosen to extract samples from the raw data. However,

using such a large window size has the potential to create a bias problem where too much of the

16

information in a given training sample is also available in the test samples. For example, in one

33×33×L pixel sample and another shifted by one pixel, approximately 94% of the pixels are

shared which will greatly bias the training data. To bypass this issue, the window’s size was

decreased to 5×5 and samples were taken every 5 pixels so that no pixels were repeated in any

samples. After using a feature selection or feature extraction method that results in M channels,

these samples are interpolated per channel so that they fit the target shape of 33×33 in the first

two dimensions. The interpolation is accomplished with a cubic spline using SciPy’s zoom

function in the ‘ndimage’ module [19]. This process of converting a single 5×5×L to a 33×33×M

sample is visualized below in Fig. 7. The choice of M here depends on the feature preprocessing

method used which is further explained in Chapter 5

Fig. 7. The process of converting 5×5×L shaped samples to 33×33×M.

While this method decreases the number of samples available for training and test data, it

provides a more accurate representation of transfer learning, since the data are not heavily biased.

Table 2 shows the class distribution for the Pavia University dataset using the 5×5 sliding

window approach. For the training set, 25 samples were randomly chosen per class, except in the

case where there were less than 50 total samples in the class (e.g., class 9 – Shadows). It is

noteworthy that the dataset is highly unbalanced with 42% of the samples belonging to class 2 –

17

Meadows and only 2.3% of samples belonging to the smallest class, class 9 – Shadows.

Approximately 17% of the data are used for training and validation with the rest used for testing.

Table 2

Class Distribution for the Pavia University Dataset

Class Training Validation Test

1 - Asphalt 25 8 232

2 - Meadows 25 8 721

3 - Gravel 25 8 54

4 - Trees 25 8 85

5 - Painted metal sheets 25 8 19

6 - Bare soil 25 8 169

7 - Bitumen 24 8 16

8 - Self-Blocking Bricks 25 8 109

9 - Shadows 19 8 11

Total 218 72 1,416

Table 3 below shows the distribution for the Salinas dataset. The training and validation sets

are distributed in the same manner as Pavia University, with 25 and 8 samples per class,

respectively. As with the Pavia University dataset, the classes are not balanced; however, the

Salinas dataset does not have a single class that dominates as in the Pavia University dataset but

rather has many classes with very few samples. In total, approximately 29.5% of the total data are

used for training and validation.

18

Table 3

Class Distribution for the Salinas Dataset

Class Training Validation Test

1 - Broccoli_green_weeds1 25 8 49

2 - Broccoli_green_weeds_2 25 8 115

3 - Fallow 25 8 48

4 - Fallow_rough_plow 25 8 22

5 - Fallow_smooth 25 8 70

6 - Stubble 25 8 120

7 - Celery 25 8 111

8 - Grapes_untrained 25 8 149

9 - Soil_vineyard_develop 25 8 219

10 - Corn_senesced_green_weeds 25 8 98

11 - Lettuce_romaine_4wk 22 8 13

12 - Lettuce_romaine_5wk 25 8 44

13 - Lettuce_romaine_6wk 18 8 10

14 - Lettuce_romaine_7wk 22 8 13

15 - Vineyard_untrained 25 8 112

16 - Vineyard_vertical_trellis 25 8 38

Total 387 128 1231

In order to simulate datasets of varying complexity, each of the datasets are re-created with

subsets of the data containing from 2-C classes, where C is the total number of classes in the

dataset. For example, a three-class version of the Pavia University dataset might consider only

those samples that belong to classes 1, 2, and 3. The class subsets for each dataset were chosen

randomly and remain the same throughout all experiments to provide repeatability. The different

classes included in each subset are shown in Table 4

19

Table 4

Data Subsets for the Salinas and Pavia University datasets.

Number of classes Salinas Pavia University

Classes
2 9, 15 4, 8

3 2, 9, 15 3, 4, 8

4 2, 9, 10, 15 3, 4, 6, 8

5 2, 9, 10, 12, 15 3, 4, 6, 7, 8

6 1, 2, 9, 10, 12, 15 3, 4, 6, 7, 8, 9

7 1, 2, 9, 10, 12, 15, 16 1, 3, 4, 6, 7, 8, 9

8 1, 2, 3, 9, 10, 12, 15, 16 1, 3, 4, 5, 6, 7, 8, 9

9 1, 2, 3, 5, 9, 10, 12, 15, 16 All 9 classes

10 1, 2, 3, 5, 7, 9, 10, 12, 15, 16 -

11 1, 2, 3, 5, 7, 9, 10, 11, 12, 15, 16 -

12 1, 2, 3, 5, 7, 9, 10, 11, 12, 14, 15, 16 -

13 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16 -

14 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16 -

15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16 -

16 All 16 classes -

20

5 IMPLEMENTED METHODS

5.1 Model Implementation

All models are trained using the fine-tuning method. The goal of fine-tuning is to utilize the

inner weights of the network that have already been learned through training on a separate dataset

and only train new weights for the final fully connected layers. For each pretrained network, as

listed in Table 1, the final fully connected layers of the network are removed and replaced with a

2-D global average pooling layer followed by a fully connected layer that predicts the class of the

data. This results in very few weights to learn, as only the fully connected layer has parameters to

adjust. Essentially, the pretrained network, up to the final fully connected layer, is only used to

extract features from the data and is used as a complex data preprocessing step. The output from

the pretrained network is the new data used to train the fully connected output layer.

As discussed previously in Chapter 4, the samples generated from the original hyperspectral

data are of shape 5×5×L before being transformed into a 5×5×M shape and finally a 33×33×M

shape. The choice of M here determines the number of channels that are used in the model. In the

case where M = 1, the single channel is repeated three times and fed through the pretrained

network, and the fully connected output layer is trained on this output. When M > 1, an ensemble

technique is used to generate the output, as visualized in Fig. 8. As in the case where M = 1, each

of the M channels are repeated three times before going through the network, but here, one

separate fully connected layer is trained for each of the M channels. With this technique,

predictions come as an ensemble, and the most commonly predicted class is chosen. That is, with

M channels there will be M unique predictions for each sample. In addition to this ensemble

technique, an ensemble of the 11 pretrained networks in Table 1 is also implemented to offer

further improvements in performance. In this ensemble, the models mentioned previously are

21

developed using all of the 11 pretrained models, and the most common prediction among these 11

models is determined to be the predicted class.

Fig. 8. Visualization of the channel ensemble process.

5.2 Channel Preprocessing Methods

5.2.1 Greyscale

The simplest preprocessing method used here is a greyscale technique. This is done by

converting the hyperspectral sample to a single channel by averaging all of the channels and

repeating the single channel three times.

𝐶𝑔𝑟𝑒𝑦𝑠𝑐𝑎𝑙𝑒 =
1

𝐿
∑ 𝐶𝑙

𝐿

𝑙=1

(1)

Since this method is simple, it is likely that the more complex and intelligent methods will

outperform it. For this reason, it is used as a baseline to compare against the performance of other

models. If more complex methods do not show improvements, then they are not suited for this

application.

22

5.2.2 RGB

The RGB method is implemented by selecting channels from the image that correspond to

red, green, and blue wavelengths. The idea here is to create an actual RGB image using the

current hyperspectral data, since the pretrained networks were originally trained on RGB images.

One important thing to consider about this method is that not all hyperspectral images contain

red, green, and blue wavelengths, which means that this method is not always possible. For this

reason, the RGB method will also be used as a reference to compare with other methods. Since

Pavia University and Salinas both contain RGB channels, the channels with wavelengths nearest

to the RGB wavelengths are chosen for those channels. The wavelengths used to represent red,

green, and blue are 682.5 nm, 532.5 nm and 467.5 nm, respectively. Table 5 shows the chosen

channels for each of the datasets. Since the spectral range and number of channels are known,

they can be used to calculate the wavelengths for each channel, and the channel nearest to the

target wavelength is chosen. Unlike all other preprocessing methods, each of the three channels

are not repeated three times here, and the 3-channel images are passed directly into the network.

Table 5

RGB Channels for Pavia University and Salinas

Dataset Spectral Range Number of Channels Red Green Blue

Pavia University 430-860 nm 103 60 24 9

Salinas 400-2500 nm 224 30 14 7

5.2.3 K-Means Clustering

K-means clustering is a method used to cluster data points that are close in distance to each

other. The measure of distance used here is the Euclidean distance between data points:

𝑑(𝑏, 𝑐) = √∑ ∑(𝑏𝑥,𝑦 − 𝑐𝑥,𝑦)
2

𝐻

𝑦=1

𝑊

𝑥=1

(2)

23

Here, 𝑏 and 𝑐 are the channels of the hyperspectral image, and 𝑥 and 𝑦 vary over the height (𝑊)

and width (𝐻) of the channel. Using this distance, each sample is assigned to a nearby cluster of

data points in 1-K different clusters. As described in [16], the algorithm uses the channels as

samples so that each channel can be grouped with other similar channels. Two different methods

are implemented with this algorithm using the KMeans module in Scikit-learn’s cluster package

[20]. The first method is to generate K clusters with all of the bands and average the bands in

each of the clusters to obtain a single channel for each cluster, as shown in (2). Here, 𝑘 is the

number of the cluster, |𝑘| is the number of channels in cluster 𝑘, 𝑐𝑙 is a channel in cluster 𝑘, and

𝐶𝑘 is the average of all channels in cluster 𝑘.

𝐶𝑘 =
1

|𝑘|
∑ 𝐶

𝐶 ∈ 𝑘

(3)

These cluster averages are then used as the inputs for training K output networks as shown in

Fig. 8. In this implementation, the choice of K here is set to 3, so that there are three final

channels to train three different fully connected layers. This method can be considered analogous

to a three-channel version of the greyscale method and will demonstrate how well a simple

ensemble of three channels will perform.

The second method implemented with K-means clustering is similar to the first, but it does

not average any channels and can be considered a feature selection method. In this method the

clusters are generated the same way with the K-means clustering algorithm, but the bands closest

to the centroid of the cluster are chosen as representative bands for the cluster as demonstrated in

equation (4). Essentially, the Euclidean distance (𝑑) between each channel and its corresponding

cluster centroid (𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑘) are computed, and the channel with the smallest distance to the

centroid is chosen to represent the cluster (𝐼𝑘). The centroid here is the average of all channels in

24

the cluster. After K channels are chosen, they are used for an ensemble network as described

previously. This method is implemented with K =3 and K=5.

𝐼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐷), 𝐷 = { 𝐶 ∈ 𝑘 | 𝑑(𝐶, 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑘) } (4)

5.2.4 Minimum Misclassification Canonical Analysis

Minimum misclassification canonical analysis (MMCA) is a technique that ranks the image’s

channels by their classification ability and originates from Fisher’s discriminant function [21].

The algorithm as described in [21] begins by first computing 𝑚, the mean of all samples and 𝑚𝑖,

the mean of each class 𝑖:

𝑚 =
1

𝑁
∑ ∑ 𝑥𝑖𝑗

𝑁

𝑗=1

𝐶

𝑖=1

(5)

𝑚𝑖 =
1

𝑁𝑖
∑ 𝑥𝑖𝑗

𝑁𝑖

𝑗=1

(6)

Here, 𝐶 is the number of classes, 𝑁 is the number of samples, 𝑁𝑖 is the number of samples in

class 𝑖, and 𝑥𝑖𝑗is the 𝑗𝑡ℎ sample in class 𝑖. These values are used to form the total, between-class,

and within-class scatter matrices, 𝑆𝑇, 𝑆𝑊, and 𝑆𝐵:

𝑆𝑇 =
1

𝑁
∑ ∑(𝑥𝑖𝑗 − 𝑚)(𝑥𝑖𝑗 − 𝑚)

𝑇
𝑁𝑖

𝑗=1

𝐶

𝑖=1

(7)

𝑆𝑊 =
1

𝑁
∑ ∑

1

𝑁
(𝑥𝑖𝑗 − 𝑚𝑖)(𝑥𝑖𝑗 − 𝑚𝑖)

𝑇

𝑥𝑖𝑗∈𝜔𝑖

𝐶

𝑖=1

(8)

𝑆𝐵 = ∑
𝑁𝑖

𝑁
(𝑚𝑖 − 𝑚)(𝑚𝑖 − 𝑚)𝑇

𝐶

𝑖=1

(9)

25

With these scatter matrices, the following eigenvalue problem in (10) can be solved. Using

the resulting eigenvalues and eigenvectors, 𝑟𝑖𝑘 (11) can be used to calculate 𝑝𝑘 (12), which can be

viewed as the variance or classification ability of band 𝑘. This means that ranking bands by 𝑝𝑘

(descending) will order them according to their classification ability.

𝑆𝐵𝑣𝑖 = 𝜆𝑖𝑆𝑊𝑣𝑖 (10)

𝑟𝑖𝑘 = √ 𝜆𝑖𝑣𝑖𝑘 (11)

𝑝𝑘 = ∑ 𝑟𝑖𝑘
2

𝑙

𝑘=1

(12)

After the channels are ranked, they are decorrelated to find a set of M channels using a

correlation measure based on Kullback–Leibler divergence and an algorithm inspired by the one

used in [22]. Here, 𝐷(𝑝, 𝑞) is the total divergence between bands and 𝐿(𝑝, 𝑞) is the divergence

from channel 𝑝 to channel 𝑞, while 𝑝 and 𝑞 are the grey-level histograms of each band. In the

implementation here, the values contained in 𝑝 and 𝑞 are calculated such that they are distributed

amongst 512 discrete bins.

𝐷(𝑝, 𝑞) = 𝐿(𝑝, 𝑞) + 𝐿(𝑞, 𝑝) (13)

𝐿(𝑝, 𝑞) = ∑ 𝑝𝑖𝑙𝑜𝑔
𝑝𝑖

𝑞𝑖

𝑙

𝑖=1

(14)

The algorithm for finding the best set of M decorrelated channels is a modification of the

algorithm described in [21]. It begins with the top ranked channel and sequentially adds channels

to a set that are greater than a certain divergence threshold when compared to every channel in

the current set. At the start, the set is empty, so the highest ranked channel is always a part of the

set. After all the channels have been compared each other, if the number of channels that satisfy

26

the criteria is greater than M, the divergence threshold must be increased, and the process must be

repeated until the number of remaining bands is equal to M. If the number of chosen channels is

less than M, the threshold must be decreased. In the case that there cannot be only M remaining

channels, M is increased by 1, and the algorithm is repeated until the number of remaining

channels is equal to the new M, and only the original best M bands are returned. Algorithm 1

below summarized this process. By decorrelating this way, channels with the best classification

ability are prioritized while also ensuring that channels in the set have low correlation.

Algorithm 1: Channel Decorrelation for MMCA

1. Start with the set of ranked channels 𝑆𝑟𝑎𝑛𝑘𝑒𝑑 from MMCA and desired number of

channels 𝑀

2. Set a divergence threshold 𝑑𝑐, and a minimum divergence 𝑑𝑚𝑖𝑛, 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑀

3. Initialize an empty set of channels 𝑆𝑜𝑢𝑡

4. Compute 𝐷(𝐶𝑖 , 𝐶𝑗) for channel 𝐶𝑖 in 𝑆𝑟𝑎𝑛𝑘𝑒𝑑, with every channel 𝐶𝑗 in set 𝑆𝑜𝑢𝑡

5. If 𝐷(𝐶𝑖 , 𝐶𝑗) < 𝑑𝑐 for every 𝐶𝑗 in 𝑆, add 𝐶𝑖 to the set 𝑆𝑜𝑢𝑡, else continue to channel 𝐶𝑖+1

6. After all channels in 𝑆𝑟𝑎𝑛𝑘𝑒𝑑 have been compared to the set 𝑆𝑜𝑢𝑡, if:

(a) |𝑆| = 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡, return 𝑀 top channels from 𝑆

(b) |𝑆| > 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡, increase 𝑑𝑐 by 50% and start from step 3

(c) |𝑆| < 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑑𝑐 > 𝑑𝑚𝑖𝑛, decrease 𝑑𝑐 by 50% and go to step 3

(d) |𝑆| < 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑑𝑐 < 𝑑𝑚𝑖𝑛, increase 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡by 1 and go to step 3

5.2.5 Principal Component Analysis

Principal component analysis (PCA) is a feature extraction and dimension reduction

technique used to emphasize areas with high variance and likely high levels of information [23].

With PCA, the number of components is a parameter that is chosen to suit the application, and the

number of components can range from 1-L, where L is the total number of features (channels).

The principal components follow a set of criteria when they are created that gives them a specific

27

order. The first principal component is found along the axis that contains the highest variance in

the features, and thus can contain a large amount of information. The second principal component

is along the axis that contains the highest variance and is also orthogonal to the first principal

component. For the third principal component, it is along the axis that contains the highest

variance and is also orthogonal to the first two principal components, and this pattern continues

for all subsequent components [23]. This also implies that the amount of information present in

each principal component will decrease as the principal component number increases.

Additionally, since each of the principal components are orthogonal to each other the information

shared between them is minimal which will likely make them favorable for an ensemble.

Calculating the principal components entails optimizing a linear transformation of the input

features, where the input features are the channels of the hyperspectral image samples. Equation

(15) shows the formula for the principal component 𝑍𝑙, the 𝑙𝑡ℎ principal component, where 𝑋𝑝 is

the 𝑝𝑡ℎ feature and 𝜑𝑝𝑙 is the loading factor for the 𝑝𝑡ℎ feature of principal component 𝑙. The

loading factors are found by maximizing the sample variance while also satisfying the constraint

in (16) and satisfying the orthogonality criteria mentioned previously [23].

𝑍𝑙 = 𝜑1𝑙𝑋1 + 𝜑2𝑙𝑋2 + ⋯ + 𝜑𝑝𝑙𝑋𝑝 (15)

∑ 𝜑𝑗𝑙
2

𝑝

𝑗=1

= 1 (16)

𝜑𝑙 = (𝜑1𝑙 , 𝜑2𝑙 , … 𝜑𝑝𝑙)
𝑇

(17)

Once the loading vector 𝜑𝑙 for principal component 𝑙 is calculated using the training data the

transformation is applied to the validation and test data as well. This results in an image with M

channels, where M is the number of principal components and each channel is a principal

28

component of the data. The implementation here uses the IncrementalPCA module from Scikit-

learn, which allows the PCA loading vectors to be calculated incrementally to save on memory

usage [24]. Finally, before calculating the principal components the data are also centered as a

preprocessing step.

5.2.6 Independent Component Analysis

Independent component analysis (ICA) is another feature extraction and dimension reduction

method that shares some similarities to PCA. ICA aims to transform set of signals into several

subcomponents that are statistically independent to each other and non-gaussian through a linear

transformation, although unlike PCA, the components are not ordered in any way [25].

Intuitively, one can imagine that a set of signals are a combination of source signals that have

been combined in some way. Equation (18) demonstrates this idea, where 𝑥𝑙 is the 𝑙𝑡ℎ mixed

signal, 𝑠1, … 𝑠𝑚 are the original source signals, and 𝑎1, … 𝑎𝑚 are the coefficients that transform the

set of signals into the mixed signal 𝑥𝑙. In this application with hyperspectral images, 𝑥𝑙 is one of

the 𝐿 total channels of the image and 𝑠1, … 𝑠𝑚 are the source channels to be recovered. Although

in this case there are not necessarily a true set of source channels that created the channels in the

hyperspectral image, this assumption can be made to accomplish dimensionality reduction. The

problem to solve then becomes estimating the 𝑎 coefficients, which can be combined for all

signals to form the mixing matrix, as shown in (19). The unmixing matrix that converts the mixed

signals into source signals is then defined as 𝑊 in equation (20) [25].

𝑥𝑙 = 𝑎𝑙1𝑠1 + 𝑎𝑙2𝑠2+⋯ 𝑎𝑙𝑚𝑠𝑚 (18)

𝑥 = 𝐴𝑠 (19)

𝑠 = 𝑊𝑥 (20)

Like PCA, after the unmixing matrix 𝑊 is learned on the training data, it can be applied

directly to the validation and test data for preprocessing. As a preprocessing step for ICA, the

29

input data points are also centered and whitened. An implementation of ICA called the FastICA

algorithm [25] is used here to learn the unmixing matrix 𝑊 and is available in Scikit-learn’s

decomposition package [26].

30

6 EXPERIMENTAL ANALYSIS

All of the pretrained networks utilized here are publicly available in the TensorFlow standard

library as a part of the Keras package [3]. The training setup allows for a maximum of 500 epochs

and utilizes the early stopping method, although training rarely goes beyond 100 epochs. The

early stopping method is configured such that if no improvement is made after 20 epochs, as

defined by the loss on the validation set, then training will stop. The fully connected layers for

each model are trained using the adam optimizer and utilize the ReLU activation function. In

addition to this, each model is trained on 25 separate splits of the data to ensure that results are

not greatly affected by the choice of samples in the training and test sets. The same splits of data

are used for every model so that results can be compared accurately. A standard naming

convention that includes the preprocessing technique and the number of channels is also used to

distinguish each preprocessing method. For example, ‘pca_1’ is used to describe the principal

component analysis method with one channel. When the number of channels used is greater than

1, ‘ensemble’ is appended to the description, as in ‘mmca_3_ensemble’, to indicate that multiple

fully connected networks are used in the model. Finally, the naming convention for the ensemble

of all 11 pretrained models is ‘all_ensemble’.

6.1 Comparing Pretrained Models and Preprocessing Methods

Table 6 shows the average test accuracy for each pretrained model for the Pavia University

and Salinas datasets. This metric is computed by averaging the test performance for each

pretrained model across all preprocessing methods and sets of classes. The ResNet models are the

clear winner for both datasets, with around 4% better accuracy on average than the next best

models. Among the ResNet models, there is no significant difference in test accuracy which

means that the depth of the network is not an important factor for this application. It is

worthwhile to note that the performance difference between the best and worst models is quite

31

large at 12% for Pavia University and 11.8% for Salinas, which means that the choice of the

model here can significantly affect the performance.

Table 6

Pretrained Models Ranked by Average Accuracy Across Class Subsets

Pavia University Salinas

Model Test Accuracy Model Test Accuracy

ResNet50 0.738 ResNet50 0.837

ResNet101 0.733 ResNet101 0.833

ResNet152 0.726 ResNet152 0.832

DenseNet201 0.696 VGG19 0.788

DenseNet169 0.684 VGG16 0.778

DenseNet121 0.678 DenseNet121 0.757

VGG19 0.677 ResNet50V2 0.754

VGG16 0.671 DenseNet169 0.752

ResNet152v2 0.642 ResNet152V2 0.750

ResNet50v2 0.638 DenseNet201 0.749

ResNet101v2 0.618 ResNet101V2 0.719

Using the same technique as above, the preprocessing methods are ranked by their average

accuracy over all data subsets and pretrained models in Table 7. On the Pavia University dataset,

the top three performing methods are all within 1% accuracy of each other, indicating that they

are about equal in performance, although mmca_5_ensemble is the top performer. For Salinas,

rgb is the top performer with a 3.6% improvement over the next best method,

kmeans_5_center_ensemble. When looking at the top five methods, Pavia University shows only

a 3.3% difference in accuracy among the methods, while Salinas shows a 6.3% difference. For

both datasets, mmca_5_ensemble and rgb are in the top three performing methods suggesting that

they may perform well in differing datasets. The two worst performing methods are also

consistent in both datasets, with kmeans_3_avg_ensemble and greyscale having the worst

performance. The poor performance for kmeans_3_avg_ensemble demonstrates that creating any

32

ensemble of channels is not enough to achieve high accuracy, since this method can be viewed as

an ensemble version of the greyscale method.

There is some variation for the rest of the methods in the middle, however. For example,

mmca_3_ensemble only shows a 3.3% difference in accuracy from the best method in Pavia

University, while with the Salinas dataset that increases to 11.1%. Additionally, although

kmeans_5_center_ensemble performs well on average for the Salinas dataset, there is a

significant decrease of 4.9% when using the same method with three channels

(kmeans_3_center_ensemble). The same pattern is present for the MMCA methods, with

mmca_5_ensemble having a 6.6% better accuracy on average than its 3-channel counterpart,

which only has a 1.56% advantage over the greyscale method. With Pavia University, however,

this difference is not as prominent.

Table 7

Preprocessing Methods Ranked by Average Accuracy Across Class Subsets

Pavia University Salinas

Preprocessing method Test Accuracy Preprocessing method Test Accuracy

mmca_5_ensemble 0.728 rgb 0.851

rgb 0.722 kmeans_5_center_ensemble 0.815

pca_3_ensemble 0.722 mmca_5_ensemble 0.807

kmeans_5_center_ensemble 0.717 ica_3_ensemble 0.792

mmca_3_ensemble 0.695 pca_3_ensemble 0.788

kmeans_3_center_ensemble 0.689 ica_5_ensemble 0.781

ica_3_ensemble 0.680 kmeans_3_center_ensemble 0.766

pca_1 0.673 pca_1 0.747

ica_5_ensemble 0.639 mmca_3_ensemble 0.740

kmeans_3_avg_ensemble 0.631 kmeans_3_avg_ensemble 0.738

greyscale 0.604 greyscale 0.726

Although the average performance of the models and preprocessing methods show a good

overview of performance, the performance of models on the full set of classes is also important.

Table 8 lists the top five and bottom five models for the Pavia University dataset with all nine

33

classes, where the combination of pretrained model and preprocessing method are unique. As

demonstrated in Table 6 and Table 6, ResNet is the best model architecture and

mmca_5_ensemble is the top preprocessing method. The top five models are all within 1.8%

accuracy of each other, meaning that they all share similar performance. The standard deviation

of the training accuracy over 25 independent training runs is also listed and shows that there is at

most a difference of 0.015 within the top five. Although the top five share similar performance,

the drop in performance to the bottom five is very significant, showing an approximately 26%

average difference. As expected, the ResNetV2 models and the greyscale method performed

poorly and fill four out of the bottom five. This large difference in accuracy demonstrates that the

choice of pretrained model and preprocessing method can have a significant impact on

performance.

Table 8

Top and Bottom 5 Model Combinations on the Pavia University 9-Class Dataset

Pretrained model Preprocessing method Test accuracy Test accuracy std.

Top 5

ResNet50 mmca_5_ensemble 0.736 0.026

ResNet101 mmca_5_ensemble 0.734 0.022

ResNet50 pca_3_ensemble 0.724 0.017

ResNet50 rgb 0.718 0.032

ResNet152 mmca_5_ensemble 0.718 0.028

Bottom 5

VGG16 greyscale 0.487 0.023

ResNet101v2 ica_5_ensemble 0.485 0.047

ResNet152v2 greyscale 0.458 0.034

ResNet50v2 greyscale 0.451 0.037

ResNet101v2 greyscale 0.417 0.028

Table 9 shows the top and bottom five combinations of pretrained model and preprocessing

method on the full 16-class Salinas dataset. Again, the top five results are consistent with the

results in Table 6 and Table 7. The rgb method shows a significant advantage over the

34

kmeans_5_center_ensemble here with 7.4% additional accuracy. This is an interesting result,

because the rgb model did not show a large advantage with the Pavia University dataset. There is

also a significant difference in performance of over 30% between the top and bottom 5

combinations, which is similar to that shown in the Pavia University dataset. In addition to the

average test accuracy, the standard deviation of these results also shows some difference in model

performance in the bottom five models. There is high standard deviation seen in the MMCA

results in the bottom five, although the models there are of the worse performing DenseNet and

ResNetV2 families. For Pavia University, the highest standard deviation displayed is only 0.047,

while here that increases to 0.091. This high level of standard deviation compared to Pavia

University could be due to the difference in number of classes, where Salinas has almost twice as

many as Pavia University.

Table 9

Top and Bottom 5 Model Combinations on the Salinas 16-Class dataset

Pretrained model Preprocessing method Test accuracy Test accuracy std.

Top 5

ResNet152 rgb 0.828 0.015

ResNet50 rgb 0.817 0.018

ResNet101 rgb 0.803 0.015

ResNet101 kmeans_5_center_ensemble 0.754 0.028

ResNet50 kmeans_5_center_ensemble 0.752 0.030

Bottom 5

ResNet152v2 greyscale 0.531 0.018

DenseNet121 mmca_3_ensemble 0.526 0.088

ResNet101v2 greyscale 0.526 0.014

DenseNet201 mmca_3_ensemble 0.526 0.091

ResNet101v2 mmca_3_ensemble 0.510 0.062

Fig. 9 shows the best models in each group (VGG, ResNet, ResNetV2, and DenseNet) on the

Pavia University dataset with a varied number of classes. The best performing model with the

35

greyscale and rgb preprocessing methods are also included for reference. At two classes, the

difference between test accuracy is no greater than 5% between all the models. As the number of

classes increases, the difference quickly grows to over 10% between the best and worst models.

However, for all models there is a significant decrease of over 20% when moving from 2 to 3

classes, indicating that the two-class classification problem is significantly easier for the model to

understand. In spite of this, the maximum decrease in performance between the 3-9 class datasets

does not go beyond 10% for the top two models ResNet50 with rgb and ResNet50 with

mmca_5_ensemble model. In other models like ResNet101 with greyscale and ResNet152V2

with mmca_5_ensemble, this decrease in performance goes beyond 20%. This demonstrates that

the choice of pretrained model and preprocessing method together have much greater significance

than either on their own.

Fig. 9. The best models for each network group on the Pavia University datasets.

36

Fig. 10 shows the result for each subset of the Salinas data. As with Fig. 9, the best

performing model of the different pretrained model groups are displayed. The pattern here is

similar to the one in the Pavia University dataset, with performance differences that are small at

low numbers of classes and large at higher numbers of classes. After the dataset includes six total

classes, the ResNet152 model with rgb shows a clear advantage over the other models and

maintains an almost 5% advantage over the next best model, ResNet50 with

kmeans_5_center_ensemble. Interestingly, the reference ResNet50 greyscale model’s

performance is within 5% of the DenseNet121 model’s performance across all the data subsets,

which indicates that the choice of model here may be more important than the preprocessing

method. Although the performance is mostly steadily decreasing as the number of classes

increases, there is a large drop in performance when going from 13-14 classes for all models.

While this seems unexpected, on further inspection this result can be explained

Fig. 10. The best models for each network group on the Salinas datasets.

37

Fig. 11 shows a sample confusion matrix for the Salinas dataset with 16 classes, where the

diagonal values show the percentage of samples predicted correctly for each class (per-class

accuracy), and only values greater than 0.1 are displayed. The confusion matrix shows that class 8

and 15 are often confused for each other, with class 15 being predicted for class 8 42% of the

time, and class 8 being predicted for class 15 34% of the time. This pattern explains the drop in

accuracy for the Salinas datasets when going from 13-14 classes, since that is the point at which

both class 8 and class 15 are present in the data as shown in Table 4. Additionally, this result is

found in results from other research papers. For example, [17] and [14] both list the per-class

accuracy for several models on the Salinas dataset and show that class 8 and class 15 almost

always have the worst performance for each model. Although the confusion matrices aren’t

given, it is likely that the same issue is occurring here for these classes. This also demonstrates

some important points about the experimental setup, which are that the combination of classes

can have a significant impact on performance, and that performance may not drop steadily as

additional classes are added to the dataset. Intuitively, this makes sense, because not all classes

will have the same distinguishability. For example, it will be easier to classify a dog or a cat than

two different breeds of dogs, since dogs and cats have much different characteristics. In the case

of the Salinas dataset, these classes are ‘Grapes untrained’ (8) and ‘Vineyard untrained’ (16),

which are at the very least similar by description.

38

Fig. 11. Sample confusion matrix using the 16-Class Salinas dataset.

6.2 Model Ensemble Results

 To further improve on the performance of the previous models, an ensemble of all 11

pretrained networks was tested for each preprocessing method. The results for each preprocessing

method averaged across all sets of classes are shown for both datasets in Table 9. As is typical of

ensemble methods, the ensemble shows an improvement over their single model counterparts on

both datasets. Compared to the best single network models, the ensemble produces a 9.7%

improvement in accuracy for Pavia University and a 7.4% improvement in accuracy for Salinas

on the averaged data subsets. As with the single model networks, the difference in accuracy

between the best and worst methods is significant, at 12.8% for Pavia University and 10.9% for

39

Salinas. For Pavia University, the top three methods are the same as in the single model results,

but the order is different, with rgb as the best method instead of mmca_5_ensemble. For Salinas,

however, only rgb is in the top three for both the single models and the ensemble model, although

the difference in the top five methods is only 3.5%.

Table 10

Preprocessing Methods Ranked by Average Accuracy Across Class Subsets (all_ensemble)

Pavia University Salinas

Preprocessing method Accuracy Preprocessing Method Accuracy

rgb 0.833 rgb 0.925

pca_3_ensemble 0.832 ica_5_ensemble 0.915

mmca_5_ensemble 0.819 ica_3_ensemble 0.912

kmeans_5_center_ensemble 0.808 pca_3_ensemble 0.905

ica_3_ensemble 0.807 kmeans_5_center_ensemble 0.890

mmca_3_ensemble 0.799 mmca_5_ensemble 0.889

ica_5_ensemble 0.790 kmeans_3_center_ensemble 0.874

kmeans_3_center_ensemble 0.788 mmca_3_ensemble 0.867

pca_1 0.755 pca_1 0.830

kmeans_3_avg_ensemble 0.727 kmeans_3_avg_ensemble 0.829

greyscale 0.705 greyscale 0.816

The results for the best preprocessing methods in each category (greyscale, RGB, ICA, K-

means, MMCA, and PCA) are shown in Fig. 12 for the Pavia University datasets. With more than

three classes, the difference between the greyscale method and the other methods is 9% at

minimum. However, the difference between the rest of the preprocessing methods is less

significant and does not go above 5% for most of the data subsets. This finding is consistent with

the analysis from the single network models and preprocessing methods, which is that the choice

of preprocessing method may be less significant than the choice of model.

40

Fig. 12. The best preprocessing methods in each group with the all_ensemble model (Pavia

University).

Fig. 13 shows the results for the all_ensemble models with different numbers of classes for

the Salinas dataset. The best preprocessing methods from each category are displayed along with

the greyscale and rgb methods. For datasets with 2-3 classes, the choice of preprocessing method

is insignificant, as even the greyscale method is on par with the other methods. Once the number

of classes reaches 4 and above, the performance of the greyscale method declines rapidly, while

all other techniques maintain an accuracy between 85-95% until the drop at 13-14 classes that

was described previously in Section 6.1. For all methods except greyscale, the difference in

performance in the range of 4 to 13 classes is no more than 10%, while for the best single model

network in this range there is up to an 11% difference (see Fig. 10). Additionally, both the single

and ensemble models start at around 94% accuracy for three classes, signifying that the ensemble

method is able to maintain a high accuracy as the complexity of the dataset increases.

41

Fig. 13. The best preprocessing methods in each group with the all_ensemble model (Salinas).

42

7 FUTURE WORK

The methods implemented here provide opportunity for future work. One of the main areas

for exploration is the area of ensemble models. While the work here delved into the area of

ensemble models by combining multiple pretrained networks and by using multiple output

networks for different channels, there is still room for optimization. Combinations of models and

channels could be intelligently chosen through validation set performance which could help

eliminate any poorly performing models that may hinder the performance of the ensemble.

Additionally, multiple preprocessing methods could be combined to create an ensemble of

models with a single pretrained network. For example, PCA and MMCA could be applied to

create two separate datasets and each of these datasets could be used to train an output network

for a given pretrained model. Additionally, many more channels could be used as part of the

ensemble. The techniques described in [16] show how including a large number of channels can

improve the performance of different models, although there are diminishing returns as the

number of channels increases. Since the 5-channel ensembles worked well here, it is likely that

including additional bands would improve performance of the model.

Other methods of feature selection and feature extraction can also be explored. These could

include deep-learning based approaches like auto-encoders that extract features from the

hyperspectral data. Auto-encoders attempt to create a lower-dimensional representation of the

input data using a neural network and then attempt to transform that data back into its original

form. Since the coding and decoding of the data are both optimized by training, the encoded

version of the data may be able to accurately represent the data in a lower-dimensional form. This

lower-dimensional data could then be used in the same manner as the other preprocessing

methods implemented in this paper. Using this type of method could potentially provide an

advantage over channel selection methods since it is attempting to optimize the lower-

43

dimensional set of data in a way that allows most of its original information to be recovered,

which could result in useful data for training.

Finally, optimization of the network architecture could be explored. Because results show

that the ResNet model outperformed the rest of the models, it is plausible that the network

structure plays a role in the performance. The authors of [14] and [17] were able to alter the

pretrained networks in ways that still utilized their pretrained weights, and their results showed

that their techniques were viable. Adjusting the number of layers or the shape of the layers could

be simple techniques to use that may result in improved performance. The fully connected output

layers are one area that would be simple to optimize. One way to do this would be to add more

fully connected layers at the end of the network and adjust the number of nodes in each of these

layers. Both of these parameters could be optimized on the validation set to find the optimal

network structure.

Although results show that overall classification accuracy tends to decrease as the number of

classes increases, a more appropriate technique for varying the numbers classes may be to take

the average result of every possible class combination. For example, in a three-class situation

where only two classes are being used there would be three possible combinations of two classes

to use (1&2, 1&3, and 2&3). This would limit the effect that any single combination of classes

has on a model’s performance, since it is not true that every set of classes has equal

distinguishability, as seen with classes 8 and 15 in the Salinas dataset. The drawback here,

however, is that the number of possible combinations greatly increases as the number of classes

increases, which significantly increases the time needed to train models. For example, choosing

all combinations of five out of nine classes results in 126 unique sets of classes, which means 126

models would need to be trained. Without the proper hardware or cloud resources, the time to

44

train these models could become unmanageable, although it would give the most accurate

estimation of actual test performance.

45

8 CONCLUSIONS

This work illustrated that leveraging pretrained RGB networks for hyperspectral imaging can

be useful when the feature extraction methods and pretrained networks are chosen appropriately.

The choice of feature extraction was shown to be an important factor in achieving high

classification performance, with results differing by over 20% when comparing the best and worst

methods with a given pretrained model. When possible, simply selecting the RGB bands from a

hyperspectral image may offer the best performance, but when it is not possible, more complex

methods may be able to match this performance. This same effect was found with the pretrained

networks, which showed that the ResNet networks had the best performance, and interestingly,

their ResNetV2 counterparts had the worst performance on both datasets. The best performing

models were able to achieve 73.6% accuracy on the Pavia University dataset and 82.8% accuracy

on the Salinas dataset with 25 samples per class when both datasets included all classes. These

results show both the preprocessing method and the choice of pretrained model can greatly affect

performance, and both must be optimized to achieve the best performance.

The ensemble techniques here showed that they are effective in improving performance over

other non-ensemble techniques. For example, the pca_3_ensemble technique achieved 4-5%

improvements in accuracy over the pca_1 technique for both datasets while comparing the

average accuracy across class subsets. Increasing the number of channels even more may be a

promising method to improve performance. The ensemble of all 11 models also showed

additional improvements in accuracy of 4.4% for Pavia University and 7.6% for Salinas on the

full class datasets. Since this included all pretrained models, its likely that optimizing the set of

models can provide additional improvements.

46

References

[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.

Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual

Recognition Challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp.

211–252, 2015.

[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale

Image Recognition,” International Conference on Learning Representations (ICLR), 2015

[3] “Module: tf.keras.applications: TensorFlow Core v2.3.0,” TensorFlow. [Online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/applications. [Accessed: 01-Nov-

2020].

[4] H. Zhang, Y. Li, Y. Jiang, P. Wang, Q. Shen, and C. Shen, “Hyperspectral Classification

Based on Lightweight 3-D-CNN With Transfer Learning,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 57, no. 8, pp. 5813–5828, 2019.

[5] “AVIRIS - Airborne Visible / Infrared Imaging Spectrometer,” NASA. [Online]. Available:

https://aviris.jpl.nasa.gov/. [Accessed: 01-Nov-2020].

[6] “Hyperspectral Remote Sensing Scenes,” Grupo de Inteligencia Computacional (GIC).

[Online]. Available:

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.

[Accessed: 9-Oct-2020].

[7] R. Piiroinen, J. Heiskanen, E. Maeda, A. Viinikka, and P. Pellikka, “Classification of Tree

Species in a Diverse African Agroforestry Landscape Using Imaging Spectroscopy and

Laser Scanning,” Remote Sensing, vol. 9, no. 9, p. 875, 2017.

[8] K. Loggenberg, A. Strever, B. Greyling, and N. Poona, “Modelling Water Stress in a

Shiraz Vineyard Using Hyperspectral Imaging and Machine Learning,” Remote Sensing,

vol. 10, no. 2, p. 202, Jan. 2018.

[9] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” Journal of Biomedical

Optics, 20-Jan-2014. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/24441941/.

[Accessed: 01-Nov-2020].

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale

hierarchical image database,” 2009 IEEE Conference on Computer Vision and Pattern

Recognition, 2009.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[12] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely Connected

Convolutional Networks,” 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

47

[13] Y. Jiang, Y. Li, and H. Zhang, “Hyperspectral Image Classification Based on 3-D

Separable ResNet and Transfer Learning,” IEEE Geoscience and Remote Sensing Letters,

vol. 16, no. 12, pp. 1949–1953, Dec. 2019.

[14] L. Jiao, M. Liang, H. Chen, S. Yang, H. Liu, and X. Cao, “Deep Fully Convolutional

Network-Based Spatial Distribution Prediction for Hyperspectral Image Classification,”

IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 10, pp. 5585–5599,

Oct. 2017.

[15] “Visual Object Classes Challenge 2011 (VOC2011).” [Online]. Available:

http://host.robots.ox.ac.uk/pascal/VOC/voc2011/index.html. [Accessed: 01-Nov-2020].

[16] W. Sun and Q. Du, “Hyperspectral Band Selection: A Review,” IEEE Geoscience and

Remote Sensing Magazine, vol. 7, no. 2, pp. 118–139, 2019.

[17] S. Mei, J. Ji, J. Hou, X. Li, and Q. Du, “Learning Sensor-Specific Spatial-Spectral Features

of Hyperspectral Images via Convolutional Neural Networks,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 55, no. 8, pp. 4520–4533, Aug. 2017.

[18] B. Kunkel, F. Blechinger, R. Lutz, R. Doerffer, H. V. D. Piepen, and M. Schroder, “ROSIS

(Reflective Optics System Imaging Spectrometer) - A Candidate Instrument For Polar

Platform Missions,” Optoelectronic Technologies for Remote Sensing from Space, vol.

0868, Apr. 1988.

[19] “scipy.ndimage.zoom: SciPy v1.5.3 Reference Guide,” SciPy. [Online]. Available:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html. [Accessed:

01-Nov-2020].

[20] “sklearn.cluster.KMeans,” Scikit-learn. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.KMeans.html. [Accessed: 01-Nov-

2020].

[21] T.-M. Tu, C.-H. Chen, J.-L. Wu, and C.-I. Chang, “A fast two-stage classification method

for high-dimensional remote sensing data,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 36, no. 1, pp. 182–191, Jan. 1998.

[22] C.-I. Chang, Q. Du, T.-L. Sun, and M. Althouse, “A joint band prioritization and band-

decorrelation approach to band selection for hyperspectral image classification,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 37, no. 6, pp. 2631–2641, Nov.

1999.

[23] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning

with applications in R. New York: Springer, 2017.

[24] “sklearn.decomposition.IncrementalPCA,” Scikit-learn. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html.

[Accessed: 01-Nov-2020].

48

[25] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,”

Neural Networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[26] “sklearn.decomposition.FastICA,” Scikit-learn. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html. [Accessed: 01-

Nov-2020].

	Transfer Learning for Hyperspectral Images Utilizing Channel Selection Techniques and Ensemble Methods
	Recommended Citation

	tmp.1611959042.pdf.xoNnb

