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ABSTRACT

PREDICTION OF NOVEL ANTIBIOFILM PEPTIDES FROM DIVERSE
HABITATS USING MACHINE LEARNING

by Bipasa Bose

Multidrug resistant bacteria often lead to biofilm formation. Biofilm is a colonized

form of pathogens (fungi, bacteria) attached to surfaces like animal or plant tissues,

medical devices like catheters, and artificial heart valves. Biofilm formation prolongs the

survival of microorganisms in an adaptive environment, leading to the spread of infection

in different organs and causing a high morbidity rate. Given the rise of chronic infection

and antibiotic resistance due to biofilm, it is essential to find an alternative solution to

control biofilm infections. Antibiofilm peptides can interact with these biofilm-creating

pathogens to inhibit growth, virulence, and biofilm formation. We hypothesized that

mining the existing peptide databases from diverse habitats could provide potential

antibiofilm activities for our work. We developed a computational model to predict the

antibiofilm properties by applying machine learning algorithms like support vector

machine, random forest, extreme gradient boosting, and multilayer perceptron classifier.

We evaluated more than 240 antibiofilm peptides and more than 570 different

compositions and motif-based features to build our prediction model. We also created a

regression model on top of our classifier to predict the effectiveness of peptides by

curating minimum inhibitory concentration against biofilm. Our classifiers achieved

greater than 98% accuracy while the harmonic mean of precision-recall (F1) and

Matthews correlation coefficient (MCC) scores obtained are greater than 0.91. Using this

two-tier model approach, we assessed more extensive databases of antimicrobial,

anticancer, antiviral, and dairy peptides for potential antibiofilm functionality and came

up with the top ten potential candidates of antibiofilm peptides.
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1 INTRODUCTION

Multidrug resistant (MDR) infection sickens millions of people each year. According

to a recent report published by the Centers for Disease Control and Prevention (CDC),

each year, approximately 3 million people face infection due to antibiotic resistance in the

U.S., and around 35,000 people die as a result [1]. MDR is the antimicrobial resistance of

microorganisms against treatment with multiple antibacterial drugs. According to the

World Health Organization (WHO,) microorganisms (bacteria, fungi, yeast) manage to

remain insensitive mainly due to genetic changes with a broad set of current antibiotics,

including third-generation drug like cephalosporins. Microorganisms (especially

gram-negative bacteria) grow in-built power to efflux out the drugs, leading to cell

survival. Also, they can pass genetic material to other bacteria to build the same immunity.

This problem leads the infection to be untreated and spread from one organ to another,

severely damaging tissues. These infecting microorganisms develop a high resistance

level with increased morbidity and mortality rate, sometimes termed ”superbug” [2]. The

European Food Safety Authority spent almost 1.5 billion euro each year due to antibiotic

resistant infections. WHO also has projected multidrug resistance imposes a substantial

financial crisis globally [3]. There has been extensive research to find an alternative

solution against these ”superbugs” which has lead to finding antimicrobial peptides

(AMPs).

AMPs are one of the significant components of the innate immune defense

systems [4] found in bacteria, fungi, plants, and animals. Studies show that antibacterial

activity is one of the main features of AMPs. Bacteria do not generally develop resistance

to this type of peptide as these peptides can physically disrupt bacterial growth by killing

them. The amphipathic nature of AMPs makes them an outstanding candidate for dealing

with antidrug resistance. Our current work focuses on a subset of AMPs called the

antibiofilm peptide.
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Multidrug resistant bacteria often lead to the formation of biofilm. Biofilm formation

prolongs the survival of microorganisms in an adaptive environmental niche [5]. Biofilm

is a colonized form of pathogens (fungi or bacteria) formed on surfaces like household

surfaces, contact lenses, or medical devices like catheters and artificial valves. Biofilm is

one of the main reasons for antibiotic resistance in most intensive care units of hospitals.

Pseudomonas aeruginosa biofilm is one of the main reasons for a chronic lung infection

in cystic fibrosis patients [6]. The mucoid biofilm shows resistance against antibiotics and

other innate immune defense systems, causing prolonged inflammation and damage to the

lung tissues. Biofilm formation on medical device surfaces can be life-threatening and

often lead to device failure and chronic infection. Urinary catheters (25-35%) and dental

implants (10-56%) are most prone to bacterial colonization [7].

Biofilm growth can be divided into various stages. Fig. 1 depicts different stages of

biofilm life cycle (adapted from [8]). In the first stage, a moving bacterial (planktonic)

cell comes in contact with the surface. In the next phase, the cell starts to grow and build

a colony called a microcolony. The microcolony develops a slime like environment called

extracellular polymeric substances (EPS) containing polysaccharides. The extracellular

substance supports the growth and nutrient transfer to other bacteria. When the colony

development reaches multiple layers of formation, the formation becomes irreversible.

The irreversible growth of the colony and EPS turns into a 3D shaped territory. The 3D

’mushroom’ shaped colony consists of microbes, EPS, ions, enzymes, proteins, and

nucleic acids. In the mature stage, one of the colony members detaches itself and

disperses as a single (planktonic) cell to start another colony cycle.

When the biofilm reaches its mature phase, it becomes resistant to most antibiotics

and is hard to treat. Many organisms produce peptides in their natural environment that

interact with these microorganisms to inhibit growth, virulence, and biofilm formation.

These peptides are called antibiofilm peptides. An antibiofilm peptide is effective against

2



Fig. 1. Different phases of biofilm formation.

biofilm when the minimum biofilm inhibitory concentration (MBIC) is lower than the

minimum inhibition concentration (MIC) against planktonic bacteria [9]. The antibiofilm

peptides also possess a similar bacterial killing capacity as AMPs. Antibiofilm peptides

could be significant in two ways. Antibiofilm peptides can inhibit biofilm growth to the

attached surface as well as disrupt biofilm formation by eradicating the pathogen. The

effectiveness of antibiofilm peptides against preforming biofilm is measured with

minimum biofilm eradication concentration (MBEC).

Biofilm is one of the primary sources of chronic and deadly infections. Due to its

resistance against most antibiotics, the current treatment option involves a combination of

more than one antibiotic with a higher dose, increasing the risk of cytotoxicity [10]. The
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real challenge in the fight against bacterial resistance is to develop a potential antibiofilm

peptide by limiting cytotoxicity and increasing effectiveness. While working with a vast

library of peptides is time-consuming and highly expensive, computational models bring

hope to screen more novel antibiofilm peptides in a timely and cost-effective manner. The

in silico approach to screen novel peptides became quite popular in the last decade with

the increasing application of machine learning and artificial intelligence in the healthcare

system.

In this work, we developed a computational model to detect peptides that have the

potential power to inhibit biofilm growth. We hypothesized that mining various peptide

databases for putative antibiofilm activity will provide peptides with diverse activity

against human pathogens. There are very few data sources currently available to find

peptides effective against biofilm. Databases like Biofilm Active Peptide Database

(BaAMPs) [11] and Antimicrobial Peptide Database (APD) [12] were used for our data

collection purposes. We assessed various compositional features like ‘amino acid

composition,’ ‘dipeptides composition,’ of antibiofilm peptides. We also screened various

physical and chemical properties like charge, hydrophobicity, secondary structure, motif,

and other features. We applied these sequence based and property based features of

peptides to build our classification model. We applied different machine learning

algorithms such as support vector machine (SVM), random forest (RF), extreme gradient

boosting (XGBoost), and multilayer perceptron (MLP) classifier to select the best

performance model of all. We also curated MBIC values for different antibiofilm peptides

to build a regression model to predict peptide efficacy. Our final model for screening

potential antibiofilm peptides was based on our classifier model, regression model, and

motif analysis. The flow diagram of our prediction decision is illustrated in Fig. 2.

Though few existing computational models are built for screening antibiofilm

peptides [13]–[15], we intended to improve the model by introducing new parameters and

4



Fig. 2. The flow diagram to determine antibiofilm peptide using our two-tier computational
model.

approaches. To date, we are not aware of any prediction model that considers peptides’

effectiveness. Our new approach not only classifies a peptide as antibiofilm but also

predicts the efficacy of it. So we believe this new approach will help screen thousands of

peptides from different habitats and predict a novel candidate for the antibiofilm property.
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2 LITERATURE REVIEW

2.1 Background

All living organisms like bacteria, fungi, plants, and animals are the source of

antimicrobial peptides (AMPs). AMPs are the multifunctional component which is the

first line of defense while fighting against the foreign environment, often called host

defense peptides (HDPs) [16]. Antibiofilm peptides are a smaller subset of these HDPs.

Lysozyme, discovered in 1922 by Sir Alexander Fleming, is considered the first AMP in

history. Human cathelicidin LL-37 is the first peptide identified as antibiofilm [17]. To

date, around 3000 AMPs have been discovered [12], while only a small fraction of them

are considered antibiofilm. The source for antibiofilm peptides can be eukaryotic cells of

fungi, plants, and animals. Synthetically derived peptides are also an excellent source for

antibiofilm activity. The various origins of antibiofilm peptides from BaAMP

database [11] are shown in Fig. 3.

Fig. 3. Origins of antibiofilm peptides based on the BaAmp database.
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Though AMPs and antibiofilm peptides vary in their origin, they share a few common

characteristics:

• a highly positive net charge ranging between +9 to +12 due to increased presence of

the amino acids like lysine and arginine [18]

• more than 50% hydrophobicity residue [19]

• a standard sequence length

• the ability to fold in amphipathic structure and targeting bacteria by membrane

disruption

The mechanism of inhibition for antibiofilm peptides is yet not clear. Some studies

show that antibiofilm peptides disrupt the cytoplasmic membrane associated function of

microbes. With their catatonic residue, antibiofilm peptides contact the anionic

phospholipid headgroup and insert it into the bacterial membrane. This cytoplasmic

disruption activity is modeled as different structures like aggregate, barrel-stave and

carpet [20]. It is also observed that the aromatic side chain of antibiofilm peptides helps to

increase the concentration of the peptide molecules on the bacterial cell membrane and

eventually detach the biofilm from the surface [21].

Antibiofilm peptide Nisin-A shows membrane disrupting behavior against

Staphylococcus aureus (MRSA) biofilm [22]. The studies on human cathelicidin LL-37

show that it inhibits bacterial growth by disrupting the signaling system of Pseudomonas

aeruginosa. LL-37 can reduce the initial attachment of bacterial cells to the surface and

affect two quorum-sensing systems of bacteria: the Las and the Rhl [23]. The studies on

synthetic peptides like 1018 show inhibition and eradication of the biofilm by modifying

the stress response and degrading the biofilm forming signaling molecules like

ppGpp [24]. Literature shows that the antibiofilm peptides act better against the

gram-positive bacteria Staphylococcus aureus [25] compared to gram-negative ones.
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2.2 Peptide Databases

There are few databases which are used as the source of antimicrobial peptide

libraries. The databases are mainly manually curated and evolved with time. The APD has

approximately 3175 AMP spread over 6 kingdoms (bacteria - 354, fungi - 20, plants -

352, animals - 2352 , archaea - 5, protists - 8 and a few synthetic ones). BaAMPs

database contains information on AMPs that are specifically active against microbial

biofilms. The database contains more than 200 AMPs. Another open-source library is

DRAMP (Data Repository of Antimicrobial Peptides). This database includes AMPs from

clinical trials and patents in their list [26]. The other database where we can find the

quorum sensing peptides is Quorum Sensing Peptide Prediction Server [27]. The quorum

sensing peptides are effective in biofilm formation. Some milk peptides have well known

antimicrobial properties. Different antimicrobial peptides from the diary origin are listed

in the MilkAMP database [28].

2.3 Existing Computational Models

The diverse functionality of antimicrobial peptides and their innate and host defense

systems make them a great candidate for further research to fight against antibiotic

resistance. Machine learning can predict data based on its model data set. The machine

learning model exists for a long time. However, with modern computational advancement,

research in machine learning exploded with some great algorithms like hidden markov

models (HMM), support vector machines (SVM), and random forests (RF) [29]. Initially,

the QSAR (quantitative structure active relationship) model was applied to AMPs to find

the sequential peptides models [30]. Though this model successfully computed many

physicochemical properties, it mainly depended on statistical learning, which made its

scope smaller with other computational algorithms’ advancement.

In 2011, P. Wang et al. worked on feature selection and the sequence alignment model

to predict novel AMPs [31]. They achieved the Mathew’s correlation coefficient (MCC)
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value up to 0.73. In 2013, Xiao et al. came up with two-step machine-learning algorithms

using K-nearest neighbor to predict antimicrobial peptides. Their novel classifier was

named iAMP-2L. They also built a web server for user convenience on top of their

classifier [32].

In 2017, Schneider et al. came up with the first-ever concept of deep neural networks

to build a model for both ‘unsupervised–supervised’ learning. They tested their algorithm

by considering the chemical properties of all alpha-helix AMPs from the APD database.

They validated the functional prediction of their model experimentally [33]. In 2018, a

novel 3D model based on AMP’s structure was developed by Liu et al. to predict the

activity and design of AMPs. Using their novel model, they designed 5 AMPs, and their

antibacterial activity was verified experimentally in the lab using the in-vitro method [34].

Compared to work on antimicrobial peptides, not much computational model has been

developed on antibiofilm peptides. In 2016, Gupta et al. came up with a sequence-based

feature model for biofilm inhibiting peptides based on data from the BaAMP database.

They choose the SVM and RF-based models to predict the antibiofilm activity. The SVM

model proved to be most effective for them with a combination of DPC and motif

features. They built a web server called Biofin on top of their best model, which achieved

an MCC score of 0.84 [13].

Sharma et al. came up with another web server-based approach named DPABBs. The

DPABBs web server was built on 6 SVM and Weka-based models and achieved an MCC

of 0.91 [14]. They worked with BaAMP data for their positive dataset and

quorum-sensing peptides as their negative set.

Recently, another web-based model, BIPEP was developed by Fallah Atanaki et al.

They used a combination of peptide datasets from APD and BaAMP databases. Their

negative dataset was smaller than the positive set and based on quorum sensing peptides.

The model achieved an MCC value of 0.89 while using the SVM machine learning
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algorithm. They considered a larger positive dataset than the negative dataset [15] and

validated their model against an independent dataset.

All the above studies show great potential in machine learning prediction algorithms,

which have been used with different approaches so far. The current models can be further

enhanced to design and predict novel peptides. As we saw from the literature, we also

considered machine learning algorithms like SVM, random forest in our work and used

different databases like BaAMP, APD, etc., for our model.
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3 METHODS & MATERIALS

3.1 Dataset Preparation

For our work, we collected datasets from different databases. The details of the

dataset collection and data processing are described in the section below.

3.1.1 Main Dataset

For this work, we extracted antibiofilm peptides from the APD and BaAMP databases.

Both databases are available for open access. After removing the duplicates, we had a

dataset of 242 antibiofilm peptides as our positive set. The sequence length for the

positive dataset varies between 4 and 69. For the negative dataset, we generated random

peptides between a sequence length of 4 and 70. To make a realistic model, we used ten

times more peptides in our negative dataset. The whole dataset, 2662 (242+2420)

peptides, were used for training and testing with an 80:20 ratio. Eighty percent of the data

was used for training and ten-fold cross-validation while the other 20% of the data was

kept aside as an unknown set. We will refer to this set as our validation dataset for the rest

of this thesis. The performances of different machine learning algorithms were evaluated

on this validation dataset. The work with the main dataset will be referred to as our model

A approach for the rest of this thesis.

3.1.2 Additional Dataset

We also compared our positive data against actual peptides, which are not antibiofilm.

We analyzed the proteomic of different biofilm-forming bacteria like Staphylococcus

aureus and Escherichia coli and found out a few biofilm-causing peptides from the NCBI

and UniProt databases. For example, we considered Fibronectin-binding protein B, which

promotes the accumulation and surface attachment of biofilm by Staphylococcus aureus.

We curated proteins like surface protein G of bacteria like Staphylococcus aureus and

Staphylococcus oralis in our negative dataset. We also considered that the quorum sensing
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peptides act as biofilm forming agents. We used peptides from QSPProd in our negative

dataset as well. QSPProd has already been used in literature [15]. We manually curated

1,100 such peptides to compare the performance of our model against naturally occurring

peptides. We randomly generated the rest of the peptides to achieve ten times more

peptides than antibiofilm peptides in the negative dataset. The additional dataset was a

combination of manually curated and randomly generated peptides. The positive and the

negative (additional) datasets were again distributed in 80:20 ratio for training and testing.

The additional dataset will be referred to as model B approach for the rest of this thesis.

3.1.3 Dataset 2

We manually curated the minimum biofilm inhibitory concentration (MBIC) value for

the antibiofilm peptides from our positive dataset. We curated 160 such values from

literature against different gram-positive and gram-negative bacteria. We did not consider

the rest of the peptides in our dataset due to their lower activity against biofilm and higher

MBIC value. We believe the MBIC value is a significant indication of biofilm inhibition.

Due to the lack of data on biofilm eradication concentration, we could not consider that

parameter in our scope of work.

3.1.4 Test Data

The test datasets were collected from various sources. We collected 74 anticancer

peptides, 220 antiviral peptides, and more than 4770 antimicrobial peptides from the

DRAMP (Data Repository of Antimicrobial Peptides) database. We also considered 200

peptides from the MilkAMP database as our test dataset.

3.2 Feature Extraction

While working on a computational model, one of the primary goals is to analyze

different peptide features like composition and structure. Peptide sequence based

descriptors are essential parameters that have been in use for many machine learning
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experiments [35]. Feature extraction is an essential part of developing any machine

learning model. Feature extraction is the way of converting peptide information with

numerical values. We used a few existing packages like ‘propy3’ [36], ‘protParam’ [37] to

extract different features.

3.2.1 Amino Acid Composition (AAC)

The amino acid composition represents the fraction of each amino acid present in the

peptide sequence. There are twenty known amino acids present in nature. The peptides of

our interest are made of different combinations of these twenty amino acids. The AAC

feature helps to calculate the percentage of each type of amino acid present in peptides.

The python package returns a size twenty vector of named amino acids. The below

equation represents the amino acid composition function:

AAC(i) =
Total number o f amino acid o f type (i)

Total number o f amino acids
∗100 (1)

3.2.2 Dipeptide Composition (DPC)

Dipeptide composition represents the total number of dipeptides present in the peptide

sequence. There are twenty standard amino acids, so the number of possible dipeptides

could be up to 400 (20 * 20). The DPC feature returns 400 named vectors with a non zero

value to those combinations where dipeptides are present. The DPC feature has been

extracted from the ‘PyPro’ package and can be expressed as below equation :

DPC(i, j) =
Total number o f dipeptides o f amino acid type (i and j)

Total number o f possible dipeptides available
∗100 (2)
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3.2.3 Composition/ Transition/ Distribution(CTD)

The CTD descriptor returns different physio-chemical properties of the peptides. The

properties of peptides returned by this feature are: ‘Hydrophobicity,’ ‘Normalized van der

Waals Volume,’ ‘Polarity,’ ‘Polarizability,’ ‘Charge,’ ‘Secondary Structure’ and ‘Solvent

Accessibility.’ The possible 20 amino acids are divided into three groups (group - 1, 2 &

3) depending on their property and functionality. The Composition feature represents the

percentage of each group of amino acids in the peptide sequence. The Transition feature

represents the percentage of frequencies in which group 2 amino acids follow group1

amino acids. Similarly, this feature also represents the frequencies of group 2 amino acids,

followed by group 3. The Distribution represents the percentage residue of each attribute

present in the peptide in their first or 0th position, 25% residues, 50% residues, 75%

residues, and 100% residues. The details of AAC, DPC and CTD descriptors are listed in

Table 1.

Table 1
Descriptions of Different Feature Descriptors

Descriptor No. Of Features Feature Type

Amino Acid
Composition (AAC) 20 Percentage of amino acids

Dipeptide Composition
(DPC) 400 Percentage of dipeptides

Composition/
Transition/ Distribution
(CTD)

147 Distribution and variation of
physicochemical properties

3.2.4 Motif Feature

Motifs are the smaller amino acid sequence present in peptide or protein structure,

which may represent a unique biological or chemical function. We used MERCI
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software [38] to find the motif of antibiofilm peptides. MERCI software provides two

scripts to extract motifs. One script can essentially find all the motifs that are present in

the positive dataset and absent in the negative dataset. The script also helps to store the

motifs in a specific format file. We used that script to discover and store motifs in our

training dataset. We used the second script to find the motifs of the test dataset from

already stored motifs. We collected all the default motifs for our datasets. The number of

motifs found in peptides was considered as a motif feature. Motif analysis represents

distinct patterns in antibiofilm peptides that are not present in non-antibiofilm peptides.

3.2.5 Other Features

We extracted some critical features using the ‘ProtParam’ [37] module. Using the

‘ProteinAnalysis’ module of ‘ProtParam,’ we pulled features like sequence length,

molecular weight, aromaticity, isoelectric point. We evaluated these features to build our

model due to the presence of higher cationic and aromatic amino acids in antibiofilm

peptides.

3.3 Machine Learning Models

We developed our prediction model using machine learning algorithms like support

vector machines (SVM), random forest (RF), extreme gradient boosting (XGBoost), and

multilayer perceptron (MLP) classifier. We used different classifier algorithms to compare

their relative performance. Our goal was to select the best designs with the highest

performance against our dataset. We used the “Scikit-learn” [39] package to develop

models for our work.

3.3.1 Support Vector Machine (SVM)

Support Vector Machine is a well-known classifier for supervised machine

learning [40]. SVM is one of the most commonly used classifiers for peptide prediction.

SVM works particularly well in binary classification. SVM offers very high accuracy
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compared to other classifiers, such as logistic regression and decision trees. The data fed

into SVM separates using a hyperplane, which can be linear to high dimensional space.

SVM aims to orient the hyperplane so that the hyperplane could maintain the most

distance (margin) from the closest members of both classes. Since our dataset is not huge,

it is better to use a nonparametric method that SVM supports. SVM also supports

nonlinear kernel structure for hyperparameter tuning of the model. We used a radial basis

function (RBF) kernel for our model due to the nonlinear characteristic of the dataset.

SVM is a robust model that can be used for both classification and regression. Our work

also involved the application of SVM both as a classification model and regression model.

We used SVM to classify a peptide as antibiofilm and support vector regression (SVR) to

predict minimum biofilm inhibitory concentration (MBIC). Literature shows that SVM

has performed exceptionally well in peptide prediction. Gupta et al. used this algorithm

for their peptide prediction resulting in 97% accuracy.

3.3.2 Random Forest (RF)

The Random Forest model is an ensemble model of supervised machine learning

consisting of many different decision trees. Each tree predicts its own decision to a class.

Finally, using the voting method, the class with the most votes comes as a prediction

result. The single decision trees are independent of each other. Each decision tree inside

the model is constructed using bootstrap sampling. In each split, the Gini impurity index

helps to decide the number of splits. This model also supports both regression and

classification. RF has already been used to predict peptides and to solve other biological

problems [41]. For an imbalanced dataset, RF may not be the best choice as a classifier,

but we used this algorithm to compare the performance with other classification

algorithms.
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3.3.3 Extreme Gradient Boosting (XGBoost)

Extreme gradient boosting is comparatively a new model used in machine learning.

This method implements gradient boosted decision trees for a lower execution speed and

higher performance of the model. This ensemble model incorporates a gradient boosting

approach where a new model will be created in each iteration to minimize the prior

layer’s error. XGBoost uses DMatrices, which can contain both the features and target.

The gradient boosting algorithm also can be used for classification and regression

problems. In our work also we used XGBClassifier and XGBRegressor for classification

and prediction. XGBoost algorithm has regularization parameters that can be tuned to

reduce the overfitting issue for an imbalanced dataset. This algorithm is also used in prior

work for the prediction of peptides with an accuracy greater than 98% [42].

3.3.4 Multilayer Perceptron (MLP)

The Multilayer perceptron is a type of feed-forward artificial neural network. This

classifier consists of an input, an output, and one or more hidden layers that can be tuned

to improve the accuracy. The hidden layer depicts the number of neurons in the neural

network. The neurons have weighted parameters (generally between 0 to 0.3) to tune the

input signal. The layer after the input signal is called the hidden layer which is built on

multiple neurons. The activation function that is used to generate the output signal is

mostly nonlinear. This classifier is based on supervised learning and uses the

backpropagation of data for training. MLP can be used for both classification and

regression problems. This algorithm is particularly useful when the dataset is nonlinear.

Due to the character of our dataset, we tried this algorithm for our classifier model. This

algorithm is also known as the ‘vanilla’ neural network.

3.4 Cross-Validation and Stratified Sampling

We did the cross-validation of our training dataset using ten-fold cross-validation,

where the entire dataset was divided into ten parts. One part was used for testing, and the
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other nine parts were used for training. Then the process was iterated over ten times to

achieve ten-fold validation. This ten-fold validation was used to address the over-fitting

problem. Our dataset has ten negative peptides for each positive peptide; hence it is an

imbalanced dataset. We used stratified sampling to ensure that each fold receives an equal

percentage of positive and negative datasets while doing cross-validation. Stratified

sampling guarantees that each subgroup within the population gets a proper representation

of each sample. There is no way to ensure that each fold of cross-validation receives an

equal percentage of data in random sampling. Consequently, a few folds can sometimes

end up as low as one positive data and represent an inaccurate performance in random

sampling. The stratified sampling ensured that the validation dataset had precisely 20% of

positive data, i.e., 48 peptides, and 20% of negative peptides, i.e., 485 peptides. The

stratified sampling ensured a 9:1 ratio between training and testing set in each fold of

ten-fold cross-validation. Each fold had a balance of 174 peptides for training and 19

peptides for testing (9:1) for the positive dataset, and the same distribution had been

applied to the negative dataset.

3.5 Performance Evaluation

To assess the performance of our model, we used ten-fold cross-validation with our

training data. The cross-validation was performed using the stratified folds, as reported in

the above section. We evaluated the performance of different machine learning techniques

against our dataset using several statistical parameters and metrics like sensitivity (Sen),

specificity (Spec), accuracy (Acc), Matthew’s correlation coefficient (MCC), and

harmonic mean of the precision-recall (F1) Score. The methods to calculate different

performance matrics are listed in the below equations.

Speci f icity =
T N

FP + T N
(3)
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Sensitivity =
T P

T P + FN
(4)

Accuracy =
T P + T N

T P + FP + T N + FN
(5)

F1Score =
T P

T P + FP + FN
2

(6)

MCC =
(T P)(T N) − (FP)(FN)√

(T P+FP) (T P+FN) (T N +FP) (T N +FN)
(7)

Here, TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative.
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4 RESULTS

We built our classifier model with two different datasets. Model A was built on 242

antibiofilm peptides (positive dataset) with randomly generated negative dataset. We

curated an additional dataset where we combined 1,100 non-antibiofilm peptides, and

1,320 randomly generated peptides to make our dataset a realistic representation of

peptides in nature. In the model B approach, we compared the 242 antibiofilm peptides

against our additional dataset. We also built a regression model to predict the minimum

biofilm inhibitory concentration of peptides on top of our classifier model. For the second

tier of our model, we used only antibiofilm peptides with MBIC value lower or equal with

64 µM. We curated 160 such peptides and trained our regression model. Considering the

prediction probability from the classifier, prediction from the regression model, and the

motif count, we decided on potential new antibiofilm candidates. Fig. 4 depicts our model

A flow diagram.

The flow diagram of model B is also described in Fig. 5. The difference between these

two models is the data collection step. The other methodologies remain the same as

model A.
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Fig. 4. Flowchart diagram for different steps of Model A.

21



 Collected peptides from BAAMP 

and APD, sequence length 4 - 69 

Curated from UniProt, NCBI, QSPpred 

+ randomly generated; total 2420 

peptides; sequence length 4 - 70 

 

Positive dataset, 242 peptides 
Negative dataset, 2420 peptides 

(10 times than positive set) 

Feature extraction – AAC, DPC, CTD 

Stratified sampling 

80% Training data 20% Test data 

10-fold cross-validation to 

choose model 

Motif based feature added 

Prediction model 

Model validation 

Performance 

matrix evaluation 

Model 

Tier I 

Test peptide set from DRAMP 

database 

AntiBiofilm peptide classified 
from the classifier 

 

Other features with MBIC value 

from positive peptide set  

Regression model trained with MBIC 
value of 160 peptides, with 

MBIC<=64(µM) 
 

Predicted MBIC value for 

peptides from model 

Model 

Tier II 

90% Training data 10% Testing data 

Fig. 5. Flowchart diagram for different steps of Model B.
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4.1 Characteristics Of Positive Dataset

4.1.1 Sequence Length

The sequence length of different amino acids in our positive dataset is plotted in

Fig. 6. The graph shows that most of the peptides have a sequence length between 10 and

16. Almost 43% of positive data belong in this group. Almost all the peptides have a

sequence length less than 50. Only 2 peptides have a sequence length between 50-60 and

2 peptides have a sequence length between 60-70.

Fig. 6. Distribution of antibiofilm peptides in various sequence length.

4.1.2 MBIC Value Distribution

The number of peptides in different MBIC value ranges are plotted in Fig. 7. The

graph shows that almost 69% of peptides have an MBIC value lower than 11 µM. The

lower the MBIC value, the more influential the peptide will be against biofilm. Our

curated data showed that only a few peptides have values of more than 128 µM, and those

peptides are less effective against biofilm. Hence we avoided those peptides in our

regression model.
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Fig. 7. Distribution of MBIC value of antibiofilm peptides in the positive dataset.

4.1.3 Amino Acid Composition Analysis

To compare the presence of various amino acids in the positive and negative set, we

used the average percentage composition of the amino acid against antibiofilm peptides

and non-antibiofilm peptides (curated for model B). Fig. 8 shows the comparison. An

asterisk (*) in the figure denotes statistical significance (P < 0.05). Antibiofilm peptides

have high percentages of lysine (K) and arginine(R). Lysine and Arginine are positively

charged amino acids. Also, the ratio of leucine (L), isoleucine (I), phenylalanine (F), and

tryptophan (W) are high in antibiofilm peptides. Leucine is mainly responsible for the

α-helix formation, while phenylalanine and tryptophan are aromatic amino acids. The

non-antibiofilm peptides have more percentage of aspartic acid (D), glutamic acid (E) and

methionine (M). While aspartic acid and glutamic acid are highly negatively charged

amino acids, methionine is of neutral charge. The comparison between two kinds of

peptides shows antibiofilm peptides are high in positively charged and aromatic amino

acids. That is the reason antibiofilm peptides are effective against negatively charged

bacterial membranes. We did two tailed t-test using microsoft excel for analysis of the
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data. Our statistical analysis showed a significant difference (P<0.05) between the

average percentage of arginine and lysine in antibiofilm and non-antibiofilm peptides.

Fig. 8. Distribution of average amino acids percentage composition in antibiofilm and

non-antibiofilm peptides. Error bars show standard error of the mean.

4.1.4 Secondary Structure Analysis

The secondary structure of the peptides was also being compared for antibiofilm and

non-antibiofilm peptides. The average percentage composition of secondary structure

showed a higher percentage of α-helix in antibiofilm peptides, while non-antibiofilm

peptides are higher in coil formation. The higher helical property allows the antibiofilm

peptide to fold into the amphipathic structure, which helps them to disrupt membrane

activity. A two tailed t-test analysis showed a significant difference between the mean

value of antibiofilm and non-antibiofilm peptides when comparing different secondary

structures. Fig. 9 shows the comparison. An asterisk (*) in the figure denotes statistical

significance (P < 0.05).
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4.1.5 Hydrophobicity Analysis

The comparison of hydrophobic properties between antibiofilm peptides and

non-antibiofilm peptides showed the higher amount of hydrophobicity of the antibiofilm

peptides. The hydrophobic portion of antibiofilm peptides leads to insertion of the

peptides into the less polar bacterial membrane and leads to destabilizing membrane

barriers [43]. Fig. 10 shows the comparison. An asterisk (*) in the figure denotes statistical

significance (P < 0.05). The higher percentage of alanine, valine, leucine, isoleucine, and

phenylalanine could be a potential reason for the antibiofilm peptides’ hydrophobic nature.

A two tailed t-test analysis of hydrophobic, hydrophilic, and neutral properties showed a

significant difference between antibiofilm and non-antibiofilm peptides.

Fig. 9. Distribution of average secondary structure in antibiofilm and non-antibiofilm

peptides. Error bars show standard error of the mean.
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Fig. 10. Distribution of different hydrophobic properties in antibiofilm and non-antibiofilm

peptides. Error bars show standard error of the mean.

4.1.6 Motif Analysis

We also compared the motif present in antibiofilm and non-antibiofilm peptides. The

presence of the motif is listed in Table 2. The motif analysis showed the highest number

of motif present in the antibiofilm peptides is: ‘R I R V.’ Also, motifs like ‘R I V Q R I K,

“R I V Q R,’ ‘K R I V Q R I K,’ ‘I G K E F K R’ have a higher presence in antibiofilm

peptides. In non-antibiofilm peptides, the most abundant motifs are ‘S D,’ ‘L E,’ ‘S E,’

and ‘E P.’

4.1.7 Different MBIC Value Analysis

To see any specific correlation between lower MBIC values and the physio-chemical

properties of peptides, we compared two groups of peptides from our MBIC dataset. We

considered around 44 peptides, which have MBIC value lower or equal to 4 µM in group

1 and another 10 peptides with a high MBIC value greater than 124 µM in group 2. We

assessed the average percentage of different properties like the percentage of alanine, the

percentage of lysine, etc. Fig. 11 shows the difference between the two groups of peptides.
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Table 2
Top 5 Motif Patterns and Number of Occurrences in Positive and Negative Dataset

Peptide Type Motifs Number of Occurrences

Antibiofilm R I R V 19

Antibiofilm R I V Q R 14

Antibiofilm R I V Q R I K 13

Antibiofilm I V Q R I K 13

Antibiofilm G K E F K R 12

Non-Antibiofilm S D 95

Non-Antibiofilm L E 89

Non-Antibiofilm S E 87

Non-Antibiofilm E P 86

Non-Antibiofilm E D 81

Fig. 11. Comparison between different properties of peptide grouped by MBIC value.

Error bars show standard error of the mean.
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While we noticed an increasing spike for the helical structure in group 1 peptides, we

could not find much difference in the isoelectric point between them. Also, a higher

percentage of alanine (A) and lysine (K) in group 1 peptides could contribute to the

helical property and the effectiveness of peptides. We noticed from our two tailed t-test

that helix and hydrophobicity showed statistical significance with P <0.05. The

isoelectric point and positive net charge did not show any significant statistical difference.

4.2 Performance Analysis Of Different Machine Learning Model

With the popularity of machine learning, several works have been done on peptide

prediction using different machine learning algorithms. Using machine learning to detect

a novel peptide not only saves time and cost but also gives an immense opportunity to

combine various peptide features to predict an accurate result. In our work, we used

different features to develop our machine learning models. We also used multiple machine

learning algorithms to evaluate the best model against our dataset and features. We

worked with a combination of different features like AAC and Motif, DPC and Motif,

CTD and Motif. The details can be found in appendix section (A). According to Gupta et

al., combining DPC with Motif features and running them with the SVM, gave the best

result. Hence we refer to that approach as our ‘baseline’ method for the rest of the thesis.

In our work, we found that the best performance could be achieved while combining

AAC, DPC, CTD, and motif features together. We refer this approach as our

‘implemented’ approach for the rest of the the thesis. The detailed performance analysis of

the model is explained in our next section.

4.2.1 Performance For Model A (Working With The Main Dataset)

As our classification model is a binary classifier, we emphasized the F1 and MCC

values to judge our models’ accuracy. For our Model ‘A,’ we used only randomly

generated data, as mentioned beforehand. The model showed the best performance with

the ‘implemented’ approach by applying the SVM algorithm compared to RF, XGBoost,
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or MLPClassifier. We initially tried to work with a ‘linear’ kernel-mode, which did not

show a satisfactory performance due to the nature of our dataset. We also tried recursive

feature elimination with linear kernel SVM but using ‘RBF’ kernel outperformed other

methods. The SVM model with the ‘RBF’ kernel achieved an F1 score of 0.9247 while

the MCC was 0.9181 on the validation dataset. This model gave an accuracy score of

98.68%, sensitivity 89.58%, and specificity 99.58% on the same validation dataset. Our

baseline approach could only achieve an F1 score of 0.8484, MCC of 0.8334, accuracy

97.24%, sensitivity 87.5%, and specificity 98.14% using. We reached the average

cross-validation accuracy of 0.9793 (with Standard deviation 0.0047), F1 score 0.8741

(with Standard deviation 0.0330), MCC score 0.8689 (with Standard deviation 0.0324) in

the training dataset using SVM. The performance of different models on the validation

dataset is given in the Table 3. The specificity, sensitivity and accuracy in table are listed

in percentage (%) format.

4.2.2 Performance For Model B (Working With Alternative Dataset)

We evaluated performance between different machine learning algorithms for the

alternative dataset as we did for Model A. We assessed the ’baseline’ approach as well as

our ’implemented’ approach on this dataset. We applied SVM, random forest, XGBoost,

and MLPCassifier also on the alternative dataset. The SVM model with the ‘RBF’ kernel

gave the best performance. The model B achieved an F1 score of 0.9090, an MCC value

of 0.9054, an accuracy of 98.68%, a sensitivity of 83.33%, and a specificity of 100% on

the validation dataset. We reached the average cross-validation accuracy of 0.9727 (with

Standard deviation 0.0058), F1 score 0.8319 (with Standard deviation 0.0393), MCC

score 0.8249 (with Standard deviation 0.0410) on the training dataset using SVM. The

performance of different models on the validation dataset is given in the Table 4. The

specificity, sensitivity and accuracy in table are listed in percentage (%) format.
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Table 3
Performance Evaluation of Different Machine Learning Techniques with Model A

Model
Performance Specificity Sensitivity Accuracy F1

Score MCC

Baseline
Approach 98.14 87.5 97.24 0.8484 0.8334

SVM with rbf
kernel, gamma =
0.1

99.58 89.58 98.68 0.9247 0.9181

Random Forest
(n-estimators =
100)

100 70.83 97.37 0.8292 0.8297

XGBoost
(n-estimators =
50, max-depth =
10)

99.17 85.41 97.93 0.8817 0.8709

MLPClassifier
(hidden-layer-
sizes = (100, 100,
100)

98.55 89.58 97.74 0.8775 0.8653

4.2.3 Comparison With Existing Models

There are only very few antibiofilm peptide prediction models currently available

compared to other antimicrobial peptides prediction models. We used the Gupta et al.

dataset to compare our model because it has more data points than other existing models.

Our implemented approach involved a combination of different features like AAC, DPC,

CTD, and motifs. Our extensive feature set could work correctly on more massive

datasets, as we found in Gupta et al. We extracted the positive and the negative peptides,

ran the training data on our model and compared the validation dataset result with the best

result reported by Gupta et al. Our model could achieve an MCC score of 0.9050
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Table 4
Performance Evaluation of Different Machine Learning Techniques with Model B.

Model
Performance Specificity Sensitivity Accuracy F1

Score MCC

Baseline
Approach 98.35 85.41 97.18 0.8453 0.8229

SVM with rbf
kernel, gamma
=0.1

100 83.33 98.49 0.9090 0.9054

Random Forest
(n-
estimators=100)

99.79 66.66 96.81 0.7901 0.7894

XGBoost
(n-estimators=50,
max-depth=10)

97.56 75.41 97.56 0.8631 0.8498

MLPClassifier
(hidden-layer-
sizes=(100, 100,
100)

98.55 83.33 97.18 0.8421 0.8267

compared to the reported MCC of 0.84. Our model could also achieve an accuracy of

98.46%, a sensitivity of 86.11%, and a specificity of 99.71%. The F1 score of our model

was 91.17, while we could not find an F1 score mentioned in the paper. The comparison

result can be found in Table 5. The specificity, sensitivity and accuracy in table are listed

in percentage (%) format.

4.2.4 Performance Of Regression Model

The effectiveness of antibiofilm peptides can be evaluated by the minimum biofilm

inhibitory concentration (MBIC). The antibiofilm peptides with lower MBIC value are

considered more effective and assessed in this scope of work. We started building our

model with the linear regression algorithm, but this algorithm could not perform well due

32



Table 5
Performance Comparison of Our Method with the Existing Record

Validation
dataset
performance

Specificity Sensitivity Accuracy F1
Score MCC

Reported in paper 97.75 91.67 97.19 Not
Known 0.84

Achieved with
our model 99.71 86.11 98.46 91.17 0.90

to the nature of the dataset. Instead, we started working with different non-linear

regression algorithms. We found that the support vector regression (SVR) and

XGBRegression (XGBR) worked better to predict the MBIC value. But the linear kernel

SVR with recursive feature elimination could not perform well. Then, we used the ‘RBF’

kernel for the SVR, which outperformed others. After many trial and error and

cross-validation, we fixed the ‘C’ value as 10 and gamma as 0.1. We divided the dataset

into a 90:10 ratio and performed ten-fold cross-validation. The performance was

measured based on the root mean squared error (RMSE) and the standard deviation.

These error metrics are directly related to the correlation coefficient of the model. SVR

model achieved the best RMSE value of 4.7786 and a standard deviation of 1.5085 on the

test dataset. Table 6 shows the performance of different models.

The predicted MBIC values from the SVR with the ‘RBF’ kernel model are plotted

against the original values of the test dataset in Fig. 12.
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Table 6
Performance Comparison of Different Regression Models

Model RMSE Standard Deviation

SVR, rbf kernel, C=10,
gamma=0.1 4.7786 1.5085

XGBR, n-estimators=5,
max-depth=7 6.2285 3.7339

SVR, linear kernel, 100
feature 8.9225 7.0579

Fig. 12. The distribution of original and predicted MBIC value from SVR Model.

4.3 Prediction Of Antibiofilm Peptides

To see the presence of antibiofilm properties in peptides from diverse habitats, we

collected different sets of peptides. We ran our classification model, regression analysis,
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and motif analysis on probable peptides to see the possibilities of having antibiofilm

properties. The steps of having a potential antibiofilm candidate is given in Fig. 2. We

selected a few antibiofilm peptides with high prediction probability from the classifier and

then ran the regression analysis to determine the effectiveness. We also checked the motif

counts of the peptides to see the similarity with our antibiofilm dataset. We ranked the

peptides as an effective antibiofilm candidate depending on the higher percentage of

classification probability, a higher value of motif, and lower MBIC prediction value

(shown in Fig. 2). As we achieved a better performance result with our model A (SVM

with the main dataset), we used that model to classify the peptides while the SVR model

predicted the MBIC value.

4.3.1 Prediction With Anticancer Peptides

We assessed a test dataset of 74 anticancer peptides from the DRAMP database. We

evaluated this dataset in our classification model. Seventeen peptides among them showed

higher prediction (>96%) percentages from the classifier model. Then we ran the motif

analysis for those 17 peptides and regression analysis for the MBIC value. After our

research, we identified top 10 peptides that were evaluated further for potential antibiofilm

effects. Table 7 shows the details of the peptides that we considered for validation in the

lab.

4.3.2 Prediction With Antiviral Peptides

We secured a test dataset of 213 antiviral peptides from the DRAMP database. We

examined this dataset in our classification model. Eleven peptides showed a higher

probability prediction (>96%) percentage from the classifier model. Then we ran the

motif analysis and regression analysis for those eleven peptides. After our study, we

developed a top-10 peptide list that could be evaluated further for potential antibiofilm

effects. Table 8 shows the details of the peptides that we considered for further evaluation.
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Table 7
The Evaluation of Anticancer Peptides for Potential Antibiofilm Activity

Name
Prediction
Probability
from Classifier

Predicted MBIC
from Regression
(µM)

Motif Count*

DRAMP03574 0.98384803 15.21 89
DRAMP02926 0.99259543 13.6 63
DRAMP02990 0.99993214 5.67 54
DRAMP03575 0.99662332 14.3 54
DRAMP02989 0.99985197 5.65 13
DRAMP03829 0.999935172 5.01 10
DRAMP18494 0.99522187 7.97 10
DRAMP03687 0.99412033 12.06 8
DRAMP01110 0.9650794 12.07 7
DRAMP04133 0.993333 8.69 6

*The peptides are sorted based on motif count.

Table 8
The Evaluation of Antiviral Peptides for Potential Antibiofilm Activity

Name
Prediction
Probability
from Classifier

Predicted MBIC
from Regression
(µM)

Motif Count*

DRAMP02926 0.99259543 13.61810654 63
DRAMP01110 0.965079491 12.07187072 7
DRAMP02761 0.999989229 8.93296784 6
DRAMP18688 0.98513251 11.75484474 4
DRAMP04506 0.975836702 8.192149472 4
DRAMP01084 0.994488209 11.75073392 2
DRAMP01086 0.993796461 13.06669082 2
DRAMP04010 0.981415481 13.11930625 2
DRAMP02992 0.991855769 8.035789535 1
DRAMP02233 0.973355257 13.13148776 1

*The peptides are sorted based on motif count.

36



4.3.3 Prediction with MilkAMP Database

We evaluated a test dataset of around 300 peptides from the MilkAMP database. Sixty

six peptides showed higher prediction (>96%) percentage from the classifier model than

the previous two cases. We ran the motif analysis and regression analysis for those 66

peptides. Regression analysis showed a comparatively higher MBIC value than the

previous two cases. After our study, we identified a top-10 peptide list (Table 9), which

could be evaluated further for potential antibiofilm characteristics.

Table 9
The Evaluation of Milk Peptides for Potential Antibiofilm Activity

Name
Prediction
Probability
from Classifier

Predicted MBIC
from Regression
(µM)

Motif Count*

LFB0093 0.990627 12.82877 246
LFB0091 0.988824 12.91982 246
LFB0155 0.992153 13.79659 169
LFB0177 0.981204 12.55854 167
LFB0176 0.978091 13.2394 167
LFB0173 0.988314 11.68185 108
LFB0134 0.995092 13.39625 104
LFB0135 0.995497 13.35955 103
LFB0131 0.994338 13.40014 103
LFB0146 0.993795 19.75503 103

*The peptides are sorted based on motif count.

4.3.4 Prediction With Antimicrobial Peptides

We also worked with a large dataset of antimicrobial peptides from the DRAMP

database. As antibiofilm is a subset of antimicrobial peptides, we removed the similar

peptides from the dataset. After removing duplicates, around 4700 peptides remained to

be evaluated as a test set. When we ran this large set of data with our model, as expected,

we received a higher number of peptides compared to the other cases from the classifier.
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We assessed this large antimicrobial dataset to see similarities with antibiofilm

functionality in diverse habitats like antibacterial or antifungal peptides. After running the

regression model and motif analysis, we listed the top 10 peptides for a potential

antibiofilm candidate. The details of the evaluated peptides can be found in Table 10.

Table 10
The Evaluation of Antimicrobial Peptides for Potential Antibiofilm Activity

Name
Prediction
Probability
from Classifier

Predicted MBIC
from Regression
(µM)

Motif Count*

DRAMP04014 0.987356462 15.33777 336
DRAMP04015 0.985853713 15.59084 335
DRAMP02648 0.996209262 16.67575 319
DRAMP03645 0.956063771 13.06714 294
DRAMP03570 0.999995939 11.07888 205
DRAMP02709 0.969905986 14.82536 175
DRAMP18616 0.999999824 7.999017 171
DRAMP18617 0.999993843 6.723098 140
DRAMP02520 0.989761244 5.842829 138
DRAMP02365 0.97699594 8.344172 135

*The peptides are sorted based on motif count.
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5 DISCUSSION

With the popularity of machine learning, the literature shows an increasing number of

computational models and databases related to peptides. However, there is less work on

antibiofilm peptides modeling compared to antimicrobial peptides. The main reason could

be the lower availability of antibiofilm peptides data due to their complicated

characteristics. Our goal was to develop a classification model to find antibiofilm features

and generate a prediction model to understand the efficacy of the peptides. We did not just

restrict the performance of our model against the randomly generated negative peptide

dataset. We also evaluated the performance of our model against peptides that already

exist in nature. We concluded that the model performance could change when we change

the negative dataset. The performance of our model against the main and additional

database also showed variation in accuracy percentage. Our model performed better with

randomly generated peptides. However, the current negative dataset could be replaced

with peptides, which are proven to form a biofilm and evaluated against our model.

We also considered stratified sampling and ten-fold cross-validation to eliminate the

overfitting problem due to an imbalanced dataset. The training and testing performance

metrics showed a clear indication that our model did not overfit. While our model

achieved the best performance with SVM, the other methods, such as XGBoost or

Recursive Feature Analysis, might also do well with more hyperparameter tuning. We do

not currently have a vast dataset, but MLPClassifier could work better than SVM due to

its training capacity with an increased dataset.

Our model achieved better performance with the same data from Gupta et al. but did

not perform well with the dataset of Sharma et al. [13] and Fallah Atanaki et al [15]. Our

model could reach only the F1 score of 0.8965 against the dataset used by Fallah Atanaki

et al. The reason could be the dataset variation between our model and theirs. Our model

is built on the idea that the antibiofilm peptides are rarer in nature than other peptides. To

39



mimic that concept, we used ten folds more peptides in negative data than the positive

dataset. Fallah Atanaki et al. developed a model in which the positive dataset size was

more than two times larger than the negative dataset. The basic assumption of building the

machine learning model is different in these two cases, which could lower the

performance of our model for that dataset.

While developing our feature set, we used a different approach in motif analysis than

seen in the literature. Most of the time, the total positive dataset is evaluated for unique

motifs against the negative dataset, and the result is fed to the model. Per the MERCI

software, we can find motifs that are present in the positive dataset and absent in the

negative dataset. Providing this ’privileged’ information to the model may predict a higher

accuracy of the model. To eliminate this situation, we searched motifs for each training

set while running our cross-validation. We stored the motifs of the training dataset. Then

we examined the motif on the test dataset from the stored motif of the training set. Also,

we found all the default motifs by tuning specific parameters to enhance the effect of

motif features on our dataset. Increasing the limit of motif count changed the performance

compared to the ’without motif’ model.

Our data analysis showed a higher percentage of positively charged amino acids like

lysine and arginine in antibiofilm peptides. The higher positive net charge and higher

hydrophobicity are characteristic of antibiofilm activity peptides [10]. Though we saw a

higher percentage of α-helix, the overall peptide structure showed a varied percentage of

β -sheets and coils. Our data analysis showed a significant difference between antibiofilm

and non-antibiofilm peptides when analyzing the properties mentioned above.

Though our work does not have much scope to analyze each antibiofilm peptide and

its design, we studied human cathelicidin LL-37 and some of its derived peptides. The

difference in sequence could change the effectiveness of these peptides against biofilm

formed by Pseudomonas aeruginosa. The LL-37 prevents biofilm formation of
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P.aeruginosa in a concentration lower than its MIC value by probably blocking the

growth of extracellular matrix [44]. The LL19-37 could not affect biofilm, but adding a

group of ’I G K E F K’ (LL13-37) changed peptide effectiveness. LL13-37 shows the

inhibition of biofilm formation at 5µM. ’I G K E F K’ is one of the motifs we found in

high numbers in our positive dataset during motif analysis. While LL-19 has no activity

against bacterial membrane permeability [44], adding a motif of ’I V Q R I K’ increases

permeability significantly in LL-25. ’I V Q R I K’ is another motif that we found in our

positive dataset.

While building the regression model, we discovered that all the peptides may not have

significant MBIC value. We started our data collection to see the eradication efficacy

against a preformed biofilm (minimum biofilm eradication concentration, MBEC). Due to

the data availability, we had to use only the MBIC value as a parameter for efficacy.

MBEC and MBIC values are mostly different. Furthermore, antibiofilm peptide, which

has a lower MBIC value, may not effectively eradicate preformed biofilm.

Dermaseptin-AC is very useful in the inhibition of biofilm (MBIC value 32 µM) formed

by Staphylococcus aureus. This peptide is not effective in eradicating preformed biofilm

(MBEC value 256 µM) [45]. We did not find any computational model so far to predict

the MBIC value for an antibiofilm peptide. Thus our regression model is a new approach

to assess the efficacy. In our regression model, we considered a smaller dataset with an

MBIC value <= 64 µM. We did not consider the higher MBIC value to eliminate the

outliers. Our regression model could be biased and might not be effective against an

unknown peptide with a higher MBIC value. Also, the MBIC values were curated against

different pathogens due to the unavailability of data. Collecting data against the same

pathogen could increase the reliability of the model. The recursive feature elimination on

the regression model could improve the performance of the model. We considered our

regression model as a ranking parameter to judge the potential antibiofilm peptide. This
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prediction will help to rank thousands of predicted peptides by classifier when run against

a huge peptide database. We gave motif analysis a significant weightage, as we already

saw in the literature [13].

To find potential biofilm peptides from diverse habitats, we considered different

peptide datasets to evaluate antibiofilm activity. We analyzed peptides like antimicrobial,

antiviral, anticancer, etc. Literature shows that antimicrobial peptides may be viewed as a

negative dataset while considering anticancer peptides [46]. But we also saw examples of

elements like bioactive selenium compounds that could be anticancer and effective on

biofilm [47]. That is why we evaluated anticancer peptides for biofilm activity. We further

studied the top 10 anticancer peptides, predicted by our model for antibiofilm activity.

Further research showed that many peptides contain higher percentages of positively

charged lysine (K) and arginine (R), for example, DRAMP02990, DRAMP02989,

DRAMP18494, and DRAMP01110. Most of the peptides are potentially active against

planktonic bacteria. We also evaluated the minimum inhibitory concentration (MIC) value

of those peptides. Our research showed that DRAMP02990 has a MIC value of 1.4 µM

against E. Coli, while DRAMP01110 has a MIC of 2.7 µg/ml against E.Coli.

DRAMP18494 has a MIC value of 8 µg/ml against Staphylococcus aureus, and

DRAMP02989 has a MIC value of 14.3 µM. The regression model also predicted a lower

MBIC (< = 10 µM) for all these four peptides. So we ranked these four peptides higher

even in the top ten candidates for potential in-vitro analysis.

There are chances that viruses could infect bacteria and kill them or make them less

effective for biofilm formation. Current literature also shows that engineered peptides

could be effective against both biofilm and viruses [48]. We evaluated the efficacy of

antiviral peptide for antibiofilm activity. We further assessed the top 10 candidates from

the antiviral peptide list. Most of them have a lower motif count. DRAMP02926 has the

highest motif count and also is a potential anticancer peptide. We could not find any MIC
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value for this peptide and the predicted MBIC value is also high. However, the other

peptide, DRAMP02761, has a better chance for potential antibiofilm properties.

DRAMP02761 is effective against gram-positive and gram-negative microbes.

There is also a possibility that raw milk can preserve the antibiofilm property of

peptide [49]. To evaluate any potential dairy peptide that can be effective against biofilm,

we worked with the milk database. Further analysis of the top 10 peptides from Table 9

revealed that both the peptides LFB0093 and LFB0091 have a MIC value of 6µM against

E.Coli.

When we further analyzed the peptides from the antimicrobial dataset, we found some

interesting facts. We already know human cathelicidin LL-37 is an effective antibiofilm

peptide. Our model found out Gorilla cathelicidin (DRAMP02709) as a potential

candidate for biofilm activity. This peptide belongs to the same ’Cathelicidin

Antimicrobial Peptide’ (CAMP) gene family and has a high percentage of cationic charge

amino acids, lysine and arginine. Our model also pointed to peptides like DRAMP18617

and DRAMP18616 with adequate killing capacity against gram-negative bacteria (MIC

4.0 µM and 6.0 µM). Both the peptides are synthetic derivatives of a well-known

antibiofilm peptide SMAP-29. Our model also indicated DRAMP02365 as antibiofilm

peptide. DRAMP02365 is similar to Pleurocidin and active against both gram-positive

and gram-negative bacteria ( E. coli (MIC=1 µg/ml, S. aureus (MRSA) C623 (MIC=16

µg/ml)).

Having a significant efficacy against planktonic bacteria (lower MIC value) does not

guarantee antibiofilm activity. However, the antimicrobial activity of a new peptide

certainly increases the chance of effectiveness against biofilm. We believe our approach to

this computational model is different from the literature, and the model can work well in

the real world.
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6 FUTURE WORK

There are a few essential things to consider for our future work. Due to time

constraints and the unavailability of resources, our current work scope did not permit us

to obtain them. The in vitro evaluation of the predicted peptides from our model using a

bacterial assay in a laboratory setting would be the best validation part of our model.

If we can collect effectiveness of peptides, i.e., the MBIC data against a specific

pathogen with larger samples, we could build a robust regression model with a lower

RMSE score. We would also like to build a classifier in our pipeline to predict if the

peptide falls under the group of lower MBIC value (<= 64 µM). The peptides with

higher value would not be considered for further analysis. The peptides, which will be

classified as having a probability of lower MBIC value, could be further analyzed with the

regression model. This process would help to eliminate any biased predictions.

Evaluating our model with natural peptides rather than randomly generated peptides

will be exciting work to do. We want to assess the probability of antibiofilm activity in

different species and genomes. We are looking forward to working with some

metagenomic datasets from different habitats like sea-water or soil microbes. With a

larger dataset, we could apply other machine learning techniques like neural networks to

improve model performance and efficacy.
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7 CONCLUSION

Biofilm is one of the main reasons for causing chronic and implant-related infection.

The growing resistance of biofilm against well known antibiotics makes it an essential

topic for research. While biofilm’s mechanism of action is yet not fully discovered, there

is a growing need to find a solution against these colonies of pathogens. Our research

work focused on the classification of antibiofilm peptides and predicting the efficacy of

those peptides from diverse habitats. The model was built after evaluating many important

peptide features and curating data from the literature. The research work suggests a

cost-effective approach to developing machine learning models to deal with the situation

when a limited dataset and resources are available. The work also provides a vast scope to

evaluate a much larger dataset than an in vitro approach. The model performance looks

very promising. The unique way of ranking the top candidate for the antibiofilm activity

will lead to a faster validation process in the laboratory.
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Appendix A

PERFORMANCE

A.1 Model A Performance with Different Features

We evaluated the performance of our main dataset using the SVM algorithm with a

different combination of features. We combined features like AAC with motif, DPC with

motif, and CTD with the motif. The motif feature was added as per our implemented

approach. The performance of the validation dataset is given in the Table 11. All

performance metrics are listed in percentage (%) format.

Table 11
Performance Evaluation of Different Features with Model A

Model
Performance Specificity Sensitivity Accuracy F1

Score MCC

AAC + Motif 100 79.12 98.16 88.37 88.07

DPC + Motif 99.38 81.25 97.78 86.66 85.67

CTD + Motif 98.96 87.5 97.93 88.41 87.29

A.2 Model B Performance with Different Features

We evaluated the performance of our alternative dataset using the SVM algorithm

with a different combination of features. We assessed our model with the SVM as we

achieved best performance over other algorithm. We combined features like AAC with

motif, DPC with motif, and CTD with the motif.The performance of the validation dataset

is given in the Table 12. All performance metrics are listed in percentage (%) format.

A.3 Performance of Regression Model

The original and predicted values of the XGB Regressor are plotted in the Fig. 13.

The XGBRegreesor has a higher RMSE and standard deviation than SVR, as observed in

the scattered plot.
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Table 12
Performance Evaluation of Different Features with Model B

Model
Performance Specificity Sensitivity Accuracy F1

Score MCC

AAC + Motif 100 70.83 97.37 82.92 82.97

DPC + Motif 98.76 79.16 96.99 82.60 81.07

CTD + Motif 98.55 85.41 97.37 85.41 83.97

Fig. 13. Distribution of predicted and original MBIC Value from XGBR model.
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Appendix B

DATASET

The details of positive dataset with the peptide sequence and length are given in below

Fig.(14, 15, 16, 17).
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Name Sequence Sequence Length

Peptide1 FLGAVLKVAGKLVPAAICKISKKC 24

Peptide2 SLWGKLKEMAAAAGKAALNAVNGLVNQ 27

Peptide3 GFGCPNDYSCSNHCRDSIGCRGGYCKYHVICTCYGCKKRRSIQE 44

Peptide4 FIQHLIPLIPHAIQGIKDIF 20

Peptide5 INWLKLGKAIIDAL 14

Peptide6 GRFKRFRKKFKKLFKKLSPVIPLLHLG 27

Peptide7 GGLRSLGRKILRAWKKYGPIIVPIIRIG 28

Peptide8
SNFDCCLGYTDRILHPKFIVGFTRQLANEGCDINAIIFHTKKKLSVCAN

PKQTWVKYIVRLLSKKVKNM
69

Peptide9 RFGRFLRKIRRFRPKVTITIQGSARFG 27

Peptide10 GLFDVIKKVASVIGGL 16

Peptide11 KTKKKLLKKT 10

Peptide12 FWSFLVKAASKILPSLIGGGDDNKSSS 27

Peptide13 VTCDVLSFEAKGIAVNHSACALHCIALRKKGGSCQNGVCVCRN 43

Peptide14 TFPKCAPTRPPGPKPCDINNFKSKFWHIWRA 31

Peptide15 ALWKEVLKNAGKAALNEINNLV 22

Peptide16 GLWSKIKDAAKTAGKAALGFVNEMV 25

Peptide17 KRLFKKLLFSLRKY 14

Peptide18
LGSCVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGL

KTNAIIVAGQLALWAVQCGLS
68

Peptide19 GIFSKLAGKKIKNLLISGLKG 21

Peptide20 GKIIKLKASLKLL 13

Peptide21 VKLFPVKLFP 10

Peptide22 KWAVRIIRKFIKGFIS 16

Peptide23 GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK 45

Peptide24 NKGCSACAIGAACLADGPIPDFEVAGITGTFGIAS 35

Peptide25 ILPWKWPWWPWRR 13

Peptide26 FIVPSIFLLKKAFCIALKKC 20

Peptide27 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 37

Peptide28 LNLKALLAVAKKIL 14

Peptide29 FFRNLWKGAKAAFRAGHAAWRA 22

Peptide30 GIHDILKYGKPS 12

Peptide31 GLLSGILGAGKKIVF 15

Peptide32 ITSISLCTPGCKTGALMGCNMKTATCHCSIHVSK 34

Peptide33 EVASFDKSKLK 11

Peptide34 FLSLIPHIVSGVASIAKHF 19

Peptide35 FLSMIPKIAGGIASLVKNL 19

Peptide36 FLSLIPAAISAVSALANHF 19

Peptide37 GWGSFFKKAAHVGKHVGKAALTHYL 25

Peptide38 INWLKLGKMVIDAL 14

Peptide39 KTKKKFLKKT 10

Peptide40 RGGRLCYCRRRFCVCVGR 18

Peptide41 KFFKKLKKSVKKHVKKFFKKPKVIGVSIPF 30

Fig. 14. Peptide list of the postive dataset (set1).54



Peptide42 LKRVWKRVFKLLKRYWRQLKKPVR 24

Peptide43 RGLRRLGRKIAHGVKKYGPTVLRIIRIAG 29

Peptide44 KWCFRVCYRGICYRKCR 17

Peptide45 FLPFLKSILGKIL 13

Peptide46 LLPIVGNLLKSLL 13

Peptide47 ILPILSLIGGLLGK 14

Peptide48 FLQHIIGALTHIF 13

Peptide49 FLQHIIGALSHFF 13

Peptide50 FFGSVLKLIPKIL 13

Peptide51 WWWLRKIW 8

Peptide52 FIGMIPGLIGGLISAFK 17

Peptide53 FFGTLFKLGSKLIPGVMKLFSKKKER 26

Peptide54 FLGMIPGLIGGLISAFK 17

Peptide55 ILSAIWSGIKSLF 13

Peptide56 VLLVTLTRLHQRGVIYRKWRHFSGRKYR 28

Peptide57
RTCQSQSHRFRGPCLRRSNCANVCRTEGFPGGRCRGFRRRCFCTTH

C
47

Peptide58 GRFKRFRKKFKKLFKKLSPVIPLLHL 26

Peptide59 GGLRSLGRKILRAWKKYGPIIVPIIRI 27

Peptide60 RGLRRLGRKIAHGVKKYGPTVLRIIRIA 28

Peptide61 KKVVFKVKFK 10

Peptide62 RWGRWLRKIRRWRPK 15

Peptide63 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNL 31

Peptide64 RKSKEKIGKEFKRIVQRIKDFLRNL 25

Peptide65 IGKEFKRIVQRIKDFLRNLVPRTES 25

Peptide66 RKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 31

Peptide67 LLGDFFRKSKEKIGKEFKR 19

Peptide68 LLGDFFRKSKEKIGKEFKRIVQRIK 25

Peptide69 LLGDFFRKSKEKI 13

Peptide70 IGKEFKRIVQRIKDFLRNL 19

Peptide71 RKSKEKIGKEFKRIVQRIK 19

Peptide72 IGKEFKRIVQRIK 13

Peptide73 RIVQRIKDFLRNLVPRTES 19

Peptide74 KKVVFWVKFK 10

Peptide75 KSKEKIGKEFKRIVQRIKDFLRNLVPRTES 30

Peptide76 KRIVQRIKDFLRNLVPRTES 20

Peptide77 KRIVQRIKDFLR 12

Peptide78 FKCRRWQWRMKKLG 14

Peptide79 WKLLSKAQEKFGKNKSR 17

Peptide80 RKSYKCLHKRCR 12

Peptide81 KKHRKHRKHRKHGGSGGSKNLRRIIRKGIHIIKKYG 36

Peptide82 RKSYKALHKRAR 12

Peptide83 LAHQKPFIRKSYKCLHKRCR 20

Peptide84 AKRHHGYKRKFH 12

Fig. 15. Peptide list of the postive dataset (set2).
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Peptide85 GIGKFLHSAKKFGKAFVGEIMNS 23

Peptide86 KIFGAIWPLALGALKNLIK 19

Peptide87 FHFFHHFFHFFHHF 14

Peptide88 SGSLSTFFRLFNRSFTQALGK 21

Peptide89 TFFRLFNRSFTQALGK 16

Peptide90 KNLRIIRKGIHIIKKY 16

Peptide91 TFFRLFNRSFTQALGKGGGKNLRIIRKGIHIIKKY 35

Peptide92 TFFRLFNRGGGKNLRIIRKGIHIIKKY 27

Peptide93 FKKFWKWFRRF 11

Peptide94 TRRRLFNRSFTQALGKSGGGFKKFWKWFRRF 31

Peptide95 TFFRLFNRSGGGFKKFWKWFRRF 23

Peptide96 KWKLFKKIGAVLKVL 15

Peptide97 KRFRIRVRVIRK 12

Peptide98 RLARIVVIRVAR 12

Peptide99 VQWRIRVRVIKK 12

Peptide100 KQFRIRVRV 9

Peptide101 VQFRIRVRIVIRK 13

Peptide102 KRFRIRVRV 9

Peptide103 VQLRIRVAVIRA 12

Peptide104 VQRWLIVWRIRK 12

Peptide105 IVWKIKRWWVGR 12

Peptide106 RFWKVRVKYIRF 12

Peptide107 RIKWIVRFR 9

Peptide108 VRLRIRVAVRRA 12

Peptide109 IRWRIRVWVRRI 12

Peptide110 RRWVVWRIVQRR 12

Peptide111 IFWRRIVIVKKF 12

Peptide112 VRLRIRVA 8

Peptide113 LRIRWIFKR 9

Peptide114 VRLRIRVAVIRK 12

Peptide115 VRLRIRWWVLRK 12

Peptide116 KRFRIRVAVRRA 12

Peptide117 KRWRWIVRNIRR 12

Peptide118 WRWRVRVWR 9

Peptide119 TFFRLFNRGGGWGSFFKKAAHVGKL 25

Peptide120 RIWVIWRR 8

Peptide121 FLGALFKALSKLL 13

Peptide122 HLGHHALDHLLK 12

Peptide123 ASHLGHHALDHLLK 14

Peptide124 LMCTHPLDCSN 11

Peptide125 VTCDVLSFEAKGIAVNH 17

Peptide126 DSHAKRHHGYKRKFHEKHHSHRGY 24

Peptide127 AKRHHGYKRKFHGGG 15

Peptide128 KKKKKKAAFAAWAAFAA 17

Fig. 16. Peptide list of the postive dataset (set3).
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Peptide129 KKKKKKKKKKAAFAAWAAFAA 21

Peptide130 CWFWKWWRRRRR 12

Peptide131 FFGWLIKGAIHAGKAIHGLIHRRRH 25

Peptide132 RWKRWWRRKK 10

Peptide133 RKKRWWRRKK 10

Peptide134 IRIKIRIK 8

Peptide135 IRVKIRVKIRVK 12

Peptide136 DCYCRIPACIAGERRYGTCIYQGRLWAFCC 30

Peptide137 DHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK 36

Peptide138 GIGKFLHSAGKFGKAFVGEIMKS 23

Peptide139 YSPWTNF 7

Peptide140 ALWKTLLKKVLKA 13

Peptide141 ALWKTLLKKVLKAYSPWTNF 20

Peptide142 RWRWRWF 7

Peptide143 FIKHFIHRFGGGRWRWRWF 19

Peptide144 FIKHFIHRFSATRWRWRWF 19

Peptide145 FIKHFIHRFGGGFKKFWKWFRRF 23

Peptide146 GWKKWLRKGAKHLGQAAIK 19

Peptide147 GQIINLK 7

Peptide148 RWRW 4

Peptide149 RWRWRW 6

Peptide150 RWRWRWRW 8

Peptide151 VNWKKILGKIIKVVK 15

Peptide152 GIGAVLKVLTTGLPALISWIKRKRQQ 26

Peptide153 TLISWIKNKRKQRPRVSRRRRRRGGRRRR 29

Peptide154 CTLISWIKNKRKQRPRVSRRRRRRGGRRRR 30

Peptide155 TLISWIKNKRKQRPRVSRRRRRRGGRRRRC 30

Peptide156 TLISWIKNKRKQCRPRVSRRRRRRGGRRRR 30

Peptide157 LWKTLLKKVLKAAA 14

Peptide158 NEEGFFSARGHRPLDGGGKKKKKK 24

Peptide159 ICIFCCGCCHRSKCGMCCKT 20

Peptide160 KRFKKFFKKLKNSVKKRAKKFFKKPKVIGVTFPF 34

Peptide161 KRFKKFFKKLKNSVKKRFKKFFKKLKVIGVTFPF 34

Peptide162 FKCRRWQWRMKKLGAPSITCVRRAF 25

Peptide163 GLKLRFEFSKIKGEFLKTPEVRFRDIKLKDNRISVQR 37

Peptide164 RFRRLFRIRVRVLKKI 16

Peptide165 FRIRVRV 7

Peptide166 AFKAFWKFVKFVK 13

Peptide167 KWFWKFVKFVK 11

Peptide168 IKKILSKIKKLLK 13

Peptide169 GRRRRSVQWCA 11

Peptide170 YAPWTNF 7

Peptide171 KRWWKWWRRC 10

Peptide172 IRWRIRVWVRRIC 13

Fig. 17. Peptide list of the postive dataset (set4).
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Peptide173 KRWRIRVRVIRKC 13

Peptide174 WIVVIWRRKRRRC 13

Peptide175 YAPWTNA 7

Peptide176 RILSILRHQNLLKELQDLAL 20

Peptide177 KWKVFKKIEKMGRNIRNGIVKAGPAIAVLGEAKAL 35

Peptide178 GIGLFLHSAGLFGLAFVGEIMKS 23

Peptide179 CVNWKKILGKIIKVVK 16

Peptide180 FFGKVLKLIRKIF 13

Peptide181 GRWKRWRKKWKKLWKKLS 18

Peptide182 RLCRIVVIRVCR 12

Peptide183 KWKLFKKIGIGKFLHSAKKF 20

Peptide184 RPAFRKAAFRVMRACV 16

Peptide185 LLLFLLKKRKKRKY 14

Peptide186 GIWKKWIKKWLKKLLKKLWKKG 22

Peptide187 LAREYKKIVEKLKRWLRQVLRTLR 24

Peptide188 IGKEFKRIVERIKRFLRELVRPLR 24

Peptide189 MLCVLQGLRE 10

Peptide190 ELRLVCMGQL 10

Peptide191 MLCVLQGLREGG 12

Peptide192 MLCVLQGLREC 11

Peptide193 VRLIVAVRIWRR 12

Peptide194 RRWIRVAVILRV 12

Peptide195 VRLIRAVRAWRV 12

Peptide196 VRWARVARILRV 12

Peptide197 VRLIWAVRIWRR 12

Peptide198 VRLIVRIWRR 10

Peptide199 RFKRVARVIW 10

Peptide200 IGIKLLKSKLKAL 13

Peptide201 IKIKIKIK 8

Peptide202 FKKVIVIRRWFI 12

Peptide203 KRIRWVILWRQV 12

Peptide204 VFLRRIRVIVIR 12

Peptide205 RIVIVRIRRLFV 12

Peptide206 VFWRRIRVWVIR 12

Peptide207 RIVWVRIRRWFV 12

Peptide208 VQLRAIRVRVIR 12

Peptide209 RIVRVRIARLQV 12

Peptide210 VQLRRIRVWVIR 12

Peptide211 RIVWVRIRRLQV 12

Peptide212 VQWRAIRVRVIR 12

Peptide213 RIVRVRAIRWQV 12

Peptide214 VQWRRIRVWVIR 12

Peptide215 RIVWVRIRRWQV 12

Peptide216 AKRRRGYKRKFKK 13

Fig. 18. Peptide list of the postive dataset (set5).
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Peptide217 GTPGPQGIAGQRGVV 15

Peptide218
GTPGPQGIAGQRGVVAEAAAKEAAAKEAAAKASGSLSTFFRLFNRS

FTQALGK
53

Peptide219 CGGLLLFLLKKRKKRKY 17

Peptide220 NGVQPKYKWWKWWKKWW 17

Peptide221 NGVQPKYRWWRWWRRWW 17

Peptide222 PFWRIRIRR 9

Peptide223 PFFWRIRIRR 10

Peptide224 FWRRFWRR 8

Peptide225 FWRIRIRR 8

Peptide226 KRAKKFFKKLK 11

Peptide227 KRAKKFFKKPK 11

Peptide228 KRFKKFFKKLK 11

Peptide229 LKLLKKLLKKLLKLL 15

Peptide230 KKKLLLLLLLLLKKK 15

Peptide231 LLLLLKKKKKKLLLL 15

Peptide232 KNLRRIIRKGIHIIKKYG 18

Peptide233 WKKIRVRLSA 10

Peptide234 KWKIRVRLSA 10

Peptide235 KIKWILKYWKWS 12

Peptide236 RIRWILRYWRWS 12

Peptide237 GLLWHLLHHLLH 12

Peptide238 LAAKLTKAATKLTAALTKLAAALT 24

Peptide239
DGVKLCDVPSGTWSGHCGSSSKCSQQCKDREHFAYGGACHYQFPS

VKCFCKRQC
54

Peptide240 EHFAYGGAKHYQFPSVKKFKKRQK 24

Peptide241 RRRWWWWV 8

Peptide242 FLSLIPKIAGGIAALAKHL 19

Fig. 19. Peptide list of the postive dataset (set6).
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