
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2020

Adaptive Learning Technique For Facial Recognition Adaptive Learning Technique For Facial Recognition

Rachana Dineshkumar Bumb
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Bumb, Rachana Dineshkumar, "Adaptive Learning Technique For Facial Recognition" (2020). Master's
Theses. 5138.
DOI: https://doi.org/10.31979/etd.x3ps-ftpm
https://scholarworks.sjsu.edu/etd_theses/5138

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/5138?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5138&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

ADAPTIVE LEARNING TECHNIQUE FOR FACIAL RECOGNITION

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Rachana Dineshkumar Bumb

December 2020

© 2020

Rachana Dineshkumar Bumb

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

ADAPTIVE LEARNING TECHNIQUE FOR FACIAL RECOGNITION

by

Rachana Dineshkumar Bumb

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

SAN JOSÉ STATE UNIVERSITY

December 2020

Dr. Harry Li, Ph.D. Department of Computer Engineering

Sirkeci, Birsen, Ph.D. Department of Electrical Engineering

Younghee Park, Ph.D. Department of Computer Engineering

ABSTRACT

ADAPTIVE LEARNING TECHNIQUE FOR FACIAL RECOGNITION

by Rachana Dineshkumar Bumb

This research describes the adaptive learning technique for facial recognition. It is a

common practice in convolutional neural network(CNN) based facial recognition to save

its trained result on a large dataset and then load and apply it to ongoing facial

recognition tasks. This generally used method lacks adaptation, and the ongoing evolution

of new knowledge poses a key technical challenge. In this research, we propose a

continued learning technique to incorporate new knowledge derived in each facial

recognition process. A positive recognition with confidence score is assigned, and then

the image associated with this confidence is added to the image dataset for ongoing

training. Pre-trained CNN on a similar small dataset serves as the starting point for this

ongoing training technique, which leads to a significant reduction in the training time and

enhancement of the recognition rate. This research is inspired by the evolutionary

adaptive learning talk given by Dr. Harry Li in the 2019 SiliconValley AI Event. This

research is conducted to provide proof-of-concept groundwork to demonstrate the

feasibility of continued learning and adaptation while executing the FaceNet/ResNet

facial recognition algorithm. In this research, the proof-of-the-concept algorithm is

demonstrated on a simple feed-forward neural network, then tested with an adaptive face

technique to demonstrate the learning acceleration from the adaptive process.

Experiments confirm the adaptive learning on FaceNet and ResNet as per the

proof-of-the-concept by reducing the number of epochs required to reach a convergence

point by approximately 50%. This states the use of adaptive learning techniques in

software that require identifying images of aging people concerning time.

ACKNOWLEDGMENTS

First and foremost, praises and thanks to God, for his showers of blessings throughout

my research journey. I would like to express my deep and sincere gratitude to my research

advisor Professor Harry Li, for providing me invaluable guidance and pushing me to

complete this research. His vision and motivation have deeply inspired me. I would also

like to thank my thesis committee members, Professor Birsen Sirkeci and Professor

Kaikai Liu for taking time out of their busy schedule to be on the committee and help

provide any helpful suggestions for the paper. I would like to thank Minh Duc Ong and

the CTI One Corporation team for helping me create the foundation of this research by

having timely discussions and sharing GitHub repositories. I would also like to thank all

my fellow students and friends, both undergraduate and graduate, for encouraging me to

push on forward when challenges came up.

Last, but not least, I would like to thank my family and Niraj. Without their support, I

would have never been able to complete this thesis to pursue my dreams.

v

TABLE OF CONTENTS

List of Tables . viii

List of Figures . x

1 Introduction. 1
1.1 Problem Statement . 1
1.2 Research Objectives . 2

2 Literature Survey . 5
2.1 Facial Recognition . 5

2.1.1 Feature Extraction . 6
2.1.2 Decision Making by Cluster Analysis . 8

2.2 FaceNet . 9
2.3 ResNet . 11

3 Methodology . 13
3.1 FaceNet Architecture Design . 13
3.2 Triplet Loss Function . 14
3.3 Training FaceNet with Triplet Loss and its Convergence 19

4 Implementation . 24
4.1 Feasibility Study with Adaptive Feed Forward Network 24
4.2 David Sandberg - Baseline Implementation . 34
4.3 Adaptive Learning for FaceNet . 36

5 Comparative Study of Adaptive ResNet . 44
5.1 Discussion of ResNet . 44
5.2 Results of Adaptive ResNet Training . 47

6 Future Work . 50

7 Conclusions . 52

Literature Cited . 53

Appendix A: Max-pooling in FcaeNet . 57
A.1 Convolutional, max-pooling and L2 layer in FaceNet 57

Appendix B: Adaptive Architecture. 58
B.1 Code for Simple Feed Forward Neural Network . 58

vi

B.2 Code for Adaptive Simple Feed Forward Neural Network. 64
B.3 Code for FaceNet . 69
B.4 Code for Adaptive FaceNet . 71

vii

viii

LIST OF TABLES

Table 1. Range of Landmark Points for Different Facial Parts 6

Table 2. Sample Embeddings of test-image 2, test-image 3, test-image 4 7

Table 3. Dataset for Feasibility Study of Feed Forward Network Training
without Prior Knowledge . 25

Table 4. Dataset for Feasibility Study of Feed Forward Network Training
with Prior Knowledge . 28

Table 5. Architecture of FaceNet Code . 34

Table 6. Our Customer Designed Dataset for FaceNet Training without Prior
Knowledge. 38

Table 7. Our Customer Designed Dataset for FaceNet Training with Prior
Knowledge. 39

Table 8. Updated FaceNet Parameters for Adaptation . 39

Table 9. Our Customer Designed Dataset for ResNet Training without Prior
Knowledge . 45

Table 10. Our Customer Designed Dataset for ResNet Training with Prior
Knowledge . 46

ix

LIST OF FIGURES

Fig. 1. Detection, extraction, classification: facial recognition pipeline 5

Fig. 2. Two important steps of facial recognition: feature extraction and
clustering. 5

Fig. 3. Test-image 1 to plot facial landmarks. 6

Fig. 4. Sixty-Eight facial landmarks plotted on a sample test-image 2.. 7

Fig. 5. Sixty-Eight facial landmarks plotted on a real-time sample test-images. 7

Fig. 6. Four types of cluster analysis (modified from by Bijl and Erik [11]). . 8

Fig. 7. FaceNet input: face image (test image 5), FaceNet output: embed-
ding vector. 9

Fig. 8. Two dimensional plot(dimensional reduction for illustration purpose)
of faces based on clustering.. 10

Fig. 9. Skip Connection in ResNet. 11

Fig. 10. Block diagram of FaceNet by Schroff et al. [1] . 13

Fig. 11. Triplet loss block diagram of FaceNetby Schroff et al. [1] 14

Fig. 12. Embeddings for triplet loss. 14

Fig. 13. Learning from Triplets. 15

Fig. 14. Flowchart representation of FaceNet training.. 22

Fig. 15. 2D plot of dataset for feed-forward network.(Red circles: points of
class 1, Blue circles: points of class 0). 26

Fig. 16. Graph of pre-adaptive learning loss in feed-forward network. 27

Fig. 17. 2D plot of dataset for feed-forward network with additional data. 28

Fig. 18. Graph of post-adaptive learning loss in feed-forward network. 29

Fig. 19. Comparison of pre-adaptive and post-adaptive learning losses in
feed-forward network. 30

x

Fig. 20. Loss vs Epochs for pre-adaptive and post-adaptive simple feed-
forward network. 31

Fig. 21. Loss vs Epochs for pre-adaptive and post-adaptive simple feed-
forward network (contd.). 32

Fig. 22. Loss vs Epochs for pre-adaptive and post-adaptive simple feed-
forward network(contd.). 33

Fig. 23. Architecture of pilot test platform for adaptive learning. 33

Fig. 24. Code architecture: David Sandberg’s FaceNet github repo. 35

Fig. 25. Code architecture: David Sandberg’s FaceNet github repo(contd.). . . . 35

Fig. 26. Images of number of persons in the dataset to train FaceNet. 36

Fig. 27. Our customer designed small pre-adaptive FaceNet dataset. 37

Fig. 28. Our customer designed small adaptive FaceNet dataset. 38

Fig. 29. Graph of loss vs epochs of Adaptive FaceNet. 40

Fig. 30. Pre-adaptive and post-adaptive FaceNet learning loss.. 41

Fig. 31. Pre-adaptive and post-adaptive FaceNet learning loss(contd.). 42

Fig. 32. Our customer designed small pre-adaptive ResNet dataset. 45

Fig. 33. Our customer designed small adaptive ResNet dataset. 46

Fig. 34. Graph of Adaptive ResNet learning loss. 47

Fig. 35. Pre-adaptive and Post-adaptive ResNet learning loss. 48

1 INTRODUCTION

1.1 Problem Statement

Face recognition and face detection are two of the most discussed problems/ use-cases

in the fields of computer vision and deep learning [1], [2], [3]. These tasks are achieved

by manually extracting features from faces and then computing the patterns such as eye,

nose, lips, etc. Deep learning has been used to automate this task and has been successful

largely; it faces scaling with great accuracy. For example, if a softmax layer is used to

classify images into respective classes, the trained neural network has to be retrained each

time that a new face is added to an existing database, and hence, this becomes a huge

bottleneck. The FaceNet paper by Schroff et al. [1] significantly addresses this issue.

However, lack of adaptation is one of the problems faced by various models, including

FaceNet by Schroff et al. [1] and ResNet by He et al. [2]. Researchers at Google

developed Facenet, and researchers at Microsoft developed ResNet. David Sandberg’s

implementation of FaceNet architecture acts as the baseline implementation for this

research. He provided an implementation of FaceNet with triplet loss for training. His

implementation provides two pre-trained models by Sandberg [4] on FaceNet to be used

as part of transfer learning. Transfer learning uses the knowledge learned for some tasks

to solve another similar task by Pan et al. [5]. Well-trained and well-constructed neural

networks trained over large datasets are loaded to boost the performance of training the

network on a new dataset of comparatively small size. Using pre-trained models, the

model’s weights and architecture can be directly used to apply the learning to the new

dataset for training on the same neural network architecture. One has to be extremely

careful while using a pre-trained model. If the new problem statement is completely

different from one of the pre-trained models, the learning is not useful and hence provide

wrong predictions and be inaccurate. To avoid this, the adaptive learning technique is

1

proposed in this research by confirming the results obtained on the proof-of-the-concept

simple feed-forward network and then testing it on FaceNet and ResNet.

If a neural network has to be trained from scratch on a large dataset, it may take a

long time to complete a big dataset training. For FaceNet, it takes hours or days to train

the model from scratch on datasets such as CASIA-WebFace by Yi et al. [6], or

VGGFace2 by Cao et al. [7] because it has 7.5M parameters with 1.6B FLOPS, described

by Schroff et al. [1]. This is not good enough to train a neural network from scratch each

time for a new dataset. If there is a technique that can save the model and checkpoints on

a small trained dataset and then adapt this learning to the same dataset with some

additional data to be trained on the same network, the amount of time required for training

would be reduced to a large extent and also the performance of the model increases.

1.2 Research Objectives

The first objective of this thesis is to study and investigate FaceNet implementation

for adaptive development. Two different pre-trained models, trained on CASIA-WebFace

by Yi et al. [6] and VGGFace2 by Cao et al. [7] datasets, are made available on the

GitHub repository of David Sandberg for FaceNet implementation by Sandberg [4].

Although these pre-trained models can be used to retrain the FaceNet architecture on

custom datasets, they lack the feature of adaptation for ongoing training with the addition

of new faces to the dataset. This research studies and investigates the FaceNet architecture

and its implementation in detail to understand the parameters used in training.

The second objective of this research is to design and develop an adaptive learning

algorithm to demonstrate the feasibility of adaptive learning on a simple feed-forward

network. A simple feed-forward neural network is considered the foundation for testing

the proposed research’s feasibility for ongoing learning with an increasing number of data

points in the dataset.

2

The third objective of this research is to implement, test, and verify the proposed

adaptive algorithm on FaceNet and also compare the results with ResNet. These facial

recognition algorithms are considered two of the best algorithms for facial recognition.

Hence a comparative study of adaptive FaceNet with ResNet becomes necessary for the

scope of the proposed research.

While transfer learning is a wonderful technique because pre-trained models can be

easily downloaded, some compelling reasons to train a neural network from scratch are:

1) If the images are preprocessed properly, the network trained on custom data should

be able to classify those images.

2) Training a network from scratch gives better accuracy than a pre-trained model on

unique training data.

3) Tuning of parameters as required.

4) Fragile checkpoints on pre-trained models by Corporation [8].

However, it is still impossible to train the entire network from scratch each time the new

data are available. To overcome this again, a new adaptive learning technique is proposed

in this thesis. A neural network is trained from scratch on a small dataset. The weights

and checkpoints of this network/model are saved and restored when some new data points

are available and added to the existing dataset. Consider this case for facial recognition

algorithms. The dataset here consists of images of different people. Once the saved

weights and checkpoints are restored, the model is again trained. This proposes an

ongoing technique to train a neural network to incorporate new data. A positive

confidence score is assigned to the new data and added to the ongoing training process

dataset. Already trained networks serve as the starting point for this ongoing training

phenomenon, which leads to a significant reduction in training time. Also, the network

converges at a significantly earlier stage compared to training a neural network from

scratch. This also enhances the recognition rate.

3

The proof-of-the-concept for adaptive learning is provided on a simple feed-forward

network in the following sections. The results of this experiment confirm the proposed

adaptive learning technique.

4

2 LITERATURE SURVEY

2.1 Facial Recognition

Recognizing or detecting human faces by computers has been under process and

investigation for a long time. There is widespread use of facial recognition technology in

various domains. Face recognition has a long pipeline of processes. Fig. 1 depicts the

high-level pipeline of face recognition technology (modified from Dulčić [3]).

Fig. 1. Detection, extraction, classification: facial recognition pipeline

First, a face is localized and detected in an input image by a face detection algorithm.

The output face with a bounding box from the face detection algorithm is then passed to a

feature extraction algorithm. Based on these extracted features, faces are passed to the

face classification algorithm to be assigned with a unique ID resulting in clusters with

images of the same person in one cluster. The extracted features are important in

recognizing faces. This phase of facial recognition is a two-step process, as shown in

Fig. 2.

Fig. 2. Two important steps of facial recognition: feature extraction and clustering.

5

2.1.1 Feature Extraction

Simply detecting a face in an image is not helpful in facial recognition. Additional

information about the face is required to take the recognition process further. Taking this

into consideration, facial landmarks are used to extract more information about the face.

Facial landmarks are used to extract salient features from different facial parts, as shown

in Table 1.

Table 1
Range of Landmark Points for Different Facial Parts

Face part Landmark points
Jaw 0–16

Right Brow 17-21
Left Brow 22–26

Nose 27–35
Right Eye 36–41
Left Eye 42–47
Mouth 48–60
Lips 61–67

With the help of extracted facial landmarks, faces can be aligned in an image. In

general, there are 68 facial features/landmarks that can be extracted and plotted on a face

to gain important information about a face. There are various facial landmark detectors,

and all of them similarly mark the landmark points. Fig. 3, Fig. 4 and Fig. 5 contains 7

images of 7 different people to extract and plot the facial features composed of 68

landmark points.

Fig. 3. Test-image 1 to plot facial landmarks.

6

Fig. 4. Sixty-Eight facial landmarks plotted on a sample test-image 2.

Fig. 5. Sixty-Eight facial landmarks plotted on a real-time sample test-images.

These facial features are extracted by using landmark detection DLib algorithms[32].

The facial landmark points on test images are mapped according to Fig. 3. Table 2

describes the facial features extracted from test-images and, these feature values form

embeddings.

Table 2
Sample Embeddings of test-image 2, test-image 3, test-image 4

Landmark Landmark points ID x start y start Arc Length
Left eye 37-42 test-image 4 128 307 10.81
Left eye 37-42 test-image 3 226 425 13.85
Left eye 37-42 test-image 2 483 240 9.64

Nose 28-31 test-image 2 556 266 43

7

Feature extraction plays an important role in FaceNet. We will look into this in the

next section. These extracted feature points are then used as feature vectors in vector

space to make decisions.

2.1.2 Decision Making by Cluster Analysis

This is the third stage in facial recognition. It is the decision making phase, wherein

decisions are made to classify an image in its respective class/cluster. This decision is

based on the vector distances between a new face and already known faces. Cluster

analysis can be performed in various ways, as shown in Fig. 6.

Fig. 6. Four types of cluster analysis (modified from by Bijl and Erik [11]).

One of them is by using the Softmax classifier by Bijl, and Erik [11]. Softmax

classifier classifies a face based on the embeddings of the face. The k-nearest neighbor

can also be used for clustering faces by Bijl and Erik [11]. Cluster analysis is generally

unsupervised. When a neural network generates 128-dimensional feature

vectors/embeddings [25], these embeddings are then passed to the face cluster algorithm.

DBSCAN cluster analysis algorithm is usually used for programs that make use of a small

dataset. In contrast, the Chinese whispers algorithm is used when there is a large dataset

to be trained for facial recognition by Bijl and Erik [11]. In DBSCAN, points or

embeddings which are closely related in an N-dimensional space are clustered together. In

FaceNet, images are represented in 128-bytes embeddings. These embeddings themselves

8

lead to the formation of clustering, usually called agglomerative clustering of faces by

Schroff et al. [1].

2.2 FaceNet

As discussed, one of the most exciting features of deep learning is facial recognition.

There is an immense rise in the adoption of facial recognition in numerous domains.

Various facial recognition architectures have been developed over the years. However, the

one worth commenting and experimenting about is FaceNet. FaceNet is a neural network

architecture developed by researchers at Google that performs face recognition, clustering,

and verification tasks. Deep CNN plus triplet loss forms the basis of FaceNet by Schroff

et al. [1]. The input to FaceNet is an image of a person, and the output of FaceNet is a

128-dimensional embedding that represents the most important features of that particular

input face as shown in Fig. 7 (modified from Schroff et al. [1]). These embeddings are

nothing but vectors. Almost all of the important information about the face in an image is

embedded in this vector. In short, the image of a person or the face in an image is

compressed into a 128-dimensional vector. Moreover, embeddings coming from the same

person are similar. High-dimensional data like images are now compressed into

low-dimensional data called embeddings.

Fig. 7. FaceNet input: face image (test image 5), FaceNet output: embedding vector.

9

In the last section, we have seen that there are 68 facial landmarks. Moreover, the

dataset used to train FaceNet contains images that may have turned in different directions

for the machine to consider them as different images. These images/faces can be aligned

using 68 point facial landmarks to solve this problem of alignment. Rather than using any

bottleneck layer, FaceNet learns to map the images and create embeddings. This marks

the difference between FaceNet and other facial recognition architectures. So, FaceNet

architecture creates embeddings of facial images based on 128 dimensions. How are these

embeddings useful in FaceNet? These embeddings can be represented on a coordinate

system, which means with known embeddings, the face of an image/person can be plotted

on the x-y axis, with similar embeddings into the same cluster. Because 128-dimensional

vector/embeddings practically cannot be plotted, converting this to a 2-dimensional vector

and then plotting it on a graph is fairly easy as shown in Fig. 8.

Fig. 8. Two dimensional plot(dimensional reduction for illustration purpose) of faces
based on clustering.

FaceNet provides unified embedding for facial recognition and clustering. Each face

in the dataset is mapped into a euclidean space matching its similarity for facial

10

recognition and clustering. Once the embeddings are created and stored, they are used to

perform facial recognition and verification in a standard manner by defining a threshold

value. “So, the most important thing to note here is that FaceNet does not define any new

algorithm to carry out the aforementioned tasks, rather it just creates the embeddings,

which can be directly used for face recognition, verification, and clustering.” by Schroff et

al. [1]. Another important phenomenon of FaceNet is the triplet loss function by Schroff

et al. [1]. This will be explained in the next section.

2.3 ResNet

ResNet refers to the Residual Neural Network developed by researchers at Microsoft

by He et al. [2]. An important concept called “skip connections” by He et al. [2] identity

mapping is introduced by this architecture as shown in Fig. 9.

Fig. 9. Skip Connection in ResNet.

This identity mapping does not contain any parameters. Instead, it just adds the output

from the previous layer to the layer ahead. The important point is, the output of one layer

serves as the input to the next layer, and eventually, somewhere in the middle, the output

of one layer as an input to layer over 2-3 hops. This means that a few layers in a deep

network can be skipped using skip connections, which are usually referred to as a residual

block. By looking at backpropagation and vanishing gradient problems, it is clear that

11

skip connections can solve this issue for deeper networks, and the initial layers of the

network can learn/train as fast as the last layers of the network by Sahoo [12].

12

3 METHODOLOGY

3.1 FaceNet Architecture Design

FaceNet is a state-of-art neural network architecture for facial recognition, clustering,

and verification. This neural network is 22 layers deep by Schroff et al. [1] and trains

itself to form an output to be in the form of 128-dimensional embeddings. The triplet loss

function is used in the last layer of the network. The architectural block diagram of

FaceNet is shown in Fig. 10.

Fig. 10. Block diagram of FaceNet by Schroff et al. [1]

The deep architecture in figure above is from GoogleNet architecture by Szegedy et

al. [13] which has many revisions. This deep neural network has some ground-breaking

features:

• 22-layers of deep network

• Efficient

• Faster computational power and 2 times less computational cost compared to

AlexNet

• Low power consumption and low memory usage

• Although network is large, parameters are 12 times less than AlexNet by Deore [14]

The reduction in parameters and faster computational power is the inspiration behind

GoogleNet architecture. This eventually got transferred as the ”Inception module.” The

inception-v1 module has different versions: Inception-v2 and Inception-v3 (Factorization,

BatchNormalization, Label smoothing) by Szegedy [15], Inception-v4 and

Inception-ResNet-v1 by Moindrot [16]. For the ResNet version, a residual connection is

13

added, replacing the inception module’s pooling layer. Specifically, David Sandberg’s

implementation of FaceNet uses the ’Inception-ResNet-v1’ version by Sandberg [9].

3.2 Triplet Loss Function

The Google team introduced triplet loss in their 2015 paper titled ”FaceNet: A Unified

Embedding for Face Recognition and Clustering.” by Schroff et al. [1]. In Fig. 11 below,

the box selected in the red outline acts as the triplet loss function for FaceNet architecture.

Embeddings, or in general terms called feature vectors of images, act as input to the loss

function. Fig. 12 describes the inception module’s position in the architecture to generate

embeddings from an input image. FaceNet is a convolutional neural network that forms

embeddings of an input image into a 128-dimensional vector encoding.

Fig. 11. Triplet loss block diagram of FaceNetby Schroff et al. [1]

Fig. 12. Embeddings for triplet loss.

D =
M

Â
i=1

|| f (xa
i)� f (xp

i)||
2
2 (1)

14

Here in equation (1), f represents a function operated on image xi. These functions act

as embeddings of anchor and positive images. Cost function of triplet loss looks as [20]:

Cost Function =
N

Â
i

Triple Loss Function +L2 Regularization (2)

The deciding factors to calculate cost function in equation (2) are the face triplets and L2

regularization. Then it tries to minimize the distance between an anchor and a positive

sample of the same identity and maximizes the distance between the anchor and a

negative sample of a different identity by Schroff et al. [1]. Fig. 13(modified from

Works [18]) shows the learning and adaptation of learning loss to form proper triplets.

Fig. 13. Learning from Triplets.

The triplet loss function takes face embeddings of three images: anchor, positive and

negative images. An anchor image and a positive image are the same person’s images,

whereas the negative image is a different person’s image. To recognize a person in an

unseen image, firstly, we need to calculate its embeddings. We calculate the distance

between known embeddings and the embedding of an unseen image based on these

embeddings. If this unseen face embedding is close to one of the known embeddings, we

can conclude that the image belongs to this particular person. The FaceNet model aims to

generate encodings/embeddings. There is less distance between the encoding of the

images belonging to the same person and comparatively large distance between the

encoding of the images belonging to different people. To accomplish this goal, triplet loss

15

tries to minimize the distance between similar images, and at the same time, tries to

maximize the distance between different images.

To achieve this, while training a model for classification, weights of parameters are

modified to minimize the loss function. This is a feature vector, highly referred to as ‘face

embeddings,’ which are related by Euclidian distance, such that faces belonging to the

same class produce embeddings with small distances. This triplet loss approach is used in

FaceNet systems that achieve state-of-the-art results on benchmark face recognition

datasets. The triplets that are used to train the model are carefully chosen to be hard

triplets. Because triplets that are considered easy result in a small loss, which is good but

not effective at training the model efficiently. At the same time, hard triplets support

changes to the model and the face embeddings to be predicted.

Objective:

Loss =
N

Â
i=1

⇥
k f a

i � f p
i k

2
2�k f a

i � f n
i k2

2 +a
⇤
+ (3)

The objective of the FaceNet neural network is to minimize equation (3).

k f (xa
i)� f (xp

i)k
2
2a < k f (xa

i)� f (xn
i)k2

2 (4)

More formally, for an embedding function f(x) 2 Rd2 that embeds input data x into a

d-dimensional vector, we want equation (4) for all N possible triplets of xa
i , xp

i , xn
i :

• f(x) takes x as an input and returns a 128-dimensional vector w.

• i denotes i’th input.

• Subscript a denotes Anchor image, p denotes Positive image, n denotes Negative

image.

The objective is to minimize the above equation, which implicitly means:-

Minimizing first term → distance between Anchor and Positive image.

Maximizing second term → distance between Anchor and Negative image.

16

The third term is a bias which acts as the threshold.

8(f (xa
i), f (xp

i), f (xn
i)) 2 T (5)

For any triplet as in equation (5), embedding feature vectors from anchor images,

embedding feature vectors from positive images, and embedding feature vectors from

negative images, equation (2) holds good. As long as this combination of triplets satisfies

equation (2), it belongs to a meaningful dataset for training. The a symbol stands for

margin to ensure that the model does not make the embeddings f(xa
i), f(xp

i), and f(xn
i)

equal to each other in order to satisfy the above inequality.

N

Â
i

⇥
k f (xa

i)� f (xp
i)k

2
2�k f (xa

i)� f (xn
i)k2

2 +a
⇤
+

(6)

This leads to the following loss function over the N possible triplets as in equation (6)

The [x]+ operator stands for max(0,x).

If,

k f (xa
i)� f (xp

i)k
2
2�k f (xa

i)� f (xn
i)k2

2 < 0 (7)

From equation (7), the distance of a negative image from an anchor image is very

large as compared to the distance of a positive image from an anchor image, which is not

a suitable combination of triplet for training.

And if,

k f (xa
i)� f (xp

i)k
2
2�k f (xa

i)� f (xn
i)k2

2 > 0 (8)

From equation (8), the distance of a positive image from an anchor image is very

large as compared to the distance of a negative image from an anchor image, which is

17

also not a suitable combination of triplet for training. Therefore, this states that the triplets

are chosen in such a way that it forces the loss function towards zero(0).

Definition 1: P classes objective function by Li [19]:

D = a1

M1

Â
j=1
k ftrue(x j)� f (x j)k2

2+

a2

M2

Â
j=M1+1

k ftrue(x j)� f (x j)k2
2 + ...

...+ap

Mp

Â
j=Mp�1+1

k ftrue(x j)� f (x j)k2
2

(9)

where

p

Â
i=1

ai = a2 + ...+ap = 1 (10)

Lemma 1: P classes recognition problem can be decomposed as two classes detection at a

time, by grouping P-1 classes into one combined negative class by Li [19].

Property 1: Triplet loss functions for training based on the equally likely assumptions. For

P classes, if the detection task is to recognize an image, based on above lemma, then its

loss function is defined as equation (3) by. Li [19].

Let P=2, so definition 1 becomes:

D = a1

M1

Â
j=1
k ftrue(x j)� f (x j)k2

2+

a2

M2

Â
j=M1+1

k ftrue(x j)� f (x j)k2
2

(11)

where

a1 = a2 =
1
2

(12)

18

Equation (12) proves property 1. Alpha is added in the equation to further minimize the

distance of the positive class from the anchor class.

3.3 Training FaceNet with Triplet Loss and its Convergence

During FaceNet training, the deep architecture extracts facial features. These features

are then converted into 128-dimensional embeddings. To keep positives far apart from

negatives, a margin represented by alpha is added to the positive value, and this is how the

positives are moved further apart from negatives. Triplet selection: This forms the basis

for the training of FaceNet architecture. The main intention behind training the FaceNet is

selecting (anchor, positive) and (anchor, negative) pairs of images. If these pairs are

selected randomly, the loss function would be satisfied to zero very easily, but the network

will not learn much from it. Additionally, the gradient descent may converge to the wrong

weights by Deore [17]. Triplets in FaceNet are selected by online mining by Schroff et

al. [1] There are three categories of triplets by Moindrot [16]:

• easy triplets: triplets which have a loss of 0, because

Distance of (anchor,positive)+alpha(margin)¡distance of(aanchor,negative)

• hard triplets: triplets where the negative is closer to the anchor than the positive, i.e.

Distance of (anchor,negative) ¡ distance(anchor,positive)

• semi-hard triplets: triplets where the negative is not closer to the anchor than the

positive, but which still have positive loss:

Distance of (anchor,positive)¡distance of (anchor,negative)¡distance of

(anchor,positive)+alpha(margin)

These definitions are highly dependent on the position/distance of the negative from

anchor and positive. Thus, these three categories can be extended to easy negative triplets,

hard negative triplets, and semi-hard negatives as well. In the original paper of FaceNet,

authors pick random semi-hard negative triplets for each pair of anchor and positive

images in a triplet. Then the network is trained on these triplets by Schroff et al. [1].

19

The FaceNet paper suggests that using extremely hard triplets to train the model may

result in early convergence but may cause a broken model. To avoid this, using semi-hard

triplets becomes the preferred option. This is achieved by using a reasonably small

mini-batch of images. In the original paper, the author suggests using 40 faces in a

mini-batch. The condition required to satisfy the ‘semi-hard’ triplet selection is:

Distance of (Anchor,Positive) ⇡ Distance of (Anchor,Negative)

Algorithm 1 describes the selction of anchor image and formation of minibatches in

original FaceNet paper. FaceNet requires many images to train itself by Deore [17]. To

Algorithm 1 Anchor selection algorithm for Facenet

input: anchor image xa
i , positive image xp

i , negative image xn
i

1: repeat
2: generate mini-batch of 40 images per identity/person.
3: randomly sample xn

i for each mini-batch.
4: for each mini-batch do
5: select all (xa

i , xp
i) pairs within the batch.

6: for each (xa
i , xp

i) do
7: select xn

i from the mini-batch
8: until all triplets are formed

return (xa
i , xp

i , xn
i)

keep the experiment simple and understandable, assume that there are just a couple of

images of 3 persons. Similar logic can be applied if there are more than 3 numbers of

people. At first, FaceNet generates vectors/embeddings for each image of all the persons.

Moreover, hence, these images are randomly scattered on the coordinate system.

Algorithm 2 describes the modified adaptive FaceNet training pseudocode based on this

research.

Fig. 14 represents the flowchart of FaceNet training process.

Learning/ training process of FaceNet starts this way:

1) Randomly initialize the FaceNet parameteres.

20

Algorithm 2 Adaptive FaceNet algorithm

input: 10 images per person (3 persons)
1: repeat
2: randomly initialize the FaceNet parameteres or load the saved checkpoint.
3: for each image do
4: preprocess images to 160x160
5: generate random vectors/embeddings 128-d
6: form triplets:
7: randomly select anchor image
8: select negative and positive image
9: adjust facenet parameteres:

f (xi) = [128d]

10: for each triplet do
11: triplet loss function:

Â iN
h�� f (xa

i)� f (xp
i)
��2

2�k f (xa
i)� f (xn

i)k
2
2 +a

i
+

12: for fast convergence do
13: select triplets:
14:

HardPositive : Argmax
�� f (xa

i)� f
�
xp

i
���2

2

15:

HardNegative : Argmink f (xa
i)� f (xn

i)k
2
2

16: train on Inception Network Architecture
17: save the checkpoints
18: until loss � stop threshold [convergence point]

return saved checkpoint

2) Preprocess images to 160x160.

3) Generate embeddings of all the images.

4) Form triplets.

5) Selection of an anchor image at random.

6) Selection of a positive image(belonging to the same person as that of anchor image)

at random.

21

Fig. 14. Flowchart representation of FaceNet training.

7) Selection of a negative image(belonging to a different person from that of anchor

and positive image) at random.

8) Adjusting the parameters of Facenet architecture in such a way that anchor and

positive images are closer to each other than negative image.

All the above steps are repeated until there are no possibilities left.

The above transformation results in forming clusters eventually with similar images in

one cluster. However, considering all these possibilities of triplets for training a Facenet

model will be huge. Thus, triplets are selected with proper parameters. FaceNet paper by

Schroff et al. [1] suggests two different methods for triplet selection:

• Offline selection of triplets: at the beginning of each epoch embeddings on the

training set are computed, and then, only hard or semi-hard triplets are selected.

22

Compute the loss of these B triplets and then backpropagate in the network by

Moindrot [16]. Updating the offline mined triplets is necessary and so this method is

inefficient.

• Online selection of triplets: for each batch of inputs, compute useful triplets on the

fly. For sure, most of these triplets are not valid, because they do not satisfy the

condition of having 1 anchor, 1 positive and 1 negative image. But as this method

gives more number of triplet pairs than offline mining of triplets, hence it is more

efficient

23

4 IMPLEMENTATION

4.1 Feasibility Study with Adaptive Feed Forward Network

As stated, this research’s research objective is to minimize the time required for

training and keep an ongoing process of training when additional data points are added to

the dataset. This adaptive learning process is proved by experimenting with it on a small

and simple feed-forward network, which stands as the proof-of-the-concept. This proof is

used to implement adaptive learning on the basic neural network and should not be

considered a final piece of work. Algorithm 3 describes the overview of the adaptive

feed-forward network.

Algorithm 3 Adaptive Feed Forward Network Pseudo Code

input: (x1, x2) coordinates of point
1: repeat
2: initialize the weights w i j and biases b i j or load the saved weights and biases.
3: Forward pass through sigmoid activation function:

y = f (x1w1 + x2w2 +b)

4: for each element in dataset do
5: train/minimize the loss:

MSE =
1
n

n

Â
i=1

(ytrue� ypred)
2

6: backpropagation: partial derivative:

∂L
∂w1

=
∂L

∂ypred
⇤

∂ypred

∂h1
⇤ ∂h1

∂w1

7: update weight equation(SGD):

w1 w1�h ∂L
∂w1

8: Save the updated weights and biases (model)
9: until loss � stop threshold [convergence point]

return 0 or 1

Feed-forward neural network dataset only serves to prove the concept of adaptive

learning. It is not used to demonstrate the capability of network decision purpose, nor for

linear/non-linear decision-making functions. The amount of data points in the dataset is

24

not the point of concern. Instead, it is the evolution of data points concerning time and the

prior knowledge being used for adaptive learning. Training a neural network from scratch

requires a double expense of time, utilizes resources, and increases computation. All of

this can be reduced by adopting adaptive learning. It uses prior knowledge plus new data

to train the network, which reduces computation, required resources, and time for training.

It trains the network on an already saved network model and updates the last weights

based on newly added data to the already trained dataset. First, consider a simple

feed-forward neural network with two hidden layers and 2 inputs (x1, x2) as coordinates

of a point. This acts as the input to the network. A fine line can be drawn between red

circles and blue circles in the plot. This fine line represents 2 different clusters. Red

circles belong to class 1, and blue circles belong to class 0. Graphical representation of

dataset for simple feed-forward neural network to train without prior knowledge: Table 3

provides the exact coordinates represented by the red and blue circles.

Table 3
Dataset for Feasibility Study of Feed Forward Network Training without Prior Knowledge

x1 x2 Classes
1 2.5 1
1 3 1

2.1 3.4 1
2.1 1 0
3.3 1 0
3 2.3 0

Fig. 15 represents the 2D plot of data points used to train feed-forward neural

network. Based on the above dataset, a simple feed-forward network is trained by setting

the stop threshold value to be 0.004. Below is the stepwise methodology to implement

and save the trained feed-forward network. Step 1: Load data (CSV file):

Input Variables (X): Array of x and y co-ordinates.

Output Variables (y): Class variable (0 or 1)

Once the CSV file is loaded into memory, split the columns of data into input and output

25

Fig. 15. 2D plot of dataset for feed-forward network.(Red circles: points of class 1, Blue
circles: points of class 0).

variables.

Step 2: Define the Keras Model:

A sequential model is created by adding 1 input and 1 output layer. The preferred

activation function used is the sigmoid activation function.

Step 3: Compile Keras Model:

Compiling the model uses efficient numerical libraries such as Theano or TensorFlow.

When compiling, additional properties are specified which are required to train the

network. The loss function: “binary crossentropy“ is used to evaluate a set of weights, the

Adam optimizer is used to search through different weights for the network and any

optional metrics to be collected and reported during training.

Step 4: Fit Keras Model:

Fitting of model means to execute or to train the model on some data. Training occurs

over epochs and each epoch is split into batches.

• Epoch: One pass through all of the rows in the training dataset.

• Batch: One or more samples considered by the model within an epoch before

weights are updated.

26

While training the network for the very first time , epoch value is set to 500.

Step 5: Evaluate the model:

The simple feed-forward neural network is now trained on the entire dataset and evaluated

for the performance of the network on the same dataset. The model.evaluate() function

returns a list with two values. The first is the loss of the model on the dataset and the

second is the accuracy of the model on the dataset.

Step 6: Save the model

To save the model, the Keras checkpoint feature is used. To decide which version should

be stored, Keras observes the loss function and chooses the model version that has a

minimal loss.

checkpoint = ModelCheckpoint(filepath, monitor = ’loss’, verbose = 1, save best only =

True, mode = ’min’)

Save the model in the x.h5 file. Fig. 16 shows the graph of decreasing loss concerning the

number of epochs for training a simple feed-forward neural network without adaptive

learning. Once the model weights and biases are saved in x.h5 file, now, one more data

Fig. 16. Graph of pre-adaptive learning loss in feed-forward network.

27

point is added in each class in the previous dataset as shown in Fig. 17 with its exact

coordinates shown in Table 4.

Fig. 17. 2D plot of dataset for feed-forward network with additional data.

Table 4
Dataset for Feasibility Study of Feed Forward Network Training with Prior Knowledge

x1 x2 Classes
1 2.5 1
1 3 1

2.1 3.4 1
2 2.3 1

2.1 1 0
3.3 1 0
3 2.3 0
3 2.1 0

For adaptive learning on a simple feed-forward neural network, all the steps

implemented for non-adaptive simple feed-forward neural networks are implemented

except for one change. Here, the initialization of weights and biases changes from random

initialization to restoring the previously saved weights and biases and then continuing the

entire process from step one to step 6. And so step 7 becomes:

Step 7: Restore the saved model: Restore the file’s model by using the load model()

function.

28

new model = load model(”x.h5”)

The model is now restored and ready to start the training. Fit the new model with

stop threshold or number of epochs (whichever reaches first acts as the stopping criteria

for the training to stop). Observe the log output of loss and number of epochs required to

converge the model before saving the model and after loading the model from the saved

file and calling the fit function again.

An important point to notice is that the training did not start from scratch. Instead,

Keras continued fitting the model from it left off with reduced loss and training time to

get converged. Fig. 18 shows the graph of decreasing loss concerning the number of

epochs for training a simple feed-forward neural network with adaptive learning. In this

experiment, pre-adaptive training and post-adaptive training are performed for 1000

epochs and the learning losses are recorded. For the first time, the stop threshold loss =

0.004 in pre-adaptive learning was recorded at epoch 640, and in post-adaptive learning, it

was recorded at epoch 18. The training time required to converge the model is reduced

compared to the previous model and can be seen in Fig. 19.

Fig. 18. Graph of post-adaptive learning loss in feed-forward network.

29

Fig. 19. Comparison of pre-adaptive and post-adaptive learning losses in feed-forward
network.

Observations: Training starts from where the last training was saved. Because the

previously trained model was saved in a file and loaded again to resume training on the

new data and adapted into the model. This has saved the computation of training from

scratch and also reduced the time required for training. Comparison of training epochs

and losses is based on N and N new.

Here,

N= number of epochs for the network to converge without prior training knowledge i.e.

without adaptive learning.

N new = number of epochs for the network to converge at the same point with prior

training knowledge i.e. with adaptive learning. Learning losses recorded are as shown in

Fig. 20, Fig. 21 and Fig. 22. Consider the number of epochs required to reach a

convergence point in training a neural network without prior knowledge is N. And the

number of epochs required to reach the same convergence point in training a neural

network with prior knowledge is N new. If N new ¡ N, only then this

proof-of-the-concept can be proved. Experimental results: A simple feed-forward neural

network with one input layer, one hidden layer, and one output layer.

30

Fig. 20. Loss vs Epochs for pre-adaptive and post-adaptive simple feed-forward network.

The number of epochs to reach the convergence point are:

N = 640, N new = 180 with loss function being = 0.004

N new/N = 180/640 = 28.125%

This leads to an accuracy of A= (640-180)/640= 71.875%

31

Fig. 21. Loss vs Epochs for pre-adaptive and post-adaptive simple feed-forward network
(contd.).

This is calculated based on the losses and epochs recorded for pre-adaptive learning

and post-adaptive learning of a simple feed-forward network. The architecture of the pilot

test platform for an adaptive feed-forward network is as shown in Fig. 23. When the same

feed-forward network is modified by adding one more hidden layer, which means the new

neural network has one input layer, two hidden layers, and one output layer.

32

Fig. 22. Loss vs Epochs for pre-adaptive and post-adaptive simple feed-forward
network(contd.).

Fig. 23. Architecture of pilot test platform for adaptive learning.

For this new neural network,

N=570, N new=10 with loss function being = 0.004

N new/N = 10/570 = 1.75%

33

This leads to an accuracy of A new = (570-10)/570 = 98.24%

Hence, A new is greater than A

This proves the concept of adaptive learning based on a feed-forward network. Once

the model is trained on some data points, it can then be extended by saving and reloading

the model again with additional data points with reduced loss and time. The same theory

and implementation can now be tested on FaceNet and ResNet for adaptive learning.

4.2 David Sandberg - Baseline Implementation

David Sandberg provides a baseline implementation by Sandberg [4] for the original

FaceNet paper by Schroff et al. [1] with triplet loss and softmax loss. Although 2

pre-trained models are made available by David Sandberg on his GitHub repository,

which is trained on CASIA-Webface and VGGFace2 datasets, we have not used any of

them. In this research, FaceNet neural network is trained from scratch to validate

proof-of-the-concept and receive significant results. Testing of FaceNet for adaptive

learning is implemented the same way as an adaptive simple feed-forward neural network

following all the 7 steps. The tree structure of David Sandberg’s GitHub repository by

Sandberg [4] is as shown in Table 5.

Table 5
Architecture of FaceNet Code

Folders Files uses

Data (images)
train raw
train aligned
test raw
test aligned

Collection of dataset required for training FaceNet

src (align) detect.py
align dataset mtcnn.py

face detection / alignment algorithm
align and crop the dataset in proper size

src
facenet.py
train tripletloss copy1
train tripletloss copy2

triplet loss, center loss, train, crop functions
Training a face recognizer without prior knowledge
Training a face recognizer with prior knowledge

Fig. 24 and Fig. 25 shows the tree structure of the code architecture in local system.

The particular feature of FaceNet is its loss function. Triplet loss is the name of the

function that is used for face validation. However, David’s FaceNet implementation has

34

Fig. 24. Code architecture: David Sandberg’s FaceNet github repo.

Fig. 25. Code architecture: David Sandberg’s FaceNet github repo(contd.).

two loss functions, ‘Triplet loss’ and ‘Softmax activation with cross-entropy loss.’ For

training, David Sandberg’s FaceNet implementation suggests making use of Softmax loss

function over triplet loss for better results. Usually, in supervised learning, a network is

trained over softmax cross-entropy loss because there are a fixed number of classes to be

trained. However, in some cases, there can be a possibility of having a variable number of

classes. For example, in facial recognition, there is a need to compare two unknown faces

to know whether they belong to the same person/class or not. Here, triplet loss marks

35

significant importance. It is a way to learn good embeddings for all the faces individually.

Separate clusters are formed in a euclidean space from the faces that belong to the same

person. Considering this as a baseline, adaptive learning is implemented in the next

section.

4.3 Adaptive Learning for FaceNet

Training Dataset:

A folder named “images” is created in the project directory of David Sandberg’s

Github repository by Sandberg [4]. Place the training data/images in this folder. Create

three separate folders inside this directory for each person. Now place the images of these

three people in their respective folder as shown in Fig. 26.

Fig. 26. Images of number of persons in the dataset to train FaceNet.

These original images have a different shape, size, lighting, orientation, background,

etc. To train the FaceNet model, these images should have the same size required by the

network, and they must contain faces only. This is obtained by generating tight bounding

boxes around the faces and extracting these bounding boxes. To get the exact training

data: the cropped faces, a face detection algorithm called Multi-task Cascaded

Convolutional Neural Networks (MTCNN) is applied to the original set of images.

36

FaceNet takes an input of images with resolution 160x160. Use the script named

align dataset mtcnn.py to align faces in 160x160 size. This code for cropping the images

is taken from David Sandberg’s repository by Sandberg [4]. The command given below is

used to crop and align images in the required FaceNet format for training.

python align dataset mtcnn.py SOURCE Path Target Path

To have fewer computations on images and extract useful features, it is mandatory to

align and crop the images around bounding boxes from the dataset that can be feed into

FaceNet. It becomes fairly easy to compute embeddings over the cropped image because

most of the information which is not important is being discarded in this process. To

make this training simpler and test the results on a small dataset while training FaceNet

from scratch, I have added 10 images of 3 persons each in the dataset as shown in Fig. 27.

The resolution and count of images for each person are described in Table 6.

Fig. 27. Our customer designed small pre-adaptive FaceNet dataset.

FaceNet model is now trained on the above dataset with a triplet loss function. As this

training process is from scratch, all the parameters, specific weights, and biases for the

network are randomly initialized. This network is trained until a stop threshold of loss =

1.4 (can be chosen based on your training and dataset) is reached. Once the training

37

reaches the convergence point either of stop threshold or the number of epochs

mentioned in the code, whichever occurs first, the model is saved in the form of

checkpoints. The number of epochs and loss associated with it is noted to compare the

result with adaptive FaceNet training. Once FaceNet is trained from scratch, and the

model is saved, adaptive FaceNet is being implemented.

Table 6
Our Customer Designed Dataset for FaceNet Training without Prior Knowledge.

Person Number of images Resolution
David Beckham 10 160 x 160
Guillermo Coria 10 160 x 160
John Negroponte 10 160 x 160

In order to do adaptive learning of FaceNet, I have added 10 more images to each

person as shown in Fig. 28 and its description is mentioned in Table 7.

Fig. 28. Our customer designed small adaptive FaceNet dataset.

In David Sandberg’s repository, some parameters have been set to different default

values according to the dataset. But as we have our own custom dataset, it becomes

necessary to change the default values of these parameters. To get proper results of

38

Table 7
Our Customer Designed Dataset for FaceNet Training with Prior Knowledge.

Person Number of images(Previous:10 + New:10) Resolution
David Beckham 20 160 x 160
Guillermo Coria 20 160 x 160
John Negroponte 20 160 x 160

training and based on the dataset used, these parameters have been changed as stated in

Table 8.

Table 8
Updated FaceNet Parameters for Adaptation

Parameter Value
stop threshold 1.4

max nrof epochs 1
batch size 30

people per batch 3
images per person 10

alpha 0.2
learning rate 0.1

Along with these parameters, the most important change to be implemented for

adaptive learning is loading the previously saved checkpoints above instead of randomly

initializing the parameters. Because the learning/prior knowledge of the subset of a new

dataset is already available, which, when loaded and used in the network, helps in adaptive

learning by reducing training time from scratch. The model converges faster than before.

Result:

The pre-adaptive and post-adaptive triplet learning losses and corresponding epochs

are stored in a file to compare the results. This can be visualized in graphical format for

training with prior knowledge compared to training without prior knowledge, as shown in

Fig. 29.

The figure shows that the pre-adaptive learning loss is less than 1.4 at epoch number

24. Comparatively, the post-adaptive learning loss is less than 1.4 at epoch number 12.

39

Fig. 29. Graph of loss vs epochs of Adaptive FaceNet.

which reduces the training time to reach the loss below 1.4 by 50%. The exact values of

losses are shown in Fig. 30 and Fig. 31.

Observation 1:

• Less loss errors which means, in initial stages, loss recorded is less as compared to

pre-adaptive learning losses.

• Converges faster, almost in half the time needed to train without prior knowledge.

Observation 2: In the triplet-loss function FaceNet algorithm, the network converges

faster when the prior knowledge is introduced and gives better accuracy. The training with

prior knowledge shown in the orange line in the graph almost converges at 43 epochs.

Also, with prior knowledge and additional data, the training starts with less loss and much

more accuracy than training without prior knowledge. With prior knowledge, hard triplets

are usually found at the very start of the training with comparatively lesser loss.

As the research objectives are being accomplished, this can be further extended to

multiprocessing. The training process keeps ongoing as the new data is being added to the

dataset. Multiprocess algorithm for adaptive FaceNet training is as follows in Algorithm

4.

40

Fig. 30. Pre-adaptive and post-adaptive FaceNet learning loss.

Number of experiments conducted: First, the experiment was conducted on training

the FaceNet model on 3 persons with 5 images each. Added 5 more images to each

person for adaptive learning. This training was executed for only 2 epochs because it

becomes nearly impossible to update the FaceNet parameters concerning just 5 images

per person for training. Hence, the training does not converge to give expected results on

adaptive learning. Therefore, the experimental data was then modified to contain 10

41

Fig. 31. Pre-adaptive and post-adaptive FaceNet learning loss(contd.).

Algorithm 4 Multiprocess Adaptive FaceNet Pseudo Code

input: two processes
1: repeat
2: process one:
3: randomly initialize parameteres for data with 10 images per person.
4: form triplets based on MSE of triplet loss
5: train the dataset on triplet loss function.
6: save checkpoint
7: pass saved checkpoint to process two
8: process two:
9: reload the saved checkpoint [parameteres]

10: add 10 images to each person in previous dataset
11: form triplets based on MSE of triplet loss
12: train the new dataset on triplet loss function
13: save checkpoint
14: until loss � stop threshold [convergence point]

return recorded loss and accuracy

42

images of each person for pre-adaptive training with different FaceNet parameters to

receive the expected result of proper convergence with the number of epochs.

In this experiment, firstly, the number of epochs was set to 15-20, and the results were

recorded, and then adaptive learning on FaceNet was executed for the same number of

epochs. FaceNet gives unexpected results for such a small number of epochs because hard

triplets are generally at the initial stages, and hence the losses recorded are irregular.

Moreover, therefore, there was a need to increase the training time by increasing the

number of epochs. Finally, the number of epochs was set to 60 to get the converged result,

which was then be saved and restored in adaptive learning.

43

5 COMPARATIVE STUDY OF ADAPTIVE RESNET

5.1 Discussion of ResNet

ResNet was developed in 2015 by Microsoft researchers by He et al. [2]. It is still

prevalent in the field of computer vision for facial recognition. Its most important

characteristic is that it can train hundreds or thousands of layers in the network without a

vanishing gradient because of the introduction of skip connections. It has provided many

pre-trained architectures/models, but ResNet is also available to be trained from scratch.

Because of these skip connections, some of the network layers are skipped, and the

learning becomes speedy because the output of previous layers reaches as an input to the

next layers reusing the same activation functions by Link [20].

Algorithm 5 describes the pseudocode of adaptive ResNet.

Algorithm 5 Adaptive ResNet Algorithm

input: 10 images per person (3 persons)
1: repeat
2: randomly initialize the ResNet parameteres or load the saved model.
3: for each image xi do
4: preprocess images to 250x250 resolution
5: generate name.npy and label.npy for each xi

6: forward pass the parameters
7: pass these parameters through residual block
8:

y = f (x,{wi})+ x

9: here x is input to residual block
f (x,{wi})

10: where
1 i number o f layers in residual block

11: train the ResNet Network on input images.
12: save the model
13: until loss � stop threshold [convergence point]

return saved model

For this research, Kaihua Tang’s GitHub repository by Tang [21] is used as baseline

implementation. A folder named ”images” is created in the project directory of Kaihua

44

Tang’s GitHub repository by Tang [21]. Place the training data/images in this folder.

Create three separate folders inside this directory for each person. Now place the images

of these three people in their respective folders. These original images have a different

shape, size, lighting, orientation, background, etc. To train the ResNet model, these

images should have the same size required by the network, and they must contain faces

only. ResNet takes an input of images with resolution 224x224. It becomes fairly easy to

extract features over the cropped image because most of the information which is not

important is being discarded in this process. To make this training simpler and test the

results on a small dataset while training ResNet from scratch, I have added 10 images of 3

persons each in the dataset as shown in Fig. 32.

The resolution and count of images for each person are described in Table 9.

Fig. 32. Our customer designed small pre-adaptive ResNet dataset.

Table 9
Our Customer Designed Dataset for ResNet Training without Prior Knowledge

Person Number of images Resolution
David Beckham 10 224 x 224
Guillermo Coria 10 224 x 224
John Negroponte 10 224 x 224

45

The ResNet model is now trained on the above dataset. As this training process is

from scratch, all the parameters, weights, and biases for the network are randomly

initialized. This network is trained until a stop threshold is reached. Once the training

reaches the convergence point either of stop threshold or the number of epochs

mentioned in the code, whichever occurs first, the model is saved in the form of

checkpoints. The number of epochs and losses associated with it is noted to compare the

result with adaptive ResNet training. Once ResNet is trained from scratch, and the model

is saved, adaptive ResNet is being implemented. To do adaptive learning of ResNet, I

have added 10 more images to each person as shown in Fig. 33, and its description is

mentioned in Table 10.

Fig. 33. Our customer designed small adaptive ResNet dataset.

Table 10
Our Customer Designed Dataset for ResNet Training with Prior Knowledge

Person Number of images(Previous:10 + New:10) Resolution
David Beckham 20 250 x 250
Guillermo Coria 20 250 x 250
John Negroponte 20 250 x 250

46

According to the dataset in Kaihua Tang’s repository, some parameters have been set

to different default values. However, as we have our own custom dataset, it becomes

necessary to change these parameters’ default values. To get proper results of training and

based on the dataset used, these parameters have been changed. Along with these

parameters, the most important change to be implemented for adaptive learning is loading

the previously saved checkpoints above instead of randomly initializing the parameters.

Because the learning/prior knowledge of the subset of a new dataset is already available,

which, when loaded and used in the network, helps in adaptive learning by reducing

training time from scratch. The model converges faster than before.

5.2 Results of Adaptive ResNet Training

The pre-adaptive and post-adaptive learning losses and their corresponding epochs are

stored in a file to compare the results. This can be visualized in graphical format for

training with prior knowledge compared to training without prior knowledge, as shown in

Fig. 34.

Fig. 34. Graph of Adaptive ResNet learning loss.

From the figure it clear that, the post-adaptive learning loss is less than that of

pre-adaptive learning loss at initial stages. This can be visualized in tabular format for

47

training with prior knowledge as compared to training without prior knowledge as shown

in Fig. 35.

Fig. 35. Pre-adaptive and Post-adaptive ResNet learning loss.

Observation 1:

• Less loss errors which means, in initial stages, loss recorded is less as compared to

pre-adaptive learning losses.

• Converges faster, less than the time needed to train ResNet without prior knowledge.

48

Observation 2: In the ResNet algorithm, when the prior knowledge is introduced, the

network converges faster and gives better accuracy. The training with prior knowledge

shown in the orange line in the graph almost converges at epoch 28. Also, with prior

knowledge and additional data, the training starts with less loss and much more accuracy

than training without prior knowledge. Hence, the research objectives are accomplished

based on proof-of-the-concept.

The number of experiments conducted: Firstly, the experiment was conducted on

training the ResNet model on 10 images for 3 persons each for 20 epochs. The losses

were recorded for pre-adaptive and post-adaptive learning. The losses did not give

significant results because in pre-adaptive learning with 20 epochs, the amount of learning

saved was not significant enough to train the adaptive ResNet on prior knowledge.

Moreover hence, the results did not converge as expected. Therefore, the experimental

data was then modified to contain 10 images of each person for pre-adaptive training with

40 epochs to receive the expected results, as stated above.

49

6 FUTURE WORK

The proof-of-the-concept is now proved on 2 of the most commonly used facial

recognition algorithms: FaceNet and ResNet. Although all of the research objectives of

reduced time for training the neural network, early convergence on the ongoing adaptive

training process, and training the network from scratch by using prior knowledge on the

same dataset, there is still a scope to improve this adaptive learning algorithm. First of all,

the selection of triplets plays an important role in FaceNet architecture. it works fine until

now but can be improved on the following basis: The disadvantage of triplet loss function:

As long as the negative value in equation (2) is larger than the positive value + alpha,

there is no gain to condense the positive embeddings, and the anchor embeddings to the

minimum distance than before by Arsenault [22]. Consider:

• Alpha is 0.2.

• Negative Distance is 2.0.

• Positive Distance is 1.1.

The result of the loss function will be 1.1 – 2.0 + 0.2 = -1. As stated above, once the loss

function result is nearly equal or less than zero, the gain remains constant, which means a

loss of information. With this result and condition, it is tough for the FaceNet algorithm

to reduce the existing distance between the anchor and the positive images or embeddings

by Arsenault [22].

The above results of adaptive learning on FaceNet or ResNet can be extended to test

or implement on datasets with large size (more than 20) to adapt adaptive learning for

ongoing additions in data points. Datasets in this research for the FaceNet and ResNet

training are customized. The small size of data is for the feasibility of study purpose.

Adaptive learning can be used to develop algorithms other than facial recognition

algorithms.

50

FaceNet has a different backend neural network composition as compared to ResNet.

However, as ResNet uses skip connections, it is possible in the future to integrate ResNet

as a backend of FaceNet. Then a triplet loss training can be conducted on the dataset. This

would prominently give significant results.

51

7 CONCLUSIONS

In this thesis/research, developing a new adaptive technique on FaceNet and ResNet

for ongoing training on a dataset to reduce the training time and help faster convergence

of the model is introduced. The main emphasis is on using prior knowledge to train the

network for adaptive learning based on the changing target data. David Sandberg’s Gihut

repository is used as FaceNet baseline implementation, and Kaihua Tang’s Github

repository as ResNet baseline implementation. Firstly, to train the neural network from

scratch and save the trained model for restoring and using it for adaptive training, our

custom dataset of 10 images for 3 persons is generated and then adapted with 20 images

for 3 persons each. A proof-of-the-concept simple feed-forward network is developed to

demonstrate the research for ongoing adaptive learning techniques as a stepping-stone.

After achieving the desired results on a simple feed-forward neural network, the same

approach is tested and verified on FaceNet and ResNet. The network is then trained to

save the checkpoints in a file that can be restored in the future for adaptive learning. This

prior knowledge, saved in checkpoints, is now restored with additional data points in the

dataset to start the adaptive training. Both the FaceNet and ResNet give significant results

based on the research objectives. However, with the current state of implementation, we

recommend extending this approach with a large dataset on FaceNet. It reduces the time

required to converge the model at a threshold point of 50% reduction in epochs and

training time. Finally, the results represent the comparison of the research objectives on

ResNet and FaceNet in graphical format. The purpose of the investigation of FaceNet and

ResNet for facial detection is based on these two architectures as they act as

state-of-the-art technology. However, the lack of adaptation and the utilization of these

networks is based on pre-trained models. Therefore this research addressed these voids.

52

Literature Cited

[1] Schroff, Florian, Kalenichenko, Dmitry, and Philbin, James. ”FaceNet: A Unified
Embedding for Face Recognition and Clustering.” (2015): 815-23. Web.

[2] K. He, X. Zhang, S. Ren, and J. Sun. ”Deep Residual Learning for Image
Recognition.” (2016): 770-78. Web.

[3] Y. Taigman, M. Yang, M. Ranzato and L. Wolf, ”DeepFace: Closing the Gap to
Human-Level Performance in Face Verification,” 2014 IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, OH, 2014, pp. 1701-1708, doi:
10.1109/CVPR.2014.220.

[4] D. Sandberg, ”FaceNet”, https://github.com/davidsandberg/ facenet, 2019.

[5] Pan, S. Jialin, and Yang, Qiang. ”A Survey on Transfer Learning.” IEEE Transactions
on Knowledge and Data Engineering 22.10 (2010): 1345-359. Web.

[6] Dong Yi, Zhen Lei, Shengcai Liao and Stan Z. Li, “Learning Face Representation
from Scratch”. arXiv preprint arXiv:1411.7923. 2014.

[7] Cao, Qiong, Shen, Li, Xie, Weidi, Parkhi, Omkar M, and Zisserman, Andrew.
”VGGFace2: A Dataset for Recognising Faces across Pose and Age.” (2017). Web.

[8] E. Corporation, ”Hands-on TensorFlow Tutorial: Train ResNet-50 From Scratch
Using the ImageNet Dataset”, https://blog.exxactcorp.com/
deep-learning-with-tensorflow-training-resnet-50-from-scratch-using-the-imagenet-dataset/ ,
2019.

[9] L. Dulčić, ”Face Recognition with FaceNet and MTCNN”,
https://arsfutura.com/magazine/ face-recognition-with-facenet-and-mtcnn/ , 2019.

[10] J. CruzMartinez, ”Detecting Face Features with Python”,
https:// towardsdatascience.com/detecting-face-features-with-python-30385aee4a8e,
2018.

[11] Bijl, Erik, ”A comparison of clustering algorithms for face clustering”. Bachelor’s
Thesis, Computing Science, 2018.

53

https://github.com/davidsandberg/facenet
https://blog.exxactcorp.com/deep-learning-with-tensorflow-training-resnet-50-from-scratch-using-the-imagenet-dataset/
https://blog.exxactcorp.com/deep-learning-with-tensorflow-training-resnet-50-from-scratch-using-the-imagenet-dataset/
https://arsfutura.com/magazine/face-recognition-with-facenet-and-mtcnn/
https://towardsdatascience.com/detecting-face-features-with-python-30385aee4a8e

[12] S. Sahoo, ”Residual blocks — Building blocks of ResNet”, https:
// towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec,
2018.

[13] Szegedy, Christian, W. Liu, Y. Jia, Sermanet, Pierre, Reed, Scott, Anguelov,
Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, and Rabinovich, Andrew. ”Going
Deeper with Convolutions.” 2015: 1-9. Web.

[14] M. Deore, ”FaceNet Architecture”,
https://medium.com/analytics-vidhya/ facenet-architecture-part-1-a062d5d918a1,
2019.

[15] Szegedy, Christian, Vanhoucke, Vincent, Ioffe, Sergey, Shlens, Jon, and Wojna,
Zbigniew. ”Rethinking the Inception Architecture for Computer Vision.” (2016):
2818-826. Web.

[16] O. Moindrot,”Triplet Loss and Online Triplet Mining in TensorFlow”,
https://omoindrot.github.io/ triplet-loss, 2018.

[17] M. Deore, ”FaceNet Architecture”,
https://medium.com/analytics-vidhya/ facenet-architecture-part-1-a062d5d918a1,
2019.

[18] M. Works, ”Convolutional Neural Network”,
https://www.mathworks.com/discovery/convolutional-neural-network.html

[19] H. Li, ”Train FaceNet with triplet loss for real time face recognition on keras”.
https://github.com/hualili/opencv/blob/master/deep-learning-2020S/
10-2020F-107-part3-triple-loss-2020-10-6.pdf , 2020.

[20] M. Link blog, ”PyTorch ResNet: Building, Training and Scaling Residual Networks
on PyTorch”, https://missinglink.ai/guides/pytorch/
pytorch-resnet-building-training-scaling-residual-networks-pytorch/ , 2018.

[21] Kaihua Tang, ”ResNet50-Pytorch-Face-Recognition”,
https://github.com/KaihuaTang/ResNet50-Pytorch-Face-Recognition, 2018.

[22] M. Arsenault, ”Lossless Triplet loss”,
https:// towardsdatascience.com/ lossless-triplet-loss-7e932f990b24, 2018.

54

https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
https://medium.com/analytics-vidhya/facenet-architecture-part-1-a062d5d918a1
https://omoindrot.github.io/triplet-loss
https://medium.com/analytics-vidhya/facenet-architecture-part-1-a062d5d918a1
https://www.mathworks.com/discovery/convolutional-neural-network.html
https://github.com/hualili/opencv/blob/master/deep-learning-2020S/10-2020F-107-part3-triple-loss-2020-10-6.pdf
https://github.com/hualili/opencv/blob/master/deep-learning-2020S/10-2020F-107-part3-triple-loss-2020-10-6.pdf
https://missinglink.ai/guides/pytorch/pytorch-resnet-building-training-scaling-residual-networks-pytorch/
https://missinglink.ai/guides/pytorch/pytorch-resnet-building-training-scaling-residual-networks-pytorch/
https://github.com/KaihuaTang/ResNet50-Pytorch-Face-Recognition
https://towardsdatascience.com/lossless-triplet-loss-7e932f990b24

[23] M. Saini, ”Train FaceNet with triplet loss for real time face recognition on keras”.
https://medium.com/@mohitsaini 54300/
train-facenet-with-triplet-loss-for-real-time-face-recognition-a39e2f4472c3, 2019.

[24] D. Sandberg, ”Facenet”. https://github.com/davidsandberg/ facenet/blob/master/ src/
align/align dataset mtcnn.py,2019.

[25] F.Li, ”CS231n Convolutional Neural Networks for Facial Recognition”,
https://cs231n.github.io/convolutional-networks/ , 2019.

[26] A. Pande, ”A Beginner’s Guide To Understanding Convolutional Neural Networks”,
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner’
s-Guide-To-Understanding-Convolutional-Neural-Networks/ , 2019.

[27] Ujjwalkarn, ”An Intuitive Explanation of Convolutional Neural Networks”,
https://ujjwalkarn.me/2016/08/11/ intuitive-explanation-convnets/ , 2016.

[28] Datawow, ”Interns Explain CNN”,
https://blog.datawow.io/ interns-explain-cnn-8a669d053f8b, 2020.

[29] R. Prabhu, ”CNN Architectures — LeNet, AlexNet, VGG, GoogLeNet and ResNet”,
https://medium.com/@RaghavPrabhu/
cnn-architectures-lenet-alexnet-vgg-googlenet-and-resnet-7c81c017b848, 2018.

[30] B. Georgievski, ”Face Recognition using One-Shot Learning”,
https://mc.ai/ face-recognition-using-one-shot-learning/ ,2019.

[31] A. Ng, ”Deep Learning Resnet”, http://deeplearning.ailectureC4W2L04, 2017.

[32] C. Shorten, ”Introduction to ResNets”,
https:// towardsdatascience.com/ introduction-to-resnets-c0a830a288a4, 2019.

[33] A. Krizhevsky, I. Sutskever, G. Hinton, ”ImageNet Classification with Deep
Convolutional Neural Networks”, 2012.

[34] K. He, X. Zhang, S. Ren, Jian Sun, ”Deep Residual Learning for Image
Recognition”, 2015.

[35] K. He, X. Zhang, S. Ren, J. Sun, ”Identity Mappings in Deep Residual Networks”,
2016.

55

https://medium.com/@mohitsaini_54300/train-facenet-with-triplet-loss-for-real-time-face-recognition-a39e2f4472c3
https://medium.com/@mohitsaini_54300/train-facenet-with-triplet-loss-for-real-time-face-recognition-a39e2f4472c3
https://github.com/davidsandberg/facenet/blob/master/src/align/align_dataset_mtcnn.py
https://github.com/davidsandberg/facenet/blob/master/src/align/align_dataset_mtcnn.py
https://cs231n.github.io/convolutional-networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://blog.datawow.io/interns-explain-cnn-8a669d053f8b
https://medium.com/@RaghavPrabhu/cnn-architectures-lenet-alexnet-vgg-googlenet-and-resnet-7c81c017b848
https://medium.com/@RaghavPrabhu/cnn-architectures-lenet-alexnet-vgg-googlenet-and-resnet-7c81c017b848
https://mc.ai/face-recognition-using-one-shot-learning/
https://towardsdatascience.com/introduction-to-resnets-c0a830a288a4

[36] K. Simonyan, A. Zisserman, ”Very Deep Convolutional Networks for Large-Scale
Image Recognition”, 2014.

[37] P. Dwivedi, ”Understanding and Coding a ResNet in Keras”,
https:// towardsdatascience.com/
understanding-and-coding-a-resnet-in-keras-446d7ff84d33, 2019.

[38] Szegedy, Christian, W. Liu, Y. Jia, Sermanet, Pierre, Reed, Scott, Anguelov,
Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, and Rabinovich, Andrew. ”Going
Deeper with Convolutions.” (2015): 1-9. Web

56

https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33
https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33

Appendix A

MAX-POOLING IN FCAENET

A.1 Convolutional, max-pooling and L2 layer in FaceNet

FaceNet architecture is based on two different convolutional neural networks(CNNs).

These 2 different CNNs result into different number of parameteres. Facenet based on

GoogleNet architecture uses 1x1 convolution to shrink the channels from 3 to 1 but keep

the input size same. For e.g. 256x256x3 image to 256x256x1 image. These convolutions

are used for dimensiona reduction. They are also called as filters. Other similar small

filters are being used. Downsampling of the images is successfully done by max pooling

layer in FaceNet architecture. Different filters are applied in parallel, and hence,

eventually, all the outputs from one intermediate state are concatenated for next stage.

This leads to the creation of deeper inception module.

57

Appendix B

ADAPTIVE ARCHITECTURE

B.1 Code for Simple Feed Forward Neural Network

Train and save Simple Feed Forward Neural Network on two classes with 3

data points each.

’’’

Program : introNN.py;

Version : 1.0;

Date : Sept. 9, 2020

Coded by : (see the reference below)

Modified by: Dr. Harry Li and Rachana Bumb for adapative learning // on Feed Forward Network

Ref: https://github.com/vzhou842/neural−network−from−scratch/blob/master/network.py

’’’

import numpy as np

def sigmoid(x):

Sigmoid activation function: f(x) = 1 / (1 + eˆ(−x))

return 1 / (1 + np.exp(−x))

def deriv sigmoid(x):

Derivative of sigmoid: f’(x) = f(x) * (1 − f(x))

fx = sigmoid(x)

return fx * (1 − fx)

def mse loss(y true, y pred):

y true and y pred are numpy arrays of the same length.

return ((y true − y pred) ** 2).mean()

class OurNeuralNetwork:

’’’

A neural network with:

− 2 inputs

− 2 hidden layer with 2 neurons each (h 1 1, h 1 2, h 2 1, h 2 2)

− an output layer with 1 neuron (o 1)

58

*** DISCLAIMER ***:

The code below is intended to be simple and educational, NOT optimal.

Real neural net code looks nothing like this. DO NOT use this code.

Instead, read/run it to understand how this specific network works.

’’’

def init (self):

Weights

self.w 1 1 = np.random.normal()

self.w 1 2 = np.random.normal()

self.w 1 3 = np.random.normal()

self.w 1 4 = np.random.normal()

self.w 2 1 = np.random.normal()

self.w 2 2 = np.random.normal()

self.w 2 3 = np.random.normal()

self.w 2 4 = np.random.normal()

self.w 3 1 = np.random.normal()

self.w 3 2 = np.random.normal()

Biases

self.b 1 1 = np.random.normal()

self.b 1 2 = np.random.normal()

self.b 2 1 = np.random.normal()

self.b 2 2 = np.random.normal()

self.b 3 1 = np.random.normal()

def feedforward(self, x):

x is a numpy array with 2 elements.

h 1 1 = sigmoid(self.w 1 1 * x[0] + self.w 1 2 * x[1] + self.b 1 1)

h 1 2 = sigmoid(self.w 1 3 * x[0] + self.w 1 4 * x[1] + self.b 1 2)

59

h 2 1 = sigmoid(self.w 2 1 * h 1 1 + self.w 2 2 * h 1 2 + self.b 2 1)

h 2 2 = sigmoid(self.w 2 3 * h 1 1 + self.w 2 4 * h 1 2 + self.b 2 2)

o 1 = sigmoid(self.w 3 1 * h 2 1 + self.w 3 2 * h 2 2 + self.b 3 1)

return o 1

def train(self, data, all y trues):

’’’

− data is a (n x 2) numpy array, n = # of samples in the dataset.

− all y trues is a numpy array with n elements.

Elements in all y trues correspond to those in data.

’’’

learn rate = 0.1

epochs = 1000 # number of times to loop through the entire dataset

for epoch in range(epochs):

for x, y true in zip(data, all y trues):

−−− Do a feedforward (we’ll need these values later)

sum h 1 1 = self.w 1 1 * x[0] + self.w 1 2 * x[1] + self.b 1 1

h 1 1 = sigmoid(sum h 1 1)

sum h 1 2 = self.w 1 3 * x[0] + self.w 1 4 * x[1] + self.b 1 2

h 1 2 = sigmoid(sum h 1 2)

sum h 2 1 = self.w 2 1 * h 1 1 + self.w 2 2 * h 1 2 + self.b 2 1

h 2 1 = sigmoid(sum h 2 1)

sum h 2 2 = self.w 2 3 * h 1 1 + self.w 2 4 * h 1 2 + self.b 2 2

h 2 2 = sigmoid(sum h 2 2)

sum o 1 = self.w 3 1 * h 2 1 + self.w 3 2 * h 2 2 + self.b 3 1

o 1 = sigmoid(sum o 1)

y pred = o 1

−−− Calculate partial derivatives.

−−− Naming: d L d w1 represents ”partial L / partial w1”

60

d L d ypred = −2 * (y true − y pred)

d ypred d h 1 1 = self.w 2 1 * deriv sigmoid(sum h 2 1)

d ypred d h 1 2 = self.w 2 2 * deriv sigmoid(sum h 2 2)

Neuron o1

d ypred d w 3 1 = h 2 1 * deriv sigmoid(sum o 1)

d ypred d w 3 2 = h 2 2 * deriv sigmoid(sum o 1)

d ypred d b 3 1 = deriv sigmoid(sum o 1)

d ypred d h 2 1 = self.w 3 1 * deriv sigmoid(sum o 1)

d ypred d h 2 2 = self.w 3 2 * deriv sigmoid(sum o 1)

Neuron h 1 1

d h 1 1 d w 1 1 = x[0] * deriv sigmoid(sum h 1 1)

d h 1 1 d w 1 2 = x[1] * deriv sigmoid(sum h 1 1)

d h 1 1 d b 1 1 = deriv sigmoid(sum h 1 1)

Neuron h 1 2

d h 1 2 d w 1 3 = x[0] * deriv sigmoid(sum h 1 2)

d h 1 2 d w 1 4 = x[1] * deriv sigmoid(sum h 1 2)

d h 1 2 d b 1 2 = deriv sigmoid(sum h 1 2)

Neuron h 2 1

d h 2 1 d w 2 1 = h 1 1 * deriv sigmoid(sum h 2 1)

d h 2 1 d w 2 2 = h 1 2 * deriv sigmoid(sum h 2 1)

d h 2 1 d b 2 1 = deriv sigmoid(sum h 2 1)

Neuron h 2 2

d h 2 2 d w 2 3 = h 2 1 * deriv sigmoid(sum h 2 2)

d h 2 2 d w 2 4 = h 2 2 * deriv sigmoid(sum h 2 2)

d h 2 2 d b 2 2 = deriv sigmoid(sum h 2 2)

−−− Update weights and biases

Neuron h 1 1

61

self.w 1 1 −= learn rate * d L d ypred * d ypred d h 1 1 * d h 1 1 d w 1 1

self.w 1 2 −= learn rate * d L d ypred * d ypred d h 1 1 * d h 1 1 d w 1 2

self.b 1 1 −= learn rate * d L d ypred * d ypred d h 1 1 * d h 1 1 d b 1 1

Neuron h 1 2

self.w 1 3 −= learn rate * d L d ypred * d ypred d h 1 2 * d h 1 2 d w 1 3

self.w 1 4 −= learn rate * d L d ypred * d ypred d h 1 2 * d h 1 2 d w 1 4

self.b 1 2 −= learn rate * d L d ypred * d ypred d h 1 2 * d h 1 2 d b 1 2

Neuron h 2 1

self.w 2 1 −= learn rate * d L d ypred * d ypred d h 2 1 * d h 2 1 d w 2 1

self.w 2 2 −= learn rate * d L d ypred * d ypred d h 2 1 * d h 2 1 d w 2 2

self.b 2 1 −= learn rate * d L d ypred * d ypred d h 2 1 * d h 2 1 d b 2 1

Neuron h 2 2

self.w 2 3 −= learn rate * d L d ypred * d ypred d h 2 2 * d h 2 2 d w 2 3

self.w 2 4 −= learn rate * d L d ypred * d ypred d h 2 2 * d h 2 2 d w 2 4

self.b 2 2 −= learn rate * d L d ypred * d ypred d h 2 2 * d h 2 2 d b 2 2

Neuron o 1

self.w 3 1 −= learn rate * d L d ypred * d ypred d w 3 1

self.w 3 2 −= learn rate * d L d ypred * d ypred d w 3 2

self.b 3 1 −= learn rate * d L d ypred * d ypred d b 3 1

−−− Calculate total loss at the end of each epoch

if epoch % 10 == 0:

y preds = np.apply along axis(self.feedforward, 1, data)

loss = mse loss(all y trues, y preds)

print(”Epoch %d loss: %.3f” % (epoch, loss))

#write the last epoch weights and biases in text file

with open(’trained weights bias.txt’,’w’) as f:

f.write(”%f, ” % self.w 1 1)

f.write(”%f, ” % self.w 1 2)

f.write(”%f\n” % self.b 1 1)

f.write(”%f, ” % self.w 1 3)

62

f.write(”%f, ” % self.w 1 4)

f.write(”%f\n” % self.b 1 2)

f.write(”%f, ” % self.w 2 1)

f.write(”%f, ” % self.w 2 2)

f.write(”%f\n” % self.b 2 1)

f.write(”%f, ” % self.w 2 3)

f.write(”%f, ” % self.w 2 4)

f.write(”%f\n” % self.b 2 2)

f.write(”%f, ” % self.w 3 1)

f.write(”%f, ” % self.w 3 2)

f.write(”%f\n” % self.b 3 1)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Define dataset

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

data = np.array([

[1, 2.5], # Class 1

[1, 3], # Class 1

[2.1, 3.4], # Class 1

[2.1, 1], # Class 0

[3.3, 1], # Class 0

[3, 2.3], # Class 0

])

all y trues = np.array([

1, # Class 1

1, # Class 1

1, # Class 1

0, # Class 0

0, # Class 0

0, # Class 0

])

Train our neural network!

63

network = OurNeuralNetwork()

network.train(data, all y trues)

B.2 Code for Adaptive Simple Feed Forward Neural Network

Load and retrain Simple Feed Forward Neural Network on two classes with 4

data points each.

’’’

Program : Adaptive Feed Forward Network;

Version : 1.0;

Date : Sept. 9, 2020

Coded by : (see the reference below)

Modified by: HL and RB for adapative learning

Ref: https://github.com/vzhou842/neural−network−from−scratch/blob/master/network.py

’’’

import numpy as np

def sigmoid(x):

Sigmoid activation function: f(x) = 1 / (1 + eˆ(−x))

return 1 / (1 + np.exp(−x))

def deriv sigmoid(x):

Derivative of sigmoid: f’(x) = f(x) * (1 − f(x))

fx = sigmoid(x)

return fx * (1 − fx)

def mse loss(y true, y pred):

y true and y pred are numpy arrays of the same length.

return ((y true − y pred) ** 2).mean()

class OurNeuralNetwork:

’’’

A neural network with:

− 2 inputs

64

− 2 hidden layer with 2 neurons each(h 1 1, h 1 2, h 2 1, h 2 2)

− an output layer with 1 neuron (o 1)

*** DISCLAIMER ***:

The code below is intended to be simple and educational, NOT optimal.

Real neural net code looks nothing like this. DO NOT use this code.

Instead, read/run it to understand how this specific network works.

’’’

def init (self):

load prior Weights and biases from a text file

s=[]

with open(’trained weights bias.txt’,’r’) as f:

for line in f:

for num in line.split(’,’):

s.append(float(num))

self.w 1 1=s[0]

self.w 1 2=s[1]

self.b 1 1=s[2]

self.w 1 3=s[3]

self.w 1 4=s[4]

self.b 1 2=s[5]

self.w 2 1=s[6]

self.w 2 2=s[7]

self.b 2 1=s[8]

self.w 2 3=s[9]

self.w 2 4=s[10]

self.b 2 2=s[11]

self.w 3 1=s[12]

self.w 3 2=s[13]

self.b 3 1=s[14]

65

def feedforward(self, x):

x is a numpy array with 2 elements.

h 1 1 = sigmoid(self.w 1 1 * x[0] + self.w 1 2 * x[1] + self.b 1 1)

h 1 2 = sigmoid(self.w 1 3 * x[0] + self.w 1 4 * x[1] + self.b 1 2)

h 2 1 = sigmoid(self.w 2 1 * h 1 1 + self.w 2 2 * h 1 2 + self.b 2 1)

h 2 2 = sigmoid(self.w 2 3 * h 1 1 + self.w 2 4 * h 1 2 + self.b 2 2)

o 1 = sigmoid(self.w 3 1 * h 2 1 + self.w 3 2 * h 2 2 + self.b 3 1)

return o 1

def train(self, data, all y trues):

’’’

− data is a (n x 2) numpy array, n = # of samples in the dataset.

− all y trues is a numpy array with n elements.

Elements in all y trues correspond to those in data.

’’’

learn rate = 0.1

epochs = 1000 # number of times to loop through the entire dataset

for epoch in range(epochs):

for x, y true in zip(data, all y trues):

−−− Do a feedforward (we’ll need these values later)

sum h 1 1 = self.w 1 1 * x[0] + self.w 1 2 * x[1] + self.b 1 1

h 1 1 = sigmoid(sum h 1 1)

sum h 1 2 = self.w 1 3 * x[0] + self.w 1 4 * x[1] + self.b 1 2

h 1 2 = sigmoid(sum h 1 2)

sum h 2 1 = self.w 2 1 * h 1 1 + self.w 2 2 * h 1 2 + self.b 2 1

h 2 1 = sigmoid(sum h 2 1)

sum h 2 2 = self.w 2 3 * h 1 1 + self.w 2 4 * h 1 2 + self.b 2 2

h 2 2 = sigmoid(sum h 2 2)

66

sum o 1 = self.w 3 1 * h 2 1 + self.w 3 2 * h 2 2 + self.b 3 1

o 1 = sigmoid(sum o 1)

y pred = o 1

−−− Calculate partial derivatives.

−−− Naming: d L d w1 represents ”partial L / partial w1”

d L d ypred = −2 * (y true − y pred)

d ypred d h 1 1 = self.w 2 1 * deriv sigmoid(sum h 2 1)

d ypred d h 1 2 = self.w 2 2 * deriv sigmoid(sum h 2 2)

Neuron o 1

d ypred d w 3 1 = h 2 1 * deriv sigmoid(sum o 1)

d ypred d w 3 2 = h 2 2 * deriv sigmoid(sum o 1)

d ypred d b 3 1 = deriv sigmoid(sum o 1)

d ypred d h 2 1 = self.w 3 1 * deriv sigmoid(sum o 1)

d ypred d h 2 2 = self.w 3 2 * deriv sigmoid(sum o 1)

Neuron h 1 1

d h 1 1 d w 1 1 = x[0] * deriv sigmoid(sum h 1 1)

d h 1 1 d w 1 2 = x[1] * deriv sigmoid(sum h 1 1)

d h 1 1 d b 1 1 = deriv sigmoid(sum h 1 1)

Neuron h 1 2

d h 1 2 d w 1 3 = x[0] * deriv sigmoid(sum h 1 2)

d h 1 2 d w 1 4 = x[1] * deriv sigmoid(sum h 1 2)

d h 1 2 d b 1 2 = deriv sigmoid(sum h 1 2)

Neuron h 2 1

d h 2 1 d w 2 1 = h 1 1 * deriv sigmoid(sum h 2 1)

d h 2 1 d w 2 2 = h 1 2 * deriv sigmoid(sum h 2 1)

d h 2 1 d b 2 1 = deriv sigmoid(sum h 2 1)

67

Neuron h 2 2

d h 2 2 d w 2 3 = h 1 1 * deriv sigmoid(sum h 2 2)

d h 2 2 d w 2 4 = h 1 2 * deriv sigmoid(sum h 2 2)

d h 2 2 d b 2 2 = deriv sigmoid(sum h 2 2)

−−− Update weights and biases

Neuron h1

self.w 1 1 −= learn rate * d L d ypred * d ypred d h 1 1 * d h 1 1 d w 1 1

self.w 1 2 −= learn rate * d L d ypred * d ypred d h 1 1 * d h 1 1 d w 1 2

self.b 1 1 −= learn rate * d L d ypred * d ypred d h 1 1 * d h 1 1 d b 1 1

Neuron h2

self.w 1 3 −= learn rate * d L d ypred * d ypred d h 1 2 * d h 1 2 d w 1 3

self.w 1 4 −= learn rate * d L d ypred * d ypred d h 1 2 * d h 1 2 d w 1 4

self.b 1 2 −= learn rate * d L d ypred * d ypred d h 1 2 * d h 1 2 d b 1 2

Neuron h3

self.w 2 1 −= learn rate * d L d ypred * d ypred d h 2 1 * d h 2 1 d w 2 1

self.w 2 2 −= learn rate * d L d ypred * d ypred d h 2 1 * d h 2 1 d w 2 2

self.b 2 1 −= learn rate * d L d ypred * d ypred d h 2 1 * d h 2 1 d b 2 1

Neuron h4

self.w 2 3 −= learn rate * d L d ypred * d ypred d h 2 2 * d h 2 2 d w 2 3

self.w 2 4 −= learn rate * d L d ypred * d ypred d h 2 2 * d h 2 2 d w 2 4

self.b 2 2 −= learn rate * d L d ypred * d ypred d h 2 2 * d h 2 2 d b 2 2

Neuron o1

self.w 3 1 −= learn rate * d L d ypred * d ypred d w 3 1

self.w 3 2 −= learn rate * d L d ypred * d ypred d w 3 2

self.b 3 1 −= learn rate * d L d ypred * d ypred d b 3 1

−−− Calculate total loss at the end of each epoch

if epoch % 10 == 0:

68

y preds = np.apply along axis(self.feedforward, 1, data)

loss = mse loss(all y trues, y preds)

print(”Epoch %d loss: %.3f” % (epoch, loss))

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Define dataset

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

data = np.array([

[1, 2.5], # Class 1

[2, 2.3], # Class 1

[1, 3], # Class 1

[2.1, 3.4], # Class 1

[2.1, 1], # Class 2

[3, 2.1], # Class 2

[3.3, 1], # Class 2

[3, 2.3] # Class 2

])

all y trues = np.array([

1, # Class 1

1, # Class 1

1, # Class 1

1, # Class 1

0, # Class 0

0, # Class 0

0, # Class 0

0, # Class 0

])

Train our neural network!

network = OurNeuralNetwork()

network.train(data, all y trues)

B.3 Code for FaceNet

Train and save FaceNet on three classes with 10 data points each.

69

with sess.as default():

if args.pretrained model:

print(’Restoring pretrained model: %s’ % args.pretrained model)

Training and validation loop

epoch = 0

while epoch < args.max nrof epochs:

step = sess.run(global step, feed dict=None)

epoch = step // args.epoch size

Train for one epoch

train(args, sess, train set, epoch, image paths placeholder, labels placeholder, labels batch,

batch size placeholder, learning rate placeholder, phase train placeholder, enqueue op, input queue,

global step,

embeddings, total loss, train op, summary op, summary writer, args.learning rate schedule file,

args.embedding size, anchor, positive, negative, triplet loss)

Save variables and the metagraph if it doesn’t exist already

save variables and metagraph(sess, saver, summary writer, model dir, randir, step)

def train(..)

..

stop threshold = 1.4

while i < nrof batches:

start time = time.time()

batch size = min(nrof examples−i*args.batch size, args.batch size)

feed dict = {batch size placeholder: batch size, learning rate placeholder: lr, phase train placeholder:

True}

err, , step, emb, lab = sess.run([loss, train op, global step, embeddings, labels batch], feed dict=feed dict)

#RB 09−25−2020

if err < stop threshold:

break

emb array[lab,:] = emb

loss array[i] = err

duration = time.time() − start time

print(’Epoch: [%d][%d/%d]\tTime %.3f\tLoss %2.3f’ %

(epoch, batch number+1, args.epoch size, duration, err))

70

batch number += 1

i += 1

train time += duration

summary.value.add(tag=’loss’, simple value=err)

..

B.4 Code for Adaptive FaceNet

Load and retrain FaceNet on three classes with 20 data points each.

with sess.as default():

if args.pretrained model:

print(’Restoring pretrained model: %s’ % args.pretrained model)

facenet.load model(args.pretrained model)

Get input and output tensors

image paths placeholder = tf.get default graph().get tensor by name(”image paths:0”)

embeddings = tf.get default graph().get tensor by name(”embeddings:0”)

phase train placeholder = tf.get default graph().get tensor by name(”phase train:0”)

embedding size = embeddings.get shape()[1]

#saver.restore(sess, os.path.expanduser(args.pretrained model))

Training and validation loop

epoch = 0

while epoch < args.max nrof epochs:

step = sess.run(global step, feed dict=None)

epoch = step // args.epoch size

Train for one epoch

train(args, sess, train set, epoch, image paths placeholder, labels placeholder, labels batch,

batch size placeholder, learning rate placeholder, phase train placeholder, enqueue op, input queue,

global step,

embeddings, total loss, train op, summary op, summary writer, args.learning rate schedule file,

args.embedding size, anchor, positive, negative, triplet loss)

Save variables and the metagraph if it doesn’t exist already

save variables and metagraph(sess, saver, summary writer, model dir, randir, step)

def train(..)

...

stop threshold = 1.4

71

while i < nrof batches:

start time = time.time()

batch size = min(nrof examples−i*args.batch size, args.batch size)

feed dict = {batch size placeholder: batch size, learning rate placeholder: lr, phase train placeholder:

True}

err, , step, emb, lab = sess.run([loss, train op, global step, embeddings, labels batch], feed dict=feed dict)

#RB 09−25−2020

if err < stop threshold:

break

emb array[lab,:] = emb

loss array[i] = err

duration = time.time() − start time

print(’Epoch: [%d][%d/%d]\tTime %.3f\tLoss %2.3f’ %

(epoch, batch number+1, args.epoch size, duration, err))

batch number += 1

i += 1

train time += duration

summary.value.add(tag=’loss’, simple value=err)

...

72

	Adaptive Learning Technique For Facial Recognition
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Research Objectives

	Literature Survey
	Facial Recognition
	Feature Extraction
	Decision Making by Cluster Analysis

	FaceNet
	ResNet

	Methodology
	FaceNet Architecture Design
	Triplet Loss Function
	Training FaceNet with Triplet Loss and its Convergence

	Implementation
	Feasibility Study with Adaptive Feed Forward Network
	David Sandberg - Baseline Implementation
	Adaptive Learning for FaceNet

	Comparative Study of Adaptive ResNet
	Discussion of ResNet
	Results of Adaptive ResNet Training

	Future Work
	Conclusions
	Literature Cited
	Appendix A: Max-pooling in FcaeNet
	Convolutional, max-pooling and L2 layer in FaceNet

	Appendix B: Adaptive Architecture
	Code for Simple Feed Forward Neural Network
	Code for Adaptive Simple Feed Forward Neural Network
	Code for FaceNet
	Code for Adaptive FaceNet

