
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2020

An Efficient Design Methodology for Complex Sequential An Efficient Design Methodology for Complex Sequential

Asynchronous Digital Circuits Asynchronous Digital Circuits

Tomasz Chadzynski
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Chadzynski, Tomasz, "An Efficient Design Methodology for Complex Sequential Asynchronous Digital
Circuits" (2020). Master's Theses. 5139.
DOI: https://doi.org/10.31979/etd.gy4n-x9sz
https://scholarworks.sjsu.edu/etd_theses/5139

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/5139?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

AN EFFICIENT DESIGN METHODOLOGY FOR COMPLEX SEQUENTIAL
ASYNCHRONOUS DIGITAL CIRCUITS.

A Thesis

Presented to

The Faculty of the Department of Electrical Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Tomasz Chądzyński

December 2020

© 2020

Tomasz Chądzyński

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

AN EFFICIENT DESIGN METHODOLOGY FOR COMPLEX SEQUENTIAL
ASYNCHRONOUS DIGITAL CIRCUITS.

by

Tomasz Chądzyński

APPROVED FOR THE DEPARTMENT OF ELECTRICAL ENGINEERING

SAN JOSÉ STATE UNIVERSITY

December 2020

Tri Caohuu, Ph.D. Department of Electrical Engineering

Chang Choo, Ph.D. Department of Electrical Engineering

Morris Jones, MSEE Department of Electrical Engineering

ABSTRACT

AN EFFICIENT DESIGN METHODOLOGY FOR COMPLEX SEQUENTIAL
ASYNCHRONOUS DIGITAL CIRCUITS.

by Tomasz Chądzyński

Asynchronous digital logic as a design alternative offers a smaller circuit area and

lower power consumption but suffers from increased complexity and difficulties related to

logic hazards and elements synchronization. The presented work proposes a design

methodology based on the speed-independent sequential logic theory, oriented toward

asynchronous hardware implementation of complex multi-step algorithms. Targeting

controller-centric devices that perform data-driven non-linear execution, the methodology

offers a CSP language-based controller workflow description approach and the

specification of a project implementation template supported by a two-stage design

process. First, the CSP layer describes complex speed-independent controller behavior

offering better scalability and maintainability than the STG model. Second, the

component-oriented design template specifies functional elements’ structural organization

and emphasizes the divide-and-conquer philosophy, streamlining large and complex

devices’ design and maintenance. Finally, the implementation process is divided into two

stages: a rapid development and functional verification stage and a synthesizable codebase

stage. Additionally, a case study design of a split-transaction MESI cache coherency

controller and its analysis are presented to validate the proposed methodology. The testing

phase compares synthesized and routed gate-level asynchronous and synchronous

implementations. For models synthesized to work with the same speed, the asynchronous

circuit area is 20% smaller with lower power consumption at approximately 18% of the

synchronous reference. The synchronous version synthesized for performance is 3.5 times

faster, at the cost of a large increase in area and power usage. The results prove the

methodology’s ability to deliver working complex asynchronous circuits competitive in

the chip area and power characteristics.

To my beloved wife Joanna and our daughter Emilia.

ACKNOWLEDGMENTS

I want to thank Dr. Tri Caohuu for his continuous guidance and support. Professor

Caohuu dedicated an enormous amount of time to help me with the research, and thanks

to his guidance, this work came into the shape it is today. I would also like to thank Dr.

David Parent, Prof. Morris Jones and Audrey Leong for their time spent helping me with

the Lab Equipment and Practical portion of the thesis. I am incredibly grateful to

Professor Parent for his time spent, ensuring that I have all the required CAD software

available to finish this thesis. Additionally, I would like to thank Magdalena Krajewska,

Mikayla Hutchinson, Attapol Rutherford, Keith Mueller, Greg Boyd, Bruce Rakes, Curt

Kineast and Adam Molzahn, whom in past years, inspired and helped me get to this point.

vi

TABLE OF CONTENTS

List of Tables . x

List of Figures . xii

List of Abbreviations. xiii

1 Introduction. 1

2 Literature Survey . 6
2.1 General Introductory Literature . 6
2.2 Asynchronous Controller Design and Synthesis . 8
2.3 Circuit Level Element Design. 9
2.4 CSP Language Applications in Asynchronous Logic Design 10
2.5 Multi-Core Systems and Cache Coherency . 11
2.6 Practical Applications of Asynchronous Logic Design. 12
2.7 Null Convention Logic as an Alternative Approach in Asynchronous

Logic Design . 13

3 Theory of Asynchronous Logic Design Review . 15
3.1 The input-output mode asynchronous sequential system 15

3.1.1 State Graph representation and Complete State Coding 17
3.1.2 Synthesis to gate level representation. 20

3.2 Handshake protocols and communication between asynchronous
modules . 24

3.3 CSP notation in describing asynchronous sequential transition system 27

4 Complex Sequential Asynchronous Logic Design Methodology 28
4.1 Model template organization . 29
4.2 Part 1: Stage 1 Model for behavioral design and verification. 31

4.2.1 Using CSP in modeling sequential behavior of the controller . . . 34
4.2.2 The Controller . 38
4.2.3 Flow Support Elements . 44
4.2.4 Additional components . 51
4.2.5 Putting the model together . 53

4.3 Design of the CSP to STG parser . 56
4.3.1 Model representation in CSP . 62
4.3.2 Translation from CSP to STG . 72
4.3.3 Synthesis from the STG model using Petrify . 82

4.4 Part 2: Stage 2 Model for logic synthesis . 84
4.5 Asynchronous Extension to standard set of ASIC primitives 91

vii

4.6 Model Synthesis and delay matching. 98
4.6.1 Bottom-up selective module synthesis . 99
4.6.2 Post-synthesis timing analysis and delay matching 104
4.6.3 Post Place and Route delay matching through ECO 108
4.6.4 Synthesis of the Controller Circuit. 109

5 Case Study: Asynchronous MESI Cache Coherence Controller with Split
Transaction Bus . 112
5.1 Cache Coherence MESI Algorithm and Split Transaction Bus Review112
5.2 Cache coherency controller design goals . 115
5.3 Cache coherency controller design assumptions . 118
5.4 Asynchronous Cache Coherence Controller Design . 120

5.4.1 Pending Request Log component design . 125
5.4.2 Receiver component design . 128
5.4.3 Responder component design . 135
5.4.4 Sender component design . 142
5.4.5 Controller module. 162

5.5 Reference synchronous design . 164
5.6 Note on synthesis approach of the Controller circuit 166

6 Future Improvements.. 167
6.1 Improvements to the methodology and tools. 167

6.1.1 The FSE completion detection . 167
6.1.2 Difficult syntax of the confusion block . 168
6.1.3 Passing CSP fragments as arguments to other CSP fragments . . . 169
6.1.4 Full support of standard C-implementation synthesis of set and

reset Boolean functions . 169
6.2 Improvements to the cache coherency controller design 170

6.2.1 Handling main memory regions with different properties 170
6.2.2 Implementing cache line size larger than a single word 171
6.2.3 Removing the assumption that memory is always slower than

the cores . 173
6.2.4 The PLOG bottleneck . 175
6.2.5 Extending the number of cores, asynchronous arbiter bottleneck 177

7 Analysis and Results . 178
7.1 Practical considerations for efficient asynchronous design. 178
7.2 Approach to system verification . 180
7.3 Results . 182

8 Conclusions . 189

Literature Cited . 191

viii

Appendix A: The CSP source code for the controllers . 197
A.1 Pending-Log component controller. 197
A.2 Receiver component controller. 199
A.3 Responder component controller. 201
A.4 Sender component controller handling bus transmission. 204
A.5 Sender component controller handling interfacing with CPU core. . . . 206
A.6 Sender component controller handling message collision detection. . . 208
A.7 Sender component main controller . 210

Appendix B: Complete test results . 211

Appendix C: Reference CSP to STG parser source code . 213

ix

x

LIST OF TABLES

Table 1. C-element Truth Table. 23

Table 2. Comparison of Synchronous and Asynchronous Design Models. 183

Table 3. Full Test Results . 211

xi

LIST OF FIGURES

Fig. 1. Sample signal transition graph. 16

Fig. 2. Simplified model (a) STG (b) SG 4-state (c) SG binary. 19

Fig. 3. Simplified model with CSC (a) STG (b) SG 4-state (c) SG binary.. . . . 20

Fig. 4. Regions for signal op1. 22

Fig. 5. The 4-phase protocol and data line validity. 25

Fig. 6. Bundle delay model. 26

Fig. 7. The implementation template overview. 31

Fig. 8. Methodology steps leading to stage 1 model. 33

Fig. 9. Example STG model. 37

Fig. 10. Stage 1 asynchronous controller structure example. 40

Fig. 11. Example types of flow support elements . 45

Fig. 12. Asynchronous register example. 52

Fig. 13. Receiver component overview. 54

Fig. 14. Wait room system overview. 57

Fig. 15. Wait room system signal connections. 59

Fig. 16. Controller: the expected generated STG output. 60

Fig. 17. Controller: an unsafe STG construct. 62

Fig. 18. Example STG model, concurrent events flow.. 68

Fig. 19. Methodology steps leading to stage 2 model. 84

Fig. 20. Generic C-element.. 92

Fig. 21. Generic C-element with 3 inputs. 93

Fig. 22. Asynchronous MUTEX. 94

xii

Fig. 23. Asynchronous MUTEX with three lines. 95

Fig. 24. D-Latch with reset. 96

Fig. 25. Generic C-element with pull high reset. 97

Fig. 26. Generic C-element with pull low reset. 97

Fig. 27. Petrify output-compatible C-Layer components. 98

Fig. 28. The MESI cache controller overview.. 115

Fig. 29. System block diagram. 117

Fig. 30. Bus message packet structure. 118

Fig. 31. Controller interface. 120

Fig. 32. Pending log component interface. 126

Fig. 33. Receiver component interface. 129

Fig. 34. Receiver internal block structure. 135

Fig. 35. Responder component interface. 136

Fig. 36. Responder internal block structure. 140

Fig. 37. Sender component interface. 143

Fig. 38. The main transaction controller STG.. 154

Fig. 39. The STG for the PLOG-check controller. 157

Fig. 40. Sender component internal block structure. 161

Fig. 41. Controller internal block structure. 163

Fig. 42. Asynchronous design dynamic power measurement data. 187

Fig. 43. Synchronous design dynamic power measurement data. 187

LIST OF ABBREVIATIONS

ACK Acknowledge
ASIC Application Specific Integrated Circuit
CAS Compare And Swap
CPU Central Processing Unit
CSC Complete State Coding
CSP Communicating Sequential Processes
DI Delay Insensitive Circuit
DSP Digital Signal Processing
DSPL Direct Signal Pull Low
DUT Design Under Test
ECO Engineering Change Order
FSE Flow Support Element
GALS Globally Asynchronous Locally Synchronous
HDL Hardware Description Language
IOT Internet Of Things
ISA Instruction Set Architecture
ISPL Inverted Signal Pull Low
LR Load Reserved
MESI Modified Exclusive Shared Invalid
MIC Multiple Input Change
NCL Null Convention Logic
NOC Network On Chip
PDK Process Design Kit
PLOG Pending transaction Log
QDI Quasi Delay Insensitive Circuit
REQ Request
SC Store Conditional
SG State Graph
SI Speed Independent Circuit
SIC Single Input Change
SOC System On Chip
STG Signal Transition Graph

xiii

1 INTRODUCTION

Asynchronous logic is an alternative digital design approach that offers tangible

advantages in the form of a smaller circuit area, lower power requirements, and improved

fault tolerance [1], [2] compared to the widely used synchronous methodology. A major

differentiating factor here is the lack of the clock signal in the asynchronous circuits.

Eliminating the need for global clock distribution or even localized clocking removes the

need for the additional clock tree in the circuit that consumes a significant portion of the

chip area [3]. The absence of the clock signal also implies less switching activity in the

device as the elements do not receive an unconditional signal to which they have to react.

In asynchronous logic design, any unnecessary activity virtually does not exist as the

components are active only when taking when executing their part of the workflow [4],

[5]. Therefore, removing the clock signal opens the door to the synthesis of digital circuits

exhibiting lower power consumption and smaller chip area than their synchronous

counterparts [6], [7]. In the era of IoT and growing popularity for small embedded custom

cyber-physical systems [8], the use of asynchronous logic in a design can benefit projects

for which low power and small size are crucial design goals.

Despite the advantages, asynchronous logic suffers a significant drawback due to the

level of difficulty in design. Removing the clock increases the impact of logic hazards on

the entire device and removes the primary synchronization signal. Asynchronous logic

must be designed under strict control over any unexpected logic fluctuations as they can

set off incorrect device behavior. Despite the existence of well-established methods in the

asynchronous design, modeling of a larger, non-trivial circuit still presents a significant

challenge.

This work proposes a methodology that specifies an approach for designing complex

sequential asynchronous circuits targeted for implementing digital modules that execute

1

multi-step algorithmic workflows. The focus is on the type of circuits that execute

data-driven tasks composed of multiple consecutive operations. The methodology builds

on top of the theory of speed-independent circuits [4], [5], [9]. The proposed framework

introduces an HDL template that defines the model’s codebase structure and adds a

CSP-based description layer on top of STG graphs that simplifies the modeling of

speed-independent asynchronous controller modules. Also, an emphasis is placed on the

divide-and-conquer philosophy in which the large and complex design splits into simpler

and easier to maintain elements.

In asynchronous logic, the state machine construct is replaced by the Petri-net

derivative model called Signal Transition Graph (STG) as the high-level representation of

the working algorithm. Unlike the state graph used in the synchronous design, the STG

model represents both: the sequence of events and a description of the concurrency in the

system. In the STG flow model, events can happen in parallel and at an unspecified time

but in a known order. Correct derivation of the STG graph is critical for obtaining a

working asynchronous controller. Consequentially, asynchronous design modeling using

STG becomes a much more complex and error-prone task than the sequential model

equivalent.

This research proposes a methodology based on the proven STG based synthesis

approach [4], [9] and builds on top of it to improve the design and verification process of

non-trivial systems. The base STG-based speed-independent workflow is extended to

streamline the design of complex controller behavior. An additional Communicating

Sequential Processes (CSP) language-derived abstraction layer is added on top of the STG

that offers more flexibility and improves model maintainability, especially in large

designs. While the STG graph grows with the complexity of the design and becomes

more challenging to maintain, the CSP representation offers an imperative-like

programming language representation that allows for decomposition into smaller

2

submodules. The CSP model is then translated into the STG graph from which the target

circuit next-state Boolean equations are derived. The proposed methodology presents a

reference implementation of a CSP to STG translator using a subset of CSP language

with custom extensions that allow for an automated translation.

The second element introduced by the proposed methodology next to the CSP

translator is the HDL template that specifies the project implementation structure. The

proposed methodology follows the divide-and-conquer philosophy, which favors breaking

a complex problem into a set of smaller ones that are easier to deal with. The specified

design template dictates dividing a design into smaller functional blocks called

Components. The Component is the basic building block that covers a subset of

functionality and contains a methodology-specified set of modules. A single instance of

the Component contains at minimum one or more speed-independent controllers to

implement its workflow and a set of supporting modules. As the speed-independent

controller works only with control signals but not the data, the proposed methodology

introduces templates for a set of datapath elements called Flow Support Elements (FSE).

One or more FSEs work in tandem with the controller in a passive-active setup and

execute various tasks such as conditional resolution or data manipulation. In addition to

the controller and FSE modules, the Component can contain miscellaneous elements such

as registers, mutexes, or support modules that perform simple signal manipulation tasks.

Going upward in the template hierarchy, the Component modules then connect together

within the Top module. The Top module is the primary element that groups functional

elements into the designed module and provides the external interface.

With the state of current computer technology, nearly every system is composed of

more than one processing core. Using a multi-core system and parallel computing model

became the dominant way to achieve increased performance while mitigating the power

wall effect. Using multiple cores to compute in parallel creates additional architectural

3

challenges related to memory subsystems, including cache memory. When more than one

core operates on shared address space, keeping a multi-layer memory architecture in a

stable and coherent state is crucial for error-free system operation.

When analyzing the execution pattern of software, two characteristics become

apparent with the majority of computer programs exhibit a temporal and spatial locality

behavior [11]. As a result, separate programs or execution threads do not often compete

for access to the main memory. Instead, they operate on a subset of the memory space

stored as a local copy in their cache memory for most of their execution time. However,

an application memory access pattern itself is unpredictable and depends on its state,

inputs and executed algorithm. Few examples of such unpredictable input sources are the

user input or a variety of environmental sensors.

In the global system perspective, such asynchronous and unpredictable memory

access behavior in conjunction with multi-layered cache memory hierarchies can be a

good fit for implementation using asynchronous logic. Asynchronous logic is not

constrained by the clock time and can react to an event as soon as the hardware resource

is ready, potentially providing a shorter time to completion [5]. Another advantage of an

asynchronous circuit is the absence of a clock. The clock tree logic used to distribute the

clock signal throughout the circuit consumes a significant portion of the chip area. The

elimination of the clock tree lowers the required transistor count within the chip leading

to smaller area requirements. Asynchronicity, lower power and area requirements could

be particularly appealing when applied in small, low footprint embedded systems.

The presented work provides a case study in the form of an implementation of a cache

coherence controller to evaluate the proposed methodology. The provided controller

implements a MESI protocol, one of the most widely adopted cache coherency algorithms

used in general-purpose processors, and communicates using the split-transaction

bus [10], [12]. The motivation behind selecting the cache coherence controller is to

4

provide a sufficiently complex design problem to demonstrate and evaluate the

methodology’s practical use. Its implementation structure splits into four components:

Sender which processes the requests from the CPU core and places requests on the bus,

Receiver which processes messages incoming from the bus, Pending Request Log that

serves as a journal for any outstanding data request transactions across the system and the

Responder answering requests from other cores. All four components together form an

implementation that realizes the MESI cache coherence protocol with a split-transaction

bus interface.

5

2 LITERATURE SURVEY

Though not currently widespread in the mainstream industry, the asynchronous logic

design is a topic of active and extensive research. The theory of speed-independent

controller circuit is widely documented by a sizable selection of books and research

papers. Many books discuss various implementations of logic elements starting from the

asynchronous pipelines through asynchronous arbiters, QDI circuit templates, and many

more. The asynchronous logic also saw a number of practical implementations of working

circuits such as microprocessors and DSP units. This section surveys through selected

literature positions relevant to the presented work.

2.1 General Introductory Literature

The asynchronous logic design introduces a large variety of new design concepts

non-existent in the synchronous approach. Simultaneously, most techniques widely used

in the synchronous methodology, such as the state machine or pipelines, are

fundamentally changed and require a completely different design approach. Among the

available literature, there exists a number of publications that could serve as good

introductory material and beyond. The two-part article [1], [13] by Steven M. Nowick and

Montek Singh in part 1 lays out the history of asynchronous logic design techniques,

presents a series of commercial projects, and discusses additional emerging areas of

asynchronous logic applications such as ultra-low power or extreme environments.

Finally, part one presents a fundamentals overview, primarily discussing handshaking

protocols and pipelining. In part 2, the authors focus on synthesis methods; the paper

starts from the discussion about logic hazards and their significance in asynchronous

circuits. Next, the paper introduces design techniques for asynchronous controller circuits

then finishes with a discussion about high-level synthesis from languages like CSP.

6

For a more in-depth introduction, the report titled "An Introduction to Asynchronous

Circuit Design" [14] offers a general overview of essential concepts in asynchronous logic

design. Aside from general motivation and basics, the paper is divided into four sections.

Initially, the discussion starts with communication protocols for control and data. The

4-phase and 2-phase handshaking protocols are introduced as well as bundle data delay

matching and dual-rail data encoding. Then the section finishes with an analysis of the

important concept of completion detection. Next, the work discusses topics related to

hazards and delay models used to classify asynchronous circuits. Classes of Single Input

Change (SIC) and Multiple Input Change (MIC) hazards are presented along with logic

synthesis methods that avoid them. Next, the text discusses the topic of asynchronous

arbitration. The arbitration in asynchronous circuits is an analog problem involving

expected metastability and metastability filtering. The arbitration in asynchronous logic is

an essential concept; in some cases, it is the only way to synchronize communication

between the device’s separate components. Lastly, the report lays out the topics of the

design of sequential components and asynchronous datapath. Different design techniques

are discussed for sequential circuits, such as the Huffman asynchronous state machine and

the STG-based input-output speed-independent controller. The asynchronous datapath

segment focuses on pipeline design. Overall the report serves as an excellent introductory

material with a sufficient level of technical discussion.

The final position is the "Asynchronous Circuit Design, A Tutorial" [5], which goes

beyond the asynchronous design topics’ general introduction. The book’s leading theme

focuses on constructing asynchronous circuits as a series of functional blocks organized

into complex pipelines or ring structures. The material starts with introducing the

fundamentals, and similar to other positions, discusses the communication protocols, the

C-element and the theoretical basis. Throughout the next two chapters, three and four, the

book takes on the topic of circuit design and performance. Specifically, chapter three

7

introduces basic functional building blocks and design patterns such as the conditional

if-statement or while loop design using the introduced functional blocks. The following

sections go from an abstract block-based design view into a specific implementation of

the functional blocks. The fifth chapter discusses the circuit-level implementation of

functional blocks starting from elements such as fork-and-join, then discussing bundle

data and dual-rail encoding and finishing with topics related to mutual exclusion and

arbitration. Chapter 6, which is the last section in the book that focuses on low-level

design-related material, is entirely dedicated to the synthesis of the speed-independent

controllers. The section discusses derivation techniques that start from Signal Transition

Graphs (STG) through the synthesis procedure into gate-level representation. The work

presents a step-by-step approach to obtain the set of next-state equations both for the

complex gate and standard C-element controller structures. The chapter finishes with the

introduction of the Petrify tool [15], an automated synthesizer of asynchronous controller

circuits. Lastly, the final two chapters discuss more advanced topics in channel-based

communication and high-level synthesis from languages like CSP. The book serves as an

excellent resource for a reader who is new to asynchronous design but is looking for an

introduction and a guide to starting custom asynchronous design projects.

2.2 Asynchronous Controller Design and Synthesis

The topic of asynchronous controller circuits is one of the most important parts of

asynchronous logic design and also one of if not the most complex one. The book

"Asynchronous Circuit Design" [4] by Chris J. Myers provides an in-depth discussion in

asynchronous controller design. The book follows a rigorous mathematical and

definition-based approach in introducing the material. The text’s main portion is dedicated

to two types of asynchronous controllers: Huffman Circuit, also called the fundamental

mode machine, and the Mueller Circuit that is the input-output mode speed-independent

8

design. Also, the fundamentals such as communication protocols, Petri-nets, and basic

introduction are covered as well. The book provides a complete mathematical definition

of the STG graph model and walks in-depth through the entire synthesis process of the

Mueller Circuit. Advanced synthesis concepts and their algorithmic specification are

presented for every step of the process, including Complete State Coding (CSC) and

Hazard-Free Logic Decomposition. The book delivers a solid, well-defined basis for

further research and CAD tool development.

In the category of input-output mode asynchronous circuits, two positions, the "Logic

Synthesis for Asynchronous Controllers and Interfaces" [9] and "Synthesis of

asynchronous hardware from Petri nets" [16] provide dedicated coverage into all topic

starting from STG specification until hazard-free decomposition into logic gates with

limited fan-in. The first position is a book dedicated entirely to the speed-independent

controller synthesis through the State-based model. The book thoroughly examines every

stage of the synthesis; it presents an entire chapter dedicated to correct STG

representation topics, implementability of STG and SG, and the derivation of the

next-state equations for the complex gate and the standard C-element. Also, the book

presents algorithms for CSC generation and methods of analysis of the SG structures.

Finally, the book discusses hazard-free logic decomposition, including technology

mapping to a logic gate library. The second position [16] tackles the problem of state

explosion known from the State-based synthesis approach. The paper discusses alternative

ways of directly deriving next-state equations from the STG representation bypassing the

SG graph processing phase.

2.3 Circuit Level Element Design

The asynchronous logic design introduces many circuit-level techniques not used in

the synchronous discipline. The paper titled "Asynchronous Techniques for

9

System-on-Chip Design" [17] presents circuit-level constructs of many asynchronous

functional elements. The text introduces an approach to the specification of asynchronous

circuits functionality in a CHP language, a CSP derivative. The work discusses many

templates for asynchronous components, inter-component communication, and pipelines.

One of the most notable topics is the simple arbiter circuit, which is also called the mutex

element; then, the paper surveys its more complex variations. Then the article discusses

an asynchronous register design with write completion detection mechanisms, pipeline

techniques, and interfacing in GALS circuits.

Asynchronous pipelines are an essential concept right next to asynchronous

controllers. Unlike in synchronous methodology, there exists a large variety of

asynchronous pipeline designs that vary with complexity and speed. Article [18] presents

several pipeline constructs dividing those into two categories. The first category is a static

logic pipeline that uses latches, and the second is the latchless dynamic logic. Among the

categories, the text shows different completion detection techniques such as bundle data

or dual-rail encoding and different communication protocols such as 2-phase or 4-phase.

On the static logic side, the paper presents the base Sutherland pipeline and

high-performance constructs such as the Mousetrap and GasP pipelines. Then in the

dynamic logic section, the PS0 pipeline model is presented. The paper delivers a useful

review of different types of asynchronous pipelines presenting options of different

complexity and performance-power characteristics.

2.4 CSP Language Applications in Asynchronous Logic Design

The CSP language and its derivatives are widely used in the asynchronous circuit

design specification. The language itself was designed to model concurrent systems. Its

syntax can represent sequences of events occurring in different flows such as serial or

parallel order as well as the dependencies between them. The language uses a concept of

10

a process, in which a single process is an entity that interacts with its environment. The

positions [19]–[21] extensively cover the language, its constructs, use cases, and

examples. The CSP language does not have one formal specification and exists in many

variations; thus, its description, as expected, varies from text to text.

One of the most notable works in asynchronous logic design using CSP is the

California Institute of Technology’s effort to design a method of compiling CSP defined

processes into delay-insensitive VLSI circuits. The series of texts [22]–[24] presents the

proposed methodology and implementation of a working automated compiler. The

approach translates a concurrent program written in CSP language to a set of predefined

elements mapped to VLSI primitives. The result is a delay insensitive asynchronous

circuit.

2.5 Multi-Core Systems and Cache Coherency

There exist two excellent texts on the topics of computer architecture, cache

coherency, and multicore systems. A well known "Computer Architecture A Quantitative

Approach" [10] is the primary reference material for general knowledge about computer

architecture. The book surveys through a large variety of topics such as basic ISA and

CPU pipeline design, memory hierarchy, including cache and virtual memory. Then the

book focuses on the current design trends in computers, primarily parallel execution at

multiple levels of abstraction from instructions to computer cluster systems. The text

discusses instruction, data, and thread-level parallelism and how to take advantage of it to

improve computing performance. Finally, the book surveys the topics of warehouse-scale

computers and domain-specific architectures. Overall the position is the source for a

broad spectrum of computer architecture topics.

Second position the "Parallel Computer Architecture" [12]. The book is entirely

focused on parallel processing systems design and provides in-depth discussion in topics

11

related to shared memory multiprocessor systems or cache coherency. The book begins

with an introduction of parallelization and related topics; then, the next three chapters

discuss the structure of parallel programs and computing performance. In the following

chapters, the book focuses on multiprocessor systems, bus communication, and cache

coherency. Among many, the text covers topics such as snoop and directory-based cache

coherence protocols, split-transaction bus, and scalable systems. In the final chapters, the

book presents network-related topics in multiprocessor architectures.

2.6 Practical Applications of Asynchronous Logic Design

The asynchronous logic design is not only confined to academia. Over the years, many

practical applications emerged, including a significant number of projects focused on

constructing asynchronous CPUs. The AMULET3 is a fully asynchronous microprocessor

implementing the ARM instruction set [25] and a successor of the AMULET2e [26]

project that proven realistic gains from using the asynchronous logic design approach.

The project carried at the University of Manchester resulted in a manufactured circuit and

led to the development of multiple techniques useful in designing asynchronous CPU type

of chip. While the goal of AMULET2e is to prove that asynchronous logic design can be

used in practice and provide benefits over synchronous design, the AMULET3 goal is to

demonstrate asynchronous logic as a commercially viable digital design method. Another

project, the ARM996HS [27], is the second example of an ARM ISA based processor

designed as an asynchronous circuit. The design used the TiDE framework specializing in

generating handshake circuits that use the Haste (variant of CSP) language as a design

entry. As expected from asynchronous designs, the ARM995HS features lower power

consumption than the synchronous counterpart and delivers higher reliability against

variable environmental conditions such as temperature and power supply voltage. The

core is designed to connect into SOC through the AHB-Lite bus.

12

The asynchronous logic design was also successfully leveraged as a base for

frameworks that perform high-level synthesis. The Philips Research Laboratory created

the Tangram [28] language and a supporting framework for creating asynchronous

handshake circuits using CSP based description language. The work is targeted toward a

tool that allows the designer without specialized knowledge of VLSI design to specify an

asynchronous circuit’s behavior and obtain the gate-level representation. The Department

of Computer Science at the University of Manchester conducted research into the

development of the Balsa [29] system. The system focus is the rapid development and

synthesis of the asynchronous circuits. The Balsa language is a procedural language

focused on the description of algorithms, which are then synthesized into working

asynchronous logic constructs.

2.7 Null Convention Logic as an Alternative Approach in Asynchronous Logic
Design

The Null Convention Logic is another distinctive approach in asynchronous logic

design. Compared to the methodology based on speed-independent circuits or Huffman

asynchronous state machine, the NCL does not use traditional combinational logic paired

with C-elements. Instead, NCL relies on a set of multi-input threshold activated

state-holding elements. The NCL elements activate after a certain number of inputs

becomes high and deactivates when all inputs go back low. When it comes to data

representation, the NCL gate’s output does not represent Boolean value; instead, high

output means data present, and low means no data. Therefore it is common to use

dual-rail encoding in conjunction with NCL for the datapath. The paper [30] serves as a

good introduction to NCL. The text includes basic concepts and presents the elementary

NCL gates. Furthermore, the paper talks about forming pipelines with NCL and compares

NCL to the other asynchronous logic design techniques.

13

The book "Designing asynchronous circuits using NULL convention logic

(NCL)" [31] serves as more in-depth coverage of the topic. Similarly, the book introduces

the basics and then shows transistor level implementation of the threshold gates.

Furthermore, the book dedicates a chapter to combinational logic design in NCL,

discussing completeness detection and data encoding as a dual and quad rail. Then the

text covers sequential circuit design in the form of state machines in NCL.

14

3 THEORY OF ASYNCHRONOUS LOGIC DESIGN REVIEW

The methodology presented in chapter 4 relies on a series of well established

fundamental concepts from asynchronous circuit design [1], [13], [14]. Most notable is

the use of a speed-independent controller as the central control point for the design’s

Component modules. Then the methodology uses a 4-phase handshake protocol and the

bundled-data delay-matching line model for communication between elements. Finally, a

CSP derived language is used to describe speed-independent controllers’ behavior as an

additional layer on top of the STG representation. This section serves as a brief overview

of the fundamental concepts and points to proper literature for more in-depth discussion.

3.1 The input-output mode asynchronous sequential system

Used as the central core element by the methodology, the controller element design is

modeled as sequential, speed-independent, input-output mode asynchronous circuits [4],

[5], [9]. The input-output is one of the operating modes [9] that allows for signals to

occur asynchronously without a timing restriction. Unlike the fundamental mode, the

input-output circuit does not require a certain time period to pass between the signal

changes. Relying on the input-output mode allows for greater flexibility in the design.

Any signal can occur at any time as long as the specified order of transitions is preserved.

Specification of the speed-independent asynchronous controller in input-output mode

is done using the Signal Transition Graph (STG) [4], [16]. The STG is a special form of a

Petri-net [32], [33] with additional imposed assumptions required for the model to be

implementable as a speed-independent asynchronous circuit. An example of an STG is

shown in Fig. 1; it is a uni-directed graph in which the nodes represent either transitions

or places holding a token that enables a transition. Each transition node represents a

change, either a rising or falling of a single signal in the system. The represented signal

15

could be an input or an output line and sometimes an internal connection that connects to

the circuit feedback, but it is not a part of the element’s interface.

Fig. 1. Sample signal transition graph.

The second element next to the transition within the STG model is the place node. A

place node’s purpose is to indicate a token’s existence at a specific execution point that

enables the following transitions to fire. Depending on how a place node is positioned, the

STG fragment might be a choice or a parallel construct and similar [4], [32]. For example

in the Fig. 1 a place between ack- and req+ carries a single token indicating that the

expected next transition is exclusively the req+. As a second example, the post-set of req+

which are the op1+ and op2+ are connected through two implicit and empty place nodes

indicating the execution splits into two parallel paths. An implicit place exists when its

description within the STG is unique, meaning there is only one possible way to specify

16

the place at a given position in the graph. As a result, the implicit place is not drawn, and

instead, a direct line follows from one transition to the other.

Altogether, the STG graph models a speed-independent system’s behavior by

graphing the flow of signals that consist of the asynchronous circuit workflow. The STG

model can capture the system at any given state. However, the most common is the initial

state shown in Fig. 1, which serves as the model state-space entry point used for synthesis.

However, it is possible to show the system in an arbitrary state by explicitly drawing the

corresponding set of place nodes that hold the tokens at a given moment. The STG

representation strength is the ability to represent sequences of events capturing the

causality and parallelism but without any information about timing.

3.1.1 State Graph representation and Complete State Coding

Continuing, the next step in the synthesis of the asynchronous speed-independent

controller involves translating the STG into the State Graph (SG) [4], [9]. The SG model

serves as a bridge between abstract STG and the final Boolean next-state equations

describing the system’s behavior. In the SG model, the system is represented as a series of

nodes in which each node holds information about the system’s current state and the next

transition(s). When converting to SG, all the system’s signals, meaning all inputs, all

outputs, and all internal lines, are bundled together into a state vector in which one vector

element represents one signal. Each element in the vector is then described using a

four-value number system. The value of 1 or 0 represents a stable signal that does not

change due to any immediately following transition. Then the value of R represents the

current state of 0, but the signal is excited and can potentially rise during the next

transition. Finally, the state value of F is a counterpart of R; for the F state, the current

value is 1, and the signal is excited to potentially fall as a result of the next transition.

17

An example is shown in Fig. 2 in which (a) is the STG of the system and (b) its

corresponding SG. The SG state vector contains, starting from the leftmost element, the

inputs to the system, then the outputs in order as they appear in the legend at the bottom

of the figure. The edge between the place with a token and req+ shown in (a) corresponds

to the s1_R000 in (b). At this state, the STG shows that the next transition possible will

be the rising req. The existing token within the place node and destination transition of

req+ indicate state value R for the req signal within the state vector. Consequentially, the

distribution of tokens within the STG and the post-set transitions out of the place nodes

determines the state vector’s value. Therefore, a single state in SG represents a single state

of STG and its current marking assignment to the place nodes. Also, note that the s1 state

is marked as the SG initial state corresponding to the initial marking assignment in STG.

While describing the speed-independent system’s state, the SG model also introduces

potential inconsistencies in the model. Ultimately the 4-value representation collapses to

binary data when the system is implemented in hardware, during which a single element

in state vector becomes a single bit. Looking at states s2 and s6 in the segment (c) of

Fig. 2, both have the same value. However, when referring back to (b) of the same figure,

these two states represent the system in two completely different moments with different

upcoming transitions. Therefore, the 4-value data representation collapsing into binary

form can result in a loss of information and an invalid model.

An additional step must be performed to restore the model to its correct state. This

additional step involves introducing new signals that result in a model regain the property

called Complete State Coding (CSC) [4], [9]. Adding additional CSC states split the

model into regions in which the added CSC signal has different values. The goal is to

divide the model into regions such that one of the previously overlapping states lies within

one region while the second ends up situated in another. Adding a single CSC signal

extends the state vector by one element that serves as the differentiating factor when the

18

representation is collapsed to the binary number system. The Fig. 3 shows a system after

the CSC is achieved. The previously overlapping states, now having names s7 and s6,

have a 5th element in the state vector that contains a different value for each state,

allowing to distinguish between them. The fifth value comes from adding the csc0 signal

that changes to 1 before s6 occurs and changes back to 0 past s6 and before s7. With the

csc0 signal, the model can uniquely represent each state, thus eliminating inconsistencies.

Fig. 2. Simplified model (a) STG (b) SG 4-state (c) SG binary.

19

Fig. 3. Simplified model with CSC (a) STG (b) SG 4-state (c) SG binary.

3.1.2 Synthesis to gate level representation.

After obtaining the SG with CSC comes the last step of the synthesis that results in a

set of Boolean next-step equations that implement the system. Then the final mapping to

gate primitives. The synthesis procedure aims to obtain a Boolean function for every

output and every internal signal within the controller. The input signals are controlled by

20

the external environment and are considered only as variables in the output and internal

signals’ equations. However, the model assumes that the input signals behave according to

the implementable STG model’s specification and follow the rules of the

speed-independent model.

For each signal of interest, the first step in the process is dividing the state space into

four distinct regions relative to the processed signal. First are two excitation regions

(ER(s+) and ER(s-)) one for an excited rising and the other for an excited falling signal.

An excitation region covers all states in which a given signal is excited, meaning it can

rise/fall next. Two separate excitation regions exist, one for rising and one for falling. The

second pair of regions is the quiescent regions (QR(s+) and QR(s-)) that contain all the

states for which the given signal is stable high or stable low. An example region division

is shown in Fig. 4 and applies to the signal op1, for which state value is situated at the

state vector’s second rightmost position.

The obtained regions provide sets of cubes from which cover functions are derived.

The derivation method varies with the implementation approach taken; the two main

approaches are the complex gate and the C-element [4], [5], [9]. The complex gate variant

targets implementation through custom CMOS pull-up and pull-down networks treating

any Boolean function as a single entity. The C-element approach uses the Mueller

C-element [34] as a memory element reducing the complexity of the cover functions

simplifying Boolean logic, and provides better resistance to logic hazards. The proposed

methodology focuses on implementing the speed-independent controllers using

C-elements exclusively.

21

Fig. 4. Regions for signal op1.

Cnext = AB+C(A+B) (1)

The C-element is a type of memory element in which the state change occurs when

both inputs are either high or low. The Equation 1 and truth table in Table 1 show the

function of the C-element. When all the device inputs reach a low state, the output also

becomes low. Similarly, when all the inputs become high, then the output switches to

high. At any given time, when the inputs have different logic states, the element preserves

the last set value.

22

Table 1
C-element Truth Table.

a b c c*

0 0 − 0

0 1 0/1 c

1 0 0/1 c

1 1 − 1

The Boolean next-state functions’ derivation using the C-element focuses on obtaining

a pair of a set and reset equations per C-element. The set equation covers all the cubes

(states) in the rising excitation (ER(s+)) region for a given signal with the option to use

cubes from the quiescent stable high region to simplify the formula. On the opposite end,

the reset equation must cover all the cubes in the falling excitation region (ER(s-)) also

with an option to use additional cubes form the quiescent region for stable low [4], [9].

The set and reset functions are duals of each other. When one is high, the second is

guaranteed to be low. An output of the set function connects directly with one of the

C-element inputs, while the reset equation first goes through an inverter. When the circuit

enters a rising excitation region for a given output or an internal signal, the set equation

becomes high, and the reset becomes low. However, because the reset feeds through an

inverter, both functions will exert a high signal at the C-element inputs causing the

element to transition to high itself and preserve its state through the quiescent region. The

same behavior occurs in the falling excitation region, but the values are inverted; the set

function becomes low, and the reset high resulting in both feeding low values to the

C-element, causing it to transition to low.

The described model, in its simplest form, is called the generalized C-element

implementation (gC). Even though the gC approach alleviates some logic hazards, the set

and reset equations are still expected to be implemented as complex gates. The realization

23

of the gC using elementary logic gates can introduce hazards leading to circuit

malfunction due to the delays present in the logic gates and the interconnections.

However, an implementation using discrete elementary gates is possible by following the

Standard C-implementation approach, in which Boolean function synthesis satisfies the

monotonous cover constraint [4], [9], [35]. Unfortunately, the Standard C-implementation

alone with monotonous cover constraint introduces an AND-OR logic layer, which might

require large fan-in gates not available in the standard set. However, additional

hazard-free decomposition methods exist that generate fully working next-state equations

built using a realistic and implementable set of logic gates [4], [9].

3.2 Handshake protocols and communication between asynchronous modules

A complex system usually extends into multiple components that need to

communicate with each other. The asynchronous approach uses a handshake protocol to

facilitate communication between modules [4]. One such protocol is the 4-phase

handshake that is widely used by the proposed methodology. Handshake based

communication defines a communicating element either as an active or a passive actor.

The active entity is the one that initiates the communication while the passive reacts to the

communication request. A module can also be an active-passive component, in which

case it fills the active role on one interface and passive on another.

The 4-phase handshake involves four stages of the information exchange cycle. The

first stage when the active side communicates the request for an exchange, followed by

the second stage when the passive component acknowledges the request. When both

components are done with processing the message, the third stage occurs when the active

side withdraws the request, followed by the passive element withdrawing the

acknowledge that indicates the end of the handshake.

24

An example of 4-phase setup is shown in Fig. 5. The data lines are optional, but when

they exist, the data flow will go either direction. The important difference lies within the

time the data lines must remain valid. In the case of d1 that travels from active to passive

element, the data lines must become valid before the active element requests the

transaction. An ack signal from the passive component indicates that it received the data

and no longer needs it. After the ack, the active module is free to release the data lines

from their valid state at any time. In the opposite case of d2, when the data travels from

the passive element to the active, the data lines must remain valid for a potentially longer

period. In the second case, the active side requests the data, and the passive module

delivers it. Therefore, the data lines must become valid before the ack occurs. When the

active module finishes with the message data, it signals it by lowering the req line, at

which point in time the passive element of free to release the data lines and withdraw the

ack signal.

Fig. 5. The 4-phase protocol and data line validity.

25

Another aspect of complex systems is the existence of the data-path in parallel to the

control path. The speed-independent controller alone does not have the ability to analyze

and process data. The system needs additional combinational logic modules for this task.

However, the data processing logic itself introduces a logic delay of which the controller

must be aware to properly synchronize the events in the system. To cover the data-path

components delay, a class of circuits called completion detection logic [36] exist. The

simplest completion detection mechanism is the bundle delay matching approach [4], [36]

that introduces a control line existing in parallel to the data-path. The control line delay

must also be longer than the combinational logic long-path delay. An example of a bundle

delay is shown in Fig. 6. The req signal goes high at the time when the combinational

logic receives valid data. The delayed ack signal is then guaranteed to go high after the

combinational function is resolved and produced stable output. The simple bundle delay

model allows incorporating complex data-path logic into the speed independent

asynchronous controller workflow.

Fig. 6. Bundle delay model.

26

3.3 CSP notation in describing asynchronous sequential transition system

The Communicating Sequential Processes (CSP) language is a notation that

specializes in modeling entities as concurrent processes that exchange information with

each other through communication channels [17], [19]–[21], [37]. The syntax of CSP is

widely used as a high-level description for the functionality of a variety of asynchronous

circuits [17] as well as an input model for the synthesis of some classes of asynchronous

circuits [22]–[24]. The language provides a variety of constructs that allow describing

sequences of events similar to STG as well as parallelism and, in some cases, a notation

that directly translates to STG constructs such as confusion block.

The presented work uses a subset of the CSP notation as a base for a description layer

that translates directly to an STG. An example shown in Listing 1 represents the STG

presented earlier in Fig. 2 segment (a). The goal of using the CSP-based modeling layer is

to provide a tool allowing for a clear description of the complex execution flow of

controllers, which syntax is then parsed to STG representation.

*[[r e q +] ; op1 +; [op1_ack +] ; op1 −; [op1_ack −] ; ack + ; [req −] ; ack −]

Listing 1. Simplified STG in CSP notation.

27

4 COMPLEX SEQUENTIAL ASYNCHRONOUS LOGIC DESIGN
METHODOLOGY

The presented methodology specifies a workflow for the design of complex

asynchronous sequential circuits. The primary focus is the class of circuits in which the

device executes a multi-step algorithm. An example case of a multi-step algorithm is a

search algorithm that involves iteration over the data-set, comparing two items with each

other, then, if applicable, performing a memory swap. In traditional synchronous circuits,

such multi-step functionality can be implemented either by using a pipeline or a state

machine, or a combination of both.

The pipeline approach provides a structurally simpler model and higher throughput

but suffers from a lack of flexibility. The processed data must pass through every stage,

even when that stage might not execute any actions, such as a conditional execution that

flow depends on the data content. Also, a complex multi-step algorithm might require a

potentially long pipeline resulting in a large design. The state machine-based model offers

a different set of characteristics from the pipeline oriented approach. The state machine

that drives the execution is free to use only the components necessary for the specific path

and skip idle steps during conditional execution. The model structure is more flexible,

allowing for potential reuse of components at different processing stages, resulting in a

smaller circuit. However, the state machine model does not favor throughput, making it

challenging to parallelize multiple tasks due to shared resource availability.

The proposed methodology targets the state-machine-oriented approach to provide a

framework for implementing the multi-step sequential behavior using asynchronous logic

in a form that scales well with the rising complexity of the design. The methodology

breaks down the design process into a two-stage model. Stage number one delivers a

high-level behavioral representation of the device for initial design capture and functional

verification. Stage number two reuses parts of the code from the previous stage and

28

replaces certain constructs with ASIC technology-dependent structural modules that

deliver a model ready for synthesis.

4.1 Model template organization

The approach builds on top of the input-output, speed-independent sequential

asynchronous circuit concept [9]. The sequential asynchronous circuit delivers the central

controller component. The methodology then introduces extensions on top of the

speed-independent core creating a complete ecosystem for design specification.

The first addition is the model template specifying the structure of the functional

elements and the building blocks’ interoperability rules. The template introduces a

structure in which the core speed-independent controller works with a set of data

processing components supporting the execution. The methodology specifies an

implementation structure template for each module and defines the operating rules for all

elements. The Fig. 7 presents a high-level overview of the structure of component

templates, which form the complete description of the design. The hierarchical layout

follows the divide-and-conquer philosophy favoring decomposition into elements with a

clearly defined scope. The approach makes it easier to write unit tests with clearly stated

expectations from each component and enhances each building block’s testability as a

separate entity. The specified unit templates are:

1. The C-Layer and the next-state elements both forming the speed-independent

asynchronous controller. The two modules are the final output of the CSP model’s

compilation, which is first translated to STG then processed by Petrify. The next-state

module contains a set of the next-state Boolean equations derived by Petrify for each

controller output signal. The C-Layer provides the "standard-C Architecture" [15]

layer implementation and consists of multiple instances of C-elements and

pass-through gate configurations that correspond to its next-state equations.

29

2. Flow support elements which are working in tandem with the controller module and

perform data manipulation and data analysis tasks. A flow support element consists

of the combinational logic designed for a specific task and an asynchronous

handshake layer for control. Communication with the controller occurs through a

4-phase handshake protocol. Flow support elements execute various tasks, such as

producing data or condition resolution that steers the processing path.

3. The collection of additional modules such as Mutex and an Asynchronous Register

all supporting the controller and flow support elements’ work.

4. The Component modules and the Top module. They are two module types that tie

together the entire design. The Component module encloses one or more controllers,

a set of flow support elements, and any additional modules such as registers and

mutexes. The Component element models a part of the circuit that performs a

specific task, representing some logical portion of functionality. The Top module ties

together one or more components into the final full structure. Aside from connecting

lower-level elements, the Components and the Top module can provide additional

signal routing and manipulation logic.

5. The support module that exists exclusively in the stage two model. Its purpose is to

isolate any signal routing and manipulation logic present within the Components and

the Top module for the logic synthesis purposes. The reason behind introducing the

support module only in stage two is to provide a more flexible design environment at

earlier stages without introducing additional baggage of required modules.

30

Fig. 7. The implementation template overview.

The second addition is the CSP [17], [19] to the STG translation layer. As the

complexity of the controller grows, the standard STG graph representation becomes

challenging to maintain. The methodology proposes an approach to specify the

speed-independent controller functionality using a CSP based language. The CSP

language approach offers cleaner syntax and emphasis on modularization. The notation

scales with the model’s growth in complexity and size better than the STG graph

representation. The presented work features a reference implementation of a parser

converting CSP to the STG model accepted by the Petrify tool. The Petrify [15] is used to

provide the implementation algorithms that synthesize the STG model of the

speed-independent circuit into the set of next-state equations and the layer of

C-elements [16].

4.2 Part 1: Stage 1 Model for behavioral design and verification.

Stage one model is a behavioral representation that encompasses all the device

functionality and allows for functional verification. This stage provides an environment

that assumes the current design is a proper speed-independent circuit. A proper

speed-independent circuit means that all the critical delays and the C-Layer exist in the

behavioral form with timing adjusted such that the circuit meets speed-independent

constraints. All the components that contain combinational logic, including the controller,

are fully implemented. The delays are arbitrary but assume the correct working scenario;

31

for example, the delay-matching line of a flow support element must exceed the delay of

its internal combinational logic. Stage one primarily allows for the development and

execution of functional tests to verify if the circuit behaves as expected when

delay-matching is assumed correct. Tests developed for stage one are then reused during

the gate-level simulation, with accurate delays from the ASIC library.

For the stage one model, the methodology specifies three design steps. An overview

of the workflow and inter-dependencies between each element is shown in Fig. 8. The

first step involves specifying every controller workflow in CSP notation and the HDL

implementation of the flow support elements. The controllers and flow support elements

are interdependent. For maintainability purposes, the signal names in both models should

be the same if they are connected. For example, if the controller expects to invoke specific

functionality in a flow support element using an arbitrary fnc_req signal, then the flow

support element interface should provide this signal line under the same label.

The second step involves generating the speed-independent circuit from the CSP

model. During this stage, the CSP code is parsed by the CSP to STG translator, and the

output STG is then synthesized by the Petrify tool producing circuit model describing the

set of next-state equations and the C-Layer. Although step two is automated, this phase

might fail and require returning to step one to perform corrections. The first possible

reason for step two to fail are errors in CSP description, which could be a syntax error, or

the implementation might not reflect the design intended. The use of CSP does not

eliminate the need for STG in the design process. The generated STG should still provide

an additional view of the design. A second potential point of failure is related to the

speed-independent circuit derivation process’s properties and limitations. The currently

used algorithms provided by Petrify are not guaranteed to succeed in generating the

circuit. Standard problems of state explosion or Complete State Coding task complexity

can prevent the tools from obtaining the solution [16]. In this case, returning to the initial

32

design documentation is necessary to modify the controller’s execution flow or breaking

the controller implementation further into several smaller controllers.

Fig. 8. Methodology steps leading to stage 1 model.

The third step is the final step that ends with a complete codebase for stage one.

During step three, the controllers’ HDL implementation, Components’ definition, and the

Top module are derived and then connected. Step three produces an HDL representation

of the design, which is ready to perform functional tests. Stage one model is

technology-independent; all the delays are arbitrarily defined such that the circuit behaves

like a proper speed-independent logic. In stage one model, the flow support elements

consist of two artificially assigned delays: one for behavioral combinational logic and

33

another for the delay-matching line if the bundled data delay model is used. The

delay-line delay must be greater than the delay of combinational logic.

The controller itself at this stage provides two layers: the next-state equations treated

as complex gate elements with a single delay and a behavioral model of the C-layer with

behavioral C-element and passthrough elements. The stage one model provides the

baseline for developing and executing functional tests without going through the

technology-dependent synthesis phase yet. Such an approach allows for the disconnect of

the process from potentially lengthy synthesis, allowing quick design iterations. The

behavioral HDL model is also much easier to debug than the post-synthesis gate-level

representation.

4.2.1 Using CSP in modeling sequential behavior of the controller

The speed-independent controller circuit plays a central role within the design

methodology, in which it drives the execution of the working algorithm. The input-output

speed-independent controller circuits are modeled using a from of Petri-net called Signal

Transition Graph (STG) [4]. The STG is a bipartite directed graph [38] composed of two

types of elements, the transitions and the places that together reflect the state changes

occurring within the circuit throughout its operation. The synthesis process of an

input-output type of asynchronous controller based on the STG graph carries inherent

drawbacks. The most notable is the state explosion, caused primarily by parallelism in

STG, which results in a very large state graph (SG). Eventually, the state graph size might

grow large enough such that it is infeasible from the point of computational processing

resources to synthesize the model and perform the complete state coding step.

The proposed methodology favors the divide-and-conquer approach in dealing with

complex models to help overcome the "State-based" [16] synthesis limitations. Instead of

one large controller, the component element can host multiple smaller ones working

34

together. For example, a scenario in which the central main controller and smaller utility

controllers work together in the Active-Passive configuration. When a single controller

unit becomes too large, and there exists an STG fragment within the original STG graph

that can be separated, then it is possible to break down the design into two

speed-independent controller units given that input and output signals are not shared

between the two. Some signals might need additional gating within the containing

component module, and an additional communication sequence must be established

between the controllers.

The second problem with the speed-independent controller is the maintainability of

the STG model as the complexity of a circuit grows. Large STG graphs become difficult

to understand and maintain. The proposed methodology uses a language based on the

subset of CSP with additional extensions to describe the speed-independent controller

replacing the direct description in STG. The CSP representation is more compact and

easier to maintain at the source code level; it scales better with model size by allowing for

representation of STG fragments separately and favors reusability. The presented work

features reference implementation of a CSP to STG parser. An example CSP code is

shown in Listing 2.

The CSP code expressiveness is superior to the STG, with better modularity and the

ability to express large and complex transition flows. The source code resembles a well

know imperative programming paradigm. However, the CSP model is not a sequential

program but a structural model of transition flow in a speed-independent asynchronous

controller. The syntax follows standard CSP [17], [19], [20], [24] with custom additions.

The Fig. 9 shows the STG graph which is a result of executing the parser on the code in

Listing 2. The current version of the parser outputs the STG file in the format accepted by

Petrify. The Petrify is then used to synthesize the STG into a final set of next-state

equations and corresponding C-layer.

35

module c o n t r o l l e r ;

i n p u t s msg_va l i d t r a n s a c t i o n _ r e q l o g _ c l r l o g _ a b r t send_ack ;

o u t p u t s msg_ack t r a n s a c t i o n _ a c k l o g _ c h e c k send ;

e x p l i c i t _ p l a c e P0 ;

l o o p _ p l a c e [msg_ack −] − >[msg_va l id +] ;
l o o p _ p l a c e [t r a n s a c t i o n _ a c k −] − >[t r a n s a c t i o n _ r e q +] ;

marking [msg_ack −] − >[msg_va l i d +] ;
marking [t r a n s a c t i o n _ a c k −] − >[t r a n s a c t i o n _ r e q +] ;
marking [msg_ack − t r a n s a c t i o n _ a c k −] − >[msg_ack+ l o g _ c h e c k +] ;

main sndr_main ;

f r a g m e n t f r ag_msg_ack_f low ;
f r a g m e n t f r a g _ t r a n s a c t i o n _ f l o w ;

e n d i n t e r f a c e

sndr_main :
f r ag_msg_ack_f low : f r a g _ t r a n s a c t i o n _ f l o w

f rag_msg_ack_f low :
* [

[msg_va l id +] ;
P0=>msg_ack+ ;

[msg_val id −] ;
msg_ack −=>P0 ;

]

f r a g _ t r a n s a c t i o n _ f l o w :
* [

[t r a n s a c t i o n _ r e q +] ;
P0=> l o g _ c h e c k + ;

[(
[l o g _ a b r t +] ;

log_check − ;
[l o g _ a b r t −] ;

) | (
[l o g _ c l r +] ;

send + ;
[send_ack +] ;

send − ;
[send_ack −] ;

log_check − ;
[l o g _ c l r −] ;

)
] ;

t r a n s a c t i o n _ a c k + ;
[t r a n s a c t i o n _ r e q −] ;

t r a n s a c t i o n _ a c k − =>P0 ;
]

Listing 2. Example CSP model.

36

Fig. 9. Example STG model.

37

4.2.2 The Controller

After being processed by the translator and then by the Petrify tool, the CSP model

results in a set of next-state equations describing the speed-independent controller’s

behavior. The Petrify tool outputs its description in form shown on the Listing 3. The

model consists of the combinational logic implementing the next-state equations and a

layer of C-elements that serve as memory elements and prevent some logic hazards. The

proposed methodology specifies the template in SystemVerilog, which specification spans

over two design stages dictating the approach to implementation of the asynchronous

circuit controller in a way that favors verification and maintainability of the design.

SET (l o g _ c h e c k ’) = send_ack ’ c sc0 ’
RESET(l o g _ c h e c k ’) = msg_ack ’ t r a n s a c t i o n _ r e q csc0
[l o g _ c h e c k] = l o g _ c h e c k ’ (o u t p u t i n v e r t e r)

> t r i g g e r s (SET) : csc0 − −> log_check − send_ack − −> log_check −/1
> t r i g g e r s (RESET) : (msg_ack − , t r a n s a c t i o n _ r e q +) −> l o g _ c h e c k +
> 5 t r a n s i s t o r s (3 n , 2 p) + 2 i n v e r t e r s
> E s t i m a t e d d e l a y : r i s i n g = 3 2 . 9 6 , f a l l i n g = 24 .12

send ’ = csc0 ’ + l o g _ c l r ’
[send] = send ’ (o u t p u t i n v e r t e r)

> t r i g g e r s (SET) : csc0 − −> send −
> t r i g g e r s (RESET) : l o g _ c l r + −> send +
> 4 t r a n s i s t o r s (2 n , 2 p) + 1 i n v e r t e r s
> E s t i m a t e d d e l a y : r i s i n g = 2 4 . 2 1 , f a l l i n g = 16 .62

Listing 3. Example output from Petrify.

The Listing 3 shows a representative example of an output from the Petrify tool for

two cases. The first case for the log_check signal implemented using the C-element, and

the second case the send signal, which is a direct signal. The direct signal scenario occurs

when the "combinational optimization" [9] is applied for which the C-element becomes

unnecessary. For each case, exist two variations, with or without the inverter at the output.

The HDL implementation of the controller consists of two modules the next-state and

the C-layer module. The next-state module provides the implementation of the

combinational logic describing all next-state equations in the given controller. It is a

38

purely combinational element without any capabilities to store information. An example

template for the next-state module is shown in Listing 4.

module c t r l _ n e x t s t a t e (
i n p u t l o g i c in1 ,
i n p u t l o g i c in2 ,
i n p u t l o g i c out1 ,
i n p u t l o g i c out2 ,
i n p u t l o g i c csc0 ,

o u t p u t l o g i c out1_on ,
o u t p u t l o g i c o u t 1 _ o f f ,
o u t p u t l o g i c o u t 2 _ s i g ,
o u t p u t l o g i c csc0_on ,
o u t p u t l o g i c c s c 0 _ o f f

) ;
t i m e u n i t 1 ps ;
t i m e p r e c i s i o n 1 ps ;

i m p o r t con f : : CD; / / C o m b i n a t i o n a l d e l a y

always_comb b e g i n
ou t1_on <= #CD < n e x t s t a t e expr > ;
o u t 1 _ o f f <= #CD < n e x t s t a t e expr > ;
o u t 2 _ s i g <= #CD < n e x t s t a t e expr > ;
csc0_on <= #CD < n e x t s t a t e expr > ;
c s c 0 _ o f f <= #CD < n e x t s t a t e expr > ;

end

endmodule : c t r l _ n e x t s t a t e

Listing 4. NextState module template.

The module requires the specification of the inputs, outputs, and the set of Boolean

expressions. The inputs list consists of:

• All input signals to the controller.

• All feedback output signals coming out of the controller.

• All internal signals, particularly the CSC lines generated as a result of the complete

state coding step during STG synthesis.

The input signals introduce a set of constraints preventing inconsistencies and

potential errors in the implementation. First, all the input signals are always single bit data

lines. Secondly, the next-state module must not accept any inputs other than the signals

39

used in the CSP model. Finally, no additional logic except the next-state Boolean

expression is allowed within the module.

The second group consists of the output signals. There are two types of output signals.

The first output type is the pair of signals that implement set and reset functions and

connect to the C-element. Every output pair leading to the C-element has the naming

convention signame_[on|off] which leads to a signal name followed by either on or off

suffix. The second output category is the signals leading directly out of the module

without the C-element. The direct signals are always a single line with the name in the

format <signame>_sig. The Fig. 10 shows an example controller structure with signal

naming convention and their connections.

Fig. 10. Stage 1 asynchronous controller structure example.

The final third group within the next-state module is the set of the next-state equations.

It is a standard SystemVerilog syntax implementation of combinational logic. However, to

correctly simulate the circuit delays, the behavioral logic delay must be modeled as a

transport delay, as seen in Listing 4. The use of the inertial delay model is incorrect and

can cause the simulation to skip some short hazardous signal spikes leading to potential

undetected errors in the design at the stage 1 level model.

The second and final element defining the controller implementation is the C-layer

module. The C-layer module models the layer of C-elements and direct connections; it

40

also contains the next-state component within itself. The Listing 5 shows the example

template for the implementation codebase. The module defines all the inputs, outputs and

internal signals of the controller. It instantiates the next-state component, the set of

C-elements and provides feedback signal lines.

module c t r l (
i n p u t l o g i c r s t ,
i n p u t l o g i c in1 ,
i n p u t l o g i c in2 ,
o u t p u t l o g i c out1 ,
o u t p u t l o g i c ou t2

) ;
t i m e u n i t 1 ps ;
t i m e p r e c i s i o n 1 ps ;

/ / i n t e r n a l s i g n a l s
l o g i c c sc0 ;

/ / s i g n a l s coming o u t o f t h e comb module
l o g i c out1_on ,
l o g i c o u t 1 _ o f f ,
l o g i c o u t 2 _ s i g ,
l o g i c csc0_on ,
l o g i c c s c 0 _ o f f

/ / module o u t p u t s i g n a l s
l o g i c o u t 1 _ o u t ;
l o g i c o u t 2 _ o u t ;

c t r l _ n e x t s t a t e
NS (. i n 1 (i n 1) , . i n 2 (i n 2) , . ou t1 (ou t1) , . ou t2 (ou t2) , . c s c0 (c sc0) ,

. ou t1_on (ou t1_on) , . o u t 1 _ o f f (o u t 1 _ o f f) , . o u t 2 _ s i g (o u t 2 _ s i g) ,

. c sc0_on (csc0_on) , . c s c 0 _ o f f (c s c 0 _ o f f)
) ;

/ / C−Layer c o n n e c t i o n s
c_elem # (.DELAY(con f : : C_DELAY) , . RESET_VAL(1 ’ b0) ,

. INV_OUT(1 ’ b1) , . INV_A(1 ’ b0) , . INV_B (1 ’ b1))
c0 (. a (ou t1_on) , . b (o u t 1 _ o f f) , . c (o u t 1 _ o u t) , . r s t (r s t)) ;

a s s i g n o u t 2 _ o u t = ~ r s t * ~ o u t 2 _ s i g ;

c_elem # (.DELAY(con f : : C_DELAY) , . RESET_VAL(1 ’ b1) ,
. INV_OUT(1 ’ b0) , . INV_A(1 ’ b0) , . INV_B (1 ’ b1))

c1 (. a (csc0_on) , . b (c s c 0 _ o f f) , . c (c sc0) , . r s t (r s t)) ;

/ / Ou tpu t c o n n e c t i o n s
a s s i g n ou t1 = o u t 1 _ o u t ;
a s s i g n ou t2 = o u t 2 _ o u t ;

endmodule : s n d r _ m a i n _ c t r l

Listing 5. Stage 1 C-Layer template.

41

Consistently with the next-state module, the C-layer provides behavioral C-element

instances or assigns the signal directly if the synthesized output from the Petrify tool

defines it as such. If the synthesized output generated by Petrify specifies an output

inverter, then it is the C-layer that provides the inverting component at the output signal.

The speed-independent standard C-element model generated by Petrify results in four

possible signal configuration:

• Element that resets to 0 with direct output.

• Element that resets to 0 with inverted output.

• Element that resets to 1 with direct output.

• Element that resets to 1 with inverted output.

The behavioral C-layer implements all the scenarios involving C-element at the level

of stage 1 model through a parametrizable C-element module shown in the Listing 6. The

module upon instantiation is set to the specific configuration using parametrization.

Similarly, for the direct signals, the initial state is achieved through negating the output

signal from the next-state module and correct use of the reset functionality. If a direct

signal resets to 0, then the "AND" operation joins the next-state signal and the inverted rst

line. If the direct signal resets to 1, then the OR function is used, and the rst line is not

inverted.

The output log provided by the Petrify tool shown in the Listing 3 is missing

information about the initial state of the controller circuit. The initial state is a critical

piece of information that determines the starting point of the system. When using Petrify,

the synthesized system’s initial state must be obtained from the SG, in which it is

explicitly indicated. Therefore, the SG graph must also be generated for the same STG for

which the next-state equations were obtained, specifically the post-CSC STG, which

potentially contains generated by Petrify internal signals.

42

module c_elem #(
p a r a m e t e r DELAY = 100 ps ,
p a r a m e t e r l o g i c RESET_VAL = 1 ’ b0 ,
p a r a m e t e r l o g i c INV_OUT = 1 ’ b0 ,
p a r a m e t e r l o g i c INV_A = 1 ’ b0 ,
p a r a m e t e r l o g i c INV_B = 1 ’ b0

) (
i n p u t l o g i c a ,
i n p u t l o g i c b ,
o u t p u t l o g i c c ,
i n p u t l o g i c r s t

) ;
t i m e u n i t 1 ps ;
t i m e p r e c i s i o n 1 ps ;

l o g i c i _ c ;

a l w a y s _ l a t c h b e g i n : MAIN
l o g i c r e t ;
l o g i c v_a ;
l o g i c v_b ;

v_a = a ^ INV_A ;
v_b = b ^ INV_B ;

i f (r s t == 1 ’ b1) b e g i n
r e t = RESET_VAL ;

end e l s e i f ((v_a == 1 ’ b0) && (v_b == 1 ’ b0)) b e g i n
r e t = 1 ’ b0 ^ INV_OUT ;

end e l s e i f ((v_a == 1 ’ b1) && (v_b == 1 ’ b1)) b e g i n
r e t = 1 ’ b1 ^ INV_OUT ;

end e l s e b e g i n
r e t = c ;

end

i _ c = r e t ;
end : MAIN

always_comb b e g i n : OUTPUT
c <= #DELAY (i _ c) ;

end : OUTPUT

endmodule : c_elem

Listing 6. Behavioral C-element.

The next-state and the C-layer modules’ implementation provides a working controller

design ready to use in the stage 1 model. The controller circuit specifies the flow and

order of events occurring in the system, but it operates only on the control signals. The

controller is unable by itself to operate on the data processed by the device. As such, the

43

controller operation must be supported by the flow support elements (FSE), which form

the system’s datapath.

4.2.3 Flow Support Elements

Flow support elements are the next elementary building block type proposed by the

methodology that forms the data path and operates in tandem with the controller in the

Active-Passive configuration. The controller is the Active side that requests an action

while the flow support elements are Passive and operate on the data lines, thus bridging

the data path with the control path. Structurally the flow support elements vary depending

on their function, but all variants share some similarities, like communication through

handshake protocol. The Fig. 11 shows example types of the elements.

The methodology specifies two elementary FSE types the data type and the decision

type. Also, variations are allowed as long as they conform to the FSE’s operating rules.

The data variant of the flow support element focuses on data manipulation tasks. The

element receives some input, computes and outputs the result at the controller’s request.

The controller initiates the action using a handshake protocol. The data modules serve as

data processing elements, for example, an element that formats message packet placed on

the bus. The Listing 7 and Listing 8 shows HDL template for implementation of the

datatype flow support element.

Similar to the speed-independent controller, the flow support element also consists of

two building blocks, the function module and the handshake layer. The function module

shown in Listing 7 is a purely combinational module implementing the data path function.

The function module’s interface contains all the combinational inputs, the combinational

outputs, and the handshake request signal. The function module does not store any state

and must be composed only of the combinational logic.

44

Fig. 11. Example types of flow support elements

The second module is the handshake module. It is a wrapper layer over the function

module that introduces the 4-phase handshake communication mechanism used to

communicate with the controller. The handshake layer’s primary purpose is to signal

FSE’s readiness to the controller and use the handshaking to filter out any hazards

occurring when the function module internal logic settles. The version presented in the

Listing 8 is specific to the stage 1 model and uses the bundle-delay completion detection

mechanism. The data flow support element introduces a single bit unconditional

acknowledge signal ack that always appears following the request from the controller. The

ack signal in the bundle-delay model is delayed for the time period exceeding the long

path within the function module. The stage 1 simulation model implements a specific

45

module f s e _ t 1 _ f n (
/ / Data
i n p u t l o g i c [3 : 0] d_in ,
o u t p u t l o g i c [3 : 0] d_out ,

/ / C o n t r o l
i n p u t l o g i c r e q

) ;

t i m e u n i t 1 ps ;
t i m e p r e c i s i o n 1 ps ;

always_comb b e g i n
i f (r e q == 1 ’ b1) b e g i n

i f (d_ in == 4 ’ hF) b e g i n
d_ou t = 1 ;

end
e l s e b e g i n

d_ou t = d_ in + 1 ;
end

end
e l s e b e g i n

d_ou t = 0 ;
end

end
endmodule : f s e _ t 1 _ f n

Listing 7. FSE data-type combinational module.

module f s e _ t 1 (
/ / Data
i n p u t l o g i c [3 : 0] d_in ,
o u t p u t l o g i c [3 : 0] d_out ,

/ / C o n t r o l
i n p u t l o g i c req ,
o u t p u t l o g i c ack

) ;

t i m e u n i t 1 ps ;
t i m e p r e c i s i o n 1 ps ;

l o g i c [4 : 0] d _ o u t _ n e x t ;

f s e _ t 1 _ f n
FN (. d_ in (d_ in) , . d_ou t (d _ o u t _ n e x t) , . r e q (r e q)) ;

always_comb b e g i n
d_ou t <= # conf : : COMB_DELAY d _ o u t _ n e x t ;
ack <= # con f : : FNC_D1 r e q ;

end
endmodule : f s e _ t 1

Listing 8. FSE data-type handshake module.

46

delay configuration under the assumption that the logic specifies the correct circuit

behavior. Therefore the combinational outputs are delayed together with the ack signal,

but the ack delay must always be longer.

The second type of flow support element is the decision element. These elements

provide the ability for the controller to perform branched execution based on the data.

Instead of data path signals, the decision element outputs two or more single-bit lines that

end up back as inputs to the speed-independent controller. This way, the controller can

perform conditional execution implemented as an STG confusion block construct. The

request signal initiates the operation, after which exactly one of the conditional lines

become high, steering the controller’s signal transition in a specific direction.

Similarly to the data FSE, the decision FSE type splits into function and handshake

modules. However, in the case of the decision element, the output is always a set of single

line signals representing the final resolution of the combinational logic function. For

example the Listing 9 shows a template for a decision module which receives 4-bit vector

and outputs two lines sel_a and sel_b. Based on the vector’s bit pattern, the module

selects one of the output lines.

The output signals are then gated and delayed within the handshake layer. As shown

in the Listing 10, the handshake layer for the decision element employs a different

structure than the data variant. The ack signal appearance is now conditional on the output

from the function module. The handshake module now has two ack signals: sel_a and

sel_b, in this specific case. Both signals are delayed according to the bundle data delay

model and gated by the request signal sel_req. The gating is essential to avoid any

potential hazards caused by signal transitions at the combinational inputs while the

module is not in use and could potentially trigger an unexpected transition in one of the

ack signals causing the circuit to malfunction.

47

module f s e _ t 2 _ f n (
/ / Data
i n p u t l o g i c [3 : 0] d_in ,

/ / C o n t r o l
o u t p u t l o g i c s e l _ a ,
o u t p u t l o g i c s e l _ b ,

) ;

t i m e u n i t 1 ps ;
t i m e p r e c i s i o n 1 ps ;

always_comb b e g i n
i f (d_ in == 4 ’ b0101) b e g i n

s e l _ a = 1 ;
s e l _ b = 0 ;

end
e l s e b e g i n

s e l _ a = 0 ;
s e l _ b = 1 ;

end
end

endmodule : f s e _ t 2 _ f n

Listing 9. FSE decision-type combinational module.

module f s e _ t 2 (
/ / Data
i n p u t l o g i c [3 : 0] d_in ,

/ / C o n t r o l
i n p u t l o g i c s e l _ r e q ,
o u t p u t l o g i c s e l _ a ,
o u t p u t l o g i c s e l _ b

) ;

t i m e u n i t 1 ps ;
t i m e p r e c i s i o n 1 ps ;

l o g i c s e l _ a _ o u t ;
l o g i c s e l _ b _ o u t ;

f s e _ t 2 _ f n
FN (. d_ in (d_ in) , . s e l _ a (s e l _ a _ o u t) , . s e l _ b (s e l _ b _ o u t)) ;

always_comb b e g i n
s e l _ a <= # con f : : FNC_D1 s e l _ a _ o u t & s e l _ r e q ;
s e l _ b <= # conf : : FNC_D2 s e l _ b _ o u t & s e l _ r e q ;

end
endmodule : f s e _ t 2

Listing 10. FSE decision-type handshake module.

48

The flow support elements can also take different forms. A good example is the third

mixed, multi-function module type. A single multi-function module can service more than

one request, given that the module is performing only one of its functions at a time. The

use of multi-function modules also provides a solution to a use case when the design

needs to access some resources, such as a write to a register, in different scenarios, such

as when the data comes from different sources at different stages of the algorithm. Instead

of merging multiple FSEs by putting merge blocks then connecting to the resource, the

design can provide a single multi-function module. The multi-function module can also

be a mix of data and decision modules. A good scenario for using a multi-function

module is when a shared resource is accessed by different entities that modify its state, or

multiple blocks rely on similar or same logic used multiple times in different parts of the

circuit. The second use case allows for the reuse of the combinational logic, potentially

reducing the model’s size.

The flow support elements in order to work together must conform to a set of rules.

The first rule states that if multiple modules are accessing the same resources, they must

not collide with each other. Not only their activation must not overlap, but every FSE

must return all its output data lines to the default state when finished handshake. An

example of the first rule is shown in Listing 7 and Listing 10 in which the data module

logic unconditionally outputs value of 0 always when req signal is low and the decision

module output lines are AND-ed with the sel_req signal. The first rule prevents the

manifestation of unexpected signals affecting the device. The second rule is that while the

flow support element is in the middle of its handshake cycle, its inputs must remain stable,

valid, and do not change. If the surrounding logic could not provide stability for inputs,

then the asynchronous register must be used instead of the direct connection for at least

the unstable subset of inputs. The third rule is that the flow support elements are not

storage elements and are stateless. All the output signals of the module must go to default

49

when the handshake finishes. If an output from the flow support element needs to be

preserved beyond its handshake cycle, then the register must be used.

Considering the stage 1 model specifically and the accuracy of the behavioral

simulation. The delay model definition within the handshake module must follow specific

guidelines. The stage 1 model’s goal is to simulate the circuit operation under the

assumption that it is a correct speed-independent model. This assumption applies to both

the controller and the flow support elements. In the case of flow support elements, the

following rules must be met:

1. The assigned delay of combinational outputs must be smaller than every

delay-matching line delay of the handshake components. Example in the Listing 8

the COMB_DELAY value must be smaller than the FNC_D1.

2. If a combinational output signal is combined with a handshake protocol signal, then

the line receives a bundle data delay. Example the sel_a signal in Listing 10

3. There are no delays specified inside the functional module itself. All the behavioral

delay definition resides within the handshake module exclusively.

4. Each line with an assigned bundle-data delay should have a different value assigned

to this delay. An FSE input hazard or error within the design could cause an

unintended switch of the controller, particularly for the decision module. Using exact

delay values might cause difficult to observe error conditions. The correct signal

activity could hide away glitch transitions, which later cause a malfunction in the

gate-level model. Using different values of the delays can make glitchy spike

transitions more visible, increasing the probability of identifying the problem during

stage 1.

5. All the delays should be specified as transport delays for the same reason as in point

4. Unlike inertial delays, the transport delay model does not filter transition

spikes [39].

50

The set of FSE components, along with the speed-independent controller working

together, form the central construct allowing for the implementation of complex

data-driven multi-step algorithms. The FSE modules support the controller by providing

data-path-based analysis, decision making, and data manipulation capabilities. However,

the FSE lacks the memory and state holding element functionality, and the

speed-independent controller is incapable of handling contending input signals that

require arbitration. Therefore, the set of additional asynchronous elements is necessary to

fill the mentioned gaps in functionality.

4.2.4 Additional components

The set of components to be complete and to allow for modeling a broad set of

designs needs to be expanded beyond asynchronous controller and flow support elements.

The methodology must have the ability to provide memory capabilities and include

components that perform asynchronous arbitration on signals that are beyond the control

of the speed-independent controller. In many cases of more intricate designs, it is useful

or even necessary to have the ability to provide a short term internal memory to preserve

portions of data or to provide stable input into FSE modules. The necessity for an

asynchronous register arises from the constraints of flow support elements. By design, the

FSE modules require that their input remains unchanged, valid, and stable throughout the

handshake cycle. However, a need for an FSE may occur with output lines that must be

accessible and valid for a long duration throughout the algorithm execution. It can quickly

become a difficult task to satisfy the input stability requirement for the FSE, especially

when the environment changes in a way that could alter the FSE inputs before its

handshake exchange ends. The asynchronous register solves the problem by preserving

the data allowing to finalize handshake with given FSE early. For the asynchronous

register, the write cycle operates based on the handshake protocol, preferably 4-phase.

51

One version of such a register could be built from the D-latches with asynchronous reset

functionality and a delay line covering the D-latch setup and hold requirements to provide

handshake, as shown in Fig. 12.

Fig. 12. Asynchronous register example.

Another use case for asynchronous register in the proposed methodology serves the

purpose of performance optimization. For example, an external environment resource is

required by multiple FSE modules. The controller reserves the resource for the FSE and

holds it to satisfy the input stability rule for some time until the FSE handshake protocol

finalizes. Reservation of the shared resource is causing other consumers to wait,

effectively stalling parts of the system. The throughput could improve by storing the data

needed by the FSE in an intermediate register rather than directly reading the shared

element data-lines. When using the intermediate memory, the shared resource can be

released as soon as the register captures the data. However, using the registers is a

tradeoff. Instantiating large numbers of storage cells increases the design’s area

requirements and must be used with caution.

The second essential element is the asynchronous mutex. In some cases, a necessity

comes to arbitrate between multiple signals coming from different device elements that do

not closely cooperate. Such contention cannot be resolved by the controller alone; if

52

passed unchecked to the controller, the contending signals can trigger metastable behavior

within the device, causing malfunction. The mutex element provides the necessary

capabilities to arbitrate the access and provides a base for a variety of higher-level

asynchronous arbiter circuits [14]. The most common uses of the mutex element are a

gateway for which only one signal can pass at a time. The second use case is a base for an

arbiter circuit in which multiple modules can request the resource, then one of the

modules is selected, and the request passes forward [17], then the response is guaranteed

to return only to the single selected module.

The asynchronous register and the mutex element provide the necessary minimal set

of components, allowing specifying a broad set of asynchronous designs while supporting

the divide-and-conquer philosophy. The asynchronous register provides means for

latching data as stable input as required by the FSE input stability rule as well as

temporary data storage and supports performance optimizations. The mutex element

serves as an element resolving signal contention and as a base for a variety of arbiter

modules. All the elements together must then be organized in a systematic means to

support the maintainability of larger designs.

4.2.5 Putting the model together

The last two types of elements introduced by the methodology are the Component and

the Top module. The purpose of both is to organize other elements in a consistent and

easy to maintain manner. Both serve the purpose of containers to bring together other

modules within the same functional group. As seen in Fig. 7, the design consists of a set

of components and a single top-level module. The Component element is the elementary

functional unit that contains the controllers and modules supporting the controllers,

including FSE, registers, mutexes, and others. The Top module then connects all

components forming the final stage 1 design. The Fig. 13 shows an example of a

53

Component that follows the methodology. The example is a receiver component, part of

the cache coherence controller design. Its function is to process any incoming messages

from the bus, potentially affecting the local cache’s content, depending on the information

placed on the bus. The receiver component contains one controller, two flow support

elements, and a single asynchronous register.

Fig. 13. Receiver component overview.

Aside from providing a platform for complex problem decomposition and functional

elements grouping, the Component element handles internal signal management. The

signal redirection logic within a Component must be simple and not violate logic timing

in a way that would render the delay-matched lines incorrect. Proper signal management

can significantly simplify the complexity of the speed-independent controller design. For

example, Fig. 13, shows a signal from $_handshake interface coming to controller fed

through the AND gate along with the replicated signal from $_arb_handshake. On the

54

global level, the receiver is one of four components that share access to the core’s cache

memory. The cache memory interface lines split and go to each sharing module. As a

result, access to the shared cache memory is guarded by arbitration, but the same cache

ack 4-phase handshake signal line travels to each sharing controller. Regardless of which

component currently talks to the memory, the ack signal still propagates to all. An

unexpected cache ack signal can turn the receiver controller meta-stable. It is possible to

design a controller that handles unexpected transitions on the cache ack line, but it will

result in a significantly more complicated STG model. Also, the STG fragment

responsible for handling the unexpected ack must be operating in parallel with the

controllers’ regular function, significantly increasing State Graph’s size. Alternatively,

simple gating of the signal provides a much cleaner and less complicated solution. For

this reason, the Component module is tasked with delivering, when necessary, some level

of signal manipulation such as signal gating to offload complexity from the

speed-independent controller. Moreover, the Component module can also provide simple

signal manipulation such as splitting, merging and redirection to allow for simpler

data-path interfaces among its internal functional elements.

The Component and the Top module types fulfill the function of providing an

interconnect platform and support signal management. In relation to this topic, the

example in Fig. 13 also shows why the flow support elements must reset to the default

state upon finishing their handshake cycle. The M2 module controls cache data lines

through $_data_iface interface, shared among all the modules talking to the cache memory.

If the M2 element would not go to the default state, it could unexpectedly alter the cache

memory component inputs affecting other modules currently working with the memory

module. All FSEs need to adhere to this rule because it would be highly inefficient to add

extensive signal gating within the scope of Component element signal management.

Therefore, keeping the balance between participating blocks’ functional scope is essential.

55

Finally, the Top module serves as a container for all Component elements. The top

module, just like the Component, gathers together and organizes modules but at a higher

level. Instead of containing controllers, FSEs and other functional elements, the Top

module holds other Components providing a global container and internal connectivity.

The Top element should not contain any other instances except the Component modules

and necessary connectivity logic. Although this rule somewhat flexible and putting black

box elements such as arbiter in Top module might be justified, elements like a

speed-independent controller or FSE are not allowed. The scope of the Top element is

only to interconnect components and provide the device interface. Any functional

implementation should be delegated to the scope of the Component module. All the

described component types form the set of building blocks necessary to express a broad

set of algorithmic type asynchronous designs and lead to the Stage 1 model for behavioral

simulation.

4.3 Design of the CSP to STG parser

The CSP language is a formalization of the process algebra [40] that specializes in

modeling concurrent systems [19]–[21]. One of the CSP language applications is the

ability to describe the functional specification of an asynchronous circuit [17]. The goal of

the CSP to STG parser is to provide an automated translation of a model defining the

behavior of a speed-independent controller circuit written in CSP language into the STG

graph. The presented work provides an algorithm that processes a model in the CSP

language and generates STG representation in a format acceptable by the Petrify tool. The

presented work delivers a reference implementation of the CSP to STG parser. The

reference implementation performs all the functions from pre-processing the input code

through parsing to STG and generating output targeted for the Petrify tool. The proof of

concept reference implementation is available at the web address given in Appendix C.

56

The subset of CSP used in the translation is based on the language defined in the

following three publications [17], [19], [24]. The derived CSP language features a

relatively simple syntax allowing for direct decomposition into tokens, which then are

parsed one by one, gradually building the STG graph. The parser primarily operates based

on the concept of the source code fragments; its main processing loop starts from the

entry point fragment then runs through tokens contained within. The algorithm processes

the simple tokens immediately, but delegates nested items such as parenthesis enclosed

segments and references to other fragments for later. Finally, the parser engine iterates

over the entire set with a loop until there are no unprocessed CSP fragment elements

present. This breadth-first parsing approach gradually builds the graph translating nested

fragments into transitions and places and injecting them into the STG structure.

To illustrate the parser’s working principle, this section presents a simple waiting

room ticket machine model shown in Fig. 14. The example design shows four

components, two clients requesting their queue number, a number generator, and a

controller overseeing the process. All components are asynchronous elements. The clients

and the generator are part of the simulated test bench, and the controller module is the

DUT speed-independent asynchronous controller circuit.

Fig. 14. Wait room system overview.

57

This simple model demonstrates the design problems and their solutions efficiently

with a sufficient level of complexity for the discussion about CSP representation of

concurrent behavior, arbitration, and general transition sequencing. The controller circuit

takes the form of a passive-active device. In the presented example configuration, the

client module initiates a sequence of operations in the controller. Then the controller

circuit activates the transaction with the queue number generator. A next number is

provided over a shared line to the requesting client. Finally, the controller completes the

transaction with the generator and the client.

The CSP language defines a concept of a process, which is a single entity that

performs an action. When applied to asynchronous circuit design, the CSP process models

either an entire controller circuit or its fragment. Effectively the CSP process represents

an entire STG diagram or an STG fragment. The semantics of CSP language is capable of

expressing the fundamental Petri-net constructs such as the sequential and concurrent flow

of transitions as well as conflict and confusion [4] segments. The presented methodology

uses a language based on a subset of the CSP notation syntax strongly influenced by the

works titled "Asynchronous techniques for system-on-chip design" [17] and

"Programming in VLSI: From communicating processes to delay-insensitive circuits" [23]

also adding a set of language extensions specific to the CSP to STG conversion task.

Analyzing the system in Fig. 15 and its corresponding STG model shown in Fig. 16.

The interface signals layout of the modeled controller circuit is as follows. The system’s

inputs are the r1, r2 and ack signals that connect the controller to the clients. The next

input signal is the rdy signal coming from the generator. The outputs of the controller are

r1ack, r2ack, resp, req and the done. The working sequence starts with one of the clients.

This example assumes that the initiating client is the Client 1 module. The sequence starts

with the client sending the request signal by asserting the r1 line high (r1+). If the

controller is not busy with other requests, it immediately responds with r1ack+ and

58

begins the procedure. At this stage, the client module can bring the r1 signal down at any

time (r1−) while the controller begins the communication with the generator. First, the

controller puts the signal req+ to obtain the next number from the generator. When the

new number is ready, the generator responds with rdy+. At this point, a valid number is

present on the data bus line, and the controller performs two operations. First, the

controller brings its req down (req−), then the controller responds to the current client

with the resp+ signal on the shared line. When the client finishes with the data, it

responds with ack+, and at this point, all the participating elements finish the

handshaking protocol. First, the controller communicates a complete transaction to the

generator through a done+ signal. Followed by the rdy− signal from the generator, the

controller sends done−, and resp− signals then await for ack− from the client. After the

client responds with ack− and the r1−, the controller emits r1ack−, and the system goes

back to its initial state awaiting further requests.

Fig. 15. Wait room system signal connections.

The STG model shown in Fig. 16 is not the only possible implementation.

Alternatively, the req− signal can appear in parallel with the rest of the flow up until the

rdy− before which both paths req− and done+ must merge. It is also possible to put

done− and resp− in parallel. Situations like that are common and show one of the main

strengths of asynchronous logic, an inherent capability to synthesize parallel behavior in

59

the digital logic. However, massive parallelization has its drawbacks during the STG

synthesis process. Increased concurrency contributes to phenomena called state explosion,

which occurs during the state graph synthesis stage. The state explosion causes a

significant increase in the size of the computational problem of solving CSC and logic

synthesis [16]. The state explosion is one of the major open problems in the theory of

asynchronous logic design for the State-based synthesis method.

Fig. 16. Controller: the expected generated STG output.

Another critical concept present in the STG diagram is the two gated-confusion

blocks. The first occurrence is the controller reaction on incoming r1+ or r2+ signals.

The controller branches to either r1ack+ or r2ack+. The r1+ and r2+ are external

signals that can occur at any time. Moreover, it is possible that both request signals could

60

arrive within a close enough timespan that the controller circuit will not have enough time

to settle after the first signal transition resulting in an unstable state. In undecided cases

like this, the circuit needs support from an additional external arbiter unit.

An alternative case exists in the second confusion block, which models the controller

finishing a transaction handshake with one of the clients. The guard place receives token

after occurrence ack−. The confusion is resolved by signal r1− or r2− depends on

which client currently participates in the exchange. The confusion resolves in either

r1ack− or r2ack−. The second confusion case guarantees that only one client will

respond with the handshake closing signal r1− or r2− because only one client gets

accepted by the controller for the duration of the transaction. As such, there is no need for

additional arbitration in the second confusion block.

When modeling the circuits in STG, it is important to closely track the proper

positioning of the transitions in the graph. For example, considering the STG fragment in

Fig. 17. The circuit can experience faulty behavior due to a hazard related to the

concurrency between both clients. From the perspective of the controller described by the

STG fragment in Fig. 17 the r1 and r2 are input signals each coming from a client. The

STG places a shared token, a confusion block between the two inputs expecting only one

occurring at a time. However, the environment might not be aware of this particular

module’s inner workings, and the configuration might lead to controller malfunction if

both clients send colliding requests. Specifically, colliding means that the second input

would appear while the previous one did not clear yet. The order of appearance of the

signals will lead to an unexpected state of the controller and likely an error. Creating

robust designs is important, and in this case, setting the input signals as targets for gated

confusion is incorrect. The CSP model shows such errors more clearly in the syntax and

makes it easier to catch by the pre-processor.

61

Fig. 17. Controller: an unsafe STG construct.

4.3.1 Model representation in CSP

The CSP source code splits into two major sections. The interface section specifies

metadata used within the code, and the code section defining the signal flow. The header

section contains information that complements the CSP notation allowing for a full

description of the circuit. The following Listing 11 shows the proposed CSP for the

controller model and its translation results in the STG graph shown in Fig. 16. A

controller modeling language is based on the CSP language with some modifications and

additions to the syntax, allowing automated synthesis.

The first element is the module keyword indicating the type of the model description.

In the current version, the module occurs in two forms, the controller that indicates

translatable implementation to STG and the behav form that serves as an informative

overview not suitable for automated parsing. The next two fields in the header are the

definitions of inputs and outputs of the circuit. The elements listed as inputs and outputs

are necessary for the translator to recognize their tokens in the code. If an input or output

is not listed, then the translation fails with an error stating an unrecognized element

detected. The input and output list is global and shared by all the fragments defined

within the code section.

62

1 module c o n t r o l l e r ;
2
3 i n p u t s r1 r2 rdy ack ;
4 o u t p u t s r 1 a c k r 2 a c k r e q r e s p done ;
5
6 main c t r l ;
7
8 e x p l i c i t _ p l a c e P0 ;
9 e x p l i c i t _ p l a c e P1 ;
10
11 l o o p _ p l a c e [r1ack −] − >[r1 +] ;
12 l o o p _ p l a c e [r2ack −] − >[r2 +] ;
13 l o o p _ p l a c e [r1ack − r2ack −] − >[r 1 a c k + r 2 a c k +] ;
14
15 marking [r1ack −] − >[r1 +] ;
16 marking [r2ack −] − >[r2 +] ;
17 marking [r1ack − r2ack −] − >[r 1 a c k + r 2 a c k +] ;
18
19 e n d i n t e r f a c e
20
21 c t r l : * [
22 [(r1 +) −>(r 1 a c k + => P0) | (r2 +) −>(r 2 a c k + => P1)] ;
23 r e q + ;
24 [rdy +] ;
25 req − ;
26 r e s p + ;
27 [ack +] ;
28 done +;
29 [rdy −] ;
30 done −;
31 re sp − ;
32 [ack −] ;
33 [(P0 ; r1 −) −> r1ack − [] (P1 ; r2 −) −> r2ack −] ;
34]

Listing 11. Controller: CSP implementation.

Another set of elements in the header section are the loop_place and marking. The

code section can contain a loop statement causing the model to execute the defined

workflow continuously. However, the pure CSP language lacks the syntax to describe the

loopback transitions for the synthesis of STG connections. The loop_place specifies a set

of Petri-net places that connect transitions from the beginning and the end of the loop.

The single loop place is specified by a pair of sets containing the input and output

transitions. When constructing the loop place, the translator must be able to find all the

participating transitions. Otherwise, the loop place insertion fails, which indicates an error

in the CSP implementation.

63

The second field token named marking describes a set of places that contain the initial

marking. The target places are identified the same as loopplace by two sets, one for

pre-set and the other for post-set. First, the translator looks for places that match exactly

the description. If the first search fails, then the translator attempts to create the matching

place. At this stage, all places with more than one element in the post-set or pre-set or

both are expected to exist in the graph and do not need to be created by the marking

process. If a search for a place with multiple inputs and outputs fails, the marking process

fails immediately. An exception to the rule is a place with exactly one element in pre-set

and one in the post-set. Single input and output places are not explicitly present within the

STG representation. In the case of missing single input single output place, the translator

attempts to find a matching connection between two transitions. When the connection is

found, the translator inserts a marked place; otherwise, the marking process fails if no

such connection exists.

The remaining three keywords in the header segment are the main, f ragment, and

explicit_place. The main keyword indicates the entry point fragment from which the

translation starts. The f ragment shown in Fig. 12 identifies a label of a CSP process

fragment. The final explicit_place is a supporting CSP language extension. Usually, the

place elements in the STG are inferred based on the flow of the CSP code. However, the

designer can create a custom place that connects to arbitrary transitions. The

explicit_place keyword defines all the names of such custom places. An explicit place

construct allows for a custom definition of a named Petri-net place without affecting the

rest of the translation process. Finally, the header section finishes with the endinter f ace

keyword.

After the header, the remaining content in the file is the code section. The code

section is organized into labels, and each label indicates a code fragment. A fragment

starts with its label name, after which the CSP code begins. In terms of CSP terminology,

64

a single source file describes a single process, and a single process represents a single

controller. Additionally, the CSP process can be partitioned into multiple fragments to

improve code readability and introduce modularization. The code in Listing 12 shows an

example of using the modularized approach. The data!curr_count label implements

4-phase data send from the curr_count variable through the data channel. The code

fragments can be referenced by the other fragments, including the main entry.

module behav ;

i n p u t s r1 r2 ack ;
o u t p u t s r 1 a c k r 2 a c k r e s p ;

main t i c k e t ;

f r a g m e n t d a t a ! c u r r _ c o u n t ;

marking r1 + ;
marking r2 + ;

e n d i n t e r f a c e

t i c k e t : * [
[(r1 +) −> r 1 a c k + | (r2 +) −> r 2 a c k +] ;
d a t a ! c u r r _ c o u n t ;
[(r1 −) −>r1ack − | (r2 −) −>r2ack −] ;

]

d a t a ! c u r r _ c o u n t :
d a t a := c u r r _ c o u n t ;
r e s p + ;
[ack +] ;
r e sp − ;
[ack −] ;

Listing 12. Use of model fragments.

A single process can contain multiple CSP constructs that implement the algorithm

workflow. The used CSP notation represents a standard semantics used to model

asynchronous logic [17], [19], [20] with custom additions. The two CSP extensions are

the detach operator and the explicit place syntax. The detach ":" syntax function is to split

the sequence of CSP transitions into two disconnected STG fragments. By default, each

consecutive signal transition in CSP is tied with its predecessor, and the parser infers,

65

based on the operator, the proper connection. However, when the detach (":") operator

appears, it causes a hard split, after which any further tokens end up in a separated STG.

No inferred connections are made. Any transition between the separated STGs’ must be

specified by using an explicit place.

The second language extension is the explicit place construct used to manually specify

a place within the STG graph connecting two transitions manually. The explicit place P0

and P1 shown in Listing 11 connect the r1ack− with r1− and r2ack− with r2−. The

explicit place creates a connection between two transitions outside of the regular flow.

The explicit place construct serves, among others, an important role when defining gated

confusion blocks. By default, the confusion block at its end implies a single place that

merges the paths and connects them to the first occurring transition after the block.

Sometimes, however, it is desirable to make additional paths leading to other transitions

that are not automatically inferred. Use of the explicit place results in the r1ack− and

r2ack− to be connected to corresponding transitions r1− and r2− through manual

specification. Then r1ack− and r2ack− connection to req+ through a single implicit

place is inferred automatically by the parser. Every explicit place has its unique name

through which it is referenced from anywhere within the controller. If more than one

explicit place exists, both must have different names.

A connection to an explicit place can be instantiated in two ways, as the in-flow

element or using the "=>" operator. The in-flow instantiation occurs when the explicit

place appears in the code as it would be a transition in a sequential flow. For example, an

explicit place can be defined as "tran1+; P0; tran2+" in which P0 is an explicit place

between two transitions. The second option is the use of the "=>" operator in conjunction

with the explicit place. The operator will attach the place element to a transition either as

an element of its pre-set or post-set. If the explicit place occurs on the operator’s left-hand

side, it is assigned to the pre-set of the next transition. Similarly, if the place occurs at the

66

right-hand side, it is assigned to the preceding transition’s post-set. Assignment by the

"=>" operator creates a connection between the place and the transition but does not add

the explicit place into the sequence of transitions, unlike the in-flow addition.

The detach operator and explicit place are essential in specifying a controller

construct in which two sets of transitions are loosely coupled and cannot be described

using the default CSP constructs. The Fig. 18 along with the code in Listing 13 shows an

example scenario. Two STG fragments exist; the first is a loop of req and ack providing a

4-phase handshake, and the second is a block for transactions. The controller is capable of

servicing only one of the segments at a time; therefore, a guard place is present; it is the

place that leads either to ack+ or choicereq+. In regular flow, it would be difficult to

specify such a connection using the regular confusion block. As such, the detach operator

is used first to separate two STG fragments, then using the "=>" operator, which places

the two input two output explicit place P0 connecting the two fragments.

In addition to the base syntax and syntax extensions, the CSP to STG processing

algorithm implements a set of features that understanding is critical for constructing

working controller circuits. The first feature is the parenthesis rule. When the parser

processes the CSP transitions, it traverses the tokens one by one, constructing a graph

fragment. For example a sequence "tran1+; tran2+; tran3+; tran4+;" results in an

immediate creation of four-transition STG fragment. However, when some transitions

exist within parenthesis such as "(tran1+; tran2+;) tran3+; tran4+;" the parser interprets it

first as a single fragment. The CSP code segment inside the parenthesis is placed within a

newly created fragment element and deferred for processing in the next iteration. What

comes from the first iteration is an STG fragment with a nested fragment element

"(tran1+; tran2+;)" and two transitions "tran3+; tran4+;". More importantly, any specific

operations related to the segment are applied immediately regardless of the content within

67

the parenthesis. This rule is important because it influences the parser behavior for

explicit places and confusion blocks.

Fig. 18. Example STG model, concurrent events flow.

68

module c o n t r o l l e r ;

i n p u t s r e q t r a n s a c t i o n _ r e q c h o i c e _ b c h o i c e _ a send_ack ;
o u t p u t s ack t r a n s a c t i o n _ a c k c h o i c e _ r e q ;

e x p l i c i t _ p l a c e P0 ;
l o o p _ p l a c e [ack −] − >[r e q +] ;
l o o p _ p l a c e [t r a n s a c t i o n _ a c k −] − >[t r a n s a c t i o n _ r e q +] ;

marking [ack −] − >[r e q +] ;
marking [t r a n s a c t i o n _ a c k −] − >[t r a n s a c t i o n _ r e q +] ;
marking [ack − t r a n s a c t i o n _ a c k −] − >[ack+ c h o i c e _ r e q +] ;

main s t g _ ma i n ;
f r a g m e n t f r a g _ t a s k _ a ;
f r a g m e n t f r a g _ t a s k _ b ;
e n d i n t e r f a c e

s t g _ m a i n :
f r a g _ t a s k _ a : f r a g _ t a s k _ b

f r a g _ t a s k _ a :
* [

[r e q +] ;
P0=>ack+ ;

[req −] ;
ack −=>P0 ;

]

f r a g _ t a s k _ b :
* [

[t r a n s a c t i o n _ r e q +] ;
P0=> c h o i c e _ r e q + ;

[([c h o i c e _ a +] ; c h o i c e _ r e q − ; [cho i ce_a −] ;) |
([c h o i c e _ b +] ; c h o i c e _ r e q − ; [cho ice_b −] ;)

] ;
t r a n s a c t i o n _ a c k + ;

[t r a n s a c t i o n _ r e q −] ;
t r a n s a c t i o n _ a c k −=>P0 ;

]

Listing 13. Example CSP model concurrent events flow.

The use of explicit place as an in-flow element in conjunction with the parenthesis

rule results in a detached segment. Unlike the "=>" operator, the in-flow place is injected

into the sub-graphs transition chain. After processing each code fragment, the parser

returns a set of heads and tails of the created STG fragment for injection into the existing

main graph. However, if a head or tail happens to be an explicit place, the parser

interprets it as a case in which the designer opted for manually specifying the path,

69

causing the parser not to infer connection by itself. As a result, the inferred connection to

the main graph is not made for a sequence with an explicit place at the beginning or end;

for example, for a sequence "(P0; tran2+; tran3+;)" the parser will return a tail pointing to

tran3+, but the head will be NULL. A similar case applies for an in-flow explicit place at

the end of the transition sequence, in which case the tail will then be NULL. The same

scenario holds true for constructs with more than one path, such as the parallel and

confusion block. The detached segment concept allows for the specification of more

complex event sequences, for example, a parallel or a confusion block in which one or

more paths do not merge to the same default point with the rest. Instead, the detached

path further flow is specified using an explicit place connection.

The parenthesis rule directly determines how the confusion block processes its

content. The different behaviors are necessary to synthesize constructs such as the gated

confusion shown in Fig. 17 and regular confusion as shown in Fig. 18 which begins from

place P11. The difference lies in how the transitions are specified within each segment.

The base rule of operation for the confusion segment syntax is that the operator receives

sequences of transitions in blocks separated by the "|" or "[]" token. The operator returns

a collection of heads and tails. For tails, it creates an implicit place that connects all the

outgoing paths unless there is a detached segment with an explicit place at the end. For

heads, the confusion block creates one implicit place, which becomes a part of the pre-set

for every finishing transition in each block unless that last token is an explicit place.

Moreover, the list of heads contains references to every beginning transition in each block

unless it is an explicit place, or there is only a single transition within the specific block.

An example of valid constructs is shown in the Listing 14.

[t 1 ; t 2 ; t 3 | (P0 ; t 7) −> t 8 | f ragment_name | (t 9 ; t 1 0)] ;

Listing 14. Confusion block variations.

70

Beginning from the leftmost block. The first block will result in t1 in heads, the initial

and final implicit places pointing to t3. In the second segment, an implicit fragment will

be created containing the content of the parenthesis. At first, the heads point to the

implicit fragment and the initial and final implicit place to t8. When the implicit fragment

gets parsed, it will result in a detached block, effectively clearing any implicit connection

leading to P0. In the third case, a single fragment is treated as a single transition; thus, the

heads will only point to the implicit initial place, then the implicit initial and final places

point to the fragment. The fourth case is equivalent to the third by parenthesis rule, which

will create an implicit fragment during the initial encounter with the parenthesis.

The third and fourth cases are used to specify regular confusion, such as in Fig. 18, in

which the initial place is the P11 and final P7. The second case is useful in modeling

constructs such as the bottom confusion block from Fig. 16 where confusion occurs

between r1ack− and r2ack− but both are gated by r1− and r2− respectively. Finally, the

first case exists to work in conjunction with the loop construct. If a confusion block

appears right away after the loop opening "*[" as in Listing 11, the confusion block

returns the r1+, r2+, and the implicit initial place in heads which are tied to the loop

node. Later, when the parser closes the loop, it searches for specific transitions indicated

by the loop_place and with connections to the loop node specifically instead of in the

graph’s global node space, preventing unwanted name collision.

The presented CSP approach allows describing asynchronous control circuits in a

form that is easier to maintain for the designer and also translatable to the STG

representation. The concise and modularized approach delivers better capabilities in terms

of analyzing and debugging the implementation.

71

4.3.2 Translation from CSP to STG

The translation process starts with the pre-processing of the input CSP code. The first

stage splits the header and code sections. The header segments starts from the module

declaration and ends with the endinter f ace keyword (Listing 11). The entire header

segment is processed and organized into the Meta classes shown in Listing 15.

c l a s s MetaModelType (Enum) :
CONTROLLER = 1
BEHAV = 2
UNDEFINED = 0

c l a s s MetaPlace () :
def _ _ i n i t _ _ (s e l f) :

s e l f . input = []
s e l f . o u t p u t = []

c l a s s Meta () :
def _ _ i n i t _ _ (s e l f) :

s e l f . mode l_ type = MetaModelType . UNDEFINED
s e l f . i n p u t s = []
s e l f . o u t p u t s = []
s e l f . main = ’ ’
s e l f . f r a g m e n t s = []
s e l f . l o o p _ p l a c e = []
s e l f . e x p l i c i t _ p l a c e = []
s e l f . mark ings = []

Listing 15. Meta classes.

Next, the parser moves to the process definition. The segment is divided by the

fragment labels such that sections beginning with labels like "main:" or "data!curr_count"

become separate entities. After initial pre-processing the CSP code is divided into

segments represented by a CodeSegment class shown in Listing 16. The class contains a

label that identifies the given fragment and its code in the form of an array of tokens.

c l a s s CodeFragment () :
d e f _ _ i n i t _ _ (s e l f , l , s) :

s e l f . l a b e l = l
s e l f . s r c = s

Listing 16. The code segment class.

72

Every code fragment is broken into the array of tokens during the pre-processing

stage. For example the fragment from Listing 11 between lines 25 and 28 would become

an array composed of "req-, ;, resp+, [, ack+,], ;, done+, ;" and assigned to the src field

of the CodeFragment class. The pre-processing stage finishes when all the fragments are

processed and placed in the collection of CodeFragment classes along with the meta-data

description.

The primary goal of the translation from CSP to STG representation is to produce the

STG graph used to derive the input-output type asynchronous sequential controller circuit.

The STG representation is a uni-directed bipartite graph with nodes representing either

the transitions of the circuit or Petri-net places. The translation algorithm shown in

Algorithm 1 consists of four main steps:

1. Derivation of the initial graph from the CSP representation.

2. Removal of redundant place elements.

3. Insertion of places corresponding to the CSP loop(Loop closing).

4. Insertion of markings to indicate the initial state of the model.

Algorithm 1 CSP to STG translation main algorithm.

nodes← Fragment(main_label)
while exists any Fragment do

for all e in nodes: do
if e is Fragment then

ProcessFragment(e)
RemoveRedundantPlaces(nodes)
ProcessLoopPlaces(nodes)
RemoveRedundantPlaces(nodes)
ApplyMarkings(nodes)

The algorithm defines four types of nodes: Place node, Transition node, Loop node

and Fragment node. The Place and Transition nodes are direct representations of STG

graph elements. The Loop node represents the loop construct and is processed in the third

73

stage of the algorithm. The final Fragment node is a meta-node that exists in two states.

It contains either a CSP code fragment or a handle to a specific CSP code fragment.

The STG graph’s derivation is an iterative process starting from the initial node that

contains a handle to the primary process. All the graph elements are organized in an array

that is traversed until all of the places of the type Fragment are processed into either

Loop, Place, or Transition. Any time the Fragment element is encountered by the parser,

one of two scenarios happens. If the Fragment contains a label pointing to another code

segment, then the actual code from that segment is copied into the element then the label

is cleared. The second scenario occurs when the encountered Fragment element contains

the actual code of the fragment. Then the code is processed, creating a new set of nodes

that replaces the current Fragment element. Processing code segment occurs by

traversing the tokens array from the beginning to the end. The resulting code segment can

occur in three variations:

• Sequential segment

• Parallel segment

• Confusion segment

Each segment represents a different possible outcome of a code fragment parsing. The

sequential segment represents the most straightforward construct in which transitions

happen one after another. The detached sequential segment is a variation in which the

entering or exiting node does not implicitly connect to any path within the graph. The

detached segment exists when an explicit place occurs at the beginning or end of the

transition chain. The explicit place defines a custom connection and is not inferred

automatically by the algorithm. The parallel segment and confusion segment are two

special cases; both allow for the synthesis of branching execution paths, which are then

further interpreted according to each segment’s rules.

74

The classification into segments serves the purpose of defining the final graph

connection points after processing of a given code block finishes. When the parsing is

done, the created STG fragment is re-attached into the main graph replacing the initial

Fragment node. The Segments specification defines the heads and tail nodes collections

for the generated graph segment. During the re-attachment, all the nodes leading into the

processed fragment are connected to the head nodes in the generated graph segment.

Similarly, all the tail nodes from the fragment are added as the destination nodes from the

outgoing nodes in the generated fragment.

During the CSP code processing, the parser traverses through the array of tokens

generating corresponding graph elements. The generating engine behavior shown in

Algorithm 2 is dictated by the currently processed token. There are eight primary

classification categories of a token the loop element, grouping token, confusion,

sequential, explicit place assignment, parallel, detach, and unknown type of token. When

the parser encounters a loop or grouping token, it creates a new Fragment element. Then

the parser traverses the tokens list forward, looking for the corresponding closing

parenthesis. Nesting is allowed, and the parser counts occurrences of opening and closing

grouping tokens. The process only finishes when the parser encounters an equal number

of closing brackets to opening brackets. After extracting the segment, the Fragment

element src field is populated with the extracted code, and its processing is deferred to the

next iteration. In the case of the loop token, an additional Loop node appears at the

beginning to allow for loop synthesis in later stages.

The second group of tokens is the parallel and the confusion block. When the parallel

token or one of the confusion tokens is encountered, a change from the Sequential

segment to Parallel or Confusion segment type occurs. In all cases of this type, an already

populated sequential path exists. The existing path becomes a first parallel path. The

parser finishes the first parallel path and starts a new one to which any upcoming tokens

75

Algorithm 2 Processing the code fragment.

Initially use segment type Sequential
for all t in tokens: do

if t is *[then
1.Insert loop node
2.Insert Fragment with loop internals

else if t is [or (then
1.Extract all tokens up to] or)
2.Insert fragment with nested segment code

else if t is | or || then
1.Convert from Sequential to Confusion segment
2.Set existing sequential as first confusion path and begin next confusion path

else if t is ; or -> then
Insert single STG place

else if t is => then
Do nothing, behavior depends on existence of explicit place in syntax

else if t is , then
1.Convert from Sequential to Parallel segment type
2.Set existing sequential as first parallel path and begin next parallel path

else if t is : then
1.Create a detached source fragment without any parent child connections
2.Absorb the remaining of tokens for the new fragment

else
if t is explicit place then

Create place object for this name if one does not exist
if ti−1 is => then

Add created place as a child of preceding transition
Do not register in the transition tree

if ti+1 is => then
1.Fetch transition at ti+2
2.Insert Transition node
3.Add the transition as child of the place

else if ti−1 is not => then
Add the place as regular element into transition chain

else if t is transition then
Insert Transition node

else if t is fragment label then
Insert Fragment node

Prepare output structure and return head and tail nodes

76

are assigned. If more than two parallel paths exist, the parser keeps adding the next paths

on every occurrence of the parallel or confusion token. The parallel or confusion blocks

are placed in the grouping parenthesis to allow the parser to process the beginning and

end of the parallel paths upfront.

The confusion block is a specialized construct that models a one-of-many choice of

the transition path. One form of confusion is a regular split into many execution paths in

which the only one is expected to be taken. In the regular form, as seen in Fig. 18, the

confusion block starts from place P11, and each of the upcoming transitions is an input

signal. The external environment is responsible for making the next step and is expected

to emit only one signal out of the two. The confusion block also exists in the gated form,

as seen in Fig. 16. In the gated version, the execution branches begin with an output

signal controlled by the modeled device. However, the firing of such a branch transition is

gated first by the shared token, ensuring one-of-many execution second by a gating

transition that is usually an input coming from the external environment. For example, the

r1ack+ to fire requires the central token to be present and the r1+ to trigger beforehand.

In the gated confusion setup, it is not uncommon to connect inputs of confusion triggers

and their outputs to explicit places. The explicit place construct allows for a definition of

an execution path outside of the main flow inferred by the translator. Looking back at

Fig. 16 the two explicit places are used to connect r1ack+ to r1+ and r1−.

The third group is the set of tokens that are extensions to the standard CSP language.

The new items are the arrow token for explicit place assignment and the detach token.

The explicit place assignment token is used in conjunction with the explicit place to tie

the place with a transition without inserting the place element into the transition flow. In

the explicit place assignment using the arrow operator, a simple reference is created from

a transition to the place or from place to transition depending on which side of the

operator both tokens appear. When traversing the CSP implementation, the explicit place

77

assignment token’s occurrence does not trigger any immediate action from the parser.

However, the position of the assignment token matters when the parser encounters an

explicit place. The algorithm determines based on the order of elements on how to

perform the reference assignment. Depending on whether the explicit place assignment

token precedes or tails the explicit place, the parser assigns the place as a part of the

post-set or pre-set of some transition.

The second CSP extension is the detach token. When the parser encounters the detach

token, it immediately stops adding new elements to the current STG segment. Everything

that appears after the detach token is combined into a new Fragment and placed in the

main array without any connections to the previous portion of the graph. Then the

existing segment is finalized and returned for placement. The detach token element

effectively finishes processing any elements that exist up to this point and spawns an

entirely new STG fragment that is not implicitly connected to the current one.

The last two classes are the sequential token and the unknown token class. The

sequential token causes addition of an STG place to the graph that indicates a single

sequential path of execution. The unknown token indicates that the current element is not

within the previous seven categories and triggers an additional check. When the header

metadata is processed, the translator obtains the list of all signals, code fragments, and

explicit places. If the unknown token is encountered, the translator checks against these

lists. In the case of a transition match, the transition element is inserted. Alternatively, the

fragment label triggers the addition of a Fragment element.

For the explicit place, a series of additional checks occur. First, the algorithm looks

for the explicit place assignment token next to the explicit place token position. If the

assignment token exists at the position i−1 before the place on the left side, then the

current place object is assigned as a child of a transition at the i−2 position. If the

assignment token exists at the i+1 position, then the transition at i+2 becomes a child of

78

the explicit place. Finally, if there is no assignment token, this means that it is an in-flow

explicit place. In the in-flow case, the algorithm adds the place sequentially to the current

transition chain segment. Additionally, if the in-flow place happens to be the first or last

element in the chain, it will later form a detached segment.

After processing the entire array, the translator using the Segment definition prepares

a graph segment, then exports two collections heads and tails that are respectively entry

and exit points from the generated segment. A special case exists when an explicit place

occurs as the first or the last element in the current chain. In this case, the reference to the

place is added to neither heads nor tails, and the parser expects that the designer specifies

all required connections to the explicit place manually. The segment is then attached in

place of its source fragment element; the returned heads become post-set for any parent

nodes, and tails would become pre-set for every child node of the replaced fragment.

After attachment, the translator proceeds further with traversing the element array. The

cycle repeats until there are no Fragment type nodes present, indicating all source code

got translated to the nodal representation, and the next stage of parsing begins.

The next stage is the removal of redundant Place nodes from the graph. During its

operation, the translator deletes out Place elements that are unnecessary or, in some cases,

lead to an incorrect description of STG. For example, one Place pointing to another Place.

The order in which redundant places are identified and removed from the graph matters

and must not be altered. The redundant nodes must match the description exactly, cannot

have markings, and are removed in the following order:

1 Places with exactly one input Place and multiple output Places

2 Places with exactly one input Transition and exactly one output Transition

3 Places with exactly one input Place and exactly one output Place or exactly one

output Transition

4 Places with one input Transition and one output Place

79

5 Places with one or more parents that have exactly one child that is a place and the

child have one or more parents

6 Places with one or more with one or more parents that are transitions, one or more

parents that are places and exactly one child that is a transition

7 Places with one or more parents that have exactly one child that is a place and has

exactly one parent

As an exception, the redundant place removal process does not affect places with

empty post-set or empty pre-set. A place with an empty pre-set or post-set indicates a

loop element that belongs to either beginning or end of the loop and is processed in the

next step. After the removal of the redundant nodes, the tree is ready to connect any

existing loop places.

The third step creates connections for any STG loop existing. The Listing 11 shows

three existing loop places in the circuit. The loop connectivity algorithm looks for an

existing Loop element in the graph. During the CSP code parsing, when a loop token is

encountered, a Loop element is instantiated along with the Fragment element. The Loop

element indicates the beginning of the loop, and the Fragment contains all the CSP code

that consists of the loop body. Eventually, the Fragment element gets processed, and all

its input places, unless they belong to the detached segment, are connected as children of

the Loop element. During the loop closing step, the parser uses the Loop node children

array and any non-explicit places with an empty post-set to match the loop closing

combinations specified in the header. When such a combination is found, a corresponding

loop closing Place is inserted into the STG. When all the loops are processed, the

algorithm moves to the next step that adds markings to places.

Adding the markings occurs in two phases. The first phase searches for places that

have matched the marking description and have multiple inputs or outputs. Such a place

must exist in the graph already. If the place is not found, it means an error in translation.

80

The second stage searches for places that are candidates for markings and have a single

input and single output transition. A one input one output place might not exist because

STG does not require an explicitly defined place element between two transitions. If such

a place is missing, the algorithm attempts to find a matching transition to transition

connection. After the connection is found, the algorithm inserts a marked place between

the two transition elements. If the connection is not present, it indicates an error.

As the last step, the removal of redundant places executes again. The loop closing

algorithm can potentially leave some redundant place markers, which should be removed.

With the final step finished, the STG model is completed and used to print out into the

Petrify format for synthesis. The printout step uses the metadata section to provide lists of

controller inputs, outputs, and markings. Then it traverses through the graph elements for

each extracting its label and target transitions.

The parser looks for repeating occurrences of transitions with the same signature but

in different locations within the graph. When a duplicate exists, its name is converted to

format, allowing Petrify to distinguish between the transitions which would otherwise

treat as one. For example, if a repeated definition of r1+ exists, then the second

occurrence is renamed to r1+/1 and so on if more repetitions are present. The final

output is then saved for further processing in Petrify. The Listing 17 shows an example of

the STG graph model in the format accepted by the Petrify tool.

81

1 : . model c t r l
2 : . i n p u t s r1 r2 rdy ack
3 : . o u t p u t s r 1 a c k r 2 a c k r e q r e s p done
4 : . g raph
5 : P2 r e q +
6 : r e q + rdy +
7 : P10 r 1 a c k + r 2 a c k +
8 : rdy + req − r e s p +
9 : req − rdy −

1 0 : rdy − done − resp −
1 1 : done − ack −
1 2 : r e sp − ack −
1 3 : ack − P21
1 4 : r1ack − P10 P4
1 5 : r2ack − P10 P3
1 6 : P21 r1ack − r2ack −
1 7 : r1 + r 1 a c k +
1 8 : r 1 a c k + P2 r1 −
1 9 : r2 + r 2 a c k +
2 0 : r 2 a c k + P2 r2 −
2 1 : r e s p + ack+
2 2 : done+ rdy −
2 3 : r1 − r1ack −
2 4 : r2 − r2ack −
2 5 : ack+ done+
2 6 : P3 r2 +
2 7 : P4 r1 +
2 8 : . marking { P10 P3 P4 }
2 9 : . end

Listing 17. Final STG form.

4.3.3 Synthesis from the STG model using Petrify

The Petrify tool is a framework designed to perform the synthesis of an asynchronous

controller circuit defined as the STG representation [15], [16]. The tool allows for the

synthesis of the STG model and produces the results in the form of next-state Boolean

equations with additional information of any required use of the C-element. An example

of the Petrify output is shown in the Listing 18. The excerpt from the Petrify output log

file shows the set and reset functions’ equations and the corresponding C-element

configuration. In this case, the C-element requires the input from the reset function to be

inverted and an additional inverter at the C-element output.

82

SET (r 1 a c k ’) = r 1 a c k r1 ’ c sc0 ack ’ rdy ’
RESET(r 1 a c k ’) = r 2 a c k ’ r1 c sc0 ’
[r 1 a c k] = r 1 a c k ’ (o u t p u t i n v e r t e r)

> t r i g g e r s (SET) : (r1 − , ack −) −> r1ack −
> t r i g g e r s (RESET) : ([r1 + , r1 + / 1] , [csc0 − , csc0 − / 1]) −> r 1 a c k +
> 8 t r a n s i s t o r s (3 n , 5 p) + 4 i n v e r t e r s
> E s t i m a t e d d e l a y : r i s i n g = 3 5 . 9 6 , f a l l i n g = 54 .75

Listing 18. Petrify output.

Petrify performs the synthesis from the STG description of an input-output

asynchronous sequential circuit [9]. The initial STG model is translated into the State

Graph (SG). Then the software performs optimizations on the state assignment and solves

the Complete State Coding problem [4]. Then the tool derives the next-state equations for

the selected representation. For the final synthesized form, the user can select the complex

gate representation or one of the solutions based on the C-element [4], [5]. The C-element

based solutions generate the generalized C-element or the standard C-element with

monotonous cover constraint.

Although the Petrify tool provides a complete set allowing for the synthesis of the

asynchronous controller circuit, the tool itself has certain limitations arising from the

computational complexity of the synthesis method [9]. Circuit properties like parallel

transition flow or technology-aware logic decomposition add to the overall complexity of

the intermediate SG model. In the case of parallel behavior, the SG must cover all the

possible permutations of states that can occur during the parallel changes of the circuit’s

inputs and outputs. The result is a state explosion in which a seemingly small parallel

optimization in the STG model can unfold into hundreds of extra states. Also, the

technology-aware logic decomposition can introduce additional internal signals to the

design in an attempt to generate hazard-free gate-level representation, further expanding

the SG model size. In addition to the SG size, there comes the Complete State Coding

(CSC) problem. The tool heuristically attempts to find a set of internal states to remove all

83

the inconsistencies in SG description in the case when two states with the same encoding

represent two different SG elements. The limitations prevent Petrify from producing large

models within a reasonable time.

4.4 Part 2: Stage 2 Model for logic synthesis

The Stage 2 model introduces the next step in the methodology that leads from

behavioral representation to a codebase ready for model synthesis that ends as the final

gate-level representation. The Fig. 19 shows remaining steps of the process. The stage 2

model builds on top of the previous stage 1 and reuses some of the components while

redefining others. As the primary purpose of stage 2 is to deliver a synthesizable model,

the stage becomes a technology-dependent and uses the ASIC component library

elements directly within the model.

Fig. 19. Methodology steps leading to stage 2 model.

84

The design from stage 1 cannot be directly fed to the synthesizer because the

optimization would automatically reduce some of the critical constructs like the delay

lines producing an incorrect implementation. Also, the first stage model contains

behavioral elements like the C-element or mutex that need to be manually mapped to

corresponding cells in the ASIC technology library. Finally, the correct technology

mapping of the controller’s next-state equations requires a specialized approach to

produce hazard-free implementation. In general, stage 2 reuses some of the components

from stage 1 for direct synthesis, while others must be reimplemented. The directly

reused elements are the internal combinational functional modules from the flow support

elements. The collection of modules that must be redefined using the primitives from the

ASIC technology library are the C-Layer, the handshake layer of FSE, and the

Component and the Top module. Also, components like arbiters or asynchronous registers

must be rewritten in structural form using the ASIC primitives. The presented

methodology introduces a template for stage 2 specific modules showing the reference

implementation approach. The stage 2 components might vary from the template,

especially when a different set of ASIC primitives or a different STG synthesis tool is

used. The shown examples of the controller’s C-layer are based and optimized for the

output generated by the Petrify tool.

For the speed-independent controller side, the behavioral C-layer from stage 1 is

completely replaced by a stage 2 implementation and becomes a structural gate-level

model composed entirely of primitives available in the ASIC library. The reference

template for stage 2 maps the behavioral constructs from stage 1 with stage 2 primitives

directly in the one-to-one relation. Shown in Listing 19 is the stage 2 implementation

equivalent the the behavioral stage 1 model presented in Listing 5.

85

module c t r l (
i n p u t l o g i c r s t ,
i n p u t l o g i c in1 ,
i n p u t l o g i c in2 ,
o u t p u t l o g i c out1 ,
o u t p u t l o g i c ou t2

) ;

/ / i n t e r n a l s i g n a l s
l o g i c c sc0 ;

/ / s i g n a l s coming o u t o f t h e comb module
l o g i c out1_on ,
l o g i c o u t 1 _ o f f ,
l o g i c o u t 2 _ s i g ,
l o g i c csc0_on ,
l o g i c c s c 0 _ o f f

c t r l _ n e x t s t a t e
NS (. i n 1 (i n 1) , . i n 2 (i n 2) , . ou t1 (ou t1) , . ou t2 (ou t2) , . c s c0 (c sc0) ,

. ou t1_on (ou t1_on) , . o u t 1 _ o f f (o u t 1 _ o f f) , . o u t 2 _ s i g (o u t 2 _ s i g) ,

. c sc0_on (csc0_on) , . c s c 0 _ o f f (c s c 0 _ o f f)
) ;

/ / C−Layer c o n n e c t i o n s
/ / Type : i n v B , i n v out , r e s e t low
GC_IBIORL
c0 (. O(ou t1) , .A(ou t1_on) , . B(o u t 1 _ o f f) , . R(r s t)) ;

/ / I n v e r t e d s i g n a l , p u l l low
c t r l _ s i g _ i s p l
s1 (. r s t (r s t) , . s i g (s e n d _ s i g) , . o (send)) ;

/ / Type : i n v B , d i r e c t out , r e s e t h igh
GC_IBDORH
c3 (. O(c sc0) , .A(csc0_on) , . B(c s c 0 _ o f f) , . R(r s t)) ;

endmodule : c t r l

Listing 19. Stage 2 C-Layer template.

In the stage 2 version of the C-layer, all the behavioral constructs get replaced by their

structural counterparts. Same as in the behavioral version from stage 1, the model

contains a direct path connection and a C-element, both in multiple configurations. The

proposed reference structure for the direct path connection is shown in Listing 20. The

template implements two types of a direct path component, the DSPL (Direct Signal Pull

Low), which is a signal buffer with a reset capability that forces the signal to state low

and ISPL (Inverted Signal Pull Low), a signal inverter with reset capability also forcing

86

the signal to state low. A pull-high variant might also be required depending on the design

when an initial state of a direct path is high instead of low. The reference implementation

shown uses the Open Cell Library [41] and the FreePDK15 [42] as the base for custom

cells. Regardless of the technology library used, stage 2 elements that are not part of

automated synthesis must provide a valid structural gate-level design with no behavioral

constructs that require translation.

module c t r l _ s i g _ d s p l (
i n p u t l o g i c r s t ,
i n p u t l o g i c s i g ,
o u t p u t l o g i c o

) ;
INV_X1 I1 (. I (r s t) , . ZN(i 1 r s t)) ;
AND2_X1 A1 (. A1 (s i g) , . A2 (i 1 r s t) , . Z (o)) ;

endmodule : c t r l _ s i g _ d s p l

module c t r l _ s i g _ i s p l (
i n p u t l o g i c r s t ,
i n p u t l o g i c s i g ,
o u t p u t l o g i c o

) ;
/ *
* (~ r s t * ~ s i g) −> ~(r s t + s i g)
* /

NOR2_X1 NO1 (. A1 (r s t) , . A2 (s i g) , . ZN(o)) ;
endmodule : c t r l _ s i g _ i s p l

Listing 20. Direct signal line with pull-low.

The stage 2 model reflects all the four combinations of the C-element produced by the

Petrify tool. Unlike the behavioral model, every C-element configuration in stage 2 is

represented by a unique structural model rather than a parametrizable module. The

mentioned four variations are:

• GC_IBDORL - Element that resets to 0 with direct output.

• GC_IBIORL - Element that resets to 0 with inverted output.

• GC_IBDORH - Element that resets to 1 with direct output.

• GC_IBIORH - Element that resets to 1 with inverted output.

87

The implementation of the C-element configurations can be approached either by

providing a structural model composed of the ASIC library elements similar to the direct

signal module or by providing custom ASIC primitives implementing an entire

configuration as one indivisible cell. Both ways have their advantages and shortcomings.

The structural method requires less work on the transistor level design and layout of an

ASIC component. In fact, it is possible to implement all the configurations using standard

combinational gates since a C-element variant exists that has its representation composed

entirely of NAND gates [36]. However, the structural approach is not area efficient,

requires interconnecting of multiple gates during the place and route, and can produce a

circuit containing a hazard that breaks speed-independence constraints. On the other hand,

the full custom ASIC approach allows for more compact and predictable elements but

requires more work upfront to bring up a set of custom elements.

The second type of stage 2 specific elements are the handshake layers for the FSE

modules. This currently presented variant uses delay matching as the completion

detection mechanism. The structural stage 2 model replaces behavioral delays placed on

signals with a specialized module providing a delay line composed of the ASIC

primitives. The Listing 21 shows an equivalent to the stage 1 model, data-type handshake

module. All the connections remain unchanged at the design level, but the model

introduces a bundle_delay element, a parametrizable model that generates a chain of delay

elements. In the case of the data-type FSE, the delay applies only to the handshake ack

signal while the combinational element implementing the module’s logic connects to its

environment. The delay line length parameter N is adjusted during the synthesis process

to exceed the combinational element’s long path.

In the case of the decision-type element shown in Listing 22, the delay line is applied

in conjunction with the decision signal line coming out of the combinational part. Every

output line at its end is merged with a delay line through the AND gate. Merging allows

88

for the suppression of any hazardous switching on the decision line while the

combinational logic resolves. Similar to the data type, the decision-type FSE also uses the

bundle_delay module and adjusts its length during the synthesis.

module f s e _ t 1 (
/ / Data
i n p u t l o g i c [3 : 0] d_in ,
o u t p u t l o g i c [3 : 0] d_out ,

/ / C o n t r o l
i n p u t l o g i c req ,
o u t p u t l o g i c ack

) ;

i m p o r t d e l a y _ d e f : : * ;

l o g i c [4 : 0] d _ o u t _ n e x t ;

f s e _ t 1 _ f n
FN (. d_ in (d_ in) , . d_ou t (d _ o u t _ n e x t) , . r e q (r e q)) ;

a s s i g n d_ou t = d _ o u t _ n e x t ;

b u n d l e _ d e l a y # (.N(DM_FSE_T1) , . S (1))
DELAY (. I (i d x _ r e q) , .O(i d x _ a c k)) ;

endmodule : f s e _ t 1

Listing 21. FSE synthesizable data-type handshake module.

Both types of data and the decision FSE must meet certain conditions during the

design verification. In the data-type FSE, all the output lines must be analyzed during the

synthesis, and the handshake signal must have the longest delay for both rising and falling

edge. Testing for both edges ensures that, in the case of a rising edge, the valid data is

available at the outputs by the time the module acknowledges the request. For the falling

edge, the delay requirement ensures the module is in its default state, which prevents

potential unwanted signals on the data path. For the decision-type element, to ensure

correct behavior, every output signal path must be analyzed as well. The delay matching

is correct when the long path within the output signal logic occurs only through the

delay-matching path. The requirement ensures that the final AND gate is guaranteed to

89

activate after the internal combinational logic is resolved, and a stable result is available at

the output.

module f s e _ t 2 (
/ / Data
i n p u t l o g i c [3 : 0] d_in ,
/ / C o n t r o l
i n p u t l o g i c s e l _ r e q ,
o u t p u t l o g i c s e l _ a ,
o u t p u t l o g i c s e l _ b

) ;

i m p o r t d e l a y _ d e f : : * ;

l o g i c s e l _ a _ o u t ;
l o g i c s e l _ b _ o u t ;
l o g i c s e l _ r e q _ d e l a y ;

f s e _ t 2 _ f n
FN (. d_ in (d_ in) , . s e l _ a (s e l _ a _ o u t) , . s e l _ b (s e l _ b _ o u t)) ;

b u n d l e _ d e l a y # (.N(DM_FSE_T2) , . S (1))
DELAY (. I (s e l _ r e q) , .O(s e l _ r e q _ d e l a y)) ;

AND2_X1
A1 (. A1 (s e l _ a _ o u t) , . A2 (s e l _ r e q _ d e l a y) , . Z (s e l _ a)) ;

AND2_X1
A2 (. A1 (s e l _ b _ o u t) , . A2 (s e l _ r e q _ d e l a y) , . Z (s e l _ b)) ;

endmodule : f s e _ t 2

Listing 22. FSE synthesizable decision-type handshake module.

Stage two also introduces the support module that encapsulates all the signal

redirecting and management code present within the Component and Top modules. Each

instance of a Component and the Top module contains its version of the support module

unless all the connections are direct and trivial. Trivial means a wire only and without any

logic in the connection path within the scope of the component. The motivation behind

introducing the support module is to provide the ability to perform automatic synthesis on

the signal management logic. In some cases, the signal management logic could become

difficult to implement by hand using ASIC primitives. A good example is the address line

coming into the cache memory from multiple sources. All three components share a

single path; thus, all three sources must be OR-ed for every bit of the address line within

90

the Top module. Modeling the merged memory bus connection by hand using primitives

could become quite a challenge and introduce bugs. The Support module covers the task

of isolating the signal redirecting management logic and allows it to be automatically

synthesized. Also, the support element can contain a delay path if necessary and when the

logic synthesizer allows for the exclusion of individual HDL modules from

optimization [43].

4.5 Asynchronous Extension to standard set of ASIC primitives

To support the asynchronous constructs presented by the methodology, the

corresponding ASIC library must be extended beyond the standard set of primitives [41].

At the very minimum, the library must provide a C-element [34] and the mutex [5], [17]

element. Even though it is possible to implement the C-element using NAND gates [36],

it is not a practical approach, thus making the custom C-element cell an essential addition.

The Fig. 20 shows static implementation of the C-element. The circuit realizes the

Boolean Equation 2 which describes two input C-element functionality.

Cnext = AB+C(A+B) (2)

It is also possible to extend the static C-element to have more inputs as seen in Fig. 21

showing a 3-input version. Every new input requires the addition of 4 transistors.

Although the methodology does not use any other than a two-input C-element within the

controller, the gate is also useful as a merging point to combine multiple passive

handshake elements, which number might exceed two. For example, two or more passive

elements feed their ack signal through the C-element. The gate’s output becomes high

only when all ack signals are high, showing the passive components’ readiness. Similarly,

the output goes back to low only when all the ack signals go low. This way, the C-element

can become a simple mechanism of completion detection from multiple sources. However,

91

increasing fan-in creates a large gate in CMOS technology. The size of a CMOS gate is

limited in practice by transistor-level effects such as charge sharing problem [3], [44].

Fig. 20. Generic C-element.

The second essential ASIC primitive is the mutex element, which resolves the

problem of two contending input signals going into a speed-independent controller that

could appear at an unknown time. It is common within the methodology for a gated STG

confusion block to exist that implements conditional execution steering the flow in a

specific direction. Such flow case by default assumes that the appearance of one signal

within the choice disables all others until the STG reaches again the same choice place or

another place that allows for the occurrence of the remaining signals. The speed

independence assumes the unknown time of occurrence but does specify the order of

events. If the mentioned input signals come from external modules that do not know

others’ states, it is possible to put the receiving controller in an invalid state, causing it to

malfunction. The mutex element solves the problem by allowing only one signal to come

through and preserves its state until the selected line goes back to low, releasing the lock.

92

Also, the mutex element is an essential building block for a variety of arbiter circuits [17].

The mutex element and the derived arbiter circuits provide irreplaceable functionality that

allows for the synchronization of independent modules making the mutex element an

essential circuit among the asynchronous extensions of the ASIC library.

Fig. 21. Generic C-element with 3 inputs.

Also, the asynchronous arbitration operation in the asynchronous domain becomes an

analog problem with the expected occurrence of meta-stability that is filtered out by

specific circuit configuration. Therefore, it is impossible to construct the mutex element

from the standard set of Boolean logic gates, and the mutex primitive element must be

constructed at the transistor level. The Fig. 22 shows an implementation of the mutex

element, which consists of two stages, the selector and the meta-stability filter. The NAND

gates’ cross-connected configuration provides the selector circuit that ensures that only a

single line is eventually chosen, becoming a logic state low. If both request signals appear

93

close enough, the selector might become meta-stable, but the filtering segment inhibits the

transitional fluctuations at the output. The filtering configuration is essentially an inverter

gate with VDD connected to an output of another gate. The selected line feeds the input

signal to its corresponding filtering configuration while the other selector output provides

power. The circuit only emits a signal high when both outputs are in a settled state.

Fig. 22. Asynchronous MUTEX.

The mutex element can be extended to handle more than two inputs. The Fig. 23

shows a three input mutex element. Extending the mutex element occurs in two steps.

First, the selector stage adds one more NAND gate. All the gates are cross-connected;

therefore, every gate gains one more input. Then the filtering block gets one more filtering

element for the additional output. The current delivery is resolved by assigning VDD to

one gate other than the gate providing the signal. Then an additional PMOS with an

inverter is added that serves as the second current delivery gate. Extending the mutex

allows for more inputs and avoids the necessity to cascade connect multiple elements.

However, the extending requires significant growth in transistor count and higher fan-in

NAND gates.

94

Fig. 23. Asynchronous MUTEX with three lines.

The C-element and the mutex are essential components that must be present as

primitives in the ASIC library to successfully implement asynchronous designs in the

proposed methodology. However, a set of additional elements exists that, while possible to

build from the essential components, it is highly recommended to include as primitives to

optimize area usage. The first of the optional recommended elements is the D-Latch with

an asynchronous reset. A D-latch is common in almost any ASIC standard component

library; however, the standard latch might not be equipped with the asynchronous reset

signal. The reset signal’s importance stems from the ability to provide a hazard-free reset

functionality to the asynchronous circuit by ensuring a clean unconditional reset of the

registers. While it is possible to design an asynchronous reset logic from essential gates

and the simple D-latch without a reset pin, the solution introduces significant overhead in

terms of additional logic and gate fan-out related problems for larger registers. Since the

D-Latch primary use is to provide memory for asynchronous registers, any additional

logic per bit replicated multiple times would quickly introduce significant growth in the

area requirement. The reset logic must ensure that the latch would not accidentally capture

any hazardous input from the environment if the EN signal is still high during the reset

signal release. The asynchronous reset solves both the area and the reset cycle correctness

by adding an independent signal. As shown in Fig. 24 adding reset requires only two

95

transistors, and during the reset, the EN signal is separately gated by the handshake logic

preventing any unwanted input from being accidentally latched into the memory.

Fig. 24. D-Latch with reset.

The last set of optional components comes from adapting the design methodology to

the output generated by the Petrify tool. The generated output produces four

configurations of the C-Element with possible inverted output and the reset value being

either 1 or 0. Like the D-latch case, the reset functionality implementation plays a

significant role in reducing the area requirement. Two intermediate forms of a modified

C-element are introduced with a reset capability. Shown in Fig. 25 is a version of the

C-Element which a pull-hi signal. The transistor at the input of feedback inverter inhibits

any signals coming from the regular gate inputs while the transistor tied to VSS forces the

inverter input to become low, effectively setting the gate state to high.

Similar configuration exists for the pull-low variant shown in Fig. 26. The difference

in this configuration is the NMOS connected to VDD. Similarly, the input of the feedback

inverter is forced to high while all regular inputs are inhibited.

96

Fig. 25. Generic C-element with pull high reset.

Fig. 26. Generic C-element with pull low reset.

Using the intermediate C-elements with pull signals allows for implementing the four

configurations produced by the Petrify tool. The Fig. 27 show the diagrams of all variants,

which then could be implemented as transistor-level ASIC primitives. Because of the

common occurrence of the C-element-based configurations in the C-Layer, the

97

implementation of all four configurations as primitives is used to improve the design’s

area requirements.

Fig. 27. Petrify output-compatible C-Layer components.

4.6 Model Synthesis and delay matching

The stage two codebase, due to its structure, requires a specialized approach to

synthesis. The code consists of elements divided into two types, modules that go directly

to synthesis and modules that already contain gate-level specification and will be

incorrectly altered by the optimizer. Thus, the traditional top-down synthesis approach in

which the entire model is fed at once to the synthesizer and compiled as a whole will not

work. Instead, the bottom-up [43], [45] approach is used. The technique uses the

synthesizer capabilities to isolate a single module instance and perform synthesis only on

that module. An essential aspect of bottom-up synthesis in the asynchronous case is to

ensure correct timing such that delay-matched lines would provide a correct delay. For

this purpose, the synthesized module inputs and outputs must be constrained by the actual

load to which a given element is connected within the chip. The constrain is achieved

with the logic synthesizer feature called characterization [43].

98

4.6.1 Bottom-up selective module synthesis

The synthesis algorithm operates based on the bottom-up approach. The

implementations rely on synthesizer capabilities to isolate specific components in the

design and invoke the compilation only within the isolated scope. Moreover, the synthesis

approach is based on the iterative workflow; the modules are incrementally recompiled

while the model is changing. The need for incremental compilation stems from the

situation that during the first build, not all the components are yet defined in terms of

elements from the technology library; thus, providing an accurate specification of the

surrounding environment of the compiled module is impossible. However, after a few

loops, all the compiled components become their final gate-level representation allowing

the synthesizer to optimize compiled elements correctly. The pseudo-code in Algorithm 3

shows a high-level flow of the synthesis algorithm.

Algorithm 3 Selective bottom up synthesis algorithm.

1: Load global definitions and constants.
2: Elaborate generic modules for selected parameters.
3: Load project-specific modules.
4: Select top module.
5: Assign external environment I/O loads.
6: Uniquify
7:

8: #Initial compile
9: for all e in (CTRL_COMB_MODULES and FNC_SUPP_MODULES) do

10: characterize(e)
11: compile(e)
12:

13: #Iterative compile
14: while i < NUM_ITERATIONS do
15: for all e in (CTRL_COMB_MODULES and FNC_SUPP_MODULES) do
16: characterize(e)
17: compile_incremental(e)
18: Write netlist and SDF

99

The algorithm operates, expecting a specific format of the model source code.

Primarily, the name of a file must be the same as the module name it contains. Secondly,

every instance of a module must be assigned an identifier. All the design specific modules

are then listed and grouped into six categories, as shown in Listing 28. The breakdown

differentiates between the components based on their type. Among the categories, the

CTRL_COMB_MODULES and FNC_SUPP_MODULES are the ones that will go

through automated synthesis while the other categories contain elements already

implemented as structural modules.

In the initial stage of the algorithm, the entire design is loaded first. The script loads

common source files like types definitions and constants then use the modules lists to load

the modules. Meanwhile, the elaboration resolves the Verilog generate construct, which

allows for the introduction of parameterized [46], [47] dynamically created asynchronous

registers and delay lines. The Listing 24 shows how different versions of delay lines with

different lengths and different variations of sizes of the registers are generated. It is

necessary to establish specified instances of generic components for the linking process.

After loading all modules, the algorithm first sets the Top module as the current

design. Then instantiates default IO load on the Top module using the set_driving_cell

and set_load commands. After setting the cell load, the uniquify command is executed,

generating multiple copies of any modules reused multiple times. The uniquify is

necessary, for example, in a case when the same FSE is instantiated more than once. Since

the combinational module within FSE is synthesized, uniquification ensures that every

instance of the same module is compiled specifically to its surrounding environment.

100

s e t CTRL_COMB_MODULES {
plog_m1_fn plog_m2_fn plog_m3_fn plog_m4_fn plog_m5_fn
plog_m6_fn recv_m1_fn recv_m2_fn resp_m1_fn resp_m2_fn
resp_m3_fn resp_m4_fn resp_m5_fn sndr_m1_fn sndr_m2_fn
sndr_m3_fn sndr_m5_fn sndr_m6_fn

}

s e t CTRL_HANDSHAKE_MODULES {
plog_m1 plog_m2 plog_m3 plog_m4 plog_m5 plog_m6
recv_m1 recv_m2
resp_m1 resp_m2 resp_m3 resp_m4 resp_m5
sndr_m1 sndr_m2 sndr_m3 sndr_m5 sndr_m6

}

s e t CTRL_CLAYER_MODULES {
p l o g _ c t r l p l o g _ c t r l _ n e x t s t a t e
r e c v _ c t r l r e c v _ c t r l _ n e x t s t a t e
r e s p _ c t r l r e s p _ c t r l _ n e x t s t a t e
s n d r _ b u s _ c t r l s n d r _ b u s _ c t r l _ n e x t s t a t e
s n d r _ c o r e _ i f _ c t r l s n d r _ c o r e _ i f _ c t r l _ n e x t s t a t e
s n d r _ l o g c h e c k _ c t r l s n d r _ l o g c h e c k _ c t r l _ n e x t s t a t e
s n d r _ m a i n _ c t r l s n d r _ m a i n _ c t r l _ n e x t s t a t e

}

s e t FNC_SUPP_MODULES {
p log_supp1
r e s p _ s u p p 1
s n d r _ s u p p 1
r e c v _ s u p p 1
c t r l _ s u p p 1

}

s e t FNC_MODULES {
p log
r e s p
s n d r
r e c v

}

s e t TOP c t r l

s e t TIMING_VERF_NAMES { RP / R1_REG RP / R2_REG RP / R3_REG RP / RT_REG

Listing 23. Synthesis elements grouping.

The next step is the compilation during which all the elements from

CTRL_COMB_MODULES and FNC_SUPP_MODULES are translated from the

behavioral form to the gate-level representation. For every selected module, the

synthesizer performs the surrounding environment’s characterization to establish input

and output load associated with the compiled module. Then the synthesizer compiles the

101

selected element providing an optimized combinational circuit. The process happens in

more than one iteration as the functional blocks might be interconnected, and their

internal structure changes after compilation, altering the environment for other modules.

E l a b o r a t e p a r a m e t r i z e d d e l a y and r e g i s t e r s
f o r { s e t i 1 } { $ i <= $MAX_DELAY } { i n c r i } {

a n a l y z e − f o r m a t s v e r i l o g − d e f i n e N=$i , S=1 . . / . . / r t l / c t r l _ s y n t h /
s u p p o r t / d e l a y . sv

}

f o r { s e t j 1 } { $ j <= $MAX_REG_DELAY } { i n c r j } {
f o r e a c h i $REG_SZ {

a n a l y z e − f o r m a t s v e r i l o g − d e f i n e WIDTH=$i , DELAY_STEPS= $ j . . / . . /
r t l / c t r l _ s y n t h / s u p p o r t / a s y n c _ r e g . sv

}
}

Listing 24. Elaboration of parametrized modules.

The process executes the initial compilation once and then performs incremental

iterations through the entire list of components selected for synthesis and finally circles

back. The Listing 25 shows the iterative loop in which the algorithm processes the FSE

combinational and the Component support modules. An important thing to note is the two

internal loops that iterate over the result returned by get_designs. Even though all the

modules that require synthesis are already listed in the input data shown in Listing 28, as

a result of the uniquify command, some FSE can get replicated, creating newly generated

instances which also must be included in the synthesis process. Calling get_designs with

parameter composed of the module name concatenated with a post-fix wildcard allows

catching all the generated modules.

102

f o r { s e t i 0} { $ i < $SYNTH_ITER } { i n c r i } {
f o r e a c h n $CTRL_COMB_MODULES {

f o r e a c h _ i n _ c o l l e c t i o n m [g e t _ d e s i g n s ${n }*] {
c h a r a c t e r i z e _ c o m b _ m o d u l e $m
compi le_comb_module_ inc r $m

}
}

f o r e a c h n $FNC_SUPP_MODULES {
f o r e a c h _ i n _ c o l l e c t i o n m [g e t _ d e s i g n s ${n }*] {

c h a r a c t e r i z e _ c o m b _ m o d u l e $m
compi le_comb_module_ inc r $m

}
}

c u r r e n t _ d e s i g n $TOP
}

Listing 25. Compilation main loop.

p roc c h a r a c t e r i z e _ c o m b _ m o d u l e { o b j e c t } {
g l o b a l TOP
c u r r e n t _ d e s i g n $TOP
s e t obj_name [g e t _ o b j e c t _ n a m e $ o b j e c t]

s e t q u e r y _ s t r _ l i s t " re f_name == "
l a p p e n d q u e r y _ s t r _ l i s t $obj_name
s e t q u e r y _ s t r [j o i n $ q u e r y _ s t r _ l i s t]

#NOTE: Because o f u n i q u i f y we e x p e c t a lways a s i n g l e i n s t a n c e
s e t q u e r y _ c e l l [g e t _ c e l l s − f i l t e r $ q u e r y _ s t r − h i e r a r c h i c a l]

c h a r a c t e r i z e − c o n s t r a i n t s $ q u e r y _ c e l l
}

p roc compi le_comb_module_ inc r { o b j e c t } {
s e t obj_name [g e t _ o b j e c t _ n a m e $ o b j e c t]

c u r r e n t _ d e s i g n $obj_name
s e t _ m a x _ a r e a − i g n o r e _ t n s 0
s e t _ d o n t _ t o u c h b u n d l e _ d e l a y *

c o m p i l e _ u l t r a − i n c r e m e n t a l
}

Listing 26. Characterization and compilation.

The synthesis of a module happens using two steps, module characterization and then

compilation. The first action performs a characterization of the synthesized modules. The

characterization extracts capacitive loads placed on modules input-output pins by its

environment and setups as parameters for the processed component. The second step is

103

the actual compilation, during which the characterized module is translated to its

gate-level representation, or the logic is improved if an incremental compilation occurs.

The Listing 26 shows the characterization and compilation procedures used by the script.

After several passes over the modules list, the entire design stabilizes, and the

synthesis finishes. The last step is to save the results of synthesis. Two essential files are

created, the gate net-list and the SDF file that contains delays extracted from the ASIC

cell descriptions, which are then used to simulate the gate-level model correctly.

4.6.2 Post-synthesis timing analysis and delay matching

After the synthesis, the gate-level model must be examined for correctness related to

timing. All the flow support elements and the asynchronous register delay-matching lines

must be checked. The verification procedure relies on the timing analysis of the

synthesized model. A sample of the data format used for verification is presented in

Listing 27, showing an example for the data and decision FSE.

Data FSE t i m i n g
ELEM_TIMING PL /M3:

c r i t :
s e t _ o u t _ r e g _ a c k : r (3 8 . 5 3) / f (3 8 . 5 3) DELAY/DELAY

a l l :
s e t _ o u t _ r e g _ a c k : r (3 8 . 5 3) DELAY
o u t _ v a l i d : f (3 5 . 4 4) SIGNAL
o u t _ t h i s _ u n i t : f (2 8 . 7 9) SIGNAL
o u t _ r d x : f (2 8 . 7 9) SIGNAL

D e c i s i o n FSE t i m i n g
ELEM_TIMING RP /M2:

c r i t :
p _ l o g _ r e s p o n d : r (4 6 . 4 8) / f (4 5 . 3 3) DELAY/DELAY
p _ l o g _ s k i p : r (4 7 . 2 1) / f (4 5 . 9 6) DELAY/DELAY

a l l :
p _ l o g _ s k i p : r (4 7 . 2 1) DELAY
p _ l o g _ r e s p o n d : r (4 6 . 4 8) DELAY

Listing 27. Timing analysis output.

Every record contains two sections. First, the critical section shows delays for lines

that are affected by the delay-matching logic. Each line shows the signal’s name, rising

104

and falling delay, and whether the printed signal long-path results from the signal

traveling through delay logic or regular logic. When a signal is marked DELAY, it means

that the printed delay is due to the delay logic, and when the SIGNAL marking appears,

this means the long path is due to the regular module logic and exceeds the matched-delay

path. The critical section provides a pair of markings, one for rising and one for the

falling delay.

The second section, titled "all", is the list of signals starting with the longest delay.

Here the ten or less slowest signals are listed for verification, including the critical lines.

Unlike the critical section, the all section displays either rising or falling delay, whichever

is longer. An important point to note is that if a signal displays a rising delay, then the

falling delay is always shorter. The same is true for the opposite; if a falling signal delay

is displayed, then the rising is shorter.

Condition for correctness varies between the types of elements. For the data-type FSE

and asynchronous registers, the critical line must have marking DELAY, and the critical

line delays both for raising and falling must be longer than any other line within the

module. If a module is a mixed-type FSE, for example, combining two data-type

functions, then the delays of both critical lines must exceed any other signal. Even if the

data signal within the FSE applies only to one function, not to the other, still, both critical

handshake lines must exceed its delay. The requirement for the critical lines to be the

slowest avoids any unexpected hazards. Unexpected transitions can occur on any line

within the module while the combinational logic stabilizes. If the element is the Support

module, the critical line must have marking DELAY with a delay value that exceeds only

the corresponding signals, not all the signals within the module.

In the decision-type FSE, the analysis shows only the handshake signals, which at the

same time are the only outputs from the module. For decision-module timing to be

correct, all the signals must have a marking DELAY. The same rules apply for the

105

mixed-type module in which one FSE contains data and decision-type functionality or

other variations. All the critical signals must have a delay longer than any data line and

the DELAY marking for both rising and falling transition.

The implementation of the timing extraction algorithm works similarly to the

synthesis. The model must use names for every instantiated module. The analysis code

requires a list of analyzed elements and a list of critical signals for each record. The

Listing 28 shows a portion of the file describing the list of modules for timing analysis.

The primary requirement for the codebase implementing the model is that all the

instantiated modules have assigned identifiers. The identifiers are then listed as a full path

starting from the instances in the top module. For example, the TIMING_VERF_NAMES

list, which contains the full list of all analyzed elements, has a record PL_/M1 which

points to an instance called M1 within the RP element then the PL is instantiated within

the top module. Then this instance, M1 is a subject for timing analysis. The second piece

of information is the list of critical signals within the tested module. The set

TIMING_VERF contains a collection of lists of one record for each tested element.

SD / LINE_REG RV/ LINE_REG PL /M1 PL /M2 PL /M3 PL /M4 PL /M5 PL /M6
RV/M1 RV/M2 RP /M1 RP /M2 RP /M3 RP /M4 RP /M5 SD /M1 SD /M2 SD /M3 SD /M4
SD /M5 SD /M6 SUPP1 }

s e t TIMING_VERF (RP / R1_REG) { " ack " }
s e t TIMING_VERF (RP / R2_REG) { " ack " }
s e t TIMING_VERF (RP / R3_REG) { " ack " }

s e t TIMING_VERF (PL /M1) { " r e c v _ p r o c _ s k i p " " r ecv_proc_mark " "
r e c v _ p r o c _ c l r " }

s e t TIMING_VERF (PL /M2) { " s e l _ s t o r a g e _ a c k " }
s e t TIMING_VERF (PL /M3) { " s e t _ o u t _ r e g _ a c k " }
s e t TIMING_VERF (PL /M4) { " s e t _ s t o r a g e _ a c k " }
s e t TIMING_VERF (PL /M5) { " s n d r _ p r o c _ a c k " }
s e t TIMING_VERF (PL /M6) { " r e s p _ p r o c _ a c k " }

s e t TIMING_VERF (RV/M1) { " s t p 1 _ a c k " }
s e t TIMING_VERF (RV/M2) { " s t p 2 _ a c k " " s t p 3 _ s k i p " " s t p 3 _ w r i t e " }

Listing 28. Synthesis elements grouping.

106

With the information provided, the algorithm keeps iterating over the list of modules.

The Listing 29 shows the central part of the analysis algorithm. When a module is

selected for analysis, the first step is to perform characterization to obtain accurate timing

results. However, since the communication is based on handshaking, it is safe to assume

that all the module’s data inputs are stable before the module itself is triggered to work.

The standard synthesizer for sequential logic not aware of the delay-matched FSE

working principle; therefore, all the delays on input lines must be cleared manually by the

analysis algorithm.

c h a r a c t e r i z e _ c o m b _ m o d u l e $ r
c u r r e n t _ d e s i g n $obj_name

r e m o v e _ i n p u t _ d e l a y [a l l _ i n p u t s]

echo " \ n \ nCRIT−CRIT−CRIT−CRIT−CRIT−CRIT−CRIT \ n \ n " > b u i l d /
s y n t h _ t i m i n g / $ f i l e _ n a m e . t i m i n g

f o r e a c h s i g $TIMING_VERF ($ q u e r y _ c e l l _ n a m e) {
r e p o r t _ t i m i n g − n o s p l i t − r i s e _ t o $ s i g >> b u i l d / s y n t h _ t i m i n g /

$ f i l e _ n a m e . t i m i n g
r e p o r t _ t i m i n g − n o s p l i t − f a l l _ t o $ s i g >> b u i l d / s y n t h _ t i m i n g /

$ f i l e _ n a m e . t i m i n g
}

echo " \ n \ nALL−ALL−ALL−ALL−ALL−ALL−ALL\ n \ n " >> b u i l d /
s y n t h _ t i m i n g / $ f i l e _ n a m e . t i m i n g

r e p o r t _ t i m i n g − n o s p l i t −max_paths 10 >> b u i l d / s y n t h _ t i m i n g /
$ f i l e _ n a m e . t i m i n g

}

Listing 29. Extraction of signals for analysis.

After characterizing the module and clearing input delays, the algorithm then iterates

over the critical signals list and obtains timing reports for each rising and falling

transition. Finally, the algorithm prints a timing analysis report for the entire module with

ten or fewer slowest lines. The synthesizer’s raw output is then processed and compiled

into the format shown in Listing 27. The DELAY and SIGNAL markings are obtained by

inspecting the entire path. If the path contains a module with the name matching the

107

delay-line element, then the long path must be going through the delay element;

otherwise, it is a SIGNAL marking. The final delay becomes the total path delay for the

specific signal.

During the analysis, if the timing is not met, the delay-matching line must be

extended by additional segments, then the synthesis repeats until the correct solution is

present. The timing results might oscillate across the modules between correct and

incorrect, but after a number of delay-tuning iterations, the delays stabilize and arrive at

the correct result. Obtained gate-level representation is then ready for back-end processing

that leads to the final form in GDSII format.

4.6.3 Post Place and Route delay matching through ECO

During the place and route process, a more accurate model of the design emerges.

Aside from the ASIC primitives delays, the additional interconnect delays show up as the

tools can determine the actual connectivity and have insight into the fabrication process.

The added path delays have a high probability of altering the circuit’s timing to the point

when delay-matched lines become incorrect. In such a case, it is necessary to employ the

Engineering Change Order (ECO) approach to fix the invalid delay paths. The ECO

revolves around making small "last-minute" changes to the nearly finished design,

allowing to avoid returning to the earlier design stages.

One of the useful properties of asynchronous design is that there is no clock tree

synthesis, and as such, the place and route tool do not alter the underlying netlist. Because

the netlist remains unaltered, the same timing analysis tools from the synthesis stage can

be used to determine the circuit’s correctness after Place and Route. The place and route

tool export an updated SDF file, which contains both cell and net delays. The updated

timing is then used to output the timing report.1

1. Tested on Cadence Innovus

108

For the paths that fail the timing due to the added path delay, it is necessary to extend

the matching delay. The extension is done as a part of the ECO workflow on existing

gate-level representation. It is impossible to use any of the Verilog behavioral constructs

at this stage, and all changes must be done strictly at the structural level. The following

procedure is verified for the Innovus suite but applies to any other tool of equal

functionality. The existing netlist first must be exported from the tool by using the

saveNetlist command. The specific instance of the delay line corresponding to the failing

element must be found, and additional delay elements are injected into it. Finally, the

updated netlist is loaded using the ecoDesign command. An additional placement and

routing might be required if the ecoDesign is invoked with parameters noEcoPlace or

noEcoRoute. For the additional place end route, the ecoPlace and ecoRoute commands

are used. Finally, the checkPlace and verifyConnectivity commands validate the design.

The delay matching in the last stage might require multiple iterations similar to the

synthesis process. Eventually, the design stabilizes, producing the correct result.

4.6.4 Synthesis of the Controller Circuit

The speed-independent controller circuit requires special treatment when it comes to

synthesis into ASIC library elements. Standard combinational logic synthesis algorithms

are insufficient when it comes to the decomposition of the next-state logic equations. Due

to the gate and interconnect delays, synchronous model-oriented synthesis could produce

a result that contains hazards [4], causing malfunction of the controller and generally

breaking the speed-independent assumptions. Specialized [4], [9] synthesis and hazard

free logic decomposition methods must be applied separately to the controller. Stage 2

must reexamine the STG and synthesize it into gate-level representation. Then the gate

level structural next-state modules are plugged directly into the synthesis process as black

boxes.

109

The necessity to synthesize STG again, specifically for stage 2, can invalidate the

stage 1 model. The invalidation can happen because of the signal insertion algorithm [4],

[9] that simplifies the set and reset functions by adding additional intermediate internal

signals into the model, which splits an output line function into smaller subsets. The new

signals alter the SG and, as a result, the controller structure. In some cases, it might be

beneficial to re-run stage 1 tests on the set of next-state equations obtained after stage 2

specific synthesis. Note that stage 2 synthesis, in this case, produces two representations

of the same result. One is the structural gate-level next-state module, and the second is the

next-state Boolean equations. Stage 1 model still operates under the single complex gate

delay assumption but with the new set of signals and potentially different CSC.

In some cases, hazardous behavior can manifest after the Place and Route. Introduced

interconnect delays could potentially slow down certain paths causing hazardous behavior

in high-speed circuits. Though it is unlikely because the asynchronous synthesis

algorithms attempt to construct circuits that behave correctly within the set of possible SG

states, there still exists a chance that added interconnect path delay could violate speed

independence. Thus, it might be necessary to perform P&R layout using a version of the

placement algorithm that is aware of potential hazards and perform delay matching on

interconnect lines. In this case, the P&R is done on the controller circuit separately. Then,

when finished, the resulting block is inserted into the entire design as a black box around

which the automated standard P&R happens.

Although not recommended, it is possible to synthesize the controller’s next-state

functions using synchronous logic algorithms. For that purpose, the stage 1 modules

containing the set and reset logic need to be included as COMB modules, as shown in

Listing 30. This way, it is possible to end up with a result for which either the hazardous

behavior does not exist or the hazardous behavior does not manifest at the controller

outputs, or there is no potential sequence of states that would cause the hazardous

110

behavior. However, using a standard synthesizer for synchronous logic, in general, is still

incorrect and must be used with caution as it cannot guarantee a hazard-free result.

s e t CTRL_COMB_MODULES {
p l o g _ c t r l _ n e x t s t a t e plog_m1_fn plog_m2_fn plog_m3_fn plog_m4_fn
plog_m5_fn plog_m6_fn r e c v _ c t r l _ n e x t s t a t e recv_m1_fn recv_m2_fn
r e s p _ c t r l _ n e x t s t a t e resp_m1_fn resp_m2_fn resp_m3_fn resp_m4_fn
resp_m5_fn s n d r _ m a i n _ c t r l _ n e x t s t a t e s n d r _ b u s _ c t r l _ n e x t s t a t e
s n d r _ c o r e _ i f _ c t r l _ n e x t s t a t e s n d r _ l o g c h e c k _ c t r l _ n e x t s t a t e
sndr_m1_fn sndr_m2_fn sndr_m3_fn sndr_m5_fn sndr_m6_fn

}

s e t CTRL_HANDSHAKE_MODULES {
plog_m1 plog_m2 plog_m3 plog_m4 plog_m5 plog_m6
recv_m1 recv_m2
resp_m1 resp_m2 resp_m3 resp_m4 resp_m5
sndr_m1 sndr_m2 sndr_m3 sndr_m5 sndr_m6

}

s e t CTRL_CLAYER_MODULES {
p l o g _ c t r l
r e c v _ c t r l
r e s p _ c t r l
s n d r _ b u s _ c t r l
s n d r _ c o r e _ i f _ c t r l
s n d r _ l o g c h e c k _ c t r l
s n d r _ m a i n _ c t r l

}

s e t FNC_SUPP_MODULES {
p log_supp1
r e s p _ s u p p 1
s n d r _ s u p p 1
r e c v _ s u p p 1
c t r l _ s u p p 1

}

s e t FNC_MODULES {
p log
r e s p
s n d r
r e c v

}

s e t TOP c t r l

Listing 30. Synthesis elements grouping with controller next-state equations.

111

5 CASE STUDY: ASYNCHRONOUS MESI CACHE COHERENCE
CONTROLLER WITH SPLIT TRANSACTION BUS

The presented case study’s goal is to evaluate and validate the proposed methodology.

Serving as the proof of concept is a cache coherency controller element that implements

the MESI memory coherency algorithm and communicates through a split transaction bus.

The design provides sufficient complexity to show the capabilities and prove or disprove

the methodology’s usefulness. Featuring the MESI algorithm as a non-linear and

data-driven flow makes the controller a good fit within the covered class of devices. The

execution is non-deterministic as it depends on multiple competing entities in the system

and involves arbitration and complex decision making based on the data. The algorithm

implementation provides sufficient complexity to show the advantages of the proposed

methodology and analyze its effectiveness.

The presented case study features two implementations of the controller, the

asynchronous version that follows the proposed methodology and a synchronous

reference baseline. The goal of having the synchronous reference design is to evaluate the

methodology and the resulting asynchronous version compared to a design created in a

well known and widely used approach. Both implementations follow the same algorithm

to avoid discrepancies in the results coming from the difference in the working principle.

However, some implementation differences exist, which are caused by the use of different

design methodologies that are expected and intend to show strong and weak sides of both

synchronous and asynchronous design.

5.1 Cache Coherence MESI Algorithm and Split Transaction Bus Review

The multi-level cache memory model in multiprocessor systems brings significant

processing performance improvements but introduces additional memory coherency

problems. The locally cached subset of memory space for every processor must be kept

112

consistent among all CPU units despite the disconnect. One among a number of the

solutions to the problem is the snooping MESI cache coherency algorithm. In a snooping

protocol, the cache controller maintains the local cache state by listening to the

information flow on the bus modifying the applicable local cache accordingly [10].

With the MESI algorithm, a cache line, in addition to its regular structure [11], gains

an additional field that reflects the MESI state. The MESI state describes the cache line

status with reference to its coherent state spanning all the processors working on the

shared memory space. It is a four-state [12] value that specifies the cache line status as:

• (M)odified - The local cache memory contains a unique copy of cache line data that

was modified in previous cycles. If other cores have a copy of this line, then its state

in the other cores memory must indicate invalid with an outdated value. The main

memory also contains an outdated value.

• (E)xclusive - The local cache memory contains an exclusive valid copy. If any other

cores have the same cache line, then its status in other cores’ local memory must

indicate invalid with illegal to use value regardless of whether it is outdated or not.

The main memory contains the current value.

• (S)hared - The local cache memory contains a shared copy between other cores and

the main memory.

• (I)nvalid - The local cache memory contains an invalid copy which unreliable value.

The cache line’s MESI state determines what steps must be taken when performing an

arbitrary memory operation. For example, if a core writes to a cache line that holds an

exclusive state, then the data is modified immediately, and the MESI state changes to

modified. However, if the MESI state is shared instead of exclusive, then the core must

first send an upgrade (Upg) signal to all other cores, so they invalidate their copies while

promoting its local version from shared to exclusive. Then the actual write can occur.

113

The MESI cache coherence algorithm allows for preserving memory consistency in

multiprocessor systems with multi-level memory hierarchies. Separate CPU cores, despite

having isolated snapshot subsets of the entire memory space, still see the whole address

space as a single consistent entity. The MESI is a snooping algorithm that listens to all

bus communication and adjusts the local memory state accordingly.

Two-way communication on a shared bus in a multiprocessor system can become a

performance bottleneck, for example, when considering an atomic BusRd [12] message,

which is a request for data sent by a core. The Sender locks the access to the bus and

sends the request. Then the entire system waits until one of the other units sends a

response. In an atomic transaction model, the system is effectively locked until the

transaction finishes. The locked state can cause a significant system slowdown, especially

if the response comes from the main memory directly. Holding the bus inhibits not only

other data requests but also some seemingly internal and unrelated actions happening

within other cores. As seen previously, a core must send the Upg message to perform a

write into the cache if the line is in shared status. If the bus is locked, that core must wait

to send Upg even though it executes an unrelated operation to the currently ongoing

bus-read request. In effect, an unrelated core is stalled, and the effect could spread to

more CPUs’ overtime, significantly degrading the system performance.

The solution to the atomic message bottleneck is the split-transaction bus [12]. In the

split-transaction model, the request for data and the response are broken down into two

separate bus messages. The requesting unit puts a request message then immediately

releases the bus. While other units prepare the response, other communication can go

through. Finally, the responding entity locks the bus access and sends the response. The

split-transaction model allows for more efficient bus utilization but places a heavier

burden on the communicating elements by imposing the need to track outstanding

transactions. For example, core A requests a cache line, which can be delivered as a

114

response either by core B, core C, or main memory. All the three elements now keep

working on retrieving the data from local storage and finally compete with each other for

the bus to deliver the response. In the end, only one unit will deliver the response, while

all the others must cancel the procedure and switch to another task. The improvement

comes from the fact that while the response is prepared, the bus is free and other

communication can occur. The split transaction model allows for improved utilization of a

shared bus and prevents bottleneck caused by two-way atomic messages but at the cost of

more complex implementation.

5.2 Cache coherency controller design goals

The designed cache coherency controller is a module managing the L1-level cache

within a single CPU core. The design is intended to work in a multi-core environment in

which every CPU core contains its local controller module. The controller maintains all

the bus communication and implements the CPU core memory interface. Effectively, the

controller’s working environment is the CPU core, the cache memory, and the system bus,

as shown in Fig. 28.

Fig. 28. The MESI cache controller overview.

Following the divide-and-conquer approach, the MESI controller breaks down its

operation into four components. The four components are: Sender, Receiver, Responder,

115

and the Pending Request Log (PLOG) component. The Sender component is the primary

module servicing requests from the CPU core. Sender reads and writes the data to the

local cache as requested by the core or performs bus communication if necessary in cases

such as requesting a cache line or signaling a MESI status change. The Receiver

component, which task is to snoop on the bus communication and act on relevant

messages. When a message on the bus is relevant to a specific controller, its Receiver acts

on it by modifying the local cache content and, if applicable, updating the pending

request log records. For example, the Receiver is the entity that updates the internal cache

when a message with a requested cache line comes through the bus or invalidates a cache

line if a message comes through the bus that indicates that another CPU core modified a

shared cache line.

The used bus type is a split-transaction bus, which requires additional logic to track

outstanding requests from the system CPU cores. The split-transaction operation is

implemented through the combination of the Pending Request Log and the Responder

modules. The Pending Request Log is a storage element that keeps track of the

outstanding requests. The log module content is modified by the Receiver when it

encounters a request or a response message on the bus. When the request appears on the

bus, the Receiver places a new record in the PLOG with the corresponding address. Then

when the response follows, the record is cleared. The final Responder component is

responsible for answering the cache-line requests from other cores; it crawls the Pending

Request Log records, and if the Responder determines that the current core entity can

supply data to another core, it attempts to deliver it. It is possible that multiple cores have

valid data in their local storage, and both can respond to the same request. The contention

is resolved on a first-come, first-served basis. The core that obtains access to the bus first

sends the response while the second one cancels the operation as it is no longer needed.

116

The designed controller works within a system with the structure shown in Fig. 29. It

is a multi-core system with all the elements connected through the parallel bi-directional

bus [48]. The bus arbiter resolves the contention for access to the bus. Presented proof of

concept assumes the existence of three cores but also discusses the approach to extend the

core count.

Fig. 29. System block diagram.

The communication within the system happens through the split-transaction bus. The

communication bus uses a single message format shown in Fig. 30. The message format

contains four fields: memory address, data field, message origin flag, and the operation

type. The memory address always exists and must be valid, but the valid data field is not

always required. For example, the BusRd message is only a request for data containing

the memory address but not the actual content. The origin mm_sndr field indicates

whether the message originated from the main memory or a CPU core. In certain cases,

the receiver must know the origin of the message to correctly assign cache line status

within the local memory. The last field, named "op", indicates the type of operation

related to the message and is always valid. The operation field carries one of the bus

message type identifiers, such as BusRd or BusRdX [12]. This version of the controller

also implements an optimization on top of the standard MESI algorithm in the form of the

117

Upgrade (Upg) message that allows for a core to obtain exclusive access to the cache line

without sending the two-way BusRdX message if it already contains the valid cache line.

Fig. 30. Bus message packet structure.

5.3 Cache coherency controller design assumptions

While aiming to introduce a sufficiently complex model, the controller design still

makes some assumptions to prevent overly complicated implementation. While the

presented implementation realizes the MESI algorithm to evaluate the proposed

methodology, it still lacks certain features to become a full-featured solution in a realistic

computer system. For the purposes of the presented work, the controller design makes a

few simplifying assumptions. The first assumption made in the design is that regardless of

the system’s state, the CPU cores will always respond faster than the main memory.

Under this assumption, the CPU core is guaranteed to respond faster than the main

memory regardless of the delay under the condition that any core contains the requested

cache line. The first assumption simplifies the problem of CPU cores racing with memory

when responding to a data request. For example, such a situation occurs when a cache line

in a modified state exists in one of the cores. The core that contains the cache line in a

modified state is the only entity that contains the most recent data, thus being the only one

118

that can respond to this request. Simultaneously, the main memory does not keep track of

every core’s internal cache state. Therefore a potential scenario exists when the

responding core is in a state that is delayed long enough so that the main memory would

respond first and deliver an outdated value causing memory decoherence. The presented

design assumes that such a situation will never occur, and the cores would always be

quicker than the main memory.

The second assumption relates to different memory regions with different

characteristics. Realistic computer systems contain memory regions that cannot be cached,

such as MMIO, for which an address in memory space effectively points to a register of a

peripheral device instead of general-purpose memory. During regular operation, when

reading and writing to a memory, the Sender module initially contacts the internal L1

cache memory, but if a region could not be cached, the Sender must, by default, ignore

the internal memory and issue a bus message. To implement this functionality, the

controller must contain additional logic used to resolve such mapping. This

implementation assumes that all the memory space is a general random access memory

without regions that cannot be cached.

The third assumption is the number of cores present in the system. This

implementation assumes three cores. The number of cores determines the size and

implementation approach of the Pending Request Log and the Sender module’s workflow.

The implications are further discussed in the section 6.2.

The final assumption is that the cache line size is a single word (4 bytes). The cache

line of this size is intended to cause increased bus communication, thus providing more

data points for the power usage tests. In real life systems, the cache line size is normally

larger than a single word. Implementing multi-word cache line size requires additional

logic and approach discussed in section 6.2.

119

5.4 Asynchronous Cache Coherence Controller Design

The presented cache coherency controller design is an asynchronous MESI

implementation working over a split-transaction bus. The discussed controller design

interfaces with three other entities, the CPU core, the local L1 cache memory, and the

system bus. An overview of the interface connections is shown in Fig. 31. Each interface

consists of the data-path lines and control signals that use a 4-phase handshake protocol

for synchronization. The CPU core does not exchange any information directly with the

internal cache memory neither with the bus. This setup allows for a simple interface for

the CPU core while the controller facilitates all the communication.

Fig. 31. Controller interface.

120

The interface to the CPU core module is an implementation of the RISC-V type of

core. Both read and write signals are supported and communicated through the c_read_en

and c_wrt_en signals. Also, the core supports the atomic pair used to support multi-core

parallel applications. The atomic pair [49] is a set of two instructions, load reserved (LR)

and store conditional (SC), that guarantees an atomic read and write to a memory address

that forms a basis for the compare-and-swap (CAS) paradigm used to implement spinlock

mechanism [10]. One way to implement the atomic pair functionality is through the L1

cache. The load reserved (c_req_lr) operation obtains an exclusive state to the cache line

region of interest. Then the store conditional (c_req_sc) writes to this region if the core

still retains the exclusive state. If the core loses the cache line’s exclusive MESI state at

any time between the two operations, the store-conditional instruction fails, the data is not

written, and failure indicating status is returned to the CPU core.

At the interface between the CPU core and the controller, the handshake occurs at two

levels. The CPU core acts as the active end and initiates the transaction. The transaction

begins with the assertion of one of the control signals; either read, write, load reserved, or

store conditional line is brought high. When the controller finishes, it responds with

c_done signal. At this point, the CPU core processes the data from the controller and,

when finished, responds with c_done_ack after which the internal handshake finishes but

not the transaction between core and the controller. Finally, when the controller is ready

to finish the transaction, it emits the c_release signal, after which the core withdraws its

control line asserted at the beginning, which finishes the entire transaction process. The

double-nested handshake setup is necessary to ensure the controller completes its

operation. In some scenarios, even when the core is done with the transaction data, the

controller still works through additional steps for which it needs continuous stable input

from the core. The c_release signal allows the retention of this stable input state until the

121

controller completes any additional operations simultaneously, allowing for the CPU core

to finish its internal tasks as soon as possible.

Next to the control signals, the CPU-controller interface also features a set of three

data lines. The two outgoing lines out of the CPU core are the address and data.

Depending on the transaction type, the data line could either carry information or hold its

default state with all bits set to zero. In the other direction, from the controller to the core,

only the data line exists. Similarly, the incoming data path either caries information or is

zeroed out. The address path goes only in one direction, and the controller never dictates

the value of the memory address.

The second interface is the connection to the L1 cache memory element. As in all

interfaces, the cache interface is controlled by the 4-phase handshake protocol. Unlike the

CPU core interface, the memory interface uses only a single-level handshake composed of

signals m_req and m_ack. In the controller-memory setup, the controller is the active

element initiating transactions.

The controller-memory interface data-path splits into three semi-independent parts.

When the controller initiates the transaction, it must provide a valid address through the

m_addr line and the address is used by all the parts of the interface. The first subset of the

controller-memory interface is the read subset. Regardless of the operation invoked on the

memory, the module always returns the current data under the index computed from the

m_addr field. The subset returns the data currently in memory using the m_data_out line

and the current address in memory m_mem_addr. The returned address can be different

from the one given by the controller, for example, when a new data overwrites current.

The subset also returns the current cache line status through the m_line_status line and

whether the cache hit occurred signaled by m_hit. When new data is written to the cache,

the read subset will still return the current content and its corresponding address that

122

occupies the memory before writing. An additional transaction is necessary after write, to

read back the newly written information.

The second subset is the data write subset. The subset consist of the m_data_in line

and m_data_wr. When the m_data_wr is asserted high the data under index computed

using m_addr is overwritten by the data provided through m_data_in. An important thing

to note is that the cache line flag does not change automatically with the write. To modify

the cache line flag, the controller uses the third subset composed of four signals

m_flag_[MESI]. Asserting a line corresponding to the specified MESI cache line state

causes the cache line state to change. The third subset is independent of the write subset

allowing for modification of a cache line state without executing a data write to the

memory. Depending on the situation, the controller might modify a cache line state along

with a write, not modify the cache line state during the write or modify the cache line

state separately without an actual write.

The third and final interface is the bus interface. Further down, the bus interface

breaks down into the communication and arbitration sub-interfaces. The arbiter section

connects to the global bus arbiter deciding the bus access between all CPU units. From

the controller’s perspective, the arbiter interface looks like a 4-phase handshake pair for

which the controller is the active side. The only exception from the regular 4-phase

behavior is that the controller can withdraw the arb_req signal at any time, even without

being first confirmed by the arbiter.

The second sub-interface of the bus interface is the communication sub-interface. The

interface structure is designed to be connected through a module that converts the

uni-directional b_send and b_recv into a bidirectional bus data line. The

bus-communication control cycle for a controller that is granted by the arbiter is as

follows. First, the controller asserts the b_dir line indicating that this unit sends a message

packet over the bus. At the time when b_dir asserts to the SEND state, the b_send line

123

must be valid and stable. As a response, the bus circuitry sends back b_msg_valid to all

cores, including the message sender, indicating that the message propagated through the

bus. When a participating core, including the sending core, finishes processing the bus

message, it emits the b_msg_confirm_recv. The sending controller must also confirm its

own messages resulting from the internal design split into four subsystems. Additionally

to external messages, the local Receiver component processes messages sent by the local

Sender or Responder units. For example, a given controller emits the Upg bus message,

which elevates a cache line’s status for the sending core to exclusive while all other cores

that have the matching cache line in their local memories must invalidate. The Upg

message is placed on the bus by the Sender submodule while the Receiver submodule

from the same unit handles the flag change in local cache memory exclusive.

Simultaneously, the Receiver components from all other cores test if their local memory

contains a matching cache line and, if true, invalidate it. Therefore, the sending controller

unit waits for message processing confirmation from every unit, including itself. All the

b_msg_confirm_recv are and-ed together, and when all are high, the b_msg_ack goes

high and is propagated to the sending controller. After which, the handshake unfolds; first,

all the b_msg_confirm_recv go back low, resulting in b_msg_ack to go low with last

falling transition. Then b_dir is withdrawn resulting in b_msg_valid to eventually go low.

Finally, the controller withdraws its bus access request from the arbiter.

All three interfaces compose of a connectivity set for the cache coherency controller.

Internally the controller itself consists of four sub-modules working together. The

following sections first describe the portion of the algorithm driving each sub-module and

its internal structure. Then the discussion finishes by presenting how all the sub-modules

interconnect together into the full controller module.

124

5.4.1 Pending Request Log component design

The pending request log (PLOG) is the first of the four primary components within

the controller module. The PLOG component serves a supporting role for the rest of the

elements and is a key part of the split-transaction bus functionality implementation. When

a cache line’s request appears on the bus, its corresponding response does not come in the

same bus access cycle. Instead, the bus control is released by the requesting component.

The response that originates from another core or the main memory comes later as a

separate transaction, thus effectively splitting the data request Rd and RdX into operations

composed of two transactions.

This implementation delivers the snooping coherency protocol model in which the

cores react to communication on the bus but do not store information about memory state

other units. However, each core does keep track of outstanding split transactions and uses

the PLOG for this purpose. When any core puts an Rd or RdX request on the bus, all

cores, including the sender, snoop the event and place a record about it in their internal

PLOG instances. The existence of an outstanding transaction is critical information for all

other internal components of a controller resulting in the PLOG interfacing with Receiver,

Sender, and the Responder components as shown in Fig. 32.

The Sender component interface provides data for the Sender module functionality

that prevents a controller from issuing colliding data requests. Before posting any

transaction, the Sender module queries its local PLOG component. If a matching address

is present, meaning there is already an outstanding transaction related to the address in

question, then the Sender pauses until the currently pending transaction clears. The

Sender interface uses a 4-phase protocol for handshaking in which the Sender acts as the

active side. The Sender puts an address onto the query_addr, and if a matching record

marked as ongoing exists within the PLOG, then the query_match becomes high.

125

Fig. 32. Pending log component interface.

The second part of the PLOG interface is the Responder interface. The Responder

component, in its idle state, iterates over the records within the PLOG. Per every iteration,

each query is matched against the current content of the local cache memory. If a match is

found and the matching cache line is in a valid state, the Responder attempts to respond

to the request. The Responder crawls through the PLOG records infinitely circulating

through the content. Similar to the Sender’s interface, the Responder interface works

based on the 4-phase handshake protocol. The Responder puts an index value on the

rsp_query_idx line. The index is incremented and recirculated when it reaches the last

record. The PLOG component upon being queried returns three pieces of information, a

flag indicating whether the currently queried record is an ongoing valid transaction

(rsp_query_valid) a memory address on the record (rsp_query_addr) and whether the

queried request originates from this specific core (rsp_query_this_unit). All the

information is then used by the Responder to query the local cache memory or to abandon

this record and move to the next one.

126

The final third segment of the PLOG interface is the Receiver interface. Unlike the

two previous parts, the Receiver segment is a read-write interface. The Receiver

component is the only submodule in the controller that modifies the PLOG content based

on the transactions observed on the bus. Similar to the previous two, this is also a 4-phase

handshake type interface. The Receiver, when observes a data request Rd[X] or a

response (Flush), places or deletes a record within the PLOG, respectively. When adding

a new record, the Receiver sets the corresponding memory address (set_addr), a flag

indicating whether it is an Rd or RdX request (set_rdx) with the value high for the later.

Additionally, the Receiver records whether the request comes locally from the same

controller unit where the component resides (set_this_unit). Only the unit that sends the

request sets the set_this_unit flag. The writing occurs when the set_mark flag is set to

high. To clear a record, the Receiver raises only the set_clear flag and gives a valid

address on the set_addr line. When a record is removed the PLOG component populates

the output signals this_unit, rdx and valid. The outputs stay until the next record clearing

transaction happens and are used by the Receiver in its workflow.

The provided implementation is designed for a system with three cores and relies on

the following assumptions. The key assumption is that the Sender module, when

requesting data, pauses until a response comes in. Therefore a core can send only a single

Rd[X] message at a time defining the required PLOG record count to the number of cores

within the system, which in this case is three. In such a setup, a PLOG overflow cannot

occur. The blocking behavior of the Sender also fits an in-order CPU core architecture.

However, if the CPU core would be an out-of-order, superscalar core, additional measures

and modification to the algorithm and the PLOG element become necessary and are

discussed in section 6.2.

The PLOG component’s internal design requires local arbitration between the

Receiver, Responder, and the Sender components. Each component might require access

127

to the PLOG at an undetermined moment. It is impossible to predict at the level of STG

design the access order and time of access to the PLOG. Requests from the Sender are the

result of program execution, and requests from the Receiver are determined by the bus’s

communication pattern formed by the local Responder activity and other cores. The

3-way asynchronous mutex is used that lets through only one of the three components at a

time to provide reliable non-deterministic arbitration. The arbitrated signals are the req_*

signals initiating the 4-phase handshake.

The PLOG element is an internal utility component used by other units locally within

the controller. The PLOG keeps track of any outstanding split-transaction requests on the

bus allowing the cores to preserve information on any ongoing transactions. The PLOG

component is crucial in implementing a coherent state of the system that uses the

split-transaction bus model.

5.4.2 Receiver component design

The second component in the system is the Receiver module. The Receiver’s role is to

listen to the communication on the bus and adjust the local cache’s content accordingly.

Every time a message is placed on the bus, it is the Receiver that processes it. A bus

message processed by the Receiver can originate from multiple different sources:

messages coming from other cores, messages that originate from the same controller and

messages coming from the main memory controller.

The interface of the Receiver, shown in Fig. 33 breaks down into five sections. The

first segment, connecting to the local cache memory. The second segment, the arbiter

interface to resolve access contention to the local cache memory between the components.

The third segment is the PLOG interface of the Receiver. The fourth segment consists of a

subset of signals necessary to listen and acknowledge messages on the bus. Finally, an

utility interface that taps into the internal bus arbiter grant signals to determine whether a

128

bus message originates from the same core. When a grant signal from the internal bus

arbiter is present for one of the internal components, it indicates that this component is

currently accessing the bus. The internal bus arbiter then connects to the external

system-wide arbiter such that the local arbiter will never grant access unless the external

arbiter grants bus access first to this core.

Fig. 33. Receiver component interface.

The Receiver component is a passive element type reacting to incoming messages on

the bus. The component’s main loop, shown in Algorithm 4, initially waits until a valid

message appears on the bus. After a valid message shows, the Receiver begins to query

the local cache using the address from the bus message. At the same time, the Receiver

engages in interaction with the Pending Transaction Log element. After the initial local

cacheQuery and the plogCycle operations finish, the Receiver examines all data and

executes the writeCacheCycle operation that might conditionally write to the local cache

129

depending on the local memory state, the data within the PLOG element and bus message

content.

Algorithm 4 Receiver module operation algorithm: main procedure.

1: procedure RECVMAIN
2: loop
3: waitOn(Valid message on the bus)
4: plogCycle()
5: lineStatus← cacheQuery(msg.addr)
6: writeCacheCycle()
7: finalizeBusTransaction()

Looking closer at the plogCycle procedure shown in Algorithm 5. When a valid

message appears on the bus, the Receiver component goes through the interaction with

the PLOG component. State changes in the PLOG element are only caused by the Rd,

RdX on Flush types of messages. The Receiver module generates a plogRecord dataset

using the FSE module. The algorithm checks the type of operation, and if it is a read, it

sets the PLOG record address to the value from the request. Then sets the RdXFlag to low

for the Rd message. If the utility interface line indicates that the message comes from the

same controller unit, it sets the thisUnit flag. Finally, the Receiver asserts the p_set_mark

line and initiates a 4-phase transaction. The same flow occurs for the RdX request with

the difference the RdXFlag is then set to high.

Different behavior occurs when the message is of a Flush type. The Flush operation

indicates data coming as a response to a previous outstanding request. When the Receiver

detects a Flush response, it removes the outstanding record from the PLOG as the

transaction completes. The PLOG contains a complete record of outstanding transactions;

therefore, it is guaranteed that a matching record exists and no additional checks are

necessary. The Receiver sets the address and asserts the p_set_clear signal. After removal,

the record’s data remains at the outputs of the Receiver’s section of the PLOG interface

130

and remains unchanged and stable until another clear operation. After the initial cache

read cycle and the PLOG cycle, the Receiver has all the data necessary to enter the final

step that could involve writing new information into the local cache memory.

Algorithm 5 Receiver module operation algorithm: pending log cycle subroutine.

1: procedure PLOGCYCLE
2: if msg.op is Rd then
3: plogRecord.addr← msg.addr, .RdXFlag(0)
4: if msg.origin is this unit then
5: plogRecord.thisUnit← 1
6:

7: plogInsertRecord(plogRecord)
8: else if msg.op is RdX then
9: plogRecord← .addr(msg.addr), .RdXFlag(1)

10:

11: if msg.origin is this unit then
12: plogRecord.thisUnit← 1
13:

14: plogInsertRecord(plogRecord)
15: else if msg.op is Flush then
16: plogClearRecord(msg.addr)
17: else
18: Do nothing

The Receiver algorithm’s final step is to analyze data obtained in previous steps, then

determine if an update of local cache memory is necessary and perform it. The algorithm

of the writeCacheCycle uses information from three sources, the message on the system

bus, data from the initial cache read, and the data from PLOG output. The primary focus

at this stage is to determine whether the message present on the bus affects the current

state of the local cache memory. If it does, then to determine what in the local memory

needs to be changed. The algorithm driving the writeCacheCycle is shown on

Algorithm 6.

131

Algorithm 6 Receiver module operation algorithm: cache write subroutine.

1: procedure WRITECACHECYCLE
2: write← false
3: if msg.op is Rd or RdX then
4: pass
5: else if msg.op is Upg then
6: if msg.origin is this unit, sender module then
7: newLine← .addr(msg.addr), .flag(Exclusive)
8: write← true
9: else if lineStatus.hit is true then

10: newLine← .addr(msg.addr), .flag(Invalid)
11: write← true
12: else if msg.op is Wb then
13: if msg.origin is this unit, sender module then
14: newLine← .addr(msg.addr), .flag(Invalid)
15: write← true
16: else if msg.op is Flush then
17: if plogRecord.thisUnit is 1 then
18: newLine← .addr(msg.addr), data(msg.data)
19: write← true
20: if plogRecord.flagRdX is 1 or msg.source is main memory then
21: newLine.flag← Exclusive
22: else
23: newLine.flag← Shared
24: else
25: if lineStatus.hit is true then
26: if plogRecord.flagRdX is 1 then
27: newLine.addr← .addr(msg.addr), .flag(Invalid)
28: write← true
29: else if lineStatus.flag is Modified or Exclusive then
30: newLine.addr← .addr(msg.addr), .flag(Shared)
31: write← true
32: if write is true then
33: cacheWrite(newLine)

The primary piece of information involved in decision making is the operation type

assigned to the bus message. In the case of a read or read-exclusive request, the Receiver

alters the cache memory content. However, no change in the cache line status flag occurs

132

immediately when the Rd or RdX request is present. Instead, the Receiver at each core

adjusts the flags and data during the response (Flush) message processing. The next case

is the upgrade (Upg) message; it is an optimization that allows a core to promote its cache

line from Shared status to Exclusive without the need for the RdX transaction. The

condition is that the core already contains the line in its local cache. The Upg case shows

how the Receiver uses the utility section of the interface. From the Receiver’s perspective,

if the origin of the Upg message is the same core where this instance of Receiver is

located, then the local cache write begins during which the flag is set to Exclusive.

Otherwise, if the message does not originates from the same core and the initial cache

request shows cache hit, then a cache write occurs, and the corresponding line status

becomes invalid.

The next case is the writeback (Wb) message type. Writeback occurs when a

controller action results in new data being placed in the local cache under an index that is

already occupied by a different address, for which the cache line is in the modified state.

To prevent decoherence, the controller first sends the line in local cache memory out to

the bus with the opcode Wb which is picked by the main memory. The Sender module

sends the writeback message, while the Receiver captures the event and modifies the local

cache accordingly. When the Receiver detects that the writeback message comes from the

same unit, it invalidates the corresponding line in the local cache, freeing it for the next

transaction. Otherwise, if the message comes from another core, it is ignored. It is

guaranteed that a cache line owned by one core with status exclusive or modified implies

the rest of the units if they have a matching copy, then that copy status must be invalid.

Finally, the fourth case is the Flush message type. Flush carries valid data in the data

field, and it is a response for an outstanding data request, either Rd or RdX. Here the

Receiver uses PLOG output data present after clearing the record. If the PLOG thisUnit

flag indicates that this was the core that requested the data, then the message’s origin field

133

is tested. If the Flush message is a response to an RdX request or comes from the main

memory, then the new data is written to the local memory with an Exclusive status flag.

Otherwise, if the incoming message is a response to Rd, and the origin is another core,

then the data is written with the Shared flag. If the requesting core was not this core, then

the result of the initial cacheQuery is tested. If there is a cache hit and the request was

RdX, then the line is invalidated. Otherwise, if there were a cache hit and the request was

not RdX, but the current local line status is modified or exclusive, then the flag is

switched to shared. Finally, in other cases, nothing happens. Using the presented

algorithm, the controller implements a portion of its functionality responsible for

processing incoming bus messages.

The Fig. 34 shows an overview block diagram for the Receiver. The structure of the

component is a relatively simple construct compared to the other key modules. It contains

single speed-independent controller which CSP specification is shown in Appendix A.

The component contains two FSE elements. The M1 FSE is responsible for the plogCycle

function that assembles inputs to the PLOG element. Second is the M2 FSE, which is a

multifunction type block. The M2’s first task is to generate inputs to the local cache for

the initial query, and the second task is the implementation of writeCacheCycle. The

component uses an asynchronous register to preserve relevant data from the initial query

beyond the first handshake with local cache memory.

The Receiver also uses a simple support module. The support module formats a subset

of data-path coming from the local cache memory and is placed in the asynchronous

register. The data consist consists of the hit flag and cache line MESI flag. Another part of

the support element is the implementation of the signal gating. In this instance, the

element gates the ack signal originating from the local cache. The gating signal is the

grant signal from the internal local cache access arbiter. The gating, in this case, allows

simplifying the speed-independent controller. The m_ack cache acknowledge line is

134

shared between all components, but the only receiving component is the one that initiated

the 4-phase handshake with the local cache memory. A component must first be selected

by the arbiter to be allowed to initialize the handshake; therefore, if the a_gnt signal is

low, then the Receiver is not the recipient, and the m_ack must be prevented from

reaching the speed-independent controller. The gating allows for simplification of the

speed-independent controller taking out the need to handle the unexpected occurrence of

m_ack. The Receiver element is one of four components working within the cache

controller and is responsible for processing incoming messages on the bus, including

messages originating from the same core. It is a passive element reacting to ongoing bus

communication and the only entity that modifies the data in the PLOG element.

Fig. 34. Receiver internal block structure.

5.4.3 Responder component design

The Responder is the next key component in the cache coherency controller module.

The Responder task is to respond to other requests for data coming from other cores.

135

When a core records an outstanding request advertised as the Rd or RdX operation, the

request is logged in every core’s PLOG element. The Responder constantly iterates over

its local PLOG content and checks if it can respond to any active requests.

The Responder is an active type of asynchronous element. It works driven by its

internal circuit that constantly increments and recirculates the indexing counter for lookup

in the PLOG element. Depending on the returned PLOG record, the Responder initiates

an exchange with the local cache and, in the end, the system bus. Responder’s interface

shown in Fig. 35 consists of three subsegments, PLOG portion that queries data under

given index, bus interface, including the interface to the internal bus arbiter, and the cache

memory interface also including internal cache arbiter.

Fig. 35. Responder component interface.

The Responder’s working principle as shown in Algorithm 7, revolves around

crawling through the PLOG dataset in an infinite loop and testing whether an outstanding

136

transaction is ongoing and if this unit can respond to it. The entire workflow starts with

the Responder generating the next index. Then the PLOG component is queried using this

generated index. If the PLOG returns record that shows q_query_valid high and

p_query_this_unit low the Responder heads to second step. Otherwise, the workflow

starts again from the beginning, a new index is generated, and the process repeats.

Algorithm 7 Responder module operation algorithm.

1: loop
2: plogIndex← nextPlogIndex()
3: plogRecord← plogAtIndex(plogIndex)
4:

5: if plogRecord.active is 1 and plogRecord.thisUnit is 0 then
6: cacheLine← cacheQuery(plogRecord.addr)
7:

8: if cacheLine.hit is 1 and cacheLine.flag not Invalid then
9: requestBusAccess()

10: waitOn(Bus access granted)
//Comment: Verify again the ability to respond by this unit in case the content

changed while waiting on bus grant.
11: plogRecord← plogAtIndex(plogIndex)
12: cacheLine← cacheQuery(plogRecord.addr)
13:

14: if plogRecord.active is 1 and plogRecord.thisUnit is 0 and
15: cacheLine.hit is 1 and cacheLine.flag not Invalid then
16: prepareBusMessage()
17: placeMessageOnBus()
18: finalizeBusTransaction()

If the inspected PLOG record turns out to be valid, meaning it indicates a currently

ongoing transaction and does not originate from this unit, then the Responder queries the

local cache using memory address from the inspected PLOG record. The data returned

from the cache is then analyzed; if there is a hit (m_hit is 1) and the cache line status is

not invalid, this unit can respond to the request. Otherwise, the algorithm recirculates to

the beginning.

137

If the Responder determines that it can respond to the request, it initiates the bus

transaction by first requesting the bus access from the arbiter. After bus access is granted,

the Responder again queries the PLOG, and the local cache then repeats previous checks.

A repeated process is necessary for performance reasons and to prevent lockup. On the

performance side, if the Responder would hold onto cache memory until the bus access

grant comes, it would create a memory access-bound bottleneck for the local CPU core.

The CPU core would be unable to perform any memory operation through the Sender

component on the local cache memory and would have to stall even if the CPU operation

applies to a completely different cache record. Also, holding onto the cache memory and

PLOG prevents the Receiver from processing and confirming messages coming from the

bus. For example, in a situation when the Responder managed to lock cache access, and it

now waits for bus access grant. At the same time, another core gets the bus access instead

and places a bus message. The core with the Responder module holding the cache would

not be unable to confirm the current bus message, effectively locking up the system.

To avoid system lockdown and a performance bottleneck, the Responder duplicates

the checking process. The Responder at first performs the preliminary checks before

attempting the time-costly process of requesting the bus access. When obtained the bus

access, the Receiver performs both checks on PLOG and local cache again to verify that

the request is still pending and can still respond to it. It is possible that while the

Responder awaits the bus grant, some other core already responded to the request, or the

locally held cache line intended as response got replaced. If the second check fails, the

Responder releases the bus and gets back to its idle operation. It is also possible that

while Responder awaits the bus grant, the initial request got fulfilled and replaced by

another valid request residing at the same record in PLOG. In this case, the workflow still

performs correctly. Responder will correctly determine whether it can respond to the new

request and perform the transaction if the test comes out positive.

138

After performing the final check, if the result from PLOG is a valid request originating

from the different core and the result from the local cache is a memory hit with a MESI

flag other than invalid, the Responder begins the final steps to send the message over the

bus. Before the actual bus communication occurs, the Responder releases access to PLOG

and the local cache. It is necessary to release the two resources before placing the

message on the bus because the local Receiver must be able to process the message when

it appears on the bus communication lines. First, all the necessary message data is latched

inside Responder’s internal memory registers. The message is then formed conforming to

the bus message structure shown in Fig. 30. The message contains the corresponding

memory address, the valid data content, and the cache line flag set to Flush.

Finally, the Responder places the message on the bus, and the transmission process

begins. After all, cores confirm the message the transaction finishes. The Responder then

releases the bus and withdraws the bus access request from the arbiter. The Responder

partially delegates part of the processing of the placed response to the Receiver. The local

Receiver handles the local side effects on the cache memory content. For example, a

Responder responds to an RdX request. When the data is passed to another core, at the

same time, in the case of RdX, the locally held cache line must be invalidated. The local

Receiver handles this while the Responder waits for message confirmation. For other

cores, the message is also handled by their Receivers, such as any other bus message. As

the last step, the algorithm reiterates to the beginning and generates a new index, then the

loop continues.

The Responder unit features a similar but more complex structure compared to the

Receiver. An overview block diagram is shown in Fig. 36. The Responder module

contains a single speed-independent controller. The controller CSP code is shown in

Appendix A.3. First, the Responder’s support module performs signal gating on two lines,

the m_ack and the b_msg_ack. As in the Receiver case, the m_ack gating ensures that the

139

cache handshake confirmation goes to Responder’s controller only when it is the

Responder that talks to the L1 memory. Similarly, the b_msg_ack is only visible to the

Responder’s speed-independent controller if the Responder unit has an active bus grant.

The support module also provides gating for the shared m_addr line, which travels from

the Responder to the local cache. Since the m_addr is coming directly from the internal

register, it is not guaranteed that the register’s content would be zeroed-out to bring the

m_addr to the default state. Because the m_addr merges coming from all major three

components, a non zero idle value will interfere with the Receiver or Sender while

communicating with the local cache memory.

Fig. 36. Responder internal block structure.

140

The Responder component uses multiple FSE modules along with internal

asynchronous registers. The first is the combination of M1 FSE and a pair of R1 and RT

registers. The three units together are responsible for generating the indexes used to query

the PLOG. The generation process is driven by the speed independent controller. The

three components assemble into a feedback loop. The M1 FSE takes a stable signal from

R1, which holds the current index value. Then the M1 FSE calculates the next index. The

indexes go from 0 to 2 because there are a total of three cores in the system, and because

of the assumed system configuration, there is only one outstanding split transaction

request possible per core. The M1 performs the n_next = MOD(n+1,N) operation. The

n is the current index, and N is the total number of cores in the system. Unlike in

synchronous systems based on flip flops triggered on a clock edge, the M1 cannot feed

directly back to R1. Doing so would destabilize R1 output during the 4-phase handshake,

causing unstable input for M1, resulting in the system’s malfunction. The temporary

register RT is used to ensure the feedback loop stability. The M1 feeds to RT, and when

RT latches the new value, the controller initiates write back to R1. The R1 also provides

stable input to the PLOG part of the Responder’s interface responsible for setting the

query index.

Then the Responder component contains a set of decision type FSEs, the M2, M3,

and M4. The M2 FSE performs the initial PLOG record check for the currently indexed

record being valid and not originating from this core. The M3 verifies the local cache’s

output, testing if there is a cache hit, and the cache line flag is of value other than invalid.

Finally, the M4 is a combination of M2 and M3 and is used after the Responder gets the

bus access. All three FSE modules direct the processing flow for the speed-independent

controller.

Finally, the component contains the M5 data-type FSE working with R2 and R3

registers. The R2 and R3 registers are used to latch relevant data from the PLOG and

141

local cache after the final check. The R2 register preserves the split-transaction request’s

memory address, and the R3 holds the response data content. Both registers feed to the

M5 that generates the bus message.

Together all the elements consist of the Responder component that works as a part of

the cache controller. The Responder is responsible for answering the data requests coming

from other cores. Based on the data in the PLOG component and the local cache, the

component assesses whether this core can respond to the given request, and if it can, the

Responder attempts to send such a response. Responder units from different cores work in

a competitive environment based on first-comes-first-served philosophy. If two or more

cores can respond to the same request, the one who gets the bus access first sends the

message. The other will identify an outdated request during the second check after it gets

the bus access approved, which will cause it to abandon the process and loop back to the

beginning.

5.4.4 Sender component design

The Sender component is the third and final component in the cache coherency

controller. Sender fulfills two main tasks; it handles requests from the CPU core and posts

messages on the system bus. Whenever there is a MESI message that is a result of CPU

core interaction, it is up to the Sender to deliver it to the system. Sender handles posting

request messages such as Rd and RdX, as well as Upg and Wb. On the CPU core end, the

Sender implements the four request types coming from the core and serves as a bridge for

the flow of the data between the CPU core and the local cache memory. The Sender is the

central unit bridging the CPU core with the internal cache memory and the bus. It

facilitates data movement while fulfilling requests coming from the CPU core itself.

When necessary, the Sender posts messages on the bus, either to request data for the core

or to advertise relevant data activity conforming to the MESI cache coherence algorithm.

142

The Sender interface shown in Fig. 37 breaks down into four groups: the local cache

memory interface, including the internal cache arbiter, the bus interface also including the

local bus arbiter interface, the PLOG interface, and the CPU core interface. The local

cache interface is the standard type that covers all the signals, inputs, and outputs plus

additional two lines to connect to the local cache access arbiter used by the internal

components to resolve who is accessing the local cache memory. The PLOG interface is

specific for the Sender module; Sender puts a memory address, and the PLOG component

responds whether a valid record with a matching address is currently present. Then there

is the core interface, which contains an address field for core requests, two data lines, one

in each direction, and core request control lines. Finally, the bus interface which provides

a connection to the system bus.

Fig. 37. Sender component interface.

143

The Sender is the most complex of all four components within the controller design as

it bridges two workflows together; the CPU core side and the bus side. Due to its

complexity, the Sender component uses multiple speed-independent controller circuits

instead of one and extensively utilizes signal gating through the support element. The

multi speed-independent controller setup specifies one controller that handles the CPU

core requests and three controllers for bus communication.

After receiving a request, the CPU core interface controller first accesses the local

cache to determine if it can finish the transaction immediately. Then the path split between

the read operation, write operation, and bus transaction. The read and write actions can be

completed immediately, but the bus transaction requires communication over the system

bus. If a bus transaction is necessary, the CPU interface controller delegates the workflow

to the bus main-transaction controller that handles the bus communication workflow. The

main controller further delegates tasks to two utility controllers, the PLOG-check

controller and the bus-communication controller. The PLOG-check utility controller

ensures memory coherency discussed later while the bus-communication controller

handles all the steps involved in sending a message through the bus.

The presented implementation of the cache controller supports the basic RISC-V

in-order pipeline. In this design, when a memory stage is active, the core stalls until data

is available again. Following the design choice, the cache coherency controller’s portion

that delivers data to the CPU core must implement the stalling functionality. Excluding

the situation when the Sender awaits an arbiter bus access grant, the stall can occur in two

cases. The first case happens when the message could not be posted on the bus at this

time, while the second case is when the Sender awaits data arrival.

The case when data could not be posted on the bus at this time occurs when a

conflicting request transaction is currently pending. The Sender component detects the

situation by querying the PLOG component, and if the p_match line becomes high as a

144

result of the query, this means that another conflicting split-transaction read request is

already taking place, and the Sender must wait until it completes. The use of a PLOG

check in the Sender component workflow prevents multiple data requests from existing

simultaneously in the system.

One of the requirements for memory coherency in the multi-core system states that all

the cores must observe the same order of transactions on the bus [12]. Allowing multiple

requests to stack up into a single one breaks this rule. Stacking makes it indistinguishable,

which request came first and which later. Knowing the order of transactions is essential in

the case of Read-Exclusive (RdX). When RdX completes, all cores except the requesting

must invalidate the corresponding cache line. Compressing two such requests together

prevents the core from determining which core has the Exclusive state and invalidates its

copy of the cache line. A similar scenario applies to an Rd request that is satisfied by the

main memory. In this case, the flag also becomes Exclusive since only the main memory

and a single core contains the cache line. However, if two cores would request the data

simultaneously, the correct flag should have been Shared. To preserve the system’s

coherent state, the Sender queries the PLOG component first, and if there is an address

matching record, the Sender pauses until such transaction clears.

The second case takes place when the Sender stalls as the controller itself await a

response for Rd or RdX message. When the transaction completes, the Sender resumes

operation, eventually delivering data to the CPU core. The necessity to wait for a response

implies that the Sender must actively react to the incoming message events and confirm

them. In asynchronous systems, all signal transitions must be confirmed to avoid race

conditions [9]. The Sender, together with the Receiver, must participate in the bus

transactions and handshake. Unlike the Responder circuit, which did not need to know

about external incoming messages because of the bus arbitration and second check that

guaranteed correctness, the Sender component actively receives b_msg_valid and

145

confirms bus messages regardless of the state it is in. The need for signal confirmation

results in increased complexity of the speed-independent controllers and the supporting

signal-gating logic. The Sender’s design approach shows how the divide-and-conquer

strategy helps distribute the complexity among multiple elements and keep the model

maintainable. The Sender component’s main execution loop splits between the core

interface controller and the bus-transaction main controller. In its idle state, the bus

controller confirms incoming bus messages without any other action in an infinite loop

unless a request from the core-interface controller interrupts it.

The CPU core interface is the initial point of contact for the CPU core. It directly

receives and processes the memory access requests. It is a passive type of asynchronous

device initially waiting idly until a request from the CPU core comes in. The algorithm

for the CPU core interface is shown in Algorithm 8 and Algorithm 9. When a request

comes, the Sender queries the local cache memory using the request’s address. Next, the

Sender begins to analyze the request. The first decision point is based on the type of

request. Depending on the request type, the Sender performs specialized checks and

executes response action. Suppose the request is a memory-read request; the component

tests if there is a cache hit, and the flag is not invalid. When both cases are true, this

indicates valid data to read. The Sender then prepares a response for the CPU core and

executes the read action. Otherwise, the mmTransaction action executes that performs the

bus transaction. In the second case, if the operation is the memory write, then the core

tests whether there is a cache hit and the cache line flag is either Exclusive or Modified. If

the condition check passes, new cache line data is formed, and the write action executes.

However, if the condition test fails, the core must first obtain exclusive access to the

memory region in question, which results in scheduling the mmTransaction action.

146

Algorithm 8 Sender operation algorithm: core interface routine (pt.1/2).

1: procedure COREINTERFACE
2: loop
3: waitOn(New request from the core)
4: coreReq← coreRequest()
5: EXEC_P1: cacheLine← cacheQuery(coreReq.addr)
6:

7: if coreReq.op is Read then
8: if cacheLine.hit is 1 and cacheLine.flag not Invalid then
9: coreResp.data← cacheLine.data

10: action← read
11: else
12: action← mmTransaction
13: else if coreReq.op is Write then
14: if cacheLine.hit is 1 and (cacheLine.flag is Exclusive or Modified) then
15: newLine← addr(coreReq.addr), .data(coreReq.data), .flag(Modified)
16: action← write
17: else
18: action← mmTransaction
19: else if coreReq.op is LoadReserved then
20: if cacheLine.hit is 1 and (cacheLine.flag is Exclusive or Modified) then
21: coreResp.data← cacheLine.data
22: action← read
23: else
24: action← mmTransaction
25: else //Comment: coreReq.op is StoreConditional
26: if cacheLine.hit is 1 and (cacheLine.flag is Exclusive or Modified) then
27: newLine← addr(coreReq.addr), .data(coreReq.data), .flag(Modified)
28: coreResp.data← SC_SUCCESS
29: action← write
30: else
31: coreResp.data← SC_FAILED
32: action← read

The third case is the load reserved request. The atomic pair LR and SC is

implemented using the cache coherency mechanism. An Exclusive or Modified flag

indicates implicitly that no other core altered the data under the given address. Effectively,

the presence of an Exclusive or Modified state triggered by LR and preserved until SC

147

execution implies an atomic, unaltered memory state between the two instructions. During

the load reserved request, the Sender component tests whether there is a hit, and the cache

line has either an exclusive or modified state. If the test succeeds, the current data under

the address returns to the CPU core; the controller schedules the read action. Otherwise, if

the test fails, the controller must first obtain exclusive access to the data resulting in the

mmTransaction action.

Algorithm 9 Sender operation algorithm: core interface routine (pt.2/2).

33: if action is read then
34: respondToCore(coreResp)
35: finalizeCoreTransaction()
36: else if action is write then
37: cacheWrite(newLine)
38: //Comment: If op is SC then sends transaction status back to the core
39: respondToCore(coreResp)
40: finalizeCoreTransaction()
41: else //Comment: action is mmTransaction
42: busMsg← createBusMessage()
43: transactionMain(busMsg)
44: goto EXEC_P1

Finally, if the operation is store conditional, the controller tests for a cache hit and

whether the cache line is in an Exclusive or Modified state. On success, new data is

written to the local cache memory, and the controller prepares response SC_SUCCESS

for the CPU core. Otherwise, if the test fails, the controller delivers the SC_FAILED

response instead. The store conditional operation failing the conditional check means

some other core took away the exclusive access and potentially modified the data

effectively, interrupting the atomic exchange.

The first part of the CPU core interface functionality revolves around receiving the

request from the CPU core, analyzing it, and preparing either: a response to the core, new

data for the local cache, or both together in the case of store conditional operation. In the

148

second part, the segment responsible for communication with the CPU core schedules an

action: either a read, a write, or mmTransaction. The action segment modifies and writes

the data. First, the workflow recognizes which action takes place. If it is the read action,

then the controller initiates the response transaction with the CPU core then finalizes the

exchange. During the write action and additional local cache write cycle occurs then the

controller responds to the core. During write action, the response functionality is needed

to implement the store-conditional workflow, in which case the instruction returns its

status of execution. Finally, if the mmTransaction is requested, the Sender component

prepares the bus message; early preparation allows for early release of the cache memory

lock that improves the performance. Then the core interface subsystem delegates the

bus-send operation to the bus-transaction controller and stalls until the transaction

completes. After the transaction finishes, the local cache memory contains the updated

state.

When finished with the workflow cycle, the algorithm loops back to its idle state for

the read and write operations. However, for the mmTransaction, the flow jumps back to

the initial cache query step, and all the data is re-evaluated. The repeated evaluation is

necessary to cover the remaining steps required to complete a CPU request, which at first

resulted in a bus transaction. It is also possible that while the Sender awaits its turn on the

bus, an external communication invalidated the currently generated bus message, and the

entire request must be repeated. For example, the Sender attempts to send an Upg

message as a part of the load-reserved operation. The current cache-line status is shared,

but the controller still needs an Exclusive status to satisfy the LR condition. Before the

Sender’s turn on the bus, another RdX came from another core and was completed. Now

the local cache line status is in the invalid state, and the most current version most likely

changed in the other core. Now in order for LR to complete and deliver the most current

data to the CPU core, the Sender must abort the current Upg operation and retry, but this

149

time with the RdX instead. Another corner case is the writeback case. If a controller

requests data for a cache line that placement in the local cache collides with another line

that on top of it has the Modified flag, the Sender must first write the modified data back

to the main memory to preserve consistency. In this case, the Sender first performs a bus

transaction using the Wb operation. After Wb finishes, the line modified status changes to

invalid. Now the Sender can put the Rd or RdX request to get the initially requested data.

During the mmTransaction action, the Sender generates the bus message, which

content strongly depends on the type of request and current state of the system. An

algorithm synthesizing the bus message is shown in Algorithm 10. The algorithm assumes

previous conditions shown in Algorithm 8 failed and led to the mmTransaction action.

Therefore the message generating procedure must be treated as an extension to the

core-interface controller workflow, not a separable component. The order of execution of

the conditional tests is also essential and must not be changed.

The first test states that if mmTransaction was invoked and there were a cache miss

and the flag value under the cache line that caused the miss represents a Modified state,

then whatever the original request is, it will replace this line. Therefore a writeback

operation is first necessary to preserve the most recent value. The bus message is set with

the address from the cache line in the memory instead of the address in the request; also,

the data is taken from the local cache line, and the operation becomes Wb indicating

writeback. In any subsequent case, if the first check fails, it means that data in the local

cache memory at this particular record is safe to overwrite. In the second case, if the

operation was a memory read, this directly leads to forming an Rd bus request with the

address from the CPU core request and Rd operation type.

150

Algorithm 10 Sender operation algorithm: routine generating bus message.

1: procedure CREATEBUSMESSAGE
//Comment: Line that is modified and a miss at requested address.

2: if cacheLine.hit is 0 and cacheLine.flag is Modified then
3: busMsg← .addr(cacheLine.addr), .data(cacheLine.data)
4: busMsg← .srcMM(0), .op(Wb)
5: else if coreReq.op is Read then
6: busMsg← .addr(coreReq.addr), .data(X)
7: busMsg← .srcMM(0), .op(Rd)
8: else if coreReq.op is Write then
9: if cacheLine.hit is 1 then

10: busMsg← .addr(coreReq.addr), .data(X), .srcMM(0)
11: if cacheLine.flag is Invalid then
12: busMsg.op← RdX
13: else //Comment: Must be cacheLine.flag is Shared
14: busMsg.op← Upg
15: else
16: busMsg← .addr(coreReq.addr), .data(X)
17: busMsg← .srcMM(0), .op(RdX)
18: else //Comment: Must be coreReq.op is LoadReserved
19: if cacheLine.hit is 1 then
20: busMsg← .addr(coreReq.addr), .data(X), .srcMM(0)
21: if cacheLine.flag is Invalid then
22: busMsg.op← RdX
23: else //Comment: Must be cacheLine.flag is Shared
24: busMsg.op← Upg
25: else
26: busMsg← .addr(coreReq.addr), .data(X)
27: busMsg← .srcMM(0), .op(RdX)
28: return busMsg

In the third case, if the operation is a memory write and it failed, resulting in

mmTransaction, then it means that the current record available to this core does not have

exclusive or modified status; therefore must be upgraded, causing invalidation in other

cores to preserve coherency. If the requested current cache line is a hit, the correct data is

there but marked with a flag that does not indicate an exclusive copy; then the flag must

151

be tested further. If the flag value is Shared, then the optimized Upg message can be sent

to invalidate other shared copies and obtain Exclusive status. However, if the flag of the

local copy indicates Invalid, then following the algorithm [12], an RdX must be sent to

obtain an Exclusive and up-to-date copy. Similarly, when there was a cache miss, an RdX

message must be sent as well. In the case of the RdX request, the bus message is

composed of the address coming from the CPU core request and the RdX flag. Note that

for this specific implementation that uses a single-word cache line size, it is redundant to

send RdX at all to obtain a copy of the data since the CPU core will overwrite the entire

line regardless. However, in realistic systems, the cache line size is more than one word;

the actual write would modify just a portion of the data. Therefore an exclusive copy must

be obtained, and this implementation mimics the MESI behavior in realistic systems.

The final fourth case occurs when the request is the load reserved operation. From the

perspective of generating the bus message, the memory write and load reserved cases are

identical. If mmTransaction got triggered during LR, then either there was a cache miss or

the data is there, but its MESI status is not exclusive. Same for the memory write case,

the cache line access can be upgraded with Upg request if the current flag value indicates

a shared state; otherwise, an exclusive copy must be obtained through split-transaction

exclusive data request RdX.

After generating the bus message, the CPU core interface-controller of the Sender

component delegates the task of sending the bus message to the Sender’s main-transaction

controller and stalls then itself. From the conceptual perspective, the design of the main

transaction controller is trivial. The conceptual algorithm shown in Algorithm 11 shows

the overview and the Fig. 38 the STG of the main-transaction controller’s operation.

When called, the main-transaction controller right away delegates the task to the

PLOG-check controller. After the PLOG check finishes, there is a decision step based on

the result of the check. If the PLOG task clears the main to proceed, then another

152

delegation occurs, this time to the bus-communication controller. Otherwise, if the PLOG

task indicates procedure abort, then the controller finishes its task, and the execution goes

back to the core-interface controller. The abort case could occur when there was a

message collision detected.

Algorithm 11 Sender operation algorithm: main bus transaction routine.

1: procedure TRANSACTIONMAIN
2: plogCycleResult← plogCycle()
3:

4: if plogCycleResult is clear then
5: transactionBusCycle()
6: else //Comment: plogCycleResult is abort
7: Do nothing, Main algorithm will loop and retry.

The main-transaction controller’s function splits into two roles: cover the ability of the

Sender component to confirm bus messages in an idle state and supervise the message

transmission process. The main transaction controller confirms messages that are not of

interest to the Sender component at this time. The component must react to the bus

communication regardless of whether the module currently takes an active part in

incoming communication or not. The Sender module heavily relies on signal gating,

enabling and blocking control signals depending on its internal state and in a manner that

will not cause a race condition.

In the main-transaction controller case, there are two competing signals: the

transaction_req and msg_valid that must be treated in a mutually exclusive manner. In the

idle state, when any external origin message appears on the bus, the controller would see

msg_valid transition, which it acknowledges through emitting msg_ack without any

additional actions. However, when the transaction_req comes in, the whole message

sending process starts. If any external message appears after transaction_req then instead

of the main-transaction controller, the message will be acknowledged by either the

153

Fig. 38. The main transaction controller STG.

154

PLOG-check or the bus-communication controller. Both competing transitions could not

appear at the same time as it will lead to a metastable state. The log_check signal can take

away token, preventing the msg_ack from appearing. Simultaneously, the external

message gets confirmed by the other controller causing msg_valid to disappear without

confirmation causing undefined behavior in the main-transaction controller’s logic. To

prevent the hazard condition, both the msg_valid and the transaction_req are delivered

first through the asynchronous mutex component ensuring only one line will ever be

active at the time. The msg_valid is a synonym of the b_msg_valid input after it passes

Sender’s internal mutex. The Sender component significantly relies on signal gating to

implement a proper incoming message confirmation mechanism.

Continuing with the message sending procedure flow. The transaction request is first

delegated to the PLOG-check controller. Because of the requirement of coherent systems

and the design assumptions of this implementation, it is forbidden for two transactions

with the same address to occur simultaneously. Such a situation can happen when, for

example, there is an outstanding Rd request from one core, and some other core tries to

send another message with the same address. To prevent colliding messages, the Sender

module checks for any outstanding requests with a matching address, using the PLOG

module. The workflow of the PLOG-checking procedure is shown in Algorithm 12 and

Fig. 39.

In the simplest case, with no matching record, the PLOG-check controller sends back

the clear signal to the main-transaction controller allowing it to proceed. However, if a

matching record exists, the Sender module must stall until the previous outstanding

transaction concludes. In this case, the controller listens to any incoming bus messages.

When a message arrives, the address is compared; if incoming the message’s address does

not match the colliding transaction’s address, the PLOG-check controller acknowledges

the message, loops back, and continues to wait. Eventually, when the addresses finally

155

match, the PLOG-check controller sends back the abort signal to the main-transaction

controller and finishes its workflow. Aborting the operation is necessary as the previous

transaction might have changed the cache-line state to the point at which it must be

analyzed again, potentially generating an updated bus message.

Algorithm 12 Sender algorithm: bus transaction routine, pending log cycle.

1: procedure PLOGCYCLE
2: //Comment: Present in log means outstanding transaction
3: if coreReq.addr in pending log then
4: //Comment: Wait until matching response arrives finishing transaction
5: loop
6: waitOn(Valid message on bus)
7:

8: if msg.addr equals busMsg.addr then
9: //Comment: Transaction finalized, force sender to retry

10: finalizeBusTransaction()
11: return abort
12: else
13: finalizeBusTransaction()
14: else
15: return clear

Since the PLOG-check controller inspects and acknowledges bus messages, it takes an

active part in handling the message acknowledging process. For this controller, the gated

version of the b_msg_valid is the gmv signal. The gmv signal results from an AND

operation on b_msg_valid indicating a new message on the bus and the transaction_req

after it leaves the MUTEX. Therefore when the mutex lets through the transaction_req, it

is guaranteed that msg_valid will no longer appear in the main-transaction controller.

Instead, when b_msg_valid shows, it will get through the AND gate and be visible to the

PLOG-check controller as a signal named gmv.

Looking at Fig. 39 raises another question about the hazard safety of the circuit. Note

that there is a certain amount of time between the occurrence of the in_log_n+ signal that

indicates no message collision and the future access grant of the bus access for this unit.

156

Fig. 39. The STG for the PLOG-check controller.

157

What happens if, after no collision determination, there will arrive an external Rd request

with a colliding address? The answer is not immediately obvious from the diagram, but

the circuit is secured against such a case. The PLOG-check controller only acknowledges

messages if there is a collision detected, and as a result, the controller waits for the

colliding transaction to end so it can reset the sending process. In any other case, the

PLOG-check controller contains a mechanism allowing it to withdraw itself from the

message acknowledgment process. The mechanism is implemented by the loop at the

shown bottom of Fig. 39 that circulates between gmv+ and gmv-. The loop allows the

speed-independent circuit to work correctly while the actual acknowledgment is done

elsewhere. Focusing back on a potentially hazardous Rd signal, if the PLOG-check

controller does not confirm the message, the transaction is held until the

bus-communication controller takes over. Moreover, the bus-communication controller

contains functionality that analyzes any incoming foreign messages for collisions and

aborts if such one occurs.

The bus-communication controller is the final component driving the Sender’s bus

message communication functionality with workflow shown in Algorithm 13, and it is

responsible for obtaining access to the bus and message delivery tasks. The

bus-communication controller performs three main functions. First, it delivers the

outgoing message to the system; second, it waits for the response if it was a

split-transaction request; and third, identifies any colliding requests that would invalidate

the message it is tasked to send. As the first step after activation, the controller places the

bus access request to the arbiter. Then it waits for either the bus grant or an incoming

message from the bus. When a foreign-origin bus message comes first, its address is

tested. If the incoming bus message collides with the awaiting outgoing one, the

controller acknowledges the incoming message then withdraws the bus-access request and

aborts. Then the core interface controller restarts the process. Otherwise, if the bus grant

158

comes indicating the controller wins access to the bus, the controller sends the message

through. After delivery, if the message op is Rd or RdX, the controller stalls until the

response comes in; otherwise, the process finishes and goes back to the core-interface

controller. If stalled, the controller awaits and acknowledges any incoming messages, and

when the address matches, it finishes the process.

Algorithm 13 Sender algorithm: bus transaction routine, bus transmission.

1: procedure TRANSACTIONBUSCYCLE
2: requestBusAccess()
3: EXEC_P2: waitOn(Bus Grant or Valid Bus Message)
4:

5: if Bus Grant then
6: placeMessageOnBus()
7: finalizeBusTransaction()
8: if busMsg.flag is Rd or RdX then
9: //Comment: Stall sender module if split transaction occurs

10: EXEC_P3: waitOn(Valid Bus Message)
11: finalizeBusTransaction()
12:

13: //Comment: Loop until matching response arrives
14: if msg.addr not equals busMsg.addr then
15: goto EXEC_P3
16: else //Comment: Valid Bus Message
17: if msg.addr equals busMsg.addr then
18: //Comment: Message invalidated by overriding transaction, restart
19: finalizeBusTransaction()
20: else
21: finalizeBusTransaction()
22: goto EXEC_P2

The Sender module is the most complex of all four components. As seen in Fig. 40, It

contains four separate controllers that work together and are heavily supported by the

support element that delivers signal gating. The support module includes logic that

formats input to the line register that preserves the queried cache line for the purpose of

generating a bus message. The support module also provides merging of all the bus ack

159

signals into a single output b_msg_confirm_recv and all the core request lines into a

single mem_op that serves as a control signal to the core-interface controller. Additionally,

the support module provides standard signal gating for common signals such as

b_msg_ack that is gated by the transaction_req and the cache_ack that feeds to the m_ack

input of local cache memory. Finally, the module provides the gated (gmv) versions of

b_msg_valid. The gmv feeding to the bus-communication controller only activates when

there is a valid message on the bus (b_msg_valid), and the Sender requested a bus

transaction (transaction_req) and the bus access is requested (t_req) but not granted

(~t_gnt) by the bus arbiter. This gmv signal is used to process and acknowledge any bus

messages that appear before the unit is granted bus access. The second gmv2 also feeds to

the bus-communication controller, and it is used in awaiting a response in the case when a

split-transaction message was sent. The gmv2 activates when there is a valid message on

the bus (b_msg_valid), and Sender requested a bus transaction (transaction req), and the

req_type_y transition is active, indicating controller awaiting messages. The other version

of gmv that feeds to the PLOG-check controller activates only when there is a valid

message on the bus (b_msg_valid), and Sender requested a bus transaction

(transaction req).

The Sender component uses six FSE units. The M1 FSE formats the bus message.

Then the M2 used by the PLOG-check controller resolves the branch deciding whether a

record is present in PLOG. Next, the M3 compares addresses from CPU-core requests and

bus messages while the PLOG-check controller awaits split-transaction completion. Then,

the M4 performs the same function as M3 but for the bus-communication controller. The

M5 handles the output bus interface, and M6 performs condition resolution checking

whether the sent bus message is a split-transaction request or not. The Sender component

also uses a line register to hold the cache line extracted from the local cache memory

using the CPU-core request address. Then, there is a mutex element present that resolves

160

Fig. 40. Sender component internal block structure.

161

contention between b_msg_valid coming from the outside environment and the

transaction_req that enables the sending functionality, including cutting off the direct

b_msg_valid replacing it with the gated versions.

5.4.5 Controller module

The Controller module is the top element connecting all functional components. As

shown in Fig. 41, the module provides internal connections as well as the support logic.

The Controller module instantiates all four primary components: PLOG, Receiver,

Responder, and the Sender. Also, the module contains two arbiters. The internal cache

arbiter decides which one Sender, Receiver, or Responder gets access to the local cache

memory. The internal cache arbiter is implemented as three input three output

asynchronous mutex. Whichever element request passes through the mutex that one is

granted the access. The second is the internal bus arbiter. Its structure is presented in the

publication [17]. The local bus arbiter is, in a way, an intermediate element involved in

the bus arbitration. It takes requests from Sender and Responder circuits, but it must be

first selected by the external bus arbiter to emit a grant signal. When receiving a request,

the local bus arbiter sends a request itself to the external bus arbiter. The external bus

arbiter is the central system arbiter that decides which core can access the bus. Then when

selected by the external bus arbiter, the local version emits a grant access signal. If it is

the case that Responder and Sender compete with each other for the bus, then the internal

arbiter decides which one gets the access.

The support element provides signal merging and additional support logic. The entire

local cache-memory input interface signals coming out of all three main components are

merged. This situation shows why it is important for the FSE modules to return to their

default 0 value at the end of a handshake. A faulty unit can forcefully override valid

signals coming from another component. Merged are also the b_send lines carrying the

162

data from the cache Sender and the Responder components to the bus and the b_dir

signals that serve as control signals. When the b_dir signal has value BUS_SEND it

causes the b_msg_valid to activate which initiates bus transfer.

Fig. 41. Controller internal block structure.

Finally, the support module provides combined acknowledge functionality. The

Sender component acknowledges a bus message in two ways. The b_msg_confirm_recv is

placed high when the Sender acknowledges the message of external origin. When the

message comes from this Sender, the b_dir of a value BUS_SEND is used to satisfy

multiple-place confirmation. The multiple source confirmation for a small number of

elements is most efficiently implemented by the C-element. The output’s acknowledge

signal goes high only when all components acknowledge the message and then goes back

low when all components are ready to finish the handshake putting their ack signals low.

163

The Controller is the top module connecting all functional components and the

interface connections to the environment. The top module provides an additional element

in the form of arbiters to support the components. Finally, the Controller module provides

the support element handling the signal management and supplying support logic. All

elements together implement the cache coherency controller circuit providing the MESI

algorithm and split-transaction bus support.

5.5 Reference synchronous design

The presented work introduces an additional reference synchronous implementation of

the controller to evaluate the methodology’s effectiveness. The purpose of the

synchronous design is to provide a reliable baseline that allows for obtaining meaningful

results. The comparison aims primarily to evaluate the proposed methodology’s ability to

generate circuits that offer competitive properties that could justify its use in practical

applications.

The synchronous version to provide a reliable reference point follows the same design

structure and executes the same algorithm as the asynchronous model. The same as the

asynchronous, the synchronous design contains the four primary components: PLOG,

Receiver, Responder, and Sender, all executing the same high-level algorithm as the

asynchronous counterpart. The design also uses two internal arbiters, one for internal

cache access and the other for the bus exactly as the asynchronous counterpart. Moreover,

the synchronous version avoids aggressive optimizations at the algorithmic level to

prevent potential unwanted skew of the results. However, the synchronous model

introduces implementation level optimizations to prevent results bias in the other

direction. The goal is for both models to closely resemble each other to allow for the

evaluation of the proposed methodology at the same time to retain properties

characteristic to the methodology they are designed in. Unlike the asynchronous design,

164

the synchronous version uses a standard state machine-based design that executes the

algorithm. Each algorithm step is executed on a clock signal, but the workflow is

optimized to execute multiple parallel steps when possible. Same as in the asynchronous

version, each component contains its own state machine that executes the algorithm.

Effectively the synchronous design requires, in general, fewer clock cycles compared

to the number of transitions of the speed-independent controller in the asynchronous

version to execute the same task. The synchronous version does not require as many

internal registers that are necessary for the asynchronous version to provide stable inputs

to the FSE elements. However, the D-latch-based asynchronous registers are now replaced

by D-flip-flops that increase chip area requirements. Most of the D-flip-flops are dedicated

to the state machine state holding memory. Differently in asynchronous design, the state

holding task is realized by the C-element, which implementation uses fewer transistors

than the D-flip-flop.

The synchronous design dictates the speed of the surrounding simulated environment

for analysis purposes. All external to the controller elements, which consist of the local

cache memory and the main memory, respond within a single clock cycle. The one clock

cycle delay in conjunction with the clock time is then used to specify the same

environment delay in the asynchronous version. The approach allows for the unification of

the delay-impact caused by the simulated environment surrounding DUT on test results.

The synchronous design delivers a reliable reference implementation that provides an

equivalent functionally module compared to the asynchronous version. Using two closely

related devices allows for an accurate evaluation of the circuits produced by the proposed

methodology with reference to widely practiced synchronous design methods. Both

controllers execute the same algorithm and feature the same structure with differences

only related to the use of different design methodologies.

165

5.6 Note on synthesis approach of the Controller circuit

Due to the lack of tools that would directly use the CCS library model of ASIC

technology library to synthesize the speed-independent controller, the synthesis was

performed using standard algorithms available in the Synopsys DC Compiler tools for

synchronous logic. Functional tests performed on the gate-level representation indicated

no apparent hazardous behavior or circuit malfunction. All the tests give correct results;

therefore, it is justifiable to assume that the generated model is stable enough to be

considered correct for the presented work’s evaluation purposes.

166

6 FUTURE IMPROVEMENTS.

6.1 Improvements to the methodology and tools

The presented methodology allows for the design of asynchronous circuits

implementing complex algorithms and provides a streamlined approach in the

specification, testing, and maintenance of non-trivial designs. However, there are scenarios

in which the current state could be improved to further extend the methodology’s scope,

optimize the design process, or provide a clearer and concise design specification

approach. The following section discusses some improvements that could help solve some

of the existing problems, extend the functionality, and make the design process easier.

6.1.1 The FSE completion detection

In its current version, the methodology proposes delay matching lines as the only

mechanism to ensure correct timing for the FSE modules. Delay matching lines are

simple in their design but have drawbacks, such as being dependent on the used ASIC

technology, and they could grow long when covering slow logic delays. Because of the

technology dependence, the delay matching lines require tuning with the change of PDK

or change of the surrounding environment of the FSE. Effectively, the use of delay

matching lines makes the design less portable and requires repeated adjustment effort

with any change of the circuit environment or the process technology.

The methodology can benefit from additional research into applications of other

completion detection circuits [36] and their uses in specific types of FSE. Compatible

structures of FSE modules could be isolated as candidates resulting in a recommendation

of best practices in FSE module design. The completion detection circuits might not

completely replace any use of delay matching lines, but reducing the number of critical

points that require technology-dependent delay matching would simplify the synthesis

process and make the design itself more robust.

167

6.1.2 Difficult syntax of the confusion block

In its current version, the syntax representing the confusion block introduces a

challenge from the expressiveness standpoint. Especially in the case of gated confusion,

the syntax variations make it hard to determine the entry and exit connections to the

choice transitions. The choice transitions are the set of transitions that the event-flow

branches into. The CSP parser could introduce an additional syntax to differentiate

specific types of confusion block.

The biggest challenge comes with the gated confusion block construct. In the gated

confusion case, the choice transition’s pre-set consists of one or more preceding

transitions and places that lead to the choice transition. Similarly, at the exit point from a

choice transition, the post-set specifies one or more places or transitions that the choice

transition leads to. When a choice transition or a choice transition fragment does not

merge into the default output point, it requires an explicit place to break the default

transition chain. Similarly, if the choice place post-set includes the default exit point and

some other transition, then that branching to non-default transition must be specified

using the explicit place construct. The current syntax structure makes it difficult to

ascertain from the code which transitions are the choice transitions and which belong to

their pre-sets and post-sets.

The CSP parser could extend the confusion block syntax to make it possible to

explicitly specify the entry and exit points. Such a syntax can be a triplet that specifies

pre-set, post-set, and the choice transition itself. Also, an additional notation is necessary

to indicate a situation when a path does not merge back to the default point. Having the

extended syntax would allow for more readable code and better syntax verification.

168

6.1.3 Passing CSP fragments as arguments to other CSP fragments

There are many scenarios in the CSP flow in which one set of transitions can be

embedded within another repeatedly. An example is some STG fragments that occur

during a 4-phase handshake. First the req+ and ack+ transitions occur for some element,

then the embedded part and at the end req- and ack-. Such scenarios are common, and

they can repeatedly occur for a certain element but with different embedded transition

sets. In its current state, each transition string must be specified separately. It is possible

to group repeating parts into fragments, but it is not an optimal approach from the syntax

readability perspective.

The CSP parser would benefit from a syntax extension in which a CSP fragment

receives another fragment as an argument and embeds it in itself. An example would be a

CSP fragment that introduces the following chain req+; ack; f_embd req- ack-. The

f_embd is the argument that expands into the CSP fragment containing an arbitrary set of

transitions. Providing the embedding of CSP fragments would allow for easy specification

of a common external transition environment that can be reused with different internal

transition sets.

6.1.4 Full support of standard C-implementation synthesis of set and reset Boolean
functions

Despite the next-state equations are being generated by the Petrify tool with the

"gcm" flag, which generates Boolean equations that satisfy the monotonous cover

constraint, using standard synchronous logic synthesis algorithms still introduces a

possibility that the resulting gate-level representation might suffer from hazards that could

affect the correct circuit behavior. To prevent the scenario that results in a faulty circuit

being generated, the stage 2 model should synthesize the controller’s next-state equations

using algorithms presented in [4] and [9].

169

A specialized synthesis module is required for the speed-independent controller

synthesis that generates gate-level, process technology aware representation of the

controller in stage 2. Ideally, the functionality should extend to stage 1 because of the

possibility of added internal signals resulting from a hazard-free decomposition process.

Potentially beneficial is also adding a mechanism for Place and Route that performs

placement and interconnect routing while aware of speed-independent constraints of the

circuit.

6.2 Improvements to the cache coherency controller design

The presented cache coherency controller design introduces a sufficient complexity

level to serve as the proposed methodology verification and evaluation platform. However,

realistic systems must account for additional scenarios like the memory space regions that

are not cacheable or larger than three number of cores in the system. This section

discusses some of the additional features, proposed solutions and implementation

concepts related to the cache controller design.

6.2.1 Handling main memory regions with different properties

One of the characteristics of a realistic computer system’s memory space allocation is

the non-uniformity. Different address regions within the systems can have different access

properties and not necessarily represent the random access general-purpose memory.

Moreover, some memory regions could be set up so that they could not be cached locally.

A good example is the MMIO regions, in which a memory address represents some

peripheral device’s operating registers. If such a region would be cached locally, then

writing under its address would incorrectly only alter local cache memory content instead

of immediately sending a command to the device. The second scenario is the existence of

read-only memory regions, in which case, a core must not alter a specific memory

region’s content.

170

A hybrid system based on lookup tables and additional flags in the cache line could be

introduced to deal with the memory region access properties. Such a system would be a

utility element for the Sender component. One of its parts is the addition of extra flag bits

into the cache line structure. The flags indicate the memory line’s access level under the

given address and whether the cache line resides in a non-cacheable region. If in a

non-cacheable region, the Sender seeing the non-cacheable flag, omits cache access and

resorts immediately to bus communication. However, such a solution introduces a tradeoff

between speed and resource usage as the memory line is unused as long as the

non-cacheable record is held in the local memory. The second part of the system would

be a lookup element. Such an element would contain information mapping records about

the entire memory space; when queried with a given address, it would return all the

access properties. However, depending on the information’s complexity and granularity,

such an item could introduce an additional performance hit as it would take time to

perform the query and increase the chip area to hold the records.

Most of the changes would involve the Sender component; however, the Receiver and

Responder might require additional data indicating whether to react on certain bus

messages based on the memory region properties. Finally, an exception reporting system

would be required that notifies the CPU core of the failed transaction due to memory

restrictions. Such a system would most likely rely on the CPU interrupt system to deliver

the error-related information and activate proper service subroutine.

6.2.2 Implementing cache line size larger than a single word

The presented design introduced an assumption that the cache line size is of a one

machine word, in this case, 4 bytes. However, realistic systems deal with larger than

single word cache line sizes. It is not uncommon to have the cache line size from two to

even four words and larger. Multiple word cache line introduces an additional complexity

171

related to bus communication. Depending on the cache line’s size, two proposed

techniques could be applied to add the hardware support.

The first approach is to widen the bus data line. Instead of transmitting a single word

per transaction, the bus data path could be extended to transmit multiple words. It is a

simple solution that does not increase the complexity of the send and receive operations

but also has some limitations. For the cache line spanning multiple words like four or

more, extending the bus width also increases the circuit size. At some point, it is

impractical to apply bus widening alone, especially for small embedded circuits.

The second approach is to extend the transmission operation across multiple

transactions. As a result, all the system components would have to be modified to support

processing data transmissions that span multiple bus messages. The Sender module must

add a mechanism that detects when all the chunks of data came through during the Rd or

RdX response. In its simplest form, it could be a counter which, when reached a certain

count, would indicate completeness. Also, the Sender and Responder must implement a

sending mechanism capable of splitting the cache line into portions that fit the bus width

and send in multiple transactions. The Receiver would also need to change to identify and

place the data portions in their designated places within the cache line.

Lastly, the multi-message transaction introduces a design tradeoff in how the

subsequent messages are delivered. One option is to lock the bus and transmit everything

in a burst. The burst approach guarantees the fastest time to complete data transmission

but prevents any other communication and negatively impacts system response time. For

example, a third core does not participate in receiving data but tries to write to an

unrelated memory region. This third core would not send the Upg message until the

currently ongoing Flush transaction finishes. The second approach is to obtain the bus

access and immediately release it after single transmission, repeating the process for every

chunk of data. The bus becomes more accessible, but the transmission speed decreases as

172

the sending core need to go through arbitration every time it sends the data portion. There

is also a middle ground possible such that a core sends bursts, which each burst covers a

portion of the whole transaction. After a single burst, the responding core releases the bus

to allow for other communication and locks the bus again to send the next burst sometime

after.

The best approach is to combine all the techniques based on system design goals.

Widening the bus lowers the number of messages needed to transmit; splitting a

transaction among multiple bus transmissions allows to send large multiword cache lines

without overly increasing the design area but at the cost of the increased complexity of

the transmission logic.

6.2.3 Removing the assumption that memory is always slower than the cores

The presented controller design makes an assumption regarding the data delivery,

stating that no matter what state the circuit is in, if there is an outstanding request for data

and at least one core is capable of responding, then this core will always be faster to

obtain the bus access than the main memory. The assumption is made to lower the

controller design complexity level and to clearly demonstrate the methodology and not

overly complicate the design for this thesis’s purposes. However, in a realistic

asynchronous system, it is unknown when any core will be capable of responding. The

delay might be caused by arbitration, both for the internal resources and the system-wide

access to the bus. There is also an inherent delay introduced by the Responder operation

caused by the need to traverse the PLOG component to eventually reach the request of

interest. In a realistic system, the delays can sum up to the point when it would be the

main memory that is faster to respond.

The race condition between the main memory and the cores causes data consistency

problems. The presented controller uses the write-back scheme, meaning when the core

173

changes the local memory’s data, the newest value is not sent outside of the core unless

necessary. In the write-back based system, the main memory can contain an outdated

value unless a core sends the data out in a write-back (Wb) bus transmission. If the core

and main memory race each other for the bus access, a situation is possible when the

main memory wins and accidentally delivers outdated data overwriting the most recent

version causing incorrect system behavior.

An additional confirmation system is necessary to protect the asynchronous system

from a race condition between the main memory and the CPU cores. One proposed

solution is to split the Rd and RdX requests into separate operations, one set for the core

to core communication and the other for core and memory data exchange. If, for example,

a core to core Rd or RdX is sent, the main memory will ignore it and never respond.

However, when a core sends a hypothetical RdMM or RdXMM, then it is the other cores

that will not respond, but the main memory will eventually deliver the data.

Splitting the request operation allows to avoid the race but leaves the question of

when to ask which unit for the data. The answer is first to query the cores, and if none can

deliver the data, then ask the main memory. The system must add another bus message

type to implement the race-free functionality that indicates no data (NDta). Then the

algorithm requires every core to respond to Rd or RdX either with Flush or with NDta.

The requesting core counts the NDta responses, and knowing how many cores are present

in the system will determine the condition when it must ask the main memory instead.

When the count reaches N−1 for which N is the number of cores in the system, then the

Rd or RdX cancels, and the requesting core sends RdMM. However, if an actual Flush

comes from any core, then the count cancels, and data is received.

An alternative approach could be taken in which the main memory controller

performs the counting of NDta messages, and when the count reaches its threshold, the

main memory controller sends the requested data. The alternative approach puts an

174

additional burden on the main memory controller to actively keep track of the bus

communication listening for NDta messages but also allows for optimization. The main

memory can pre-fetch the data while waiting for all CPU cores and respond without delay

if the NDta count threshold is reached.

Solving the race condition between the main memory and the cores is necessary to

ensure memory coherency in a realistic system. The speed independent approach to

asynchronous logic design places a general assumption on the system expecting an

unspecified time frame for each component to deliver data. However, the unspecified

response time assumption does not allow for an unspecified order in which all system

components can respond, placing a burden on the design to sequence the communication

flow properly.

6.2.4 The PLOG bottleneck

The cache coherency controller’s current design allows for a resource contention-free

implementation of the PLOG component. The setup is currently designed to support a

single issue in-order pipeline that has to stall if waiting for the memory stage. Also, the

number of cores in the system is relatively small, with only three cores. Both scenarios

result in a PLOG design in which only one record is needed per core, keeping the

memory requirement small.

However, in some classes of systems, it is not uncommon to see a larger number of

cores and superscalar out-of-order CPU design. The multiple issue CPU with the

out-of-order execution delivers an architecture capable of executing multiple instructions

in parallel beyond the simple pipeline approach. Therefore, a superscalar CPU could issue

multiple parallel memory requests in an environment in which the execution of

instructions does not have to finish in the order in which they were scheduled. Allowing

multiple outstanding data requests per core increases the number of required records in

175

the PLOG element. Similarly, increasing the number of cores multiplies the required

PLOG memory capacity. Both factors can cause the PLOG memory register to grow

significantly enough to make the asynchronous register-based approach for holding

records impractical.

One approach to solve the issue is to modify the PLOG to use a static memory block,

increasing the memory capacity. Adding additional external memory rises the design logic

complexity and introduces longer delays that involve the dataset query and write

operations. However, the approach based on memory capacity extension keeps the PLOG

a contention-free, given that enough memory capacity is available, ensuring that the CPU

cores do not have to compete for PLOG space to put the data in.

Another approach is to limit the number of available records at a quantity being below

the theoretical maximum generated by the system. The PLOG would then add a full

signal to its interface that, when high, prevents the Sender from going forward with

transmitting the data request. The Sender then stalls until a free record becomes available.

This approach allows the module recordset size to remain at a controlled level, but the

PLOG module becomes a contention point between all the system cores. The PLOG in

each core keeps track of all outstanding split-transaction requests, even those unrelated to

this core. Thus, if the PLOG size is too small, competing cores could have problems

obtaining a spot to place the record of its transaction, leading to decreased system

performance under significant load for which a large number of bus messages are of Rd or

RdX type. Both proposed approaches offer tradeoffs in terms of performance and resource

requirements. However, improving the PLOG component’s ability to handle many

outstanding data request transactions is necessary when supporting more advanced CPU

architectures and systems with a larger number of processing cores.

176

6.2.5 Extending the number of cores, asynchronous arbiter bottleneck

Extending the number of CPU cores in an arbitrated system makes the asynchronous

arbiter a bottleneck and a potential limitation in scaling up to a many-core architecture.

There is a significant growth in transistor count between a mutex that handles two inputs

and the version with three lines or more. Increasing the number of inputs further causes

the transistor count to grow, eventually making the element impractical to implement.

To allow the system to handle arbitration of more cores requires additional design

techniques. One proposed approach is to introduce clustering and multilevel

arbitration [17]. The clustering approach resembles the current design of arbitration

deciding access to the bus between Responder and Sender, in which a local arbiter within

the MESI controller requests bus access from the top-level systemwide bus arbiter. Only

when the top-level arbiter sends the grant signal can the local arbiter allow bus access to

either Responder or the Sender. A similar approach is possible to handle many-core

applications. The total number of cores is divided into smaller clusters. Each cluster has

its local arbiter that then contacts the global unit. The approach allows for a reduction in

the number of contending inputs per arbiter device, also reducing its size.

An additional starvation problem arises from the asynchronous arbitration of many

cores in a non-deterministic way. The many-core systems suffer from starvation problems

that are subject to ongoing research [10]. A simple non-deterministic asynchronous arbiter

might turn out to be insufficient and introduce a non-uniform or, more generally,

non-optimal arbitration process. One potential solution is to extend a regular arbiter with

a controller circuit that executes the arbitration process based on an algorithm that

introduces systemwide load balancing.

177

7 ANALYSIS AND RESULTS

7.1 Practical considerations for efficient asynchronous design

The proposed methodology allows for the design of complex circuits that can compete

with synchronous counterparts in the chip area requirements and power consumption.

However, the proposed methodology leaves the designer the task to specify elementary

device composition within the Component modules. The designer has much freedom in

deciding which elements and their specific parameters to use, but the methodology

requires the designer to be aware of the design goals and be mindful of unnecessary

overuse of the resources. It is essential to be aware of the trade-offs using specific

techniques and know when and how to apply them. This section briefly discusses some of

the design techniques tied to the proposed methodology, their advantages, and their

limitations.

The first and most influential element in the proposed design methodology is the use

of asynchronous registers. In some cases, using a register is necessary and the only way to

provide stable input to the FSE module. The register also serves the role of a local

general-purpose memory element that allows preservation of essential data for later use

and early release of other resources. However, the use of the register element results in an

increased area footprint. Uncontrolled overuse could lead to a substantial growth of the

chip invalidating the area advantage over the synchronous design.

To avoid uncontrolled register usage following proposed techniques can be applied.

The primary way to save space is to store only essential data. Suppose a piece of

information is held in a portion of the register and is never used, then that portion of the

register should not be instantiated. Depending on the difficulty of filtering out the relevant

data, an FSE or Support element can be used to provide inputs to the register. The second

approach is to re-use a register. A register should be re-used when it can support multiple

178

tasks that do not collide with each other at any point in time. Finally, the designer should

look at opportunities to provide stable input to FSE modules without over-relying on

registers.

Another proposed technique is related to the inherent problems with the design and

synthesis of speed-independent controllers. Complex functionality translates directly to

increased complexity in the STG model, effectively putting a bigger strain on the

synthesis tools. At some point, the STG synthesis could suffer from state explosion or the

CSC step’s inability to converge, preventing the STG synthesis from generating the final

set of next-state Boolean expressions. It is possible to reduce the complexity of a

speed-independent controller by breaking it into multiple smaller circuits that execute

their sub-tasks and cooperate with each other. The divide and conquer strategy allows for

better maintainability and ability to overcome the synthesis tools computing limitations.

However, splitting a large controller into a set of simpler controller units shifts the

complexity from the STG into the component’s internal design. As seen in the Sender

component case, the module needed a complex support logic for gating and distributing

the b_msg_valid line that signaled incoming bus messages. However, the controller

breakdown greatly simplified the sequential controller circuit, which otherwise would

have to support long chains of parallel transitions to properly acknowledge the incoming

bus messages, thus resulting in a very large SG during the synthesis.

Increased complexity of the support element is not always an undesirable side effect.

In fact, the support module’s primary task is to take away some of the complexity from

the sequential speed-independent controller design by providing the signal gating,

combining signal lines, and other data and control signals manipulations. Specifically, the

speed-independent controller design can be significantly simplified by signal gating. The

signal gating ensures that the controller would not have to deal with transitions coming at

a time when they are being a side effect from other components execution and are of no

179

interest to the local controller at this time. The support module also provides a simple

mechanism for signal combining, such as the message acknowledge signals that combine

using the C-element in the top controller module or an input signal formatting. However,

parts of the support module that perform input formatting can introduce additional delay

in the combinational logic that breaks the delay matching in the FSE components.

Therefore, the support modules must sometimes extend the delay matched control lines to

preserve hazard-free behavior.

7.2 Approach to system verification

One of the most prominent features of the proposed methodology is the emphasis on

design verification. The functional verification process is expected to be performed for

both model stages and allows for different insight into the device’s behavior. This section

discusses some proposed techniques in verification for the asynchronous design.

The first three techniques apply to the stage 1 model, for which the behavioral model

of combinational elements works together with a simulated model of primitives such as

C-element or the MUTEX. At the stage 1 level, the delays embedded into the device are

tuned in such a way that the device is assumed a correct asynchronous logic construct.

Assuming a correctly working logic delay leaves the verification to focus on testing the

functional aspects. The first technique allows for verification of the speed-independent

controller device. The resulting Boolean next-state expressions and the C-layer’s

behavioral model is placed into a test bench that runs through every expected path in the

STG. The test bench exerts the input signals on DUT and listens for the correct responses

on the outputs. If an unexpected output shows up at any time, then there is a fault in the

circuits at the STG specification level. Otherwise, we can expect correct behavior, and the

test passes.

180

Stepping through the controller workflow is also necessary for the stage 2 model after

hazard-free decomposition, synthesis and P&R step. The test allows for examining all

execution paths under different environment delays to detect any hazards in the circuit’s

gate-level implementation. In the stage 2 model scenario, instead of the behavioral model,

the gate-level representation is used with realistic ASIC primitives delay. Additionally,

after the P&R phase, the realistic interconnect delays are taken into account, increasing

the test accuracy.

The second technique is the unit testing of the FSE. FSE’s are essentially

combinational circuits with added delay matching lines or other completion detection

mechanism. Therefore an FSE can be wrapped in a test bench that tests output correctness

for any expected stable input. For every possible input configuration, the test bench first

sets the data signals then executes the handshake. If the output is incorrect, then there is an

error in the logic, and the test fails. The third and last technique is to test the top module

and, if necessary, the internal components separately. The third technique is a typical

functional test bench that runs expected scenarios and checks the circuit’s response.

All three techniques allow for functional verification, starting from their basic

building blocks and ending in the entire device. Passing the tests concludes that the

functional model of the device is correct. However, to ensure correct implementation,

stage 2 tests performed on the gate netlist with realistic interconnect delays are necessary.

The functional tests written for the third technique from stage 1 are particularly important

as they can be reused on the synthesized model from stage 2. The gate-level series of tests

is best executed after the P&R phase with the delay matching adjustments completed. The

place and route tool can export a structural representation of the device and the

interconnect delays. Then the series of tests written previously for the top model are

applied to the device to check if the gate-level model passes them.

181

Although not guaranteed for all P&R the tools, the Innovus [45] suite does not alter

the gate-level model from the synthesis phase. The gate-level structure is not flattened or,

in any other way, altered because there is no automated addition of any primitives, unlike

in the synchronous model when adding the clock tree. The effect is that the gate-level

SystemVerilog module structure remains unchanged. Retaining the human-readable model

allows, in the case of an error at the gate-level, to inspect specific interfaces signal

transition log to identify bugs. Alternatively, suppose the P&R tool does alter the model

structure. In that case, there usually exists a functionality within the tool to generate

signal mappings between the high-level and the generated gate-level representation, which

preserves the ability to identify and inspect critical signals.

7.3 Results

The presented case study implementation of a MESI cache controller evaluates the

usability of the proposed methodology. For functional verification, the controller circuit is

wrapped in a test bench that mimics its expected working environment. The test bench

provides modules to simulate the CPU core, the bus, and the cache memory. The stage

one model passes the functional test that checks the correct operation in different

conditions, such as when a CPU core requests data not currently present in the local cache

or when a request for data comes from the bus. Then the stage two gate-level

representation executes and passed the same tests during simulation with extracted

realistic interconnect and primitive delays from the ASIC library. Implementation of the

custom asynchronous elements and the synthesized design uses the FreePDK15 PDK [42].

The custom set of asynchronous elements supplements the Open Cell Library 15nm [50]

and follows its design rules.

The methodology evaluation phase uses both model variants: the asynchronous and

synchronous reference design. Both models execute test tasks equivalent from the

182

functional perspective but employ interface communication models characteristic to each

design approach. The test tasks intend to simulate expected execution tasks performed by

the cache controller. Full documentation of the tests performed and the test configurations

and their results are shown in Appendix B while a subset of representative results is

included in Table 2.

Table 2
Comparison of Synchronous and Asynchronous Design Models.

Async vs Sync comparison

Asynchronous Synchronous Fast Synchronous Slow
(CT = 200ps) (CT = 700ps)

Area [µm2] 759.890 1053.082 944.849

Exec. Duration [ns] 4709.420 1349.901 4724.651

Avg. Power [mW] 0.3245 8.851 1.784

The comparison between asynchronous design and the synchronous reference happens

in two configurations. Configuration 1 measures the speed of the asynchronous circuit

with respect to the synchronous reference. The asynchronous model follows the default

synthesis procedure, while the synthesis of the synchronous model tries to obtain the

highest achievable speed. The resulting achievable clock time for the fast synchronous

circuit becomes 200 picoseconds. Following the test environment assumptions, the

test-bench response time is of a single clock cycle in the synchronous design. Therefore

the response delay for the asynchronous circuit test harness is also set to one clock cycle

equivalent time, which is 200ps.

The configuration one that tests maximum possible synchronous design speed shows a

significant speedup compared to asynchronous design. The synchronous version is nearly

3.5 times faster but at the cost of increased area and significantly higher power usage.

Such a result is not unexpected; the synchronous design can finish multiple tasks such as

183

data calculation, resource contention, or algorithm branch resolution within a single clock

cycle. The situation looks different for the asynchronous design; the STG must perform

multiple transitions in a sequence. For example, request local memory access from the

arbiter, then set the input lines when the access is granted, and finally execute a 4-phase

handshake to exchange data. The asynchronous design’s execution speed result can also

be improved by potentially reducing the delay of FSE elements, increasing parallelization

of tasks, or other optimization procedures. However, the performance improvement might

come at the cost of increased area.

When considering the Power, Area, and Speed properties, it is apparent that all three

attributes depend on each other; tuning for one causes changes in the other two.

Therefore, comparing power usage and area requirements of the asynchronous design

versus the fast synchronous version does not give an accurate result because of the already

significant bias toward the fast clock speed. In short, the fast synchronous design

sacrifices all other parameters for maximum speed.

The synchronous design must be slowed down to the point when its test execution

time matches with the asynchronous version to perform a more objective analysis of the

area and power usage. However, the speed matching process does not end up merely

slowing the simulation clock. Instead, the synchronous design is incrementally

re-synthesized with lower clock speed. The synthesis under less stringent timing

constraints allows the tools to optimize the area usage of the circuit. Also, the process of

speed matching happens seamlessly for both synchronous and asynchronous designs.

During the process, both the synchronous design clock is slowed down, and the

asynchronous test harness delay is adjusted using the new clock time. When both designs

show the same or very close execution times for a target test case, the test can be

performed.

184

Area ratio(async/sync) :
759.890
944.849

= 8.04224∗10−1 ≈ 80.42% (3)

For configuration number two, the speed of both synchronous and asynchronous

circuits are matched. Removing the speed difference takes one variable attribute out of the

equation allowing for a more reliable look at the power usage and area requirements. The

asynchronous design exhibits a smaller area compared to the synchronous design. In the

tested configurations, the asynchronous circuit area is approximately twenty percent

smaller than the synchronous design. The obtained percentage result comes from taking a

ratio, as in Equation 3, of the asynchronous to synchronous final area usage. The

difference is due to multiple factors, which first is the existence of a clock tree in the

synchronous design. For configuration 2, the clock tree consists of approximately 20.4%

of the synchronous circuit total cell area. The asynchronous design also adds the area

usage during P&R due to delay matching elements, but this additional logic accounts only

for about a 6.5% area increase.

The second cause of the area difference is the use of memory elements. The

synchronous design uses flip-flops while the asynchronous design has D-latches and

C-elements as memory elements, which in both cases are smaller than a flip-flop element.

The synchronous design does not use as many internal registers, but the flip-flop elements

are used for holding the state and serve as record memory in the PLOG component.

Finally, the asynchronous design presents a significant improvement in power usage.

The power measurements performed for both designs were done using the time-based

approach offered by the PrimeTime PX [51] tool. The timing-based power analysis is

necessary to estimate the accurate power usage by the asynchronous system. The

commonly used power estimation methods based on the switching rate of signals do not

give accurate results because of the lack of the reference clock signal in the asynchronous

185

logic switching data-set and inconsistent components’ behavior. The timing-based power

analysis method requires a representative data-set of signal activity obtained by

simulating a test case to estimate power usage accurately. Next, a set of data points is

generated in which each point represents current power use at a specific point in time.

The final result is a collection of data points that can be plotted to visualize the activity

and used for further computations.

The Fig. 42 and Fig. 43 show a subset of the power data acquired during the analysis

of the waveforms generated by execution of the test cases. The Fig. 42 shows the power

usage for the asynchronous device. We can observe nearly random spikes representing the

activity of the internal components as they execute their tasks. The second Fig. 43 shows

the behavior of the synchronous model. A clear pattern is visible in the synchronous

version, representing transitions occurring at the clock edges with the tallest spikes

showing the electric current flow during the flip-flop switching. Also, every other

transition shows smaller activity dying out before the next clock cycle; that is the

combinational logic settling in reaction to the input change. The main power spikes are

farther apart than in the asynchronous version and carry a much higher value. Both plots

show expected patterns, which proves a valid base for power calculations.

Pavg =
1
T

∫ T

0
P(t)dt (4)

Pavg =
1
T

T

∑
t=0

(P[t]∗4t) (5)

When calculating the average power usage, it is necessary to compute the integral over

the obtained power dataset based on the formula in Equation 4. The integration provides

the total energy transferred through the circuit. Next, the calculated energy is divided by

186

Fig. 42. Asynchronous design dynamic power measurement data.

Fig. 43. Synchronous design dynamic power measurement data.

187

the test duration time to obtain the average power in Watts. Since the power dataset is

discrete, the integral transforms into a sum in which each data point is multiplied by the

minimal simulation time step, as shown in Equation 5. The time difference between two

data points occurring is one picosecond (4t = 1ps). Finally, the sum of the points is then

divided by the test’s total duration time, the same as in the continuous-time case.

Power ratio(async/sync) :
0.3245
1.784

= 1.819∗10−1 ≈ 18.19% (6)

In configuration number 1, the resulting power calculations show a significant

decrease in power usage for the asynchronous circuit with reference to the synchronous

counterpart. For the same test in configuration number 2 with speed matching, the power

usage of the asynchronous device is at 20% of the corresponding synchronous version as

seen in Equation 6. The power consumption improvement can be attributed to the lack of

unnecessary switching activity. In the synchronous design, all the registers in the system

contribute to the total activity regardless of whether the data contained by them changes.

For the asynchronous variant, the logic activates only the circuit elements currently

participating in the device activity.

The obtained results show improvements in the area usage and power consumption of

the asynchronous design relative to the equivalent synchronous version. However, the

asynchronous model in its current form cannot reach the speeds of the synchronous

version. The results prove that the methodology can produce asynchronous circuits that do

offer advantages over synchronous models. The primary drawback is the speed of the

device. The asynchronous model must perform more steps than the synchronous version

to execute the same algorithm resulting in slower operation. However, if the asynchronous

circuit can meet the design goals related to the device’s speed, then using the proposed

methodology would result in a smaller device that uses less power.

188

8 CONCLUSIONS

The presented work introduces a methodology that provides a framework for creating

complex sequential asynchronous circuits. Introduced methodology specializes in the

design of sequential digital devices based on the input-output speed-independent

controller model. The target type of circuit is a design that executes a multi-step,

data-driven, non-linear complex algorithm. An expected outcome is a non-pipelined,

sequential controller-centric circuit focused on small circuit area and low power properties.

The presented approach emphasizes the divide-and-conquer philosophy and the ability to

perform tests early in the design, allowing for an efficient design and debug process.

The methodology introduces a code template and a series of steps that form the design

process. With the emphasis on the divide-and-conquer approach, the template structure

introduces split into Component modules to split the design into smaller, easier to

maintain functional blocks. The Component design then breaks into controller circuits

defined in CSP derived syntax and a set of flow support elements that form the datapath

and are driven by the speed-independent controller. The methodology offers a two-stage

design approach. Stage one, a technology-independent stage, provides a behavioral

codebase that allows early functional tests. Stage two specifies the implementation

structure that leads to a gate-level representation of the circuit. Synthesizing the model

requires a special approach. A bottom-up synthesis flow must be taken to synthesize

specific parts of the design while protecting others from unwanted optimizations.

An implementation of a cache coherence controller is used to provide a case study to

evaluate the proposed methodology. The controller implements the MESI cache coherency

algorithm with split-transaction bus communication. The presented study provides two

implementations: asynchronous implementation developed using the proposed

methodology and a synchronous counterpart for the reference. Both models execute the

189

same algorithm to provide a reliable testing environment and result. The design passes

functional tests both on behavioral stage one and gate-level stage two, and the developed

MESI cache coherence controller successfully proves the usefulness of the proposed

methodology.

Testing and evaluation of the methodology rely on three categories: area, speed, and

power usage. The synthesis outcome demonstrates reduced area requirements of the

asynchronous model by 20% compared to the synchronous speed-matched reference

design. Performed simulation tests show the synchronous design to achieve speed higher

than the asynchronous counterpart at the cost of increased circuit area and power usage.

Finally, the power usage tests executed on speed-matched implementations show the

asynchronous design exhibits significantly lower power consumption at the level of

approximately 18% of the synchronous reference.

The proposed methodology introduces improvement in the design process of the

asynchronous circuits implementing multi-step complex algorithms. Using the CSP

inspired abstraction layer to specify speed-independent controller behavior improves the

model’s readability and maintainability. The introduced design template provides a

component-oriented structure, allowing to break down complex models into easier to

maintain and test elements. Qualitative analysis of the design process using the

methodology shown achieved systematic workflow, which helps avoid design errors and

assists the debug process. The comparison tests with the reference design indicate

improvements in the form of decreased circuit area and lower power consumption. In

conclusion, the methodology shows a viable potential for practical applications in

generating complex sequential asynchronous circuits with a focus on low power and small

chip area.

190

Literature Cited

[1] S. M. Nowick and M. Singh, “Asynchronous design—part 1: Overview and recent
advances,” IEEE Design & Test, vol. 32, no. 3, pp. 5–18, 2015.

[2] B. Rahbaran and A. Steininger, “Is asynchronous logic more robust than synchronous
logic?” IEEE Transactions on dependable and secure computing, vol. 6, no. 4, pp.
282–294, 2009.

[3] N. H. Weste and D. M. Harris, “Cmos vlsi design: a circuits and systems perspective,”
2011.

[4] C. J. Myers, Asynchronous circuit design. John Wiley & Sons, 2001.

[5] J. Sparsø, Asynchronous circuit design - A tutorial. Boston / Dordrecht / London:
Kluwer Academic Publishers, dec 2001. [Online]. Available:
http://www2.imm.dtu.dk/pubdb/p.php?855

[6] P. A. Beerel and M. E. Roncken, “Low power and energy efficient asynchronous
design,” Journal of Low Power Electronics, vol. 3, no. 3, pp. 234–253, 2007.

[7] N. Karaki, T. Nanmoto, H. Ebihara, S. Inoue, and T. Shimoda, “43.1: A flexible 8-bit
asynchronous microprocessor based on low-temperature poly-silicon (ltps) tft
technology,” in SID Symposium Digest of Technical Papers, vol. 36, no. 1. Wiley
Online Library, 2005, pp. 1430–1433.

[8] M. Wolf, High performance embedded computing : architectures, applications, and
methodologies, 2014.

[9] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, Logic
Synthesis for Asynchronous Controllers and Interfaces: With 146 Figures. Springer
Science & Business Media, 2002, vol. 8.

[10] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edition: A
Quantitative Approach, 6th ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2017.

[11] D. A. Patterson and J. L. Hennessy, Computer Organization and Design, Fifth
Edition: The Hardware/Software Interface, 5th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2013.

191

http://www2.imm.dtu.dk/pubdb/p.php?855

[12] D. E. Culler, A. Gupta, and J. P. Singh, Parallel Computer Architecture: A
Hardware/Software Approach, 1st ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1997.

[13] S. M. Nowick and M. Singh, “Asynchronous design—part 2: Systems and
methodologies,” IEEE Design & Test, vol. 32, no. 3, pp. 19–28, 2015.

[14] A. Davis and S. M. Nowick, “An introduction to asynchronous circuit design,” The
Encyclopedia of Computer Science and Technology, vol. 38, pp. 1–58, 1997.

[15] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev,
“Petrify: a tool for manipulating concurrent specifications and synthesis of
asynchronous controllers,” IEICE Transactions on information and Systems, vol. 80,
no. 3, pp. 315–325, 1997.

[16] J. Carmona, J. Cortadella, V. Khomenko, and A. Yakovlev, “Synthesis of
asynchronous hardware from petri nets,” in Advanced Course on Petri Nets.
Springer, 2003, pp. 345–401.

[17] A. J. Martin and M. Nystrom, “Asynchronous techniques for system-on-chip design,”
Proceedings of the IEEE, vol. 94, no. 6, pp. 1089–1120, June 2006.

[18] S. M. Nowick and M. Singh, “High-performance asynchronous pipelines: An
overview,” IEEE Design Test of Computers, vol. 28, no. 5, pp. 8–22, Sept 2011.

[19] C. Hoare, “Communicating sequential processes, electronic version based on the
1985 edition,” 2015.

[20] S. Brookes, “Retracing the semantics of csp,” in Communicating Sequential
Processes. The First 25 Years. Springer, 2005, pp. 1–14.

[21] A. Roscoe, C. Hoare, and R. Bird, “The theory and practice of concurrency. 2005,”
Revised edition. Only available online.

[22] A. J. Martin, “Compiling communicating processes into delay-insensitive vlsi
circuits,” Distributed computing, vol. 1, no. 4, pp. 226–234, 1986.

[23] ——, “Programming in vlsi: From communicating processes to delay-insensitive
circuits,” CALIFORNIA INST OF TECH PASADENA DEPT OF COMPUTER
SCIENCE, Tech. Rep., 1989.

192

[24] S. M. Burns, “Automated compilation of concurrent programs into self-timed
circuits,” 1988.

[25] J. D. Garside, S. B. Furber, and S.-H. Chung, “Amulet3 revealed,” in Proceedings.
Fifth International Symposium on Advanced Research in Asynchronous Circuits and
Systems. IEEE, 1999, pp. 51–59.

[26] S. B. Furber, J. D. Garside, P. Riocreux, S. Temple, P. Day, J. Liu, and N. C. Paver,
“Amulet2e: An asynchronous embedded controller,” Proceedings of the IEEE, vol. 87,
no. 2, pp. 243–256, 1999.

[27] A. Bink and R. York, “Arm996hs: The first licensable, clockless 32-bit processor
core,” Ieee micro, vol. 27, no. 2, 2007.

[28] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, “The
vlsi-programming language tangram and its translation into handshake circuits,” in
Proceedings of the Conference on European Design Automation, ser. EURO-DAC
’91. Los Alamitos, CA, USA: IEEE Computer Society Press, 1991, pp. 384–389.
[Online]. Available: http://dl.acm.org/citation.cfm?id=951513.951597

[29] A. Bardsley and D. Edwards, “Balsa: An Asynchronous Hardware Synthesis
Language,” The Computer Journal, vol. 45, no. 1, pp. 12–18, 01 2002. [Online].
Available: https://doi.org/10.1093/comjnl/45.1.12

[30] L. D. Tran, G. I. Matthews, P. Beckett, and A. Stojcevski, “Null convention logic
(ncl) based asynchronous design - fundamentals and recent advances,” in 2017
International Conference on Recent Advances in Signal Processing,
Telecommunications Computing (SigTelCom), Jan 2017, pp. 158–163.

[31] S. C. Smith, Designing asynchronous circuits using NULL convention logic (NCL),
ser. Synthesis lectures on digital circuits and systems (Online), 23. San Rafael,
Calif.: Morgan & Claypool Publishers, 2009.

[32] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the
IEEE, vol. 77, no. 4, pp. 541–580, Apr 1989.

[33] A. Spiteri Staines, “Representing petri net structures as directed graphs,” 01 2011.

193

http://dl.acm.org/citation.cfm?id=951513.951597
https://doi.org/10.1093/comjnl/45.1.12

[34] T. Caohuu and J. Edwards, “Implementation of an efficient library for asynchronous
circuit design with synopsys,” in Progress in Systems Engineering. Springer, 2015,
pp. 465–471.

[35] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A. Yakovlev, “Basic
gate implementation of speed-independent circuits,” in Proceedings of the 31st
annual Design Automation Conference, 1994, pp. 56–62.

[36] P. A. Beerel, A designer’s guide to asynchronous VLSI. Cambridge ; New York:
Cambridge University Press, 2010.

[37] A. E. Abdallah, Communicating Sequential Processes. The First 25 Years:
Symposium on the Occasion of 25 Years of CSP, London, UK, July 7-8, 2004. Revised
Invited Papers. Springer Science & Business Media, 2005, vol. 3525.

[38] K. H. Rosen, Discrete mathematics and its applications, 7th ed. Boston:
McGraw-Hill Higher Education, 2011.

[39] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis and Design. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1995.

[40] J. C. Baeten, “A brief history of process algebra,” Theoretical Computer Science,
vol. 335, no. 2-3, pp. 131–146, 2005.

[41] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech, and
J. Michelsen, “Open cell library in 15nm freepdk technology,” in Proceedings of the
2015 Symposium on International Symposium on Physical Design, ser. ISPD ’15.
New York, NY, USA: ACM, 2015, pp. 171–178. [Online]. Available:
http://doi.acm.org/10.1145/2717764.2717783

[42] K. Bhanushali and W. R. Davis, “Freepdk15: An open-source predictive process
design kit for 15nm finfet technology,” in Proceedings of the 2015 Symposium on
International Symposium on Physical Design, ser. ISPD ’15. New York, NY, USA:
ACM, 2015, pp. 165–170. [Online]. Available:
http://doi.acm.org/10.1145/2717764.2717782

[43] Design Compiler User Guide. Synopsys, 06 2009.

[44] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolić, Digital integrated circuits: a
design perspective. Pearson Education Upper Saddle River, NJ, 2003, vol. 7.

194

http://doi.acm.org/10.1145/2717764.2717783
http://doi.acm.org/10.1145/2717764.2717782

[45] Innovus User Guide. Cadence, 06 2019.

[46] S. Sutherland and D. Mills, “Synthesizing systemverilog busting the myth that
systemverilog is only for verification,” SNUG Silicon Valley, p. 24, 2013.

[47] S. Sutherland, “Verilog® hdl, quick reference guide,” 09 2007.

[48] A. Bindal, Fundamentals of Computer Architecture and Design, 2017.

[49] D. Patterson and A. Waterman, The RISC-V Reader: An Open Architecture Atlas.
Strawberry Canyon, 2017.

[50] A. J. Martin, A. Lines, R. Manohar, M. Nystroem, P. I. Pénzes, R. Southworth,
U. Cummings, and T. K. Lee, “The design of an asynchronous mips r3000
microprocessor.” in ARVLSI, vol. 97, 1997, pp. 1–18.

[51] PrimeTime PX Users Guide. Synopsys, 12 2011.

[52] A. J. Martin, “Asynchronous datapaths and the design of an asynchronous adder,”
Formal Methods in System Design, vol. 1, no. 1, pp. 117–137, 1992.

[53] R. Manohar and A. J. Martin, “Quasi-delay-insensitive circuits are turing-complete,”
Pasadena, CA, USA, Tech. Rep., 1995.

[54] J. Sparsø, “Current trends in high-level synthesis of asynchronous circuits,” in
Electronics, Circuits, and Systems, 2009. ICECS 2009. 16th IEEE International
Conference on. IEEE, 2009, pp. 347–350.

[55] E. Brunvand, S. Nowick, and K. Yun, “Practical advances in asynchronous design
and in asynchronous/synchronous interfaces,” in Proceedings of the 36th annual
ACM/IEEE Design Automation Conference, 1999, pp. 104–109.

[56] G. B. Randy H Katz, Contemporary Logic Design, 2nd ed. Pearson Education,
Inc., 2005.

[57] D. Givone, Digital Principles and Design with CD-ROM, 1st ed. New York, NY,
USA: McGraw-Hill, Inc., 2003.

195

[58] K. N. Bhanushali et al., “Design rule development for freepdk15: An open source
predictive process design kit for 15nm finfet devices.” 2014.

[59] S. M. Sze, Semiconductor devices: physics and technology. John wiley & sons,
2008.

[60] Predictive technology model (ptm). Arizona State University. [Online]. Available:
http://ptm.asu.edu/

196

http://ptm.asu.edu/

Appendix A
THE CSP SOURCE CODE FOR THE CONTROLLERS

A.1 Pending-Log component controller.

module c o n t r o l l e r ;

i n p u t s r e c v _ r e q s n d r _ r e q r e s p _ r e q r1 _ ac k s t w r _ a c k s n d r _ p r o c _ a c k
r e s p _ p r o c _ a c k r e c v _ p r o c _ s k i p recv_p roc_mark r e c v _ p r o c _ c l r
s e t _ o u t _ r e g _ a c k r _ i d x _ a c k s e t _ s t o r a g e _ a c k s e l _ s t o r a g e _ a c k ;

o u t p u t s r e c v _ a c k s n d r _ a c k r e s p _ a c k r 1 _ r e q s t w r _ r e q s n d r _ p r o c r e s p _ p r o c
r e c v _ p r o c s e t _ o u t _ r e g r _ i d x s e t _ s t o r a g e s e l _ s t o r a g e ;

e x p l i c i t _ p l a c e P0 ;

l o o p _ p l a c e [recv_ack −] − >[r e c v _ r e q +] ;
l o o p _ p l a c e [sndr_ack −] − >[s n d r _ r e q +] ;
l o o p _ p l a c e [r e sp_ack −] − >[r e s p _ r e q +] ;
l o o p _ p l a c e [recv_ack − sndr_ack − re sp_ack −] − >[r e c v _ p r o c + s n d r _ p r o c +

r e s p _ p r o c +] ;

marking [recv_ack −] − >[r e c v _ r e q +] ;
marking [sndr_ack −] − >[s n d r _ r e q +] ;
marking [r e sp_ack −] − >[r e s p _ r e q +] ;
marking [recv_ack − sndr_ack − re sp_ack −] − >[r e c v _ p r o c + s n d r _ p r o c +

r e s p _ p r o c +] ;

main p log ;

f r a g m e n t f r a g _ r e c v _ p r o c ;
f r a g m e n t f r a g _ s n d r _ p r o c ;
f r a g m e n t f r a g _ r e s p _ p r o c ;

f r a g m e n t f r a g _ p r o c _ s k i p ;
f r a g m e n t f r a g _ p r o c _ m a r k ;
f r a g m e n t f r a g _ p r o c _ c l r ;

e n d i n t e r f a c e

p log :
* [

[[r e c v _ r e q +] ; f r a g _ r e c v _ p r o c |
[s n d r _ r e q +] ; f r a g _ s n d r _ p r o c |
[r e s p _ r e q +] ; f r a g _ r e s p _ p r o c

] ;
]

f r a g _ r e c v _ p r o c :
r e c v _ p r o c + ;

[f r a g _ p r o c _ s k i p | f r a g _ p r o c _ m a r k | f r a g _ p r o c _ c l r] ;
r e c v _ a c k + ;

[r e c v _ r e q −] ;
r ecv_ack − ;

f r a g _ p r o c _ s k i p :
[r e c v _ p r o c _ s k i p +] ;

r e c v _ p r o c − ;
[r e c v _ p r o c _ s k i p −] ;

f r a g _ p r o c _ m a r k :
[r ecv_proc_mark +] ;

s e l _ s t o r a g e + ;
[s e l _ s t o r a g e _ a c k +] ;

r _ i d x + ;

197

[r _ i d x _ a c k +] ;
r _ i d x − ;

[r _ i d x _ a c k −] ;
s e l _ s t o r a g e − ;

[s e l _ s t o r a g e _ a c k −] ;
r e c v _ p r o c − ;

[recv_proc_mark −] ;
P0 ;
s e t _ s t o r a g e + ;

[s e t _ s t o r a g e _ a c k +] ;
s t w r _ r e q + ;

[s t w r _ a c k +] ;
s t w r _ r e q − ;

[s twr_ack −] ;
s e t _ s t o r a g e − ;

[s e t _ s t o r a g e _ a c k −] ;

f r a g _ p r o c _ c l r :
[r e c v _ p r o c _ c l r +] ;

s e l _ s t o r a g e + ;
[s e l _ s t o r a g e _ a c k +] ;

r _ i d x + ;
[r _ i d x _ a c k +] ;

r _ i d x − ;
[r _ i d x _ a c k −] ;

s e l _ s t o r a g e − ;
[s e l _ s t o r a g e _ a c k −] ;

s e t _ o u t _ r e g + ;
[s e t _ o u t _ r e g _ a c k +] ;

r 1 _ r e q + ;
[r 1_ ac k +] ;

r1_ req − ;
[r1_ack −] ;

s e t _ o u t _ r e g − ;
[s e t _ o u t _ r e g _ a c k −] ;

r e c v _ p r o c − ;
[r e c v _ p r o c _ c l r −] ;

P0

f r a g _ s n d r _ p r o c :
s n d r _ p r o c + ;

[s n d r _ p r o c _ a c k +] ;
s n d r _ a c k + ;

[s n d r _ r e q −] ;
s n d r _ p r o c − ;

[s n d r _ p r o c _ a c k −] ;
sndr_ack − ;

f r a g _ r e s p _ p r o c :
r e s p _ p r o c + ;

[r e s p _ p r o c _ a c k +] ;
r e s p _ a c k + ;

[r e s p _ r e q −] ;
r e s p _ p r o c − ;

[r e s p _ p r o c _ a c k −] ;
r e sp_ack − ;

Listing 31. CSP implementation: plog.

198

A.2 Receiver component controller.

module c o n t r o l l e r ;

i n p u t s msg_va l i d c a c h e _ g n t cache_ack p_ack s t p 1 _ a c k s t p 2 _ a c k s t p 3 _ w r i t e
s t p 3 _ s k i p r 1_ ac k ;

o u t p u t s msg_ack c a c h e _ a r b c a c h e _ r e q p_req s t p 1 _ r e q s t p 2 _ r e q s t p 3 _ r e q
r 1 _ r e q ;

l o o p _ p l a c e [msg_ack −] − >[msg_va l id +] ;

marking [msg_ack −] − >[msg_va l i d +] ;

main r e c v ;

f r a g m e n t f r a g _ c a c h e _ r e q ;
f r a g m e n t f r a g _ s t p 1 _ r e q ;
f r a g m e n t f r a g _ s t p 3 _ w r i t e ;
f r a g m e n t f r a g _ s t p 3 _ s k i p ;

e n d i n t e r f a c e

r e c v :
* [

[msg_va l id +] ;
(f r a g _ c a c h e _ r e q , f r a g _ s t p 1 _ r e q)

s t p 2 _ r e q + ;
[s t p 2 _ a c k +] ;

c a c h e _ r e q + ;
[cache_ack +] ;

r 1 _ r e q + ;
[r 1_ ac k +] ;

r1_ req − ;
[r1_ack −] ;

cache_ req − ;
[cache_ack −] ;

s t p 2 _ r e q − ;
[s tp2_ack −] ;

s t p 3 _ r e q + ;
[f r a g _ s t p 3 _ w r i t e | f r a g _ s t p 3 _ s k i p] ;

cache_a rb − ;
[cache_gn t −] ;

msg_ack+ ;
[msg_val id −] ;

msg_ack − ;
]

f r a g _ c a c h e _ r e q :
c a c h e _ a r b + ;

[c a c h e _ g n t +] ;

f r a g _ s t p 1 _ r e q :
s t p 1 _ r e q + ;

[s t p 1 _ a c k +] ;
p_ req + ;

[p_ack+] ;
p_req − ;

[p_ack −] ;
s t p 1 _ r e q − ;

[s t p1_ack −] ;

f r a g _ s t p 3 _ w r i t e :
[s t p 3 _ w r i t e +] ;

c a c h e _ r e q + ;
[cache_ack +] ;

cache_ req − ;
[cache_ack −] ;

199

s t p 3 _ r e q − ;
[s t p 3 _ w r i t e −] ;

f r a g _ s t p 3 _ s k i p :
[s t p 3 _ s k i p +] ;

s t p 3 _ r e q − ;
[s t p 3 _ s k i p −] ;

Listing 32. CSP implementation: recv.

200

A.3 Responder component controller.
module c o n t r o l l e r ;

i n p u t s c a c h e _ g n t cache_ack p_ack r t _ a c k r1 _ ac k r 2_ ac k r 3_ ac k i d x _ a c k
p _ l o g _ r e s p o n d p _ l o g _ s k i p c a c h e _ r e s p o n d c a c h e _ s k i p c h e c k _ f i n a l _ o k
c h e c k _ f i n a l _ a b r t b u s _ g n t bus_ack ;

o u t p u t s c a c h e _ a r b c a c h e _ r e q p_req r t _ r e q r 1 _ r e q r 2 _ r e q r 3 _ r e q i d x _ r e q
p_ log_check cache_check c h e c k _ f i n a l b u s _ r e q place_msg ;

l o o p _ p l a c e [bus_gnt − cache_gn t − p_ack −] − >[i d x _ r e q +] ;

marking [bus_gnt − cache_gn t − p_ack −] − >[i d x _ r e q +] ;

main r e s p ;

f r a g m e n t f r a g _ l o g _ r e s p o n d ;
f r a g m e n t f r a g _ l o g _ s k i p ;
f r a g m e n t f r a g _ c a c h e _ r e s p o n d ;
f r a g m e n t f r a g _ c a c h e _ s k i p ;
f r a g m e n t f r a g _ c h e c k _ f i n a l _ o k ;
f r a g m e n t f r a g _ c h e c k _ f i n a l _ a b r t ;

e n d i n t e r f a c e

r e s p :
* [

i d x _ r e q + ;
[i d x _ a c k +] ;

r t _ r e q + ;
[r t _ a c k +] ;

r t _ r e q − ;
[r t _ a c k −] ;

i d x _ r e q − ;
[idx_ack −] ;

r 1 _ r e q + ;
[r 1_ ac k +] ;

r1_ req − ;
[r1_ack −] ;

p_ req + ;
[p_ack+] ;

p_ log_check + ;
[f r a g _ l o g _ r e s p o n d | f r a g _ l o g _ s k i p] ;

]

f r a g _ l o g _ s k i p :
[p _ l o g _ s k i p +] ;

p_ log_check − ;
[p _ l o g _ s k i p −] ;

p_req − ;
[p_ack −] ;

f r a g _ l o g _ r e s p o n d :
[p _ l o g _ r e s p o n d +] ;

r 2 _ r e q + ;
[r 2_ ac k +] ;

r2_ req − ;
[r2_ack −] ;

p_ log_check − ;
[p_ log_ re spond −] ;

p_req − ;
[p_ack −] ;

201

c a c h e _ a r b + ;
[c a c h e _ g n t +] ;

c a c h e _ r e q + ;
[cache_ack +] ;

cache_check + ;
[f r a g _ c a c h e _ r e s p o n d | f r a g _ c a c h e _ s k i p] ;

f r a g _ c a c h e _ s k i p :
[c a c h e _ s k i p +] ;

cache_check − ;
[c a c h e _ s k i p −] ;

cache_ req − ;
[cache_ack −] ;

cache_a rb − ;
[cache_gn t −] ;

f r a g _ c a c h e _ r e s p o n d :
[c a c h e _ r e s p o n d +] ;

cache_check − ;
[cache_ re spond −] ;

cache_ req − ;
[cache_ack −] ;

cache_a rb − ;
[cache_gn t −] ;

b u s _ r e q + ;
[b u s _ g n t +] ;
(

p_ req + ;
[p_ack+] ,

c a c h e _ a r b + ;
[c a c h e _ g n t +] ;

c a c h e _ r e q + ;
[cache_ack +]

)
c h e c k _ f i n a l + ;
[f r a g _ c h e c k _ f i n a l _ o k | f r a g _ c h e c k _ f i n a l _ a b r t] ;
[bus_gnt −] ;

f r a g _ c h e c k _ f i n a l _ o k :
[c h e c k _ f i n a l _ o k +] ;

c h e c k _ f i n a l − ;
[c h e c k _ f i n a l _ o k −] ;

r 3 _ r e q + ;
[r 3_ ac k +] ;

r3_ req − ;
[r3_ack −] ;
(

p lace_msg + ;
[bus_ack +] ;

place_msg − ;
[bus_ack −] ,

cache_ req − ;
[cache_ack −] ;

cache_a rb − ;
[cache_gn t −] ,

p_req − ;
[p_ack −]

)
bus_req − ;

202

f r a g _ c h e c k _ f i n a l _ a b r t :
[c h e c k _ f i n a l _ a b r t +] ;

c h e c k _ f i n a l − ;
[c h e c k _ f i n a l _ a b r t −] ;
(

cache_ req − ;
[cache_ack −] ;

cache_a rb − ;
[cache_gn t −] ,

p_req − ;
[p_ack −]

)
bus_req − ;

Listing 33. CSP implementation: resp.

203

A.4 Sender component controller handling bus transmission.

module c o n t r o l l e r ;

i n p u t s send gmv gmv2 b u s _ g n t addr_match a d d r _ d i f f bus_ack r e q _ t y p e _ y
r e q _ t y p e _ n ;

o u t p u t s send_ack gmv_ack gmv_ack2 b u s _ r e q addr_cmp place_msg r e q _ t y p e ;

e x p l i c i t _ p l a c e P0 ;
e x p l i c i t _ p l a c e P1 ;

l o o p _ p l a c e [send_ack −] − >[send +] ;

marking [send_ack −] − >[send +] ;

main s n d r _ b u s ;

f r a g m e n t f r a g _ b u s _ g n t ;
f r a g m e n t f r a g _ r e q _ t y p e _ y ;
f r a g m e n t f r a g _ r e q _ t y p e _ n ;
f r a g m e n t frag_gmv ;
f r a g m e n t f r a g _ a d d r _ m a t c h ;
f r a g m e n t f r a g _ a d d r _ d i f f ;
f r a g m e n t f r a g _ a d d r _ m a t c h 2 ;
f r a g m e n t f r a g _ a d d r _ d i f f 2 ;

e n d i n t e r f a c e

s n d r _ b u s :
* [

[send +] ;
b u s _ r e q + ;
P0 ;

[f r a g _ b u s _ g n t | f rag_gmv] ;
send_ack + ;

[send −] ;
send_ack − ;

]

f r a g _ b u s _ g n t :
[b u s _ g n t +] ;

p lace_msg + ;
[bus_ack +] ;

place_msg − ;
[bus_ack −] ;

r e q _ t y p e + ;
[f r a g _ r e q _ t y p e _ y | f r a g _ r e q _ t y p e _ n] ;

f r a g _ r e q _ t y p e _ y :
[r e q _ t y p e _ y +] ;

bus_req − ;
[bus_gnt −] ;

P1 ;
[gmv2+] ;

addr_cmp+ ;
[f r a g _ a d d r _ m a t c h 2 | f r a g _ a d d r _ d i f f 2] ;

f r a g _ a d d r _ m a t c h 2 :
[addr_match +] ;

addr_cmp − ;
[addr_match −] ;

gmv_ack2+ ;
[gmv2−] ;

r e q _ t y p e − ;
[r eq_ type_y −] ;

gmv_ack2 − ;

204

f r a g _ a d d r _ d i f f 2 :
[a d d r _ d i f f +] ;

addr_cmp − ;
[a d d r _ d i f f −] ;

gmv_ack2+ ;
[gmv2−] ;

gmv_ack2 − ;
P1

f r a g _ r e q _ t y p e _ n :
[r e q _ t y p e _ n +] ;

bus_req − ;
[bus_gnt −] ;

r e q _ t y p e − ;
[r eq_ type_n −] ;

frag_gmv :
[gmv+] ;

addr_cmp+ ;
[f r a g _ a d d r _ m a t c h | f r a g _ a d d r _ d i f f] ;

f r a g _ a d d r _ m a t c h :
[addr_match +] ;

addr_cmp − ;
[addr_match −] ;

gmv_ack+ ;
[gmv−] ;

bus_req − ;
gmv_ack − ;

f r a g _ a d d r _ d i f f :
[a d d r _ d i f f +] ;

addr_cmp − ;
[a d d r _ d i f f −] ;

gmv_ack+ ;
[gmv−] ;

gmv_ack − ;
P0

Listing 34. CSP implementation: sndr bus.

205

A.5 Sender component controller handling interfacing with CPU core.

module c o n t r o l l e r ;

i n p u t s mem_op c a c h e _ g n t cache_ack r e g _ a c k cache_op1_ack c a c h e _ o p 2 _ r e a d
c a c h e _ o p 2 _ w r i t e cache_op2_mm t r a n s a c t i o n _ a c k done_ack ;

o u t p u t s mem_op_ack c a c h e _ a r b c a c h e _ r e q r e g _ r e q cache_op1 cache_op2
t r a n s a c t i o n _ r e q done ;

e x p l i c i t _ p l a c e P0 ;

l o o p _ p l a c e [mem_op_ack −] − >[mem_op +] ;

marking [mem_op_ack −] − >[mem_op +] ;

main s n d r _ c o r e _ i f ;

f r a g m e n t f r a g _ o p 2 _ w r i t e ;
f r a g m e n t frag_op2_mm ;
f r a g m e n t f r a g _ o p 2 _ r e a d ;

e n d i n t e r f a c e

s n d r _ c o r e _ i f :
* [

[mem_op+] ;
P0 ;
c a c h e _ a r b + ;

[c a c h e _ g n t +] ;
cache_op1 + ;

[cache_op1_ack +] ;
c a c h e _ r e q + ;

[cache_ack +] ;
r e g _ r e q + ;

[r e g _ a c k +] ;
r e g _ r e q − ;

[reg_ack −] ;
cache_ req − ;

[cache_ack −] ;
cache_op1 − ;

[cache_op1_ack −] ;
cache_op2 + ;

[f r a g _ o p 2 _ w r i t e | frag_op2_mm | f r a g _ o p 2 _ r e a d] ;
done − ;

[done_ack −] ;
mem_op_ack+ ;

[mem_op−] ;
mem_op_ack− ;

]

f r a g _ o p 2 _ w r i t e :
[c a c h e _ o p 2 _ w r i t e +] ;

c a c h e _ r e q + ;
[cache_ack +] ;

cache_ req − ;
[cache_ack −] ;

cache_a rb − ;
[cache_gn t −] ;

done+ ;
[done_ack +] ;

cache_op2 − ;
[c a c h e _ o p 2 _ w r i t e −] ;

frag_op2_mm :
[cache_op2_mm+] ;

cache_a rb − ;

206

[cache_gn t −] ;
t r a n s a c t i o n _ r e q + ;

[t r a n s a c t i o n _ a c k +] ;
t r a n s a c t i o n _ r e q − ;

[t r a n s a c t i o n _ a c k −] ;
cache_op2 − ;

[cache_op2_mm −] ;
P0

f r a g _ o p 2 _ r e a d :
[c a c h e _ o p 2 _ r e a d +] ;

cache_a rb − ;
[cache_gn t −] ;

done+ ;
[done_ack +] ;

cache_op2 − ;
[cache_op2_read −] ;

Listing 35. CSP implementation: sndr core iface.

207

A.6 Sender component controller handling message collision detection.

module c o n t r o l l e r ;

i n p u t s l o g _ c h e c k gmv a c k _ s n d r i n _ l o g _ y i n _ l o g _ n addr_same a d d r _ d i f f ;

o u t p u t s l o g _ c l r l o g _ a b r t gmv_ack r e q _ s n d r i n _ l o g addr_cmp ;

e x p l i c i t _ p l a c e P0 ;
e x p l i c i t _ p l a c e P1 ;
e x p l i c i t _ p l a c e P2 ;

main s n d r _ l o g c h e c k ;

f r a g m e n t f r a g _ l o g _ c h e c k _ s e g m e n t ;
f r a g m e n t f rag_gmv_segment ;

f r a g m e n t f r a g _ i n _ l o g _ y ;
f r a g m e n t f r a g _ i n _ l o g _ n ;
f r a g m e n t f r a g _ a d d r _ s a m e ;
f r a g m e n t f r a g _ a d d r _ d i f f ;

l o o p _ p l a c e [l o g _ a b r t − l o g _ c l r −] − >[l o g _ c h e c k +] ;

marking [l o g _ a b r t − l o g _ c l r −] − >[l o g _ c h e c k +] ;
marking [l o g _ a b r t − gmv_ack − gmv−] − >[gmv +] ;

e n d i n t e r f a c e

s n d r _ l o g c h e c k :
f r a g _ l o g _ c h e c k _ s e g m e n t : f rag_gmv_segment

f r a g _ l o g _ c h e c k _ s e g m e n t :
* [

[l o g _ c h e c k +] ;
r e q _ s n d r + ;

[a c k _ s n d r +] ;
i n _ l o g + ;

[f r a g _ i n _ l o g _ y | f r a g _ i n _ l o g _ n] ;
]

f r a g _ i n _ l o g _ y :
[i n _ l o g _ y +] ;

i n _ l o g − ;
[i n_ log_y −] ;

r e q _ s n d r − ;
[ack_sndr −] ;

P0 ;
P2=>addr_cmp+ ;

[f r a g _ a d d r _ s a m e | f r a g _ a d d r _ d i f f] ;

f r a g _ i n _ l o g _ n :
[i n _ l o g _ n +] ;

i n _ l o g − ;
[i n_ log_n −] ;

r e q _ s n d r − ;
[ack_sndr −] ;

l o g _ c l r + ;
[log_check −] ;

l o g _ c l r − ;

f r a g _ a d d r _ s a m e :
[addr_same+] ;

addr_cmp − ;
[addr_same −] ;

gmv_ack+ ;
[gmv−] ;

208

gmv_ack − ;
[l o g _ a b r t +] ;

log_check − ;
[l o g _ a b r t −=>P1] ;

f r a g _ a d d r _ d i f f :
[a d d r _ d i f f +] ;

addr_cmp − ;
[a d d r _ d i f f −] ;

gmv_ack+ ;
[gmv−] ;

gmv_ack − =>P0 ;
P1

frag_gmv_segment :
P1

[gmv+] ;
P2

[gmv−] ;
P1

Listing 36. CSP implementation: sndr logcheck.

209

A.7 Sender component main controller

module c o n t r o l l e r ;

i n p u t s msg_va l i d t r a n s a c t i o n _ r e q l o g _ c l r l o g _ a b r t send_ack ;

o u t p u t s msg_ack t r a n s a c t i o n _ a c k l o g _ c h e c k send ;

e x p l i c i t _ p l a c e P0 ;

l o o p _ p l a c e [msg_ack −] − >[msg_va l id +] ;
l o o p _ p l a c e [t r a n s a c t i o n _ a c k −] − >[t r a n s a c t i o n _ r e q +] ;

marking [msg_ack −] − >[msg_va l i d +] ;
marking [t r a n s a c t i o n _ a c k −] − >[t r a n s a c t i o n _ r e q +] ;
marking [msg_ack − t r a n s a c t i o n _ a c k −] − >[msg_ack+ l o g _ c h e c k +] ;

main sndr_main ;

f r a g m e n t f r ag_msg_ack_f low ;
f r a g m e n t f r a g _ t r a n s a c t i o n _ f l o w ;

e n d i n t e r f a c e

sndr_main :
f r ag_msg_ack_f low : f r a g _ t r a n s a c t i o n _ f l o w

f rag_msg_ack_f low :
* [

[msg_va l id +] ;
P0=>msg_ack+ ;

[msg_val id −] ;
msg_ack −=>P0 ;

]

f r a g _ t r a n s a c t i o n _ f l o w :
* [

[t r a n s a c t i o n _ r e q +] ;
P0=> l o g _ c h e c k + ;

[(
[l o g _ a b r t +] ;

log_check − ;
[l o g _ a b r t −] ;

) | (
[l o g _ c l r +] ;

send + ;
[send_ack +] ;

send − ;
[send_ack −] ;

log_check − ;
[l o g _ c l r −] ;

)
] ;

t r a n s a c t i o n _ a c k + ;
[t r a n s a c t i o n _ r e q −] ;

t r a n s a c t i o n _ a c k − =>P0 ;
]

Listing 37. CSP implementation: sndr main.

210

Appendix B
COMPLETE TEST RESULTS

Table 3
Full Test Results

Model Test Duration Pwr PTPX Pwr Calc. Energy Area
[ns] [mW] [mW] [J] [µm2]

async1 case00_t1 10 0.1548 0.1522 1.522∗10−12 759.890
case00_t2 18.758 0.2974 0.2997 5.621∗10−12

case00_t3 15.393 0.2123 0.2096 3.226∗10−12

pwr_t1 1000 0.1542 0.1528 1.526∗10−10

pwr_t2 4709.420 0.3245 0.3273 1.542∗10−9

pwr_t3 7974.899 0.2936 0.2970 2.369∗10−9

async2 case00_t1 10 0.1548 0.1522 1.522∗10−12 759.890
case00_t2 15.247 0.3298 0.3320 5.061∗10−12

case00_t3 13.449 0.2397 0.2363 3.178∗10−12

pwr_t1 1000 0.1542 0.1528 1.528∗10−10

pwr_t2 3592.381 0.3647 0.372 1.336∗10−9

pwr_t3 6386.365 0.3337 0.3379 2.158∗10∗−9

sync1 case00_t1 10 5.253 5.126 5.125∗10−11 1053.082
case00_t2 5.301 5.618 5.550 2.942∗10−11

case00_t3 12.340 5.357 5.243 6.470∗10−11

pwr_t1 1000 5.311 5.159 5.159∗10−9

pwr_t2 1349.901 8.851 5.742 7.752∗10−9

pwr_t3 2199.141 5.786 5.881 1.293∗10−8

sync2 case00_t1 10 1.619 1.628 1.602∗10−11 944.849
case00_t2 18.551 1.738 1.734 3.217∗10−11

case00_t3 18.094 1.660 1.655 2.995∗10−11

pwr_t1 1000 1.651 1.628 1.628∗10−9

pwr_t2 4724.651 1.784 1.805 8.528∗10−9

pwr_t3 7696.845 1.757 1.793 1.380∗10−8

List of the MESI controller device build configurations:

1 async1: Asynchronous design with environment response delay matched single

clock cycle time of design sync1.

2 async2: Asynchronous design with environment response delay of 1ps to prevent

environment interfering with power calculation.

3 sync1: Synchronous design with clock cycle of 200ps (5GHz).

211

4 sync2: Synchronous design with total time required to execute pwr_t2 test case

matched async1 through extending the clock time. The sync2 design is used to

obtain power results by equating the timeframe in which the energy is counted for

both designs.

List of the specific test runs performed on the evaluated model of MESI controller:

1 case00_t1: Idle test case, no bus or cpu transaction only responder crawling through

pending log, fixed duration 10ns.

2 case00_t2: Test case where core requests memory address not available in local

cache thus triggering entire request transaction over the bus with response.

3 case00_t3: Test case where incoming bus message requests address present in local

cache thus triggering response.

4 pwr_t1: Same as case00_t1 but with duration of 1000ns.

5 pwr_t2: Same as case00_t2 times 250.

6 pwr_t3: Same as case00_t3 times 250.

Cell area sizes of sync2 design:

• Before P&R (no clock tree): 751.927µm2

• After P&R (with added clock tree): 944.849µm2

• Percentage of the area as clock tree: 20.4183%

Cell area sizes of async design:

• Without delay matching elements: 710.816µm2

• After delay matching elements added: 759.899µm2

• Percentage of the area as delay matching elements: 6.45804%

212

Appendix C
REFERENCE CSP TO STG PARSER SOURCE CODE

The reference concept preview implementation of the CSP to STG parser is available

under the URL: https://github.com/tchad/CSP_to_STG_parser.

213

	An Efficient Design Methodology for Complex Sequential Asynchronous Digital Circuits
	Recommended Citation

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Literature Survey
	General Introductory Literature
	Asynchronous Controller Design and Synthesis
	Circuit Level Element Design
	CSP Language Applications in Asynchronous Logic Design
	Multi-Core Systems and Cache Coherency
	Practical Applications of Asynchronous Logic Design
	Null Convention Logic as an Alternative Approach in Asynchronous Logic Design

	Theory of Asynchronous Logic Design Review
	The input-output mode asynchronous sequential system
	State Graph representation and Complete State Coding
	Synthesis to gate level representation.

	Handshake protocols and communication between asynchronous modules
	CSP notation in describing asynchronous sequential transition system

	Complex Sequential Asynchronous Logic Design Methodology
	Model template organization
	Part 1: Stage 1 Model for behavioral design and verification.
	Using CSP in modeling sequential behavior of the controller
	The Controller
	Flow Support Elements
	Additional components
	Putting the model together

	Design of the CSP to STG parser
	Model representation in CSP
	Translation from CSP to STG
	Synthesis from the STG model using Petrify

	Part 2: Stage 2 Model for logic synthesis
	Asynchronous Extension to standard set of ASIC primitives
	Model Synthesis and delay matching
	Bottom-up selective module synthesis
	Post-synthesis timing analysis and delay matching
	Post Place and Route delay matching through ECO
	Synthesis of the Controller Circuit

	Case Study: Asynchronous MESI Cache Coherence Controller with Split Transaction Bus
	Cache Coherence MESI Algorithm and Split Transaction Bus Review
	Cache coherency controller design goals
	Cache coherency controller design assumptions
	Asynchronous Cache Coherence Controller Design
	Pending Request Log component design
	Receiver component design
	Responder component design
	Sender component design
	Controller module

	Reference synchronous design
	Note on synthesis approach of the Controller circuit

	Future Improvements.
	Improvements to the methodology and tools
	The FSE completion detection
	Difficult syntax of the confusion block
	Passing CSP fragments as arguments to other CSP fragments
	Full support of standard C-implementation synthesis of set and reset Boolean functions

	Improvements to the cache coherency controller design
	Handling main memory regions with different properties
	Implementing cache line size larger than a single word
	Removing the assumption that memory is always slower than the cores
	The PLOG bottleneck
	Extending the number of cores, asynchronous arbiter bottleneck

	Analysis and Results
	Practical considerations for efficient asynchronous design
	Approach to system verification
	Results

	Conclusions
	Literature Cited
	Appendix A: The CSP source code for the controllers
	Pending-Log component controller.
	Receiver component controller.
	Responder component controller.
	Sender component controller handling bus transmission.
	Sender component controller handling interfacing with CPU core.
	Sender component controller handling message collision detection.
	Sender component main controller

	Appendix B: Complete test results
	Appendix C: Reference CSP to STG parser source code

