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Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing
inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical
invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of
rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding
harmonic oscillator.
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I. INTRODUCTION

There is nowadays considerable interest in speeding up
adiabatic processes. Adiabatic methods to manipulate and
prepare states, in principle in a robust way, are ubiquitous
in atomic and molecular physics, nuclear magnetic resonance,
optics, and other fields, but the times required may be too
long for some applications. Moreover, the ideal robustness
may be spoiled by the accumulation of perturbations and
decoherence due to noise and undesired interactions. We refer
to fast time-dependent processes that reproduce the effect of
a slow, adiabatic driving of a quantum system as “shortcuts
to adiabaticity” [1–27]. We also apply the term to the inverse
engineering methods used to design these processes. In the
adiabatic process of reference, the external control parameters
are modified slowly from some initial configuration to a final
one. In the corresponding shortcut, the system is driven in a
predetermined short time to a final state that reproduces in
the instantaneous basis the initial populations, as the adiabatic
process would do, but possibly allowing for some transient
excitation along the way. Studies and experiments to speed
up adiabatic processes have been carried out for transport
[4–6,12,26,27], wave splitting [8,9], trap expansions and
compressions [7,11,13,15–21,23–25], or internal state control
[1–3,10,14,22]. These studies have so far been performed
for Hermitian Hamiltonians, but many systems admit an
effective non-Hermitian description. In this paper, we put
forward shortcuts to adiabaticity techniques for non-Hermitian
Hamiltonians. Specifically, we shall generalize the inverse
engineering method proposed by Demirplak, Rice [1–3],
and Berry [10], and the one based on dynamical invariants
[7,13]. While these methods are intimately connected, as
shown in Ref. [22], and in fact potentially equivalent, in
standard applications they are used in different ways and
provide different answers, so we shall consider them separately
here. As study cases, we shall discuss the laser-driven, fast
population inversion of a two-level decaying atom and the
motion of a classical particle in a harmonic oscillator with
time-dependent frequency.

A. Non-Hermitian Hamiltonians: Basic formulas

Non-Hermitian Hamiltonians typically describe subsys-
tems of a larger system [28]. We shall first review a ba-
sic set of relations and notation [28] for a non-Hermitian

time-dependent Hamiltonian H0(t) with N nondegenerate
right eigenstates {|n(t)〉}, n = 1,2...,N ,

H0(t)|n(t)〉 = En(t)|n(t)〉, (1)

and biorthogonal partners {|n̂(t)〉},
H

†
0 (t)|n̂(t)〉 = E∗

n(t)|n̂(t)〉, (2)

where the asterisk means “complex conjugate” and the dagger
denotes the adjoint operator. They satisfy

〈n̂(t)|m(t)〉 = δnm (3)

and the closure relations∑
n

|n̂(t)〉〈n(t)| =
∑

n

|n(t)〉〈n̂(t)| = 1. (4)

〈n̂(t)| is the left eigenvector of H0(t),

〈n̂(t)|H0(t) = 〈n̂(t)|En(t), (5)

and 〈n(t)| the left eigenvector of H
†
0 (t),

〈n(t)|H †
0 (t) = 〈n(t)|E∗

n(t). (6)

We can thus write the Hamiltonian and its adjoint as

H0(t) =
∑

n

|n(t)〉En(t)〈n̂(t)|,
(7)

H
†
0 (t) =

∑
n

|n̂(t)〉E∗
n(t)〈n(t)|.

The time-dependent Schrödinger equations for a generic
state |�(t)〉 and for its biorthogonal partner |�̂(t)〉 satisfying
〈�̂(t)|�(t)〉 = 1 are

ih̄∂t |�(t)〉 = H0(t)|�(t)〉, (8)

ih̄∂t |�̂(t)〉 = H
†
0 (t)|�̂(t)〉. (9)

II. ADIABATICITY FOR NON-HERMITIAN
HAMILTONIANS

Before studying the shortcuts, we need to set the adia-
batic approximation when H0(t) is non-Hermitian [29,30]. A
general time-dependent state |�(t)〉 is a linear combination
of instantaneous (right) eigenvectors |n(t)〉 of H0(t) with
time-dependent coefficients. Similarly, |�̂(t)〉 is a linear
combination of instantaneous (right) eigenvectors |n̂(t)〉 of
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H
†
0 (t). In the adiabatic approximation, if only one of these

eigenvectors is populated initially, it will remain so throughout
the time evolution. In other words, we consider approximate
solutions of Eqs. (8) and (9) of the form

|ϕn(t)〉 = eiβn(t)|n(t)〉, (10)

|ϕ̂n(t)〉 = eiβ̂n(t)|n̂(t)〉. (11)

Introducing these two vectors into Eqs. (8) and (9), respec-
tively, we have

iβ̇n|n(t)〉 + |∂tn(t)〉 = H0(t)

ih̄
|n(t)〉, (12)

i ˙̂βn|n̂(t)〉 + |∂t n̂(t)〉 = H
†
0 (t)

ih̄
|n̂(t)〉, (13)

where the dot denotes the derivative with respect to time. In
general, Eqs. (12) and (13) are only approximately correct
since the solution Ansätze, Eqs. (10) and (11), are only
approximate. Multiplying Eq. (12) by 〈n̂(t)| and Eq. (13) by
〈n(t)|, taking into account Eqs. (1) and (2), and integrating, we
find

βn(t) =
∫ t

0

[−En(t ′)
h̄

+ i〈n̂(t ′)|∂t ′n(t ′)〉
]

dt ′, (14)

β̂n(t) =
∫ t

0

[−E∗
n(t ′)
h̄

+ i〈n(t ′)|∂t ′ n̂(t ′)〉
]

dt ′, (15)

where the initial phases are set to zero. As 〈n(t)|∂t n̂〉∗ =
〈∂t n̂|n(t)〉 and, from Eq. (3), 〈∂t n̂|n(t)〉 = −〈n̂(t)|∂tn〉, we
have that β̂n = β∗

n . βn(t) and β̂n(t) are the, generally complex,
adiabatic phases (with a dynamical part depending on the
instantaneous eigenvalue and a geometric part) that generalize
the real adiabatic phase of Hermitian systems [31].

A. Adiabaticity condition for time-dependent non-Hermitian
Hamiltonians

The adiabaticity condition for time-dependent Hermitian
Hamiltonians is given by

|〈n(t)|∂tm(t)〉| � 1

h̄
|En(t) − Em(t)|, n �= m, (16)

in terms of instantaneous eigenstates and eigenvalues. Follow-
ing closely its derivation in Ref. [32], we may generalize it for
non-Hermitian Hamiltonians as

|〈n̂(t)|∂tm(t)〉| � 1

h̄
|En(t) − Em(t)|, n �= m. (17)

To that end we start with the expansion

|�(t)〉 =
∑

n

an(t)e
1
ih̄

∫ t

0 En(t ′)dt ′ |n(t)〉, (18)

which, inserted into Eq. (8) gives a system of differential
equations for the amplitudes,

ȧn(t) =
∑
k �=n

ak(t)

h̄ωnk(t)

[
exp

(
i

∫ t

0
ωnk(t ′)dt ′

)]

×
〈
n̂(t)

∣∣∣∣∂H

∂t

∣∣∣∣ k(t)

〉
, (19)

where ωnk(t) := [En(t) − Ek(t)]/h̄. Then we take |�(0)〉 =
|m(0)〉 at t = 0, make the approximation ak(t) = δkm on the

right-hand side of Eq. 19, use 〈n̂(t)| ∂H
∂t

|m(t)〉 = [Em(t) −
En(t)]〈n̂(t)|∂tm(t)〉, and integrate to get

|an| ∼
∣∣∣∣ h̄〈n̂(t)|∂tm(t)〉
[En(t) − Em(t)]

∣∣∣∣ , n �= m. (20)

The adiabaticity condition requires that this is much smaller
than 1, namely, Eq. (17).

III. TRANSITIONLESS DRIVING ALGORITHM

In Refs. [1–3], Demirplak and Rice, and later Berry [10],
proposed a method to design a Hermitian Hamiltonian H (t)
for which the approximate adiabatic dynamics driven by
the Hermitian Hamiltonian H0(t) becomes exact. We shall
generalize this method for non-Hermitian Hamiltonians.

As in Ref. [10], we now impose that all |ϕn(t)〉 given by
Eqs. (10) and (14) satisfy exactly the Schrödinger equation for
a yet unknown H (t),

ih̄∂t |ϕn(t)〉 = H (t)|ϕn(t)〉. (21)

Similarly,

ih̄∂t |ϕ̂n(t)〉 = H †(t)|ϕ̂n(t)〉. (22)

The states |ϕn(t)〉 and |ϕ̂n(t)〉 can be written in terms of the
corresponding evolution operators U (t) and Û (t),

|ϕn(t)〉 = U (t)|n(0)〉,
(23)|ϕ̂n(t)〉 = Û (t)|n̂(0)〉.

The Hamiltonian H (t) can be found from

ih̄∂tU (t) = H (t)U (t), (24)

as

H (t) = ih̄∂tU (t)Û †(t), (25)

since Û †(t)U (t) = 1op [28]. The evolution operators can be
written as

U (t) =
∑

n

eiβn(t)|n(t)〉〈n̂(0)|,
(26)

Û (t) =
∑

n

eiβ̂n(t)|n̂(t)〉〈n(0)|.

Using now Eq. (25),

H (t) = H0(t) + H1(t), (27)

where

H1(t) = ih̄
∑

n

[|∂tn(t)〉〈n̂(t)|

−〈n̂(t)|∂tn(t)〉|n(t)〉〈n̂(t)|]. (28)

H (t) drives the system along the adiabatic paths defined by
H0(t).

As noted in Refs. [10] and [22], this Hamiltonian is not
unique. For a given set {|n(t)〉}, the same final populations are
found by choosing different phases. Let us rewrite |ϕn(t)〉 and
|ϕ̂n(t)〉 in terms of arbitrary phases, ξn(t) and ξ̂n(t), which we
now regard as manipulable functions obeying ξn(t) = ξ̂ ∗

n (t) so
that 〈ϕ̂n(t)|ϕn(t)〉 = 1,

|ϕn(t)〉 = eiξn(t)|n(t)〉, |ϕ̂n(t)〉 = eiξ̂n(t)|n̂(t)〉. (29)
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We assume ξn(0) = ξ̂n(0) = 0 and define the new evolution
operators

Uξ (t) =
∑

n

eiξn(t)|n(t)〉〈n̂(0)|,
(30)

Ûξ (t) =
∑

n

eiξ̂n(t)|n̂(t)〉〈n(0)|.

From Eq. (25), the corresponding Hamiltonian becomes

Hξ (t) = −h̄
∑

n

|n(t)〉ξ̇n(t)〈n̂(t)| + ih̄
∑

n

|∂tn(t)〉〈n̂(t)|. (31)

IV. TRANSITIONLESS DRIVING ALGORITHM APPLIED
TO A DECAYING TWO-LEVEL ATOM

A. H1(t) applied to a decaying two-level atom

As an application of the general approach of the previous
section, we shall speed up adiabatic processes in a two-level
atom with spontaneous decay illuminated by a chirped laser
pulse, i.e., one with a time-dependent frequency. A particular
case of practical importance is population inversion, which
generalizes the shortcut techniques described for a Hermitian
two-level system [1–3,10,14].

If the decayed atom escapes from the trap by recoil,
a Hamiltonian (rather than master equation) description is
enough for the trapped atom [33,34]. We shall also assume
a semiclassical treatment of the interaction between a laser
electric field linearly polarized and a decay rate (inverse
life-time) 	 from the excited state.

Applying the electric dipole approximation, a laser-adapted
interaction picture, and the rotating wave approximation,
the Hamiltonian, disregarding atomic motion, is (see, e.g.,
Ref. [35]),

Ha0(t) = h̄

2

(−
(t) �R(t)
�R(t) 
(t) − i	

)
, (32)

in the atomic basis |1〉 = ( 1
0 ), |2〉 = ( 0

1 ). In this description,

the norm of the state decreases since, if an atom decays
spontaneously from level 2, it is eliminated from the quantum
ensemble. The detuning from the atomic transition frequency
ω0 is 
(t) = ω0 − ωi(t), where ωi(t) is the time-dependent
instantaneous field frequency. We consider a pulse with slowly
varying envelope so that the (real) Rabi frequency �R(t)
depends on time too. In the example below, we shall take 	

as a constant, although, in a general case, it could also depend
on time, 	 = 	(t), as an effective decay rate controlled by
further interactions; see, e.g., Ref. [34]. The eigenvalues of
this Hamiltonian are

E±(t) = h̄

4

{ − i	 ±
√

−[	 + 2i
(t)]2 + 4�2
R(t)

}
, (33)

and the normalized eigenstates are

|χ+(t)〉 = sin
(α

2

)
|1〉 + cos

(α

2

)
|2〉,

(34)
|χ−(t)〉 = cos

(α

2

)
|1〉 − sin

(α

2

)
|2〉,

where the mixing angle α = α(t) is complex and defined as

tan α = �R


 − i	
. (35)

The adjoint of Ha0(t) is

H
†
a0(t) = h̄

2

(−
(t) �R(t)
�R(t) 
(t) + i	

)
, (36)

with eigenvalues E∗
±(t) and normalized eigenstates

|χ̂+(t)〉 = sin

(
α∗

2

)
|1〉 + cos

(
α∗

2

)
|2〉,

(37)

|χ̂−(t)〉 = cos

(
α∗

2

)
|1〉 − sin

(
α∗

2

)
|2〉.

Note that the coefficients are complex conjugate of those in
Eq. (34) because Ha0(t) is equal to its transpose [28].

For this system, the supplementary Hamiltonian in Eq. (28)
takes the form

Ha1(t) = ih̄[|∂tχ+(t)〉〈χ̂+(t)|
−〈χ̂+(t)|∂tχ+(t)〉|χ+(t)〉〈χ̂+(t)|
+|∂tχ−(t)〉〈χ̂−(t)|
−〈χ̂−(t)|∂tχ−(t)〉|χ−(t)〉〈χ̂−(t)|], (38)

where, according to Eqs. (34) and (37),

〈χ̂±(t)|∂tχ±(t)〉 = 0,
(39)

〈χ̂∓(t)|∂tχ±(t)〉 = ± α̇

2
,

so

Ha1(t) = h̄

(
0 C(t)

−C(t) 0

)
, (40)

where C(t) = iα̇/2 and

α̇ = �̇R[
(t) − i	/2] − �R(t)(
̇ − i	̇/2)

[
(t) − i	/2]2 + �2
R(t)

. (41)

Then, the Hamiltonian Ha(t) = Ha0 + Ha1 takes the form

Ha(t) = h̄

2

( −
(t) �R(t) + 2C(t)
�R(t) − 2C(t) 
(t) − i	

)
. (42)

The practical realization of this Hamiltonian is not straightfor-
ward. In particular, the off-diagonal terms are not the complex
conjugate of each other unless the real part of C(t) becomes
zero, so in general there is no simple laser interaction leading
to Eq. (42). We shall explore in the following subsection the
possibility to avoid this result by playing with different phases,
as in Eq. (31).

B. Hξ (t) applied to a decaying two-level atom

For the decaying two-level atom, using Eq. (31) with
phases ξ+ = ξ+(t) and ξ− = ξ−(t) associated with |χ+(t)〉 and
|χ−(t)〉, we find

Hξa(t)/h̄ =[
− sin2

(
α
2

)
ξ̇+ − cos2

(
α
2

)
ξ̇− sin α

2 (ξ̇− − ξ̇+) + C

sin α
2 (ξ̇− − ξ̇+) − C − cos2

(
α
2

)
ξ̇+ − sin2

(
α
2

)
ξ̇−

]
.

(43)
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The phases in the matrix elements Hξa,12(t) and Hξa,21(t) only
affect the first terms, which are equal. Therefore, in general,
the manipulation of the phases is not enough to make the
nondiagonal terms complex conjugate of each other since this
requires not only Im[(ξ̇− − ξ̇+) sin α] = 0 but Re[C(t)] = 0,
too. We also add potentially complex terms in the diagonal
that again could complicate the physical realization.

In summary, the phase manipulation does not help to
implement the shortcut. In some parameter regimes, however,
an approximation to Ha1 that leads to essentially the same
results may be easily realized, as discussed next.

C. Forced population inversion

We study now the laser-driven coherent decay from the
upper level of a two-level system with slow spontaneous
decay. This type of decay process is of interest as it occurs
coherently, unlike the incoherent spontaneous emission. The
coherent decay may be driven adiabatically with a “rapid”
adiabatic passage (RAP) technique [36], sweeping the laser
frequency across resonance. The adjective “rapid” here could
be misleading: it simply means “faster than the spontaneous
decay,” but as the approach is based on an adiabatic passage,
it fails for short enough pulse times.

For the two-level decaying atom, the adiabaticity condition,
Eq. (17), is

|〈χ̂+(t)|∂tχ−(t)〉| � 1

h̄
|E+(t) − E−(t)|. (44)

Introducing here Eqs. (33), (34), and (37), it takes the form

|α̇(t)| � |�(t)|, (45)

where �(t) =
√

−[	 + 2i
(t)]2 + 4�2
R(t). We shall provide

an example in which this condition fails and then apply the
Hamiltonian in Eq. (42) to remedy this problem and achieve a
fast full decay.

We consider a linearly chirped Gaussian pulse with detun-
ing 
(t) = ω0 − ωi(t) = −2Bt and Gaussian Rabi frequency
�R(t) = �0e

−At2
.

The initial conditions for the populations of the ground and
excited states are P1(0) = 0 and P2(0) = 1. In Fig. 1, we show
that the application of a RAP pulse with Ha0(t) is only partially
successful. Note the slow spontaneous decay before and after

FIG. 1. Population of the ground state, P1(t) (solid line), and
of the excited state, P2(t) (dashed line), for the Hamiltonian
Ha0(t). Parameters: 	 = 2π × 2 MHz, A = (2π )2 × 0.01 GHz2,
B = (2π )2 × 0.00025 GHz2, and �0 = 2π × 100 MHz.

FIG. 2. (Color online) Population of the ground state, P1(t) (solid
line), and of the excited state, P2(t) (dashed line), for the total
Hamiltonian Ha(t), coinciding with the populations P1(t) (triangles)
and P2(t) (circles) when Ha(t) is approximated by neglecting
Re[C(t)]. Parameters as described in the legend of Fig. 1.

the pulse and a faster forced transition during the pulse
around t = 0. The pulse duration is too short and adiabaticity
fails. Figure 2 shows the fast full population inversion when
adding the supplementary Hamiltonian Ha1(t), Eq. (40). This
Hamiltonian has off-diagonal terms with real and imaginary
parts depicted in Fig. 3. Whereas the imaginary parts, the
bigger bumps in Fig. 3, are realizable by a complementary laser
with orthogonal polarization [14], the real parts constitute a
non-Hermitian contribution. They are, however, small, and an
approximation of Ha1(t) neglecting them provides essentially
the same dynamics, as shown in Fig. 2. This remains valid in
the strong-driving regime in which 	 � �0 and the natural
lifetime is large compared to the duration of the forced decay.
Until a physical implementation of the real parts is discovered,
the application of this shortcut technique for population
inversion with spontaneous decay must therefore be limited
to this regime.

V. INVARIANTS-BASED INVERSE ENGINEERING

Lewis and Riesenfeld [37] proposed the use of dynami-
cal invariants of a quantum mechanical system to perform
expansions of arbitrary time-dependent wave functions by
superposition of eigenstates of the invariant. This may be
generalized to non-Hermitian Hamiltonians [38–40]. The
invariants for PT -symmetric Hamiltonians have also been
studied by Lohe [41]. We shall assume that for a Hamiltonian

FIG. 3. Real (solid line) and imaginary (dashed line) parts of C.
Parameters as described in the legend of Fig. 1.
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H0(t) with the features described in Sec. I A, there is a
generalized invariant I (t) that satisfies

∂I (t)

∂t
− i

h̄
[I (t),H0(t)] = 0, (46)

so that d
dt

〈�̂(t)|I (t)|�(t)〉 = 0. This is not an ordinary ex-
pectation value 〈�(t)|I (t)|�(t)〉/〈�(t)|�(t)〉. In this sense,
the concept of generalized invariant differs from the one for
Hermitian Hamiltonians. Note also that Eq. (46) implies as
well the invariance of more general matrix elements of the
form 〈�̂ ′(t)|I (t)|�(t)〉, in which |�̂ ′〉 is not necessarily the
partner of |�〉 but any state evolving with H

†
0 . An interesting

application is put forward in the following section.
Let us assume also that I (t) has a nondegenerate

complete biorthonormal set of instantaneous eigenstates,
{|ψn(t)〉,|ψ̂n(t)〉}, where n varies from 1 to N , that satisfy

I (t)|ψn(t)〉 = In(t)|ψn(t)〉, (47)

I †(t)|ψ̂n(t)〉 = I ∗
n (t)|ψ̂n(t)〉, (48)

〈ψ̂m(t)|ψn(t)〉 = δmn, (49)∑
n

|ψ̂n(t)〉〈ψn(t)| = 1. (50)

We can write the general solutions of the Schrödinger
equations for H0(t) and H

†
0 (t), Eqs. (8) and (9), as

|�(t)〉 =
∑

n

dne
iαn(t)|ψn(t)〉, (51)

|�̂(t)〉 =
∑

n

d̂ne
iα∗

n(t)|ψ̂n(t)〉, (52)

where the coefficients {dn} and {d̂n} do not depend on time,
and the generalized Lewis-Riesenfeld phases are

αn(t) =
∫ t

0
〈ψ̂n(t ′)|i ∂

∂t ′
− H (t ′)|ψn(t ′)〉dt ′. (53)

Inverse engineering techniques rely on designing the invariant
eigenvectors and phase factors first, possibly taking into ac-
count partial information on the structure of the Hamiltonian,
and then deducing the Hamiltonian from them.

VI. CLASSICAL PARTICLE IN AN EXPANDING
HARMONIC TRAP

It is possible to study the motion of a classical particle
with position q(t) and momentum p(t) in a harmonic trap
as a formal quantum two-level system with non-Hermitian
Hamiltonian, by rewriting the classical canonical equations of
motion in matrix form [38,39]. The Hamiltonian of a classical
harmonic oscillator with a time-dependent frequency ω(t) is

Hho(t) = p2

2m
+ 1

2
mω2(t)q2, (54)

where m is the mass of the particle. We shall study an expansion
from ω0 = ω(0) at t = 0 to ωf = ω(tf ) at the final time

t = tf , with ωf < ω0. The corresponding classical canonical
equations

q̇ = ∂Hho

∂p
= p(t)

m
, (55)

ṗ = −∂Hho

∂q
= −mω2(t)q(t), (56)

can be written, multiplying on both sides by i, as

i

(
q̇

ṗ

)
= i

(
0 1/m

−mω2(t) 0

) (
q(t)
p(t)

)
, (57)

due to their linear dependence on q and p. This has the form
of a Schrödinger-like equation (h̄ = 1) with the “effective”
non-Hermitian Hamiltonian

H(t) = i

(
0 1/m

−mω2(t) 0

)
(58)

and “state vector”

|ψ〉 =
(

q(t)
p(t)

)
. (59)

The analogy is useful, as we shall see, but formal, since this
Hamiltonian does not have units of energy, in fact different
matrix elements have different units as the “state vector”
components q and p have also different units. Moreover, the
usual interpretational rules for the formalism of a quantum
mechanical two-level system do not apply here. For example,
the state-vector components contain the information of a
classical trajectory and have nothing to do with probability
amplitudes. Also, unlike the quantum state, which requires
normalization, the classical state can be multiplied by any
constant, and each constant implies a different classical
trajectory and a different total energy. In spite of these strong
interpretational discrepancies, the analogy has a practical
value, as it allows us to express the classical dynamics “a
la quantum,” making use of linear superposition of eigenstates
and matrix operations. We may thus apply the generalized
invariant theory and expand the “state vector” in terms of
formal eigenvectors of the generalized invariants to apply
inverse engineering methods and design a trap expansion
without final excitation. Defining the generalized invariant
matrix as [39]

I(t) =
(

b(t) c(t)
−a(t) −b(t)

)
, (60)

and imposing Eq. (46), without h̄, we find

a(t) = m

[
ω0

�2(t)
+ 1

ω0
�̇2(t)

]
, (61)

b(t) = −1

ω0
�(t)�̇(t), (62)

c(t) = �2(t)

ω0m
, (63)

where the dimensionless scaling function �(t) satisfies the
auxiliary equation

�̈(t) + ω2(t)�(t) = ω2
0

�3(t)
. (64)
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This is the Ermakov equation, the same equation for the scaling
function that defines the invariants in the expansion of the
quantum harmonic oscillator [13].

The physical meaning of the generalized invariant matrix is
better appreciated by noticing that matrix elements of the form
〈ψ̂ ′(t)|I(t)|ψ(t)〉, where |ψ̂ ′〉 is any vector evolving with H†,
remain constant. Since Hamilton’s equations, Eq. (57), may
also be written as

i

(−ṗ

q̇

)
= H†

(−p(t)
q(t)

)
, (65)

we notice that the classical trajectory written as

|ψ̂ ′(t)〉 =
(−p(t)

q(t)

)
(66)

evolves according to the Hermitian adjoint Hamiltonian H†.
The matrix element 〈ψ̂ ′(t)|I(t)|ψ(t)〉 with Eqs. (59) and (66)
gives then the known quadratic Ermakov invariant for the
time-dependent harmonic oscillator defined up to an arbitrary
constant by a combination of terms proportional to p2, q2, and
qp; see, e.g., Refs. [13,42].

For I(t), whose eigenvalues are I± = ±i, the eigenstates
are

|ψ±(t)〉 =
(

c(t)

±i [1 ± ib(t)]

)
, (67)

These eigenstates may be regarded as intermediary elements of
the calculation, but, unlike other applications of the invariant
theory to true quantum systems, they do not have, when
isolated, a direct physical trajectory realization, which requires
real position and momentum.

Setting also the partners

|ψ̂±(t)〉 =
(

a(t)/2
1∓ib(t)

± i
2

)
, (68)

the Lewis-Riesenfeld phases α±(t), Eq. (53), are now

α±(t) =
∫ t

0
〈ψ̂±(t ′)|i ∂

∂t ′
− H(t ′)|ψ±(t ′)〉dt ′

= i ln

√
c(t)

c(0)
± ω0

∫ t

0

1

�2(t ′)
dt ′. (69)

Then, the phase-space trajectory is given by solving the formal
Schrödinger equation, making use of the superposition of
eigenvectors of the generalized invariant,(

q(t)
p(t)

)
= d+eiα+(t)|ψ+(t)〉 + d−eiα−(t)|ψ−(t)〉

=R

(
�(t) cos θ (t)

−mω0
�(t) sin θ (t) + m�̇(t) cos θ (t)

)
, (70)

where R = 2r
√

c(0)/mω0 is the position amplitude of the
trajectory for the trap fixed at the initial frequency, d+ = d∗

− =
r exp (iθ0) can be determined by the initial conditions at t = 0,
and

θ (t) = ω0

∫ t

0

1

�2(t ′)
dt ′ + θ0, (71)

µ

µ

FIG. 4. (Color online) Parametric velocity-position trajectory.
The initial ellipse (solid blue thin line) and the final ellipse (red dashed
line) are connected by the shortcut trajectory (green solid thick line).
Parameters: θ0 = 0 corresponding to q0 = q(t = 0) = 1 μm and v0 =
v(t = 0) = 0 μm/ms, ω0 = 2π × 250 Hz, ωf = 2π × 2.5 Hz, tf =
25 ms, and the mass of an atom of rubidium-87, m = 1.44 × 10−25 kg.

with θ0 the initial phase.1 Equation (70) is the important result
that relates the classical trajectory to the scaling function �(t).
In the inverse method, we can manipulate and design �(t) so
as to achieve a desired objective. ω(t) will be then obtained
from the Ermakov equation, Eq. (64).

Imposing the boundary conditions �(0) = 1 and �̇(0) = 0,
and �(tf ) = (ω0/ωf )1/2 and �̇(tf ) = 0, which consistently
with the Ermakov equation imply �̈(0) = �̈(tf ) = 0, we
find for the energy E0 := E(t = 0) = ω2

0R
2m/2 and Ef :=

E(tf ) = ωf E0/ω0. In other words, these boundary conditions
guarantee that the value of the classical adiabatic invariant
E(t)/ω(t) at initial and final times coincides, even though it
may take different values at intermediate times. This is the
meaning of “no final excitation” in this context.

To design the expansion process fully, �(t) has to be
interpolated at intermediate times. We use here for simplicity
a polynomial form, �(t) = ∑5

n=0 rnt
n, where the coefficients

rn are fixed from the boundary conditions. Then we get ω(t)
from the Ermakov equation,

ω(t) =
√

ω2
0

�4(t)
− �̈(t)

�(t)
. (72)

In Fig. 4, we have represented a shortcut trajectory in phase
space between the initial and final times, t = 0 and t = tf , for
the frequency ω(t) given by Eq. (72). We have also added to
the trajectory a period T0 = 2π/ω0 before t = 0, and a period
Tf = 2π/ωf after t = tf , for which the particle evolves for
fixed ω0 and ωf , respectively, so as to depict complete initial
and final phase-space ellipses. It is clear from the figure that
the shortcut trajectory that connects the initial and final ellipses
is not an adiabatic path. Such a path would be formed by a
succession of ellipses slowly varying from the initial to the
final ones.

1The linear invariants of the classical harmonic oscillator [41,42]
could be obtained from 〈�̂ ′|I|�〉 by using instead of Eqs. (59) or
(66) one of the eigenvectors of I times the corresponding Lewis-
Riesenfeld phase factor. This takes us away from our current objective
so we shall not discuss it further.
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VII. DISCUSSION AND CONCLUSION

We have generalized shortcut to adiabaticity techniques for
non-Hermitian Hamiltonian systems and provided application
examples. Experimental implementations are at reach both for
internal state population inversion and time-dependent har-
monic oscillators. Related open questions are the application
of similar concepts to master equations, or developing means
to implement arbitrary non-Hermitian interactions. Another
interesting research avenue is to combine shortcut techniques
with optimal control [19,23] taking into account physically
imposed constraints.

The present work bears some common elements with
the quantum brachistochrone problem [43] solved with non-
Hermitian Hamiltonians [44–48], so it is worth stressing the
similarities and differences. In the brachistochrone problem,
an initial state |ψI 〉 and a final state |ψF 〉 are fixed, and the ob-
jective is to find the Hamiltonian (typically time independent)
that carries ψI to ψF in the shortest possible time subject
to a constrained variance. If the Hamiltonian is Hermitian,
this leads to the minimal time given by Fleming’s bound
[49], whereas if non-Hermitian Hamiltonians are allowed, the
process time can go to zero. This has been worked out in detail
in particular for the so-called PT -symmetric Hamiltonians
with real eigenvalues [44,45,47,48], although the phenomenon
is more general [46]. The problem that remains is to physically
realize the resulting Hamiltonian, and a way out could be to
embed the system into a larger one by using the Naimark
dilation theorem [50].

Among the differences with the present work let us point
out first some that apply independently of the use of non-
Hermitian Hamiltonians: in the brachistochrone problem, the
initial and final states are fixed so in general the optimized
Hamiltonian depends on them, and no reference is made to an
adiabatic process. In a shortcuts-to-adiabaticity approach, the
starting point is instead a given adiabatic process defined by a

Hamiltonian with time-dependent parameters. Typically, the
boundary conditions at initial and final times are thus set by
an initial and a final form of the Hamiltonian, and the goal is
to carry out any initial state from initial to final configurations
without final excitation, faster than the reference adiabatic pro-
cess. The constraints that may be applied to choose among or
optimize the shortcut paths may vary depending on the physical
system and are not limited to the energy variance. The energy
itself may need to be bounded, to avoid an excessive transient
excitation. In a transport problem, for example, we might also
want or need to impose constraints on the trajectory domain
in physical space [26,27]. Obviously, several constraints may
also be applied to the quantum brachistochrone [43].

As for the nonhermiticity of the Hamiltonian, in the
brachistochrone it is proposed as a way to provide dynamics
faster than Hermitian. Here, we start instead with a physical
system that is effectively described by a non-Hermitian
Hamiltonian and look for a new Hamiltonian, using different
inverse techniques, that allows us to reproduce more quickly
the results of a slow adiabatic process.

As an example of the useful relations between the brachis-
tochrone and the present work, note that the difficulty to realize
a given NH-Hamiltonian, a common potential problem of the
brachistochrone and the shortcuts, may be solved by similar
means, e.g., by enlarging the system with the aid of Naimark
extensions [50].
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