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The “fast-forward”approach by Masuda and Nakamura generates driving potentials to accelerate slow quantum
adiabatic dynamics. First we present a streamlined version of the formalism that produces the main results in a few
steps. Then we show the connection between this approach and inverse engineering based on Lewis-Riesenfeld
invariants. We identify in this manner applications in which the engineered potential does not depend on the
initial state. Finally we discuss more general applications exemplified by wave splitting processes.
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I. INTRODUCTION

Motivated by the practical need to accelerate quantum adi-
abatic processes in different contexts (transport [1–5], expan-
sions [6,7], population inversion and control [8–13], cooling
cycles [6,14,15], and wave-function splitting [16–19]), and by
related fundamental questions (about the quantum limits to the
speed of processes, the viability of adiabatic computing [20],
or the third principle of thermodynamics [14,21]), a flurry of
theoretical and experimental activity has been triggered by the
proposal of several approaches to design “shortcuts to adia-
baticity”. Among other approaches let us mention (i) a tran-
sitionless tracking algorithm or “counterdiabatic” approach
that adds to the original Hamiltonian extra terms to cancel
transitions in the adiabatic or superadiabatic bases [8–13];
(ii) inverse engineering of the external driving [3,4,6,21–26]
based on Lewis-Riesenfeld invariants [27], which has been
applied in several expansion experiments [25,26]; (iii) optimal
control (OC) methods [5,7,14,16], sometimes combined with
other methods to enhance their performance [4,5,7]; (iv) the
fast-forward (FF) approach advocated by Masuda and Naka-
mura [19,28]; (v) parallel adiabatic passage [29–32].

The multiplicity of approaches is quite useful because they
may complement each other: either in the same application,
as demonstrated, e.g., with OC and invariant-based methods,
or because of their different domains. Clarifying the features,
overlaps, and relations among these approaches is important to
apply the ones which are best suited for specific systems and
objectives [33], or to develop new ones. In this paper we shall
establish in particular the connection between the fast-forward
and the invariant-based methods.

Based on some earlier results [34], the fast-forward formal-
ism for adiabatic dynamics and several application examples
were worked out in Refs. [19,28] by Masuda and Nakamura
for the Gross-Pitaevskii or the corresponding Schrödinger
equations. The objective of the method is to accelerate a
“standard” system subjected to a slow variation of external
parameters. The time is then rescaled by a “magnification
factor”, and an ansatz wave function is defined by the standard
function multiplied by a phase factor that, in general, depends
on position and time. Inserting the ansatz into the dynamical
equation provides in principle the form of the necessary
fast-forward driving potential and the equation to be satisfied
by the phase. This procedure uses a tricky cancellation between

the divergence due to the infinitely large magnification factor
and the infinitesimal slowness due to adiabaticity.

As a consequence of the different steps and functions
introduced the resulting procedure is somewhat involved,
which hinders a broader application. In Sec. II we provide
a streamlined construction of local and real fast-forward
potentials, and Sec. III delves into a more detailed connection
between this streamlined version and the original formulation
of the FF formalism. Section IV relates the fast-forward
approach to the inverse method for dynamical invariants which
are quadratic in momentum. Section V discusses applications
beyond this domain, in particular wave-function splitting,
which is an important operation for matter wave interferometry
[16–18,35]. Finally Sec. VI discusses the results and open
questions.

II. A SIMPLE INVERSE METHOD

Our starting point is the three-dimensional (3D) time-
dependent Gross-Pitaevskii (GP) equation,

ih̄
∂|ψ(t)〉

∂t
= H (t)|ψ(t)〉, (1)

where the Hamiltonian H is the sum of the kinetic energy T ,
the external potential V (t), and the mean field potential G(t).
We are assuming an external local potential, where “local”
means here 〈x|V (t)|x′〉 = V (x,t)δ(x − x′). The kinetic and
mean field terms in the coordinate representation have the
usual forms,

〈x|T |ψ(t)〉 = −h̄2

2m
∇2ψ(x,t),

〈x|G(t)|ψ(t)〉 = g|ψ(x,t)|2ψ(x,t).

The GP equation (1) is used to describe a Bose-Einstein
condensate within the mean field approximation and it takes
into account the atom-atom interaction through g, the atom-
atom coupling constant. In the case of vanishing coupling
constant g = 0 the GP equation simplifies to the Schrödinger
equation.

By solving Eq. (1) in coordinate space, V (x,t) may be
written as

V (x,t) = ih̄〈x|∂tψ(t)〉 − 〈x|T |ψ(t)〉 − 〈x|G(t)|ψ(t)〉
〈x|ψ(t)〉 , (2)
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with 〈x|ψ(t)〉 = ψ(x,t). By introducing into Eq. (2) the ansatz

〈x|ψ(t)〉 = r(x,t)eiφ(x,t), r(x,t),φ(x,t) ∈ R, (3)

we get

V (x,t) = ih̄
ṙ

r
− h̄φ̇ + h̄2

2m

(
2i∇φ · ∇r

r
+ i∇2φ

−(∇φ)2 + ∇2r

r

)
− gr2, (4)

where the dot means time derivative. The real and imaginary
parts are

Re[V (x,t)] = −h̄φ̇ + h̄2

2m

(∇2r

r
− (∇φ)2

)
− gr2, (5)

Im[V (x,t)] = h̄
ṙ

r
+ h̄2

2m

(
2∇φ · ∇r

r
+ ∇2φ

)
. (6)

Our purpose now is to design a local and real potential such
that an initial eigenstate of the initial Hamiltonian, typically
the ground state but it could be otherwise, evolves in a time tf
into the corresponding eigenstate of the final Hamiltonian (a
different goal will be discussed in the final section). We assume
that the full Hamiltonian and the corresponding eigenstates are
known at the boundary times.

By construction the potential of Eq. (4) is local. If we
impose Im[V (x,t)] = 0, i.e.,

ṙ

r
+ h̄

2m

(
2∇φ · ∇r

r
+ ∇2φ

)
= 0, (7)

then we get from Eq. (5) a local and real potential.
In the inversion protocol we design r(x,t) first, then solve

for φ in Eq. (7), and finally get the potential V from Eq. (5). If,
at the boundary times, ṙ = 0 is imposed, Eq. (7) has solutions
φ(x,t) fulfilling that φ(x,t) is independent of x at t = 0 and
t = tf . Using this in Eq. (5) at t = 0, and multiplying by eiφ(0),
we get [

− h̄2

2m
∇2 + V (x,0) + g|ψ(x,0)|2

]
ψ(x,0)

= −h̄φ̇(0)ψ(x,0). (8)

The initial state is thus an eigenstate of the stationary GP
equation at t = 0, and −h̄φ̇(0) = E(0) is the energy of the
eigenstate ψ(x,0). Note that the above solution of φ (with
ṙ = 0 at boundary times) admits the addition of an arbitrary
function that depends only on time and modifies the zero of
energy. A similar result is found at tf .

III. CONNECTION WITH THE FAST-FORWARD
APPROACH

The aim of the fast-forward approach [19,34] is to acceler-
ate a standard system subjected to a slow, adiabatic variation
of external parameters by canceling the divergence due to
an infinitely large magnification factor with the infinitesimal
slowness due to adiabaticity. In this manner a fast-forward po-
tential is constructed which leads to the speeded-up evolution
of the system.

Let us now look at this approach in more detail and connect
it with the above results. The notation is made close but not
necessarily in full agreement with [19,34]. Let us define an

external parameter that depends on time, or on some scaled
time function, according to

R(�(t)) = ε�(t) =: R(t). (9)

Here R(t) and R(�) are in general different functions of their
arguments, ε is a small positive constant, and the scaling
function �(t) is given in terms of a magnification factor α,

�(t) =
∫ t

0
dt ′α(t ′). (10)

α(t) is positive for 0 � t � tf and zero at the boundaries t = 0
and t = tf . Note that Ṙ = εα and R̈ = εα̇. We rewrite the
modulus and the phase in Eq. (3) as

r(x,t) = r̃(x,R(t)), (11)

φ(x,t) = −1

h̄

∫ t

0
dt ′E(R(t ′)) + εα(t)θ (x,R(t)), (12)

where again we have distinguished the functions according
to their different arguments, in particular E(t) = E(R(t)).
If we also demand α̇ = 0 at the boundaries to fulfill ṙ =
0, then φ̇(x,0) = −E(R(0))/h̄ and φ̇(x,tf ) = −E(R(tf ))/h̄.
Substituting Eq. (12) in Eq. (7), θ has to satisfy

0 = r̃(x,R(t))∇2θ (x,R(t)) + 2∇r̃(x,R(t)) · ∇θ (x,R(t))

+ 2m

h̄

∂r̃

∂R (x,R(t)), (13)

and from Eq. (5), the “fast-forward” potential is given by

V (x,t) = V0(x,R(t)) − h̄εα̇(t)θ (x,R(t))

−h̄ε2α2(t)
dθ

dR (x,R(t))

− h̄2

2m
ε2α2(t)[∇θ (x,R(t))]2, (14)

where the “standard potential” V0 = V0(x,R) is defined by the
stationary GP equation,[

− h̄2

2m
∇2 + V0(x,R) + gr̃2(x,R)

]
r̃(x,R) = E(R)r̃(x,R).

(15)

At the boundary times, but in general only there, V (x,t) =
V0(x,R(t)).

Equation (14) for the driving potential coincides with
Eq. (2.28) in Ref. [19] for real eigenfunctions, whereas Eq. (13)
for the phase function θ corresponds to Eq. (2.18) in Ref. [19].

The present formal framework may be used in the following
way: (i) starting from a given standard potential V0(x,R),
r̃(x,R), and E(R) would follow from Eq. (15). Alternatively,
it is also possible to impose r̃(x,R) first and then calculate V0.
(ii) An auxiliary function R(t) is imposed. (iii) θ has to be
determined from Eq. (13). (iv) The fast-forward potential can
be calculated from Eq. (14).

To arrive at this recipe in Refs. [19,34] preliminary steps
are the definition of a standard state, a virtually fast-forwarded
state, and a regularized state with their corresponding equa-
tions. The route followed in Sec. II to the driving potential
is in comparison quite direct. This is so because we made no
explicit use of a slow reference adiabatic process, although it
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might be deduced from the fast designed dynamics if required.
The key simplification is to start with the ansatz in Eq. (3) and
derive the two basic equations for phase and potential from
it by imposing locality and reality of the driving potential.
Since the phase φ that solves Eq. (7) depends in general on the
particular r(x,t), the potential calculated through Eqs. (5) or
(14) gives in principle a state-dependent potential. However,
in some special circumstances, as we shall see below, the
fast-forward potential becomes state independent.

IV. CONNECTION WITH INVARIANT’S BASED INVERSE
ENGINEERING APPROACH

In this section we shall relate the previous results for
the linear (g = 0) Schrödinger equation to the engineering
approach based on quadratic-in-momentum invariants. The
nonlinear GP equation could also be treated, as in Refs. [4,22],
but it does not allow in general for the state-independent
potential forms that we shall describe for g = 0.

A. Lewis-Leach potentials

In a direct (rather than inverse) approach, the potential
V (x,t) is considered to be known, and the wave function at
any time t can be deduced from the Lewis-Riesenfeld theory
of invariants [27]. Suppose that the potential V (x,t) has the
structure of the most general “Lewis-Leach” potential that
admits a quadratic-in-momentum invariant [36],

V (x,t) = −F(t) · x + 1

2
mω2(t)|x|2 + 1

ρ2
U (σ ) + h(t), (16)

where ω(t), F(t), and h(t) are arbitrary functions of time and
U (σ ) is an arbitrary function of its argument σ = σ (t) = (x −
α)/ρ. The time dependent functions ρ = ρ(t) and α = α(t)
must satisfy the auxiliary equations,

ω2
0

ρ3
= ρ̈ + ω2(t)ρ, (17)

F(t)

m
= α̈ + ω2(t)α, (18)

with ω0 an arbitrary constant. The associated dynamical
invariant, up to a constant factor, is given by

I = 1

2m
|ρ(p − mα̇) − mρ̇(x − α)|2 + 1

2
mω2

0|σ |2 + U (σ ),

(19)

with p = −ih̄∇. It satisfies dI/dt = ∂I (t)/∂t − i
h̄

[I (t),
H (t)] = 0, so its expectation values are constant for any wave
function ψ(t) that evolves with H .

For the potential in Eq. (16), the general solution of
the time-dependent Schrödinger equation, Eq. (1), can be
expanded as a linear combination with constant coefficients
cn and orthonormal eigenvectors ψn of I [27],

ψ(x,t) =
∑

n

cne
iαnψn(x,t), (20)

Iψn(x,t) = λnψn(x,t), (21)

where λn are the time independent eigenvalues of I . The phases
αn satisfy h̄ dαn

dt
= 〈ψn|ih̄ ∂

∂t
− H |ψn〉 [3,4,27],

αn = − i

h̄

∫ t

0
dt ′

(
λn

ρ2
+ m

[|α̇ρ − αρ̇|2 − ω2
0|α|2/ρ2

]
2ρ2

+ h

)
.

(22)
Performing now the unitary transformation [3,4],

ψn(x,t) = e
im
h̄

[ρ̇|x|2/2ρ+(α̇ρ−αρ̇)·x/ρ] 1

ρ3/2
χn(σ ), (23)

the state ψn is easily obtained from the solution χn(σ )
(normalized in σ space) of the auxiliary stationary Schrödinger
equation,

[
− h̄2

2m
∇2

σ + 1

2
mω2

0|σ |2 + U (σ )

]
χn(σ ) = λnχn(σ ). (24)

In the direct approach we assume that U (σ ), ω(t), and F(t)
are known. Solving Eqs. (17) and (18) we get ρ(t) and α(t)
from them. Thus Eq. (24) can be solved to get λn and χn(σ ).
Finally, combining Eqs. (23) and (24), the mode eiαnψn can be
calculated at any time.

B. Inverse engineering approach

In the inverse approach based on quadratic-in-momentum
invariants, the Hamiltonian is assumed to have the form given
in Eq. (16), at all times and in particular at initial and final
instants. As U is given the stationary Eq. (24) may be solved.
Then the functions ρ and α are designed so that [H (t),I (t)] =
0 for t = 0 and t = tf . Thus the Hamiltonian and the
invariant have common eigenvectors at these boundary times
[3–7,23,24]. Typically the initial state ψ(0) is the ground
state of H (0) which is also an eigenstate of I (0), and this
state evolves according to Eq. (20), as an eigenvector of the
invariant.

To relate the above to the simple inverse method of Sec. II
we consider the single mode wave function ψn of Eq. (23) and
identify

rn(x,t) = χn(σ )/ρ3/2(t). (25)

The subscript n underlines the dependence with the nth mode
considered. Note that ρ and α are chosen at this point. We
may get the phase φn from Eq. (7). It can be checked by direct
substitution that

φn = m

h̄
[ρ̇|x|2/2ρ + (α̇ρ − αρ̇) · x/ρ]

−1

h̄

∫ t

0
dt ′

λn

ρ2
+ F(t), (26)

where

F(t) = −1

h̄

∫ t

0
dt ′

(
m

[|α̇ρ − αρ̇|2 − ω2
0|α|2/ρ2

]
2ρ2

+ h

)

(27)

is a solution of this equation. Once rn and the phase φn are
known, Eq. (5) gives the potential Vn(x,t). A different arbitrary
function of time F(t) in φn(x,t) would produce a shift of the
zero of energy in the resulting potential Vn(x,t). We get, using
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Eq. (24),

V (x,t) = −m

(
α̈ + α

ω2
0 + ρ3ρ̈

ρ4

)
x

+m

2

(
ω2

0 + ρ3ρ̈

ρ4

)
|x|2 + 1

ρ2
U (σ ) + h.

Taking Eqs. (17) and (18) into account, this potential agrees
with the potential in Eq. (16). It is by construction local and
real. Moreover, it is independent of the nth state considered
so that linear combinations of the modes at t = 0 end up at tf
unexcited, preserving the initial populations.

We have seen so far that the simple inverse method, a
streamlined FF approach, may be used to calculate from a
given wave evolution directly the required potentials consistent
with this evolution. The inverse method is a general procedure
to achieve this potential reconstruction for the GP Eq. (1).
In general, the resulting potentials are – by construction –
state-dependent. By contrast, the invariant-based inverse en-
gineering for quadratic-in-momentum invariants is restricted
to the Lewis-Leach potentials of Eq. (16), but an advantage
is that the resulting potentials are state-independent. In other
words, final excitations will be avoided for any initial state.
As we have shown above, the invariant-based approach can be
formulated as a special case of the simple inverse method.

So, the inverse engineering approach and the fast-forward
approach are connected via the simple inverse method.
Therefore, the external parameter R introduced in Sec. III
must be related to α and ρ, as illustrated in the following
section.

C. Example: Harmonic expansion

Now we discuss an example of a 3D harmonic expansion
produced with the inverse engineering approach based on
invariants and with the fast-forward technique to illustrate the
links between the two methods.

Invariants based approach. Suppose that the expansion is
governed by the Hamiltonian

H (t) = p2

2m
+ 1

2
mω2(t)|x|2, (28)

where ω(t) is unknown, but at the boundary times ω(0) = ω0

and ω(tf ) = ωf . This potential is a particular case of Eq. (16)
with F(t) = U (σ ) = h(t) = 0. Equation (18) is trivially ful-
filled if α(t) = α̈(t) = 0 and consequently α̇(t) = 0. ρ(t)
has to satisfy the Ermakov equation, Eq. (17). The inverse
engineering consists on imposing conditions on ρ and its
derivatives,

ρ(0) = 1, ρ̇(0) = 0, ρ̈(0) = 0,
(29)

ρ(tf ) = γ, ρ̇(tf ) = 0, ρ̈(tf ) = 0,

where γ = (ω0/ωf )1/2, to guarantee the commutation between
H (t) and I (t) at t = 0 and tf , and then getting ω(t) from
Eq. (17).

Fast-forward approach. The starting point for the fast-
forward approach could be the nth eigenstate of a harmonic

trap (see also Ref. [19]) with angular frequency R = ω,

χn(x,R) = β3/2e− β2 |x|2
2

π3/4
√

2nx+ny+nznx!ny!nz!
Hnx

(βx)Hny
(βy)

×Hnz
(βz), (30)

where β = √
mR/h̄. This state plays the role of r̃ . The

corresponding potential V0 is clearly

V0(x,R) = m

2
R2x2, (31)

and

En = h̄ω
(
nx + ny + nz + 3

2

)
. (32)

The first step is to solve Eq. (13) and we get as a solution

θ (x,R) = −m|x|2
4h̄R . (33)

Connection. The connection between the auxiliary variable R
in the fast-forward approach and the auxiliary variable ρ(t) in
the inverse engineering approach is in this example explicitly
given by

R(t) = ω0

ρ(t)2
(34)

[see Eqs. (25) and (30)]. The boundary conditions for ρ(t) in
Eq. (29) become

R(0) = ω0, Ṙ(0) = 0, R̈(0) = 0,
(35)

R(tf ) = ωf , Ṙ(tf ) = 0, R̈(tf ) = 0.

It also follows that εα(t) = Ṙ(t) = −2ω0ρ̇(t)/ρ(t)3. The
auxiliary functions ρ(t) and R(t) can be chosen in some way
fulfilling the boundary conditions.

The corresponding potential in the inverse engineering
formalism is constructed by first solving the Ermakov equation
to get ω2(t). Then one has

V = 1

2
mω2(t)|x|2 = 1

2
m

(
ω2

0

ρ(t)4
− ρ̈

ρ

)
|x|2, (36)

whereas the fast-forward potential is given, according to
Eq. (14), by

V = m|x|2
2

(
R2 + h̄εα̇

m

4h̄R − h̄ε2α2 m

4h̄R2

− h̄2

2m
ε2α2 m2

4h̄2R2

)

= m|x|2
2

(
ω2

0

ρ(t)4
− ρ̈(t)

ρ(t)

)
,

which agrees with Eq. (36).

V. BEYOND LEWIS-LEACH POTENTIALS:
WAVE-FUNCTION SPLITTING PROCESSES

The transitionless condition for the inverse engineering
method based on invariants relies on the commutativity
[H (t),I (t)] = 0 at times t = 0 and tf , which guarantees
common eigenvectors for H and I at these boundary times.
According to Eq. (23) the structure of the density of the nth

013601-4



SHORTCUTS TO ADIABATICITY: FAST-FORWARD APPROACH PHYSICAL REVIEW A 86, 013601 (2012)
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FIG. 1. (Color online) Phase φ(x,t) calculated from Eq. (6).
Parameters: m = 1.44 × 10−25 kg, a = 3 μm, ω/2π = 125 Hz and
tf = 80 ms.

mode of the invariant at initial and final times for quadratic-in-p
invariants is

1

ρ3(0)

∣∣∣∣χn

(
x − α(0)

ρ(0)

)∣∣∣∣
2

→ 1

ρ3(tf )

∣∣∣∣χn

(
x − α(tf )

ρ(tf )

)∣∣∣∣
2

. (37)

The final density is a translation and/or scaling of the initial
one. This means that for processes in which the initial and
final eigenstates of the Hamiltonian do not behave according
to Eq. (37), the commutativity of H and I at the boundary
times cannot be achieved. This restriction is due to the use of
quadratic-in-p invariants, not to the invariants-based method.
Studying and applying more general invariants is still an open
question.

As an example in which Eq. (37) does not hold for the final
densities, let us consider the splitting of an initial state from
a single to a double well potential. For simplicity we take the
1D linear Schrödinger equation governed by the Hamiltonian,

H (t) = p2

2m
+ 1

2
mω2(t)x2 + η(t)x4. (38)

For the initial single trap we consider ω2(0) = ω2
0 and

η(0) = η0 > 0. The final double well is characterized by
a repulsive harmonic part with ω2(tf ) = −ω2

f and η(tf ) =
ηf > 0. Comparing terms with Eq. (16), F = h = α = 0 and
consequently α̇ = α̈ = 0, U (σ ) = η(t)ρ2x4, and the particular
structure of U (σ ) sets η(t) = κ/ρ6, where ρ satisfies the
Ermakov equation, Eq. (17), and κ is an arbitrary constant.
The associated invariant is

I (t) = 1

2m
(ρp − mρ̇x)2 + 1

2
mω2

0
x2

ρ2
+ κ

x4

ρ4
. (39)

Imposing ρ(0) = 1, ρ̇(0) = 0, ρ̈(0) = 0, and identifying κ =
η0, then H and I commute at t = 0. At tf , [H (tf ),I (tf )] = 0
for ρ(tf ) = (iω0/ωf )1/2, ρ̇(tf ) = ρ̈(tf ) = 0, and
ηf = −iη0ω

3
f /ω3

0. However, ρ must be a positive real
function if initially so, and moreover the final potential that
we get is complex.

A way out is to use the simple inverse fast-forward method
for specific initial and final states without restricting the
potential form; see also [19]. Consider, for example, the 1D
splitting of the initial state r(x,0) = e−β2x2/2 (β = √

mω/h̄)
into the final form r(x,tf ) = e−β2(x−a)2/2 + e−β2(x+a)2/2. In
between we apply the interpolation

r(x,t) = z(t){[1 − R(t)]r(x,0) + R(t)r(x,tf )}, (40)

x (µm)

t (
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−5 0 5
0

0.02

0.04
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FIG. 2. (Color online) Fast-forward potential V (x,t) in units of
h̄ω for a final time tf = 80 ms. The rest of parameters are the same
as in Fig. 1. Note the coexistence of three wells, e.g., around 40 ms,
before the final two wells are established.

whereR(t) is some smooth, monotonously increasing function
from 0 to 1 and z(t) is a normalization function. We also impose
that Ṙ = 0 to ensure ṙ = 0 at the boundary times t = 0 and
tf . In the numerical examples the function R(t) is chosen as
a polynomial of degree 7 to make zero the second and third
derivatives at the boundaries. Once we have established the
form of r(x,t), we solve Eq. (6), Im[V (x,t)] = 0, to get the
phase φ with the initial conditions φ(0,t) = φ′(0,t) = 0 that
fix the zero-energy point (the prime means spatial derivative).
Then the resulting phase is introduced into Eq. (5) to get the
potential V (x,t). In Fig. 1 the phase φ(x,t) is plotted for a
nonadiabatic process with tf = 80 ms. The corresponding fast-
forward potential is plotted in Fig. 2.

V (x,t) in Fig. 2 could be realized with high resolution
time-varying optical potentials “painted” by a tightly focused
rapidly moving laser beam [37], or by means of spatial
light modulators [38]. A simpler approximate approach would
involve the combination of three Gaussian beams. In principle
the time tf can be reduced to produce the splitting in a
shorter time. For example, in Fig. 3 tf = 10 ms and a more
complicated potential is needed.

VI. DISCUSSION

We have first distilled from the somewhat imposing set
of equations of the fast-forward (FF) formalism as originally
presented a streamlined version that may aid to apply it
more easily. Our second aim has been to relate it to other
inverse engineering methods. In a previous publication, the
inverse-engineering method based on invariants was related
to the transitionless tracking algorithm [8–11], and their
potential equivalence was demonstrated [33]. Similarly, we
have established in this paper the connection between the
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FIG. 3. (Color online) Fast-forward potential V (x,t) in units of
h̄ω for a final time tf = 10 ms. The rest of parameters are the same
as in Fig. 1.

013601-5



E. TORRONTEGUI et al. PHYSICAL REVIEW A 86, 013601 (2012)

fast-forward method and the invariant-based method for
quadratic-in-momentum invariants. These relations do not
imply the full identity of the methods but their overlap
and equivalence in a common domain. They are still useful
heuristically as separate approaches since they are formulated
in rather different terms [28,33]. Moreover, they facilitate
extensions beyond their common domain, as exemplified by
the wave-splitting processes discussed in the previous section.

Further extensions are left for separate analysis: for exam-
ple, the possibility to transfer an excited state into the ground
state or vice versa, or combining the fast-forward approach
with optimal control theory without including the final fidelity
in the cost function as in Refs. [16–18]. (This would be possible
because the fidelity is guaranteed to be one by construction.)
It will also be interesting for future work to consider complex
potentials, either as solutions to the shortcut dynamics, as in the
quantum brachistochrone [39], or as an effective description
of the system dynamics to be accelerated [23]. Finally, while
we have concentrated on wave equations and functions in
coordinate space, inverse techniques are also applicable to

two-level or more general discrete-level systems. Garanin, for
example, performed inverse engineering for the Landau-Zener
model [40]. The transitionless-tracking algorythm was in
fact originally applied in for these systems [8–11], and its
potential equivalence with the invariant-based approach also
holds in this context [33]. Designing a specific wave function
in the spirit of the streamlined FF method to engineer the
Hamiltonian matrix implies the dynamical invariant of the
corresponding density operator. Details of these connections
will appear elsewhere.
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