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We use the dynamical algebra of a quantum system and its dynamical invariants to inverse engineer feasible
Hamiltonians for implementing shortcuts to adiabaticity. These are speeded up processes that end up with the
same populations as slow, adiabatic ones. As application examples, we design families of shortcut Hamiltonians
that drive two- and three-level systems between initial and fina configurations imposing physically motivated
constraints on the terms (generators) allowed in the Hamiltonian.
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I. INTRODUCTION

The current development of “shortcuts to adiabaticity” to
speed up adiabatic, slow processes in different field (trap
expansions [1—4], atom or ion transport [5—10], internal state
control [11-18], wave-packet splitting [19-25], many-body
state engineering [26-31], optics [32], cooling methods [33—
35], and cooling cycles and quantum engines [36—39]) raises a
number of practical and fundamental questions (see [40] for a
recent review). An important one is how to generate alternative
shortcuts when the, generally time-dependent, Hamiltonian
that speeds up the slow process is difficul or impossible
to realize in the laboratory [30,31,40—43]. Typically, the
difficultic are related to specifi terms that cannot be imple-
mented. Several examples have shown that the symmetry of the
Hamiltonian is instrumental in designing feasible alternative
Hamiltonians (and shortcuts) that keep the same population
dynamics in some basis or at least the same fina populations
[40-42]. However, a systematic symmetry-based approach
to inverse engineering the Hamiltonian, given the desired
dynamics and specifi constraints imposed on its structure,
has been lacking. In this paper, we provide basic elements for
such an approach and set the inverse problem from a (Lewis
and Riesenfeld [44]) dynamical invariant to the Hamiltonian,
assuming that both are members of a dynamical Lie algebra,
i.e., a vector space spanned by operators (generators) closed
under commutation. Dynamical invariants correspond to op-
erators whose expectation values remain constant for states
evolving with the associated Hamiltonian (they may or may
not commute with it). Invariants that belong to the dynamical
Lie algebra of the Hamiltonian have been used to solve the
dynamics or to calculate geometric phases [45—48]. Since the
dynamical invariants contain information about the system
evolution (any density operator describing its evolution is
a dynamical invariant), they have also been used to design
shortcuts to adiabaticity [1-4,7-10,18,25-29,39,40,49], as we
shall do here, taking explicitly into account the dynamical
algebra in the Hamiltonian construction.

In Sec. II, a construction method is provided to design
families of Hamiltonians for a given invariant in the space
spanned by their corresponding algebra. This method allows
one to impose constraints on the generators, such as making
some of them zero. In addition, boundary conditions for the
invariant are specifie at initial and fina instants so that
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the Hamiltonian indeed drives the system along a shortcut
to adiabaticity without fina excitation. We work out two
examples that illustrate the construction algorithm. In Sec. III,
we construct real Hamiltonians within the SU(2) algebra to
drive a two-level atom state without using the Pauli matrix o,.
Then we analyze, in Sec. IV, a three-level system described by
a four-dimensional Lie algebra, with the goal of achieving fast
“insulator-superfluid transitions for two interacting bosons
in two wells, using only two feasible generators. Conclusions
and open questions are summarized in Sec. V. The Appendix
provides an alternative approach, using Gaussian elimination,
to the operational approach of Sec. II.

II. GENERAL FORMALISM

Let us assume that the time-dependent Hamiltonian H(¢)
describing a quantum system is given by a linear combination
of Hermitian “generators” T,

N
H(t) =Y ho(1)T,, (1)

a=1

where the h,(t) are real time-dependent functions and the 7,
span a Lie algebra (dynamical algebra [45]),

N
[Tb y Tc] = Z Aape Ty, (2)
a=1

where the «,,. are the “structure constants.” Associated
with the Hamiltonian, there are time-dependent Hermitian
invariants of motion /(t) that satisfy [44]

dl _d1@) 1 _
== = HOI0] = 0. 3)

A wave function |W(¢)) which evolves with H(t) can be
expressed as a linear combination of invariant modes [44],

(WD) =) cue’™ |gu(0)), )
where the ¢, are constants, the phases «,, fulfil

doy, _
dt

h

<¢n<r)|ih£ — HOIp(0)), 5)
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and the eigenvectors of 1(¢), |¢,(¢)), are assumed to form a
complete set and satisfy

I(t)|¢n(t)> = )\n|¢n(t)>’ (6)

with X, being the constant eigenvalues.
If the invariant is a member of the dynamical algebra, it can
be written as

N
I(t)=)_ fu)T.. ™

a=1

where f, () are real, time-dependent functions. Note that some
fa or some h, may be zero. Replacing Egs. (1) and (7) into
Eq. (3), and using Eq. (2), the functions 4,(¢) and f,(¢) satisfy
[45,50]

N N

Ju)) = = 373 a1 =, ®)

b 1 c=1

where the dot means time derivative. Usually, these coupled
equations are interpreted as a linear system of ordinary
differential equations for f,(¢) when the h,(f) components
of the Hamiltonian are known [45-48,50]. Instead, we put
forward here a different, inverse perspective, and consider
them to be an algebraic system to be solved for the #,(¢),
when the f,(¢) are given. Definin the N x N matrix A

as
1 N
Aa(t) = — Y dane fe(2), Q)
c=1
Eq. (8) can be written as
N
fa@®) =" Aa(Ohy(0), (10)
b=1
or |f) = Alh), (11)

where the kets are define in terms of the components of each
generator, for example,

N
If) = f2 . (12)
In

In this vector space, we may naturally refer to |h) and |f) as the
Hamiltonian and the invariant, respectively. Even though the
context should avoid any confusion with the vectors |W(¢))
define before in the state-vector space, the difference is
nevertheless emphasized by the boldface notation. There are
many Hamiltonians for a given invariant [49] and we cannot
generally invert Eq. (11) as |h) = A~'|f) to get |h). This means
that det(A) = 0, so at least one of the eigenvalues a”)(¢) of the
A matrix vanishes. To fin a valid |h) in this case, one may use
Gauss elimination, as shown in the Appendix. Alternatively,
we shall follow here a more compact and intuitive operational
approach. The A matrix may be generally non-Hermitian. It
has N right eigenvectors {|a®)(¢))},i = 1,2,...,N [17,51],

A@)1aV(1)) = a(i)(t)la(i)(t)), (13)
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and biorthonormal partners {|a)(¢))},

Al0)1a0@)) = @)y 1a“@)), (14)
where the asterisk means complex conjugate and the dagger
denotes the adjoint. These eigenvectors are normalized as

@00la (1) = by, (15)

where bras are define as (a| = (a{,a3, . ..,ay), and the scalar
product as (alb) = aib) +a;by + - - - +ayby. They satisfy
closure relations

N N
Z 1A9(1)) (@ (r)| = Z 1a0() @) =Ty.  (16)
i=1 i=1

We can thus write the operator A(¢) and its adjoint as

N
A =) [aD()aV(0)a @)l
i=1

(17)

N

Al(6) =" 1a90) (@P@0) (@D ()].
i=1

Let us defin the null-subspace projector Q of A associated
with the a®(r) = 0 eigenvalue as Q = 32 | |a® (1)) (a®(7)|,
and the complementary projector P = Y7 [a®(2)) (a©)(7)|.
We have that P + Q = Iy and P + Q = N. Note as well that
P and Q commute with .A and the relations Pz = P, Q2 = Q,
and QA = 0. To solve |f) = AJh) for |h), we use Eq. (17) and
project it firs onto the P subspace,

N P
P|f ZZm(I) a(J)|a(l)) (l)<a(l)|h)

i=1 j=I
P
Z|a(1)> (J)(a(1)|h> (18)

Since here all a'/)(¢) # 0, we can invert the expression,

P
Z |a(i))a(i)
i=1
so the P part of the solution is given by
Plh) = BI|f), (20)

where B=PBP =PB=BP =Y, 12 a® a0 is a
pseudoinverse matrix of A4, as ABA = A. This relation
implies P equations for the {%;}, {f;}, and {fj}. If, instead,
If) = A|h) is projected onto the null subspace, we get

a9)fy = Z [a®) (a®h), (19)

[
olfy = Y 1aPa(a ) = o, @1

j=1
because now all a/)(#) = 0. This relation implies the existence
of multiple solutions for |h), and Q conditions @w|fy =0
which involve { f;} and their time derivatives. We can add any
arbitrary part Q|h) to Eq. (20) so that all Hamiltonians of the

form

Ih) = BIf) + Qlh), (22)
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where Q|h) is a completely arbitrary vector in the null
subspace, are thus compatible with the invariant /. This is
one of the fundamental equations of this paper. Due to the
freedom to choose Q|h) (we may construct it as Q|b), where
|b) is arbitrary), we can change the Hamiltonian to make it
realizable. In addition, the invariant itself may be modified

When inverse engineering shortcuts to adiabaticity, the
Hamiltonian is usually given at initial and fina times. In
general, the invariant 7 [equivalently |f(¢))] is chosen to drive,
through its eigenvectors, the initial states of the Hamiltonian
H (0) to the states of the fina H(ts) [1,7,44]. This is ensured
by imposing, at the boundary times #;, = 0,7, the “frictionless
conditions” [H (tp),1(t,)] = 0 [1]. For Egs. (1) and (7), these
boundary conditions can be reformulated as

N
Z aabchb(tb)fc(tb)Tu =0. (23)

a,b,c

Since the T, generators are independent, the coefficient must
satisfy

N
> anchp(t) felts) =0, a=1,....N, t, =0.t;, (24)
b,c

or, more compactly,
A(ty)h(ty)) =0, 1, = 0,1y, (25)

which is a second fundamental result. Note that the choice of
Qlh) does not affect this condition, but |f) must be chosen
to fulfil it. At the boundary times, Eq. (25) imposes N
conditions, and, if the N values of the {h;(#;)} are given, the
P + Q equations in Egs. (20) and (21) will fi the values of
{fi(tp)} and {f;(t)}. At intermediate times, the Hamiltonian
and invariant components can be designed subjected to the
N equations in Egs. (20) and (21) and to the boundary
conditions. This leaves open different inverse engineering
possibilities: in general, the Hamiltonian is firs fi ed partially,
i.e., imposing the time dependence (or vanishing) of some
r < N components. Fixing the invariant time dependence
consistently with the boundary conditions and the imposed
Hamiltonian constraints finall leads to equations that give the
form of the remaining N — r Hamiltonian components. The
following sections illustrate these steps and concepts explicitly.

III. EXAMPLE 1: SU(2) LIE ALGEBRA

Let us consider the SU(2) algebra (N = 3) spanned by
{T,,T,, T3} with commutation relations

[T, T7] =iTs, [, 1zk]=iT, [T3,T]=iT. (26)
Equation (10) becomes

f 1[0 =R\ ([

P -3 0 fi hy | . (27)
/3 Lo —-h 0 hs
=A
As A=—A" is a real antisymmetric matrix with odd

dimensionality, the eigenvalues are conjugate pure imaginary
pairs, and zero, whereas left and right eigenvectors are equal.
Explicitly, the eigenvalues are a©®© = 0, a(V = —i /¥ /h, and
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a® =i /v /h (we have shifted down the superscripts by one
with respect to the general formalism, here j = 0,1,2, so that
the zero corresponds to the zero eigenvalue), with

14 =f12+f22+f32, (28)

and the eigenvectors

pil
) (0) 1 jf?
= la =— | £
|6l>—|a>—wO 21
1
—Nf—ihyY
a) = 1a®) = - iy (29)
a = |a = — —J1 U3 .
w LA+HAYY
1
—Nftihyy
1 B—v
la®) = 1a?®) = — — -1 ,
wy | RA-ASY
1
where wy = wy = /2y /(B — ), wo = ,/v/f{, and
B=2(f1+f7)+ f3 (30)

The P and Q projectors are

[ 2 Ak hf
P=L-9 Q=—|AfL f L] @D
Y\AS KB

whereas the pseudoinverse matrix B [see Eq. (20)] is

sl O - S
B=—1 f3 0 —-fl. (32)
Y\-f A 0

From Eq. (21), we get the condition that the system has
infinit solutions,
RN ey
LHUhihithhth6) |
rerer | =0 (33)
S it HAL+13)
ff+BE+5
As there is only one independent eigenvector for the null
subspace, Q = 1, this is solved by a single condition,

ffi+hh+ =0, (34)

i.e., y = const, and the f; cannot be arbitrary independent
functions. Equation (20) becomes

hy w Ph—Fk
Plhl=--f—-HA), (35)
hs Y\ hhh- 5k

and the general solution (22) takes the form

h\ (St fofs+ i) /R
h|==| ffsi—Afs+ MmO/ ], (36)
hy) Y \=fi ot fi fat f3(0If) /2
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FIG. 1. (Color online) Hamiltonian (left) and invariant (right)
coefficient vs time. The imposed functions (symbols) are h(t)
(red squares), hp(t) (brown triangles), and f;3(¢) (blue circles).
The derived functions (lines) are h;(¢) (blue solid line), f(¢) (red
short-dashed line), and f,(¢) (brown long-dashed line). Parameter
values: /1;(t7) = 0.4, h3(0) = 1, and 7; = 200.

Using Eq. (34), this gives the compact result
h; = —h&'ikﬁ + ﬁhk, (37)
T e Je
with all indices i, j, k different. & is the Levy-Civita symbol
[1 for even permutations of (123) and —1 for odd permutations]
and K () is considered a free function chosen for convenience.
If we want to impose, for example, that one of the components

of the Hamiltonian is zero, then we take that component to be
hy.

A. Two-level system

To be more specific let us consider the following represen-
tation useful to describe, for example, a two-level system in

an external driving field
Lo 1 1 /0 —i 1/1 0
T1:§<1 0)’ T2:§<i o)’ T3:§<o —1>'
(38)

We set as initial and fina constraints the following Hamilto-
nians:

H(0) = hi(0)Ty + h3(0)T3, (39)

H(tp) = hi(tp)Th + hs3(tp) T3, (40)

but, in general, H(t) = hy(¢t)T1 + hy(¢)T> + h3(¢)T3. The fric-
tionless conditions (25) for SU(2) read

fi@)h(tp) — fi@p)hi(ty) =0, i > j. 41)

Our aimis to fin H(¢) so that the ground and excited states of
H (0) become ground and excited states of H(¢s) in an arbitrary
time ¢, up to phase factors, in such a way that A,(t) = 0 V.
This condition is motivated by the difficult to implement 75
in some systems [16]. Choosing (i, j,k) = (1,3,2) in Eq. (37),
with /1,(¢) = 0 and using y = const = ¢;, we can express f>
and fi in terms of f3,

y
= ﬁ
hy
(42)
2 £2
fi= o £ -1
1
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FIG. 2. (Color online) Hamiltonian (left) and invariant (right)
coefficient vs time. The imposed functions (symbols) are h,(t)
(brown triangles), h;(¢) (blue squares), and f(z) (red circles). The
derived functions (lines) are h;(t) (red solid line), f>(¢) (brown
long-dashed line), and f;(¢) (blue short-dashed line). Parameter
values: 713(0) = 1, ﬁl(tf) =2.5,and 7y = 200.

Substituting this in the other equation of Eq. (37), with
@i,j,k)=(3,1,2),

. hy . h / n f}
f3—h—1f3+ﬁ(f3h1—h3 a-—fi- h; =0. (43)

The frictionless conditions (41) for this case impose
fa(tp) = 0and h3(tp)/ hi (1) = f3(ts)/f1(1) or, equivalently,

— [ N PO,
f3(th) - h3(th) h%(l‘b) + h%(tb)’ f3(tb) 0. (44)

In addition, from Eq. (43) at the boundary times ¢,
f3(1) = 0. (45)

An example of a possible Hamiltonian engineering strategy
is to firs impose, in addition to A,(¢) = 0, the form of 4,(¢)
also. We then interpolate f3(¢) (with a simple polynomial or
following some more sophisticated approach, e.g., to optimize
some variable) satisfying the boundary conditions (44) and
(45) at the boundary times #,,, and solve for i3(¢) in Eq. (43).
In the example of Fig. 1, the initial ground state of Eq. (39) with
h1(0) = 0is placed at the north pole of the Bloch sphere and it
is driven to the equator of the sphere ending as the ground state
of Eq. (40), with hi3(¢s) = 0. h3(t) is deduced assuming i (¢) =
hi(ts)t/tyand f3(2) = Z?:o b;t', where the b; coefficient are
deduced from the boundary conditions (44) and (45). We set
c1 = h3(0) + h3(0) so that H(0) = I(0). In this and the rest of
the figures we plot dimensionless variables 7 = ¢,/c1/h and
E=E/ J/c1, and the invariant has been set with dimensions
of energy. To fin solutions with real functions, the condition

, PR
fi+ <aVt (46)

must be satisfied see Eqgs. (42) and (43). This sets a minimum
fina time #y,, that depends on the constant ¢ and the ansatz to
interpolate f3(¢). The (dimensionless) minimum time for the
parameter values considered in Fig. 1 is 77, ~ 165.

Note that Eq. (43) is an algebraic equation for hs3(t)
and a differential equation for A(¢). Other option is to set
hs(t) firs and deduce h(t) from Eq. (43), which is now a
differential equation for this variable. To solve instead for
h(t) algebraically, we may engineer f|(¢) rather than f3(¢),
with an equation of the form of Eq. (43) that has the indices 1
and 3 swapped; see Fig. 2.
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IV. EXAMPLE 2: U3S3

As a second example, consider the four-dimensional (N =
4) Lie algebra U3S3 [52], with basis {7},73,T3,T4}, where
{T\,T,,T;5} span a SU(2) subalgebra [see Eq. (26)], whereas
the only nonvanishing commutators of 7, are

(I, T1] =iTh, [T, 4] =iTh. (47)

Since T4 — T3 commutes with any member of the algebra (it is
an invariant in a Lie-algebraic sense), this combination might
appear as the natural fourth basis generator instead of 7y.
However, the use of T} is physically motivated by its natural
occurrence in the system we shall deal with, namely, two
interacting bosons in two wells [53]. The A matrix for our
basis choice is

0O —-f f f

L WL 0 —-fA A
== 48
A=l a0 o) (48)
- N 0 0
with eigenvalues a® = a" =0, a'® = —if/h, and a® =
iB/h. The left and right eigenvectors are
fi
a®) = a0y = L J(;2 ,
N
13
| hfs
. ffs
jaV) =1a") = —— :
VY Y
B—v
(49)
—fifitifsvB
B—y
brk|a® @ ! Lf}z«/‘
rkla®) = 1a®) = — | =AstindE |,
VI | By
B—v
—fifi—ifivB
P
a®y = 18 = S ,
V2B VB—v
B—v

where y and B are define as before; see Egs. (28) and
(30). Note that here, unlike the previous example the zero
eigenvalue is degenerate, so the null subspace has dimension
Q = 2. Equation (21) now sets two conditions: one is the same
condition as for SU(2), f1 fi + f2/> + f3./s = 0, and the other
one is f3 = f4, so the system If) = A|h) has solution for |h)
if

f+E+fi=a. (50)

Ja= fi+c, (51)

with ¢; and ¢, constants (there are two independent f;).
We use now Eq. (22) as in the previous example to
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get

heo— WA+ B+ fifsh

1 - bl

2 fz
. (52)

ha = bel + f3h2 - f2h3

4= )

fa

Due to degeneracy of the null eigenvalue, there are two free A;,
and we have chosen them to be %, and /5 here. The frictionless
conditions A(f,)|h(#,)) = 0 become explicitly

— f3(tp)ha(ty) + fo(tp)hs(ty) + fa(tp)ha(ty) = 0,
S (ty) — fitp)hs(ty) + f1(tp)ha(ty) =0,  (53)
— fotp)hi(ty) + fi(tp)ha(ty) = 0.

A. Two interacting bosons in a double well

An interacting boson gas in a lattice potential can be
described by the Bose-Hubbard model [54,55]. For two
particles in two wells, the Hamiltonian in the occupation

1 0
number basis {|7eqt,Mrighe) }: 12,0) = <8>, [1,1) = <(1]>, and

0
10,2) = <0>, is given by [53]
1

U —V27 0
H0: _ﬁ] 0 _\/E] :UT4—4JT1, (54)
0 —V2J U

where U gives the interparticle interaction energy and J is
a hopping constant, assumed to be controllable functions of
time, and

1 (010 1 0 0
Ih=——=|1 0 1}, Tu={0 0 0}. (55
V210 1 o 0 0 1
We may close the algebra with two additional generators,
1 0 —i O 1 1 0 1
h=—JI[i o i|], n=-|0 -2 of, 6
2V2\o —i o A1 o0

where the T, satisfy the commutation relations given by
Egs. (26) and (47). Let us consider that at initial and fina
times, the Hamiltonian of our system is

H(0) = hi(0)T1 + h4(0)T3, (57)

H(ty) = hi(tp)Ti + ha(ty)1s, (58)

and we want to drive without fina excitation the ground state of
H(0)to H(ts). In[53], the shortcut-to-adiabaticity method that
is followed requires the addition of the “counterdiabatic term”
proportional to T,, which is difficul to implement [53]. 75 is
also problematic, so we shall engineer the Hamiltonian with
Eq. (52) imposing h,(t) = h3(t) = 0 Vt. Then, using Eq. (50),

g
= i
hy
(59
h2 2
fi= e — fE— J;l,
h
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FIG. 3. (Color online) Hamiltonian (left) and invariant (right)
coefficient vs time. The imposed functions (symbols) are h,(t)
(brown triangles), h3(z), (brown triangles), h4(t) (red squares), and
f1(¢) (blue circles). The derived functions (lines) are 4 (¢) (blue solid
line), f>(¢) (brown, short-dashed line), f5(¢) (red long-dashed line),
and f4(¢) (red long-dashed line). Parameter values: le(tf) = —4,
h4(0) =1, and 7; = 80.

where f; satisfie

. ha . ha f R f?
fl—h—4f1+ﬁ(f1h4—h1 ca— fi— hil = 0. (60)

Additionally, f; is given by Eq. (51). The frictionless condi-
tions (53) for hy(,) = hi(tp) = 0 are

e
fi(ty) = hi(ty) )+ ) fity) =0,  (61)

and from Eq. (60), at the boundary times ¢,

fity) =0. (62)

Assuming that h14(¢) is imposed, Eq. (60) sets /1 (¢) to drive the
initial ground state of H(0) to H (¢;) without undesired terms.
In Fig. 3, the Hamiltonian and the invariant components are
plotted for a frictionless Mott-insulator-to-superflui transition
[53,56]. The initial ground state of Eq. (57) with /,(0) = 0 cor-
responds to a Mott insulator and it evolves into the superflui
ground state of Eq. (58) with h4(t7) = 0. We assume a linear
variation of ha(t) = ha(0)(1 — t/t5) and fi(t) = Y _, bit',
where the b; are deduced from the boundary conditions (61)
and (62), ¢; = h3(0) + h2(0), and ¢; = 0.

Similarly to the previous example, if we impose the form
of h(¢) instead of h4, h4(t) can be deduced algebraically from
Eq. (60), replacing f; by f3 and then swapping 4 and 1.

V. OUTLOOK

We have worked out a framework to engineer time-
dependent Hamiltonians and speed up adiabatic processes
making use of dynamical invariants and dynamical algebras.
This is particularly useful to fin shortcuts free from Hamilto-
nian terms that are difficul to implement in practice. Explicit
construction formulas allow us to fi some components of the
Hamiltonian, to make them zero, for example, and get the time
dependence of the remaining components.

This work should be distinguished from a related method
presented in a companion paper [56]. Both approaches share
the use of Lie-algebraic methods and the aim of construct-
ing shortcuts. However, the approach presented here is a
systematic bottom-up inverse engineering method based on
the relation between Hamiltonian and dynamical invariants.

PHYSICAL REVIEW A 89, 043408 (2014)

Instead, in [56], the dynamical invariants do not play an explicit
role. The starting point for the approach in [56] is an existing,
known shortcut; then, unitary transformations are carried out
to generate alternative (feasible or more convenient) shortcuts,
as in [41]. The connection between the two approaches is left
for a separate study.

We also mention some fundamental questions worth inves-
tigating: The type and structure of the algebra is expected to
determine the inverse engineering possibilities and limitations,
which are still little known. In particular, the role of Lie-
algebraic invariants (in contrast to dynamical invariants) or
subalgebras should be examined [57], and quantum control
theory [58], which overlaps in part with our objectives, may
shed light on permissible or precluded operations. Adapting
the current ideas to many-body systems is a further open
question that may benefi from approaches based on restricting
the action of the Hamiltonian to a subspace [31].

The emphasis here has been on the cancellation of
undesired Hamiltonian terms, but other applications of the
proposed Hamiltonian engineering are possible, for example,
to optimize variables or robustness versus noise [59,60],
transient energy, and other relevant variables [9]. Finally,
the formalism proposed may be extended to open systems
governed by dynamical equations formulated by closed Lie
algebras [61-64].
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APPENDIX: GAUSS ELIMINATION

A way to solve the system (11) for |h(¢)) is to use Gauss
elimination. We consider explicitly the SU(2) group. The
augmented matrix associated with the system in Eq. (27) is

- 0 fi  hfa
0 o —f Rhh
Lo =fA 0 hfs

(A1)

The essence of the method is to reduce the system to an
equivalent one with the same solutions by applying elementary
operations. These are the multiplication of a row by a nonzero
scalar, the interchange of columns or rows, and the addition to
a row of the multiple of a different one. In a firs step, (f>2/f3)
times the firs row is added to the third one,

-5 0 fi hf
0 fi —fa hfi

0 —fi LB MEsnf

(A2)

Finally, (f1/f3) times the second row is added to the third,
producing a lower triangular matrix,
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-5 0 f hf
0 fi —f hfi

L (A3)
0 0 0 h(f1f1+]}2f2+f3f3)
3

This system is compatible and has infinit solutions if f| fi +
fafa+ f3f3 =0 or, equivalently, fZ+ f7 + fi =ci. The
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solutions satisfy
hfi = fsha — fohs,
hfs = —fshi + fihs,
from which Eq. (37) follows.
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