
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Bernal, F. (2016). Trust-region methods for nonlinear
elliptic equations with radial basis functions.
Computers & Mathematics with Applications, 72(7),
1743–1763.

DOI: https://doi.org/10.1016/j.camwa.2016.07.014

© 2016 Elsevier Ltd.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.camwa.2016.07.014

Trust-Region Methods for Nonlinear Elliptic
Equations with Radial Basis Functions

Francisco Bernal ∗ †

Abstract

We consider the numerical solution of nonlinear elliptic boundary value
problems with Kansa’s method. We derive analytic formulas for the Jaco-
bian and Hessian of the resulting nonlinear collocation system and exploit
them within the framework of the trust-region algorithm. This ansatz is
tested on semilinear, quasilinear and fully nonlinear elliptic PDEs (includ-
ing Plateau’s problem, Hele-Shaw flow and the Monge-Ampère equation)
with excellent results. The new approach distinctly outperforms previous
ones based on linearization or finite-difference Jacobians.

Keywords. Kansa’s method, radial basis function, nonlinear elliptic PDE,
trust-region method, Monge-Ampère, Plateau’s problem, p-Laplacian.

1 Introduction

1.1 RBF interpolation

Given the scalar data u1, . . . ,uN on a set (called pointset) of distinct points
x1, . . . , xN ∈ Rd (called centres), the RBF interpolant is defined as

ũ(x) =

N∑
j=1

α jφ(‖ x − x j ‖), (1)

where the function φ(r) : [0,∞) � R is the chosen radial basis function (RBF).
A few popular RBFs are shown in Table 1. Thoughout this paper, || · || is always
the 2-norm. The coefficients α1, . . . , αN are determined by collocation

φ(||x1 − x1||) . . . φ(||x1 − xN ||)
...

. . .
...

φ(||xN − x1||) . . . φ(||xN − xN ||)



α1
...
αN

 =


u1
...

uN

 , (2)

∗INESC-ID\IST, TU Lisbon. Rua Alves Redol 9, 1000-029 Lisbon, Portugal.
†Center for Mathematics and its Applications, Department of Mathematics, Instituto Superior

Técnico. Av. Rovisco Pais 1049-001 Lisbon, Portugal. (francisco.bernal@ist.utl.pt)

1

or, more compactly, [φ]~α = ~u. Thanks to the radial argument of φ, [φ]–called
the RBF interpolation matrix–is symmetric. Guaranteed non-singularity of [φ]
depends on the RBF φ being strictly conditionally positive definite (SCPD)–
i.e. bound to yield positive-definite [φ]. For instance, in Table 1 all the RBFs
are SCPD except for the multiquadric, where the RBF interpolant needs to be
augmented with a constant to yield a positive definite [φ] [13, 27].

RBFs used in this paper

RBF φ(r) notation support convergence rate

multiquadric
√

r2 + c2 MQ(c) r ≤ ∞ spectral
inverse multiquadric 1/

√

r2 + c2 IMQ(c) r ≤ ∞ spectral
Matérn (r/c)(α−d)/2K(α−d)/2(r/c) MATERN(α, c) r ≤ ∞ spectral
Wendland C4 [1 − (r/L)]s+2

+ P(r/L, s) WC4(L) r ≤ L algebraic

Table 1: d is the space dimension (x ∈ Rd). In MATERN(α, c), Kν(t) is the modified
Bessel function of the second kind. In WC4(L), [f (r)]+ = 0 if r ≥ L, s = 3 + bd/2c, and
P(t, s) = (s2 + 4s + 3)t2 + (3s + 6)t + 3 (WC4 works up to d = 3).

1.2 Kansa’s method

In 1990, Kansa adapted this approach to the solution of linear boundary value
problems (BVPs) [19, 20]. Consider the elliptic BVP{

L
PDEu(x) = f , if x ∈ Ω
L

BCu(x) = g, if x ∈ ∂Ω, (3)

where Ω is a bounded domain in Rd, d ≥ 1, u : Ω → R is smooth, and
L

PDE and LBC are the interior and boundary linear operators, respectively.
Kansa’s idea was to discretize Ω ∪ ∂Ω into a pointset ΞN = {xi}

N
i=1, and look

for an approximation ũ to u with an RBF interpolant like (1). Without loss of
generality, we can assume that the first M nodes in ΞN belong to the interior of
Ω and the last N −M are discretizing its boundary. By linearity, collocation of
(3) on that interpolant leads to

[Lφ]~α :=
[

[LPDEφ]Ω

[LBCφ]∂Ω

]
~α :=



L
PDEφ11 . . . L

PDEφ1N
...

. . .
...

L
PDEφM1 . . . L

PDEφMN
L

BCφM+1,1 . . . LBCφM+1,N
...

. . .
...

L
BCφN1 . . . L

BCφNN


~α =



f (x1)
...

f (xM)
g(xM+1)

...
g(xN)


.

(4)
(Check Section 1.7 for the notation.) This method for solving PDEs has

many appealing features: it is meshless,very easy to code, appropriate for

2

high-dimensional PDEs (thanks to the radial argument of the RBFs, which is
dimension-blind) and–as long as the solution is smooth–enjoys exponential
convergence with respect to the fill distance of the pointset ΞN (for many RBFs
at least, see Table 1). For a complete exposition, the reader is referred to
[13]. Regarding solvability, conditions which guarantee that the differentiation
matrix in (4) be nonsingular have not yet been established. In fact, there are
crafted examples which yield a singular matrix [18]), but such cases should
be exceedingly rare, as also confirmed by years of praxis. On the other hand,
Kansa’s method may lead to very ill-conditioned matrices, meaning that only
pointsets with up to a few thousands of nodes can be used before the matrix
in (4) becomes numerically singular. Larger problems can be tackled by using
compactly supported RBFs such as WC4 in Table 1 (at the expense of sacrificing
spectral convergence), by the RBF-QR method [16] (for some RBFs), and/or by
using the novel RBF-partition of unity method [21].

1.3 Nonlinear equations

Extending Kansa’s method to nonlinear equations is straightforward. Let us
introduce the following compact notation for a nonlinear elliptic BVP:

W[x,u(x),Du(x)] = 0⇒
{
W

PDE = 0, if x ∈ Ω
W

BC = 0, if x ∈ ∂Ω, (5)

where Du(x) is shorthand notation for any kind of derivatives present in (5),
such as ∂/∂x,∇2, etc. Collocation of (1) on (5) leads to the nonlinear system

Wi(~α) :=W[xi, ũ(xi),Dũ(xi)] = 0, 1 ≤ i ≤ N. (6)

A root ~α∗ of (6)–i.e. {Wi(~α∗) = 0}Ni=1 or simply ~W = 0–represents an RBF so-
lution ũ(~α∗) of the BVP (5). Even if the nonlinear BVP (5) has one unique
solution, the meshless discretization (6) may have none, one, multiple or in-
finitely many roots, regardless of the fact that the system is square. Therefore,
it is not evident that collocation is the best approach to RBF representations of
solutions to nonlinear BVPs, especially given that least-squares RBF approxi-
mations have been found to be preferable to strict collocation in other contexts
[22, 25]. Interestingly enough, we have found apparently unique strict roots in
every well-conditioned square RBF collocation system arising from the various
PDEs in our numerical experiments, provided that the domain discretization is
reasonable enough.

1.4 Rootfinding approach

We are seeking a root ~α∗ of (6). The most well-known rootfinding algorithm is
Newton’s method for systems [24], which proceeds as:

~αk+1 = ~αk − J−1
k
~Wk (7)

3

where ~Wk =
(

W1(~αk), . . . ,WN(~αk)
)T

and Jk is the Jacobian evaluated at ~αk. Like
all the solvers considered in this paper, Newton’s method requires an initial
guess ~α0 (which may be the interpolation coefficients of a guess function ũ0) to
kick off the iterations. One advantage of Newton’s method is that, if ~α0 is close
enough to a root ~α∗, if det J(~α∗) , 0, and if every Jacobian in the sequence (7) is
well conditioned enough, then {~αk}will converge to ~α∗ quadratically. However,
the sequence may not be convergent at all if ~α0 is not a good enough guess.
In this paper, we analyze and advocate the trust-region algorithm (TRA) for
nonlinear RBF collocation. A TRA approach was implicitly used (via Matlab’s
fsolve) to solve Navier-Stokes equations in [9], with numerical Jacobians con-
structed via finite differences. Finite difference Jacobians are very expensive to
construct and not as accurate as analytic ones; in particular for RBF collocation,
they become numerically unstable long before. In this paper we derive–for the
first time, to the best of our knowledge–analytic formulas for the Jacobian and
Hessian of a wide range of nonlinear operators. Not only do they substantially
improve the performance of the RBF/TRA method, but also enable a root of the
nonlinear system to be found where the previous approaches fail, in the first
place. Moreover, they also might offer theoretical insight into the root structure
of the system.

Let us briefly mention two directions that we have not pursued further.
When all nonlinearities are made up of sums and products of derivatives–such
as u∇2u + (∂u/∂x)(∂u/∂y), for instance–RBF collocation gives rise to a system
of polynomials in α1, . . . , αN. In principle, the complete root structure of such
a system could be revealed in the framework of Groebner bases [5], using for
instance SINGULAR. (In practice, however, typical RBF systems are too large,
and probably too ill-conditioned, to be tackled this way.) Another interesting
method of tackling polynomial systems is homotopy/continuation.

1.5 Operator-Newton (linearization) approach

An alternative way of solving nonlinear elliptic BVPs with RBFs is the operator-
Newton method introduced by Fasshauer [11]. The idea is to recast the original
nonlinear BVP into a sequence of linear BVPs yielding ever smaller contribu-
tions. Those linear BVPs can then be solved straight away with RBF collocation,
i.e. working in the PDE space rather than in the RBF coefficient space. This
approach was used for instance in [2] to solve a quasilinear PDE arising in
fluid dynamics. However, we will show in Section 4 that the operator-Newton
method is equivalent–at least in its most straightforward version–to Newton’s
method for systems and thus susceptible of erratic behaviour in the event of an
inadequate starting guess.

1.6 Outline of the paper

The remainder of the paper is organized as follows. We review the TRA in
Section 2, with an eye on RBF collocation. Particular attention is paid to the so-

4

called trust-region subproblem and three schemes for solving it are surveyed.
Section 3 is the core of the paper, for it derives specific formulas for the Jacobian
and Hessian of nonlinear RBF collocation. In Section 4, we show the equivalence
between the operator-Newton approach and Newton’s method for nonlinear
systems of equations. Section 5 derives formulas for three important classes of
nonlinear elliptic BVPs in detail, illustrating how to apply the RBF/TRA ansatz
to general equations. Some comments on solvability and uniqueness of the
nonlinear collocation system are made in Section 6. Section 7 reports extensive
numerical experiments on four different BVPs, and Section 8 discusses them.
Finally, Section 9 concludes the paper.

1.7 Notation

• In the spaceRd where the BVP (WPDE,WBC) is defined, vectors are written
in bold (like x or N), and operators in italics (likeW).

• Lφi j = (Lφ)(||xi − x j||)–like ∇2φi j–are the entries of matrix [Lφ].

• Nodal vectors (in RN) are associated to the RBF centres, such as ~α, or to a
function f (x) evaluated over the pointset, ~f =

(
f (x1), . . . , f (xN)

)
, or to an

operatorW collocated on the pointset nodes, ~W.

• Matrices acting in the RBF coefficient space are denoted with capital letters
(J, H) or like [φ], [Lφ], if they are the collocation matrix of φ, Lφ, etc.
Finally, diag[f] stands for a diagonal matrix with diagonal ~f .

• With the ordering ΞN =
(
{x1, . . . , xM} ∈ Ω

)
∪

(
{xM+1, . . . , xN} ∈ ∂Ω

)
, [Lφ]Ω ∈

RM×N is the upper block of the matrix [Lφ] in (4) and [Lφ]∂Ω ∈ R(N−M)×N

the lower block.

• A > 0 (A < 0) stands for a positive (negative) definite square matrix A.

2 Overview of the trust-region algorithm

In this section, we discuss the TRA mainly following [24, chapters 4 and 11],
focussing on those aspects which best meet the features of RBF collocation,
namely: non-sparse matrices, bad conditioning, and middle-size discretizations
(N . 3000). Very special attention has been paid to the possibility of using the
exact Hessian, which will be derived in Section 3. First, a sum-of-squares scalar
merit function µ(~α) is chosen:

µ(~α) = ~WT ~W/2 =
1
2

N∑
i=1

W2
i (~α) ≥ 0. (8)

5

The merit function µ(~α) inherits the smoothness of the RBF φ. Rootfinding is
then recast as minimization of µ:

~α∗ = arg min
~α∈RN

µ(~α). (9)

A zero of µ is a root of the system ~W = 0, and vice versa. Moreover, a zero of µ
is an absolute minimum of µ. The gradient and Hessian of µ(~α) are

∇µ = JT ~W, H = ∇2µ = JT J +

N∑
i=1

Wi∇
2Wi, (10)

where J is the Jacobian of ~W (22). Therefore, starting from an initial guess ~α0, we
seek a descending sequence µ(~α0) > 0, µ(~α1), µ(~α2), ..., µ(~α∞) hopefully leading
to the absolute minimum of µ. Unfortunately, state-of-the-art minimization
algorithms (not only the TRA) cannot rule out the possibility of getting trapped
in a local minimum (one where µ > 0 and thus not a root), even if a zero of µ
does exist. (The exception, as mentioned in the Introduction, are polynomial
systems tackled with Groebner bases or homotopy/continuation, which pose
other kind of difficulties anyway.) Moreover, minimization algorithms based
on derivative information (such as the TRA) can only find stationary points
(where ∇µ(~α∞) = 0), rather than minima.

The advantage of the TRA over other minimization algorithms is that it
can deliver global convergence, which is assured convergence to some minimum
of µ from any initial guess ~α0. Precise conditions which guarantee this will
be discussed later. In order to generate the iterates ~αk, the TRA proceeds as
~αk+1 = ~αk + ~γk, taking at every iteration a step ~γk such that

~γk ≈ ~γk∗ := arg min
‖~γ‖≤∆k

{
θk(~γ) := µk + ∇µT

k ~γ +
1
2
~γTAk~γ

}
. (11)

In (11), Ak is a symmetric approximation to the Hessian of µk := µ(~αk), and
∆k > 0 is the trust-region radius. θk is a second-order approximation (or model)
of µwhich is only trusted–and this is the hallmark of the TRA–within a distance
∆k from the current iterate ~αk. Problem (11)–namely, the minimization of a
quadratic polynomial inside a sphere–is referred to as the trust region subproblem
(TRS). Once the TRS is solved (exactly or approximately), the fidelity of the
model can be assessed a posteriori by

ρk =
µ(~αk) − µ(~αk + ~γk)
θk(0) − θk(~γk)

. (12)

The trust-region radius can be then dynamically adjusted according to Al-
gorithm 1. Note that a decreasing step may also be rejected if the model is
deemed poor (ρk ≤ η for some threshold 0 < η < 1).

6

Algorithm 1 Trust Region Algorithm (see [24, algorithms 4.1 and 11.5]).
Data: ~α0,∆max > 0,∆0 ∈ (0,∆max), and η ∈ [0, 1/4)
Result: Convergence to a stationary point/minimum of µ (see Theorem 1)
for k = 1, 2, . . . until convergence do

obtain ~γk by (approximately) solving (11)
evaluate ρk according to (12)
if ρk < 1/4 then

∆k+1 = ∆k/4
else

if ρk > 3/4 and ‖ ~γk ‖= ∆k then
∆k+1 = min{2∆k,∆max}

else
∆k+1 = ∆k

end if
end if
if ρk > η then
~αk+1 = ~αk + ~γk

else
~αk+1 = ~αk

end if
end for

There are two more important definitions. The Cauchy step, ~γC, is the mini-
mizer of θk inside the trust region along the steepest descent direction–so that
θk(~γC) ≥ θk(~γ∗). It turns out to be [24, section 4.1]:

~γC = −τk
∆k

‖ ∇µk ‖
∇µk, with τk =

{
1, if ∇µT

k Ak∇µk ≤ 0,
min{ ‖ ∇kµ ‖3 /(∆k∇µT

k Ak∇µk), 1 }, otherwise.
(13)

Note that ~γC involves no linear systems and yet provides some drop in µ–hence
it is useful to fall back on in the event of severe ill-conditioning of Ak. The full
step, ~γF, is the unconstrained minimizer of a quadratic polynomial:

~γF = arg min
~γ∈RN

θk(~γ) = −A−1
k ∇µk. (14)

The convergence properties of the TRA depend on the method employed to
tackle the TRS, which we address next. Let us drop iteration subindex k while
discussing the TRS. The critical insight is that the TRS need not be solved exactly
for the TRA to converge. In fact, a TRS approximation ~γ ≈ ~γ∗ resulting in a
drop in µ which is at least a fixed positive fraction of the drop achieved by the
Cauchy step suffices for convergence [24, theorems 4.8 and 4.9]. If A > 0, ~γF is
calculated. If, moreover, ~γF lies inside the trust region, then ~γ∗ = ~γF. Otherwise,
either A > 0 but the full step is not feasible (i.e. ||~γF|| > ∆), so that ~γ∗ must lie
on the boundary of the trust region; or A is indefinite–and the full step ~γF may
not be a minimum of µ in the first place. In both cases, the TRS–a nonlinear

7

problem itself–must be solved iteratively. Bearing in mind the application to
RBF collocation, we will consider three TRS approximations:

1. Nearly exact (or ”full”). The exact solution ~γ∗ of the TRS (11) can be
found following an approach due to Moré and Sorensen [23] (see also
[24, chapter 4]). The higher computational cost of this TRS method is
only warranted if the full Hessian is available, so we will assume that
A = H. A canned implementation is Matlab’s trust–albeit it is not given
as an option in Matlab’s fsolve–where the full eigendecomposition of H
is carried out. An important case is when ∇µT~q1 = 0 (~q1 is the eigenvector
of λ1, the smallest eigenvalue of A = H), called by Moré and Sorensen the
hard case, which may appear due to ill-conditioning of the RBF matrices.
Alternatively, the method described in detail in [24, section 4.2]) involves
several factorizations of H rather than the full eigendecomposition. Due
to space limitations, the reader is referred to those papers for further
details. Despite its significantly higher computational cost, this nearly
exact solution will serve as a benchmark to assess the performance of the
remaining two approximations.

2. The dogleg method, involving just one matrix factorization (A = JT J).

3. 2D subspace minimization, involving two factorizations of A = H.

Conjugate-gradient-based methods for the TRS have not been included because
they are mostly meant for large and sparse matrices and are especially sensitive
to bad conditioning, while–to the best of our knowledge–there are not really
efficient general preconditioners available for our problem.

2.1 The dogleg method

When the full step ~γF is not feasible, the minimum in the TRS is approximated
by the intersection of the trust region with the ”dogleg path” [24, figure 4.3]

~p(τ) =

{
τ~γu, if 0 ≤ τ ≤ 1,
~γu + (τ − 1)(~γF − ~γu), if 1 ≤ τ ≤ 2, (15)

where

~γu = −
∇µT
∇µ

∇µTA∇µ
∇µ. (16)

It can be proved that τ ∈ [0, 2] is the solution of the scalar equation

||~γu + (τ − 1)(~γF − ~γu)||2 = ∆2. (17)

See [24, sections 4.1 and 11.2] for further details. Therefore, minimization in
N dimensions is replaced by minimization along the dogleg path. The standard
choice (in fact the default in many solvers such as Matlab’s fsolve, and in the
remainder of this paper) is A = JT J ≥ 0, which incorporates partial Hessian
information without constructing H in the first place, and provides second-
order convergence with just first-derivative information [24, section 11.2].

8

2.2 2D subspace minimization of the TRS

Byrd, Schnabel and Schultz extended the minimization to the whole bidimen-
sional subspace containing the dogleg path in such a way that also indefinite
A can be used [6, 26]. With this method, we will also understand that A = H.
Practical experience shows that often, the drop in µ in the bidimensional sub-
space compares to that in RN, but at a fraction of the cost. We put together the
pseudocode in Algorithm 2.

Algorithm 2 Two-dimensional subspace approximation of the TRS (2Dsub)
Data: ∇µ,H,∆ > 0, tol > 0
Require: ν ≈ λ1 := min eig(H), such that |ν| ∈ (−λ1,−2λ1] if λ1 < 0
Result: approximate minimizer ~γ ≈ ~γ∗ of the TRS in (11)

1) Check definiteness of H
if ν > tol then

H > 0. Compute ~γF in (14)
if ||~γF|| ≤ ∆ then
~γ = ~γF = ~γ∗ and return

else
let S2 = span[∇µ, ~γF] and goto 2)

end if
else if |ν| < tol then

H is numerically singular. ~γ = ~γC and return
else

H is indefinite. Compute ~p = −(H − νI)−1
∇µ

if ||~p|| ≤ ∆ then
let ~q be a descent direction of µ and ||~q|| = 1
let ~v = −v~q, where v = −~pT~q +

√
(~pT~q)2 + ∆2 − ||~p||2

let ~γ = ~p + ~v and return
else

let S2 = span[∇µ, ~p] and goto 2)
end if

end if

2) Let S2 = span[~s1,~s2], with ||~s1|| = ||~s2|| = 1, and P2 = [~s1,~s2] (a projector)
find the minimizer ~ξ∗ = σ1~s1 + σ2~s2 = (σ1, σ2)T of the model θ in subspace S2:
~ξ∗ = arg min√

σ2
1+σ2

2≤∆

µ + ∇µTP2(σ1, σ2)T + 1
2 (σ1, σ2)PT

2 AP2(σ1, σ2)T

~γ = ~ξ∗ and return.

Once ν is available, the descent direction ~q can be the eigenvector, i.e. H~q ≈
ν~q. In [6], ν is meant to be efficiently estimated with the Lanczos method.

9

2.3 Convergence properties of the TRA

The following result is a corollary from theorems 4.8 and 4.9 in [24], which in
turn were proved in [26] and [23], respectively. For the dogleg method, it is
possible to derive conditions on J rather than on µ [24, theorems 11.8 and 11.9].

Theorem 1 (Convergence of the TRA with the three TRS methods in this paper)
Assume that the TRS is solved either by the nearly exact method (A = H), or the dogleg
method (A = JT J), or by 2D subspace minimization (A = PT

2 HP2). Furter assume that
||A|| is bounded above and that µ is Lipschitz continuously differentiable and bounded
below on the level set {~α |µ(~α) ≤ µ(~α0)}. Then, the TRA (Algorithm 1) with constant
η converges to a stationary point–which may be either an absolute minimum, a local
minimum, or a saddle point. If, additionally, that level set is compact, the TRA with
nearly-exact TRS solution either converges to a minimum (local or absolute), or ~αk has
a limit point in the level set at which second-order necessary minimality conditions
hold (but not a saddle point).

The convergence of the TRA close to a non-degenerate root (i.e. where
det J(~α∗) , 0) is quadratic if J is Lipschitz-continuous around ~α∗ and the TRS
is solved exactly [24, theorem 11.10]. Note however that, as the iterates ~αk
approach the root more closely, eventually the root will lie within the trust
region, and then ~γ = ~γF is nearly exactly the Newton step in (7), since JT J � H
because {Wi ≈ 0}Ni=1 in (10). Since Newton’s method converges quadratically to
a non-degenerate root, so do all three TRS methods considered in this paper.

2.4 Scaling

The TRA with spherical trust regions may perform poorly when the merit func-
tion is posed with poor scaling–i.e. changes much faster along some directions
than other. Linearly rescaling the coefficients vector,

~α′ := Γ~α, (det Γ , 0) (18)

may make up for it. Then,

Ji j =
∂Wi

∂α j
=

N∑
k=1

∂Wi

∂α′k

∂α′k
∂α j

=

N∑
k=1

J′ikΓkj, (19)

so that
J′ = JΓ−1, A′ = Γ−TAΓ−1. (20)

Notice that this may change the conditioning of J′ and A′. The simplest
choice is to take Γ diagonal with positive elements–which is equivalent to
keeping the original variables and replacing the spherical trust region by an
elliptical one defined by ||Γγk|| ≤ ∆k [24, section 4.4]. The diagonal entries Γii
must be a reflection of the sensitivity of the merit function to changes along the
ith coordinate axis. A reliable option is setting

Γii =
∂2µ

∂α2
i

. (21)

10

3 The trust-region algorithm for RBF collocation

In this section, we address specific aspects of the TRA when applied to RBF col-
location, including analytical formulas for J and H. Henceforth, the combined
method will be referred to as RBFTrust.

3.1 RBF Jacobian and Hessian

The Jacobian of (6) is:

J(~α) =


∂W1
∂α1

. . . ∂W1
∂αN

...
. . .

...
∂WN
∂α1

. . . ∂WN
∂αN

 . (22)

Recall that Wi refers to eitherWPDE orWBC depending on whether xi is in Ω
or on ∂Ω, and thus J , JT. We will assume that W is smooth and consists
of S functions of u and its derivatives with respect to x (including the identity
operator I). For instance, inWu = ∇2u +

√
u(∂u/∂x)2

− u, there are three such
components, namely D1 = I,D2 = ∂u/∂x, and D3 = ∇2 (the order is irrelevant).
Replacing u by ũ and applying the chain rule,

∂Wi

∂α j
=

S∑
m=1

∂Wi

∂Dmũ(xi)
∂Dmũ(xi)
∂α j

. (23)

Let us use the shorthand notation ∂Wi/∂Dm for ∂Wi/∂Dmũ(xi). By linearity,

∂Wi

∂α j
=

S∑
m=1

∂Wi

∂Dm

∂
∂α j

N∑
k=1

αkDmφik =

S∑
m=1

∂Wi

∂Dm
Dmφi j. (24)

Then, using the notation introduced in Section 1.7:

J(~α) =



S∑
m=1

∂W1
∂Dm

Dmφ11 . . .
S∑

m=1

∂W1
∂Dm

Dmφ1N

...
. . .

...
S∑

m=1

∂WN
∂Dm

DmφN1 . . .
S∑

m=1

∂WN
∂Dm

DmφNN


=

S∑
m=1

diag
[∂W
∂Dm

]
[Dmφ]. (25)

The Hessian of the merit function µ = ~WT ~W/2 is

H = ∇2µ = JT J +

N∑
k=1

Wk∇
2Wk, (26)

where

∇
2Wk =


∂2Wk
∂α2

1
. . . ∂2Wk

∂α1∂αN

...
. . .

...
∂2Wk
∂αN∂α1

. . . ∂2Wk
∂α2

N

 . (27)

11

Notice that H, JT J and Wk∇
2Wk are symmetric. Now,

∂2Wk

∂αiα j
=

∂
∂αi

(S∑
m=1

∂Wk

∂Dm
Dmφkj

)
=

S∑
m=1

S∑
n=1

∂2Wk

∂Dm∂Dn
DnφkiDmφkj. (28)

Note that Dmφki = πmDmφik, with πm = ±1, and thus [Dmφ]T = πm[Dmφ].
For instance, ∇2φi j = ∇2φ ji but ∂φ

∂x |i j = −
∂φ
∂x | ji. Then

(N∑
k=1

Wk∇
2Wk

)
i j

=

S∑
m=1

S∑
n=1

πm

N∑
k=1

Dmφik

(
Wk

∂2Wk

∂Dm∂Dn

)
Dnφkj. (29)

From (25),

JT J =

S∑
m=1

S∑
n=1

[Dmφ]Tdiag[
∂W
∂Dm

∂W
∂Dn

][Dnφ]. (30)

Summing the two parts,

H(~α) =

S∑
m=1

S∑
n=1

[Dmφ]T
(
diag[

∂W
∂Dm

∂W
∂Dn

] + diag[W
∂2W

∂Dm∂Dn
]
)
[Dnφ] = (31)

=
1
2

S∑
m=1

S∑
n=1

[Dmφ]Tdiag[
∂2W2

∂Dm∂Dn
][Dnφ].

Note that (31) is symmetric with respect to the matrices involved.

Remark 2. The matrices [D1φ], . . . , [DSφ] are filled at start and stored. At
every iteration of RBFTrust, only the diagonal matrices depend on ~αk and
have to be recalculated. Thus the dogleg method–where only J is explicitly
computed–involves only matrix-vector multiplications, while setting A = H
takes S(S + 1)/2 extra matrix multiplications.

3.2 Elimination of linear equations

Often, the system ~W(~α) = 0 will contain linear equations, such as those rep-
resenting the collocation of Dirichlet and other linear BCs. Another source of
linear equations in the system is the enrichment of the RBF interpolant (see for
instance [3, 4], and Example III in Section 7) with n special functions hk:

ũ =

N∑
j=1

α jφ(‖ x − x j ‖2) +

n∑
k=1

hk(x). (32)

In this case, the system must be augmented with n ancillary equations in order
to keep it square:

α1hk(x1) + . . . + αNhk(xN) = 0, k = 1, . . . ,n. (33)

12

Whenever there are m ≤ N linearly independent equations, m degrees of
freedom can be eliminated, and the minimum for µ sought in a shrunken
(N − m)-dimensional space. An elimination method which is optimally stable
is described in [24, section 15.2]. Assume that the linear block in (6) is given by
B~α = ~b, with B ∈ Rm×N. Consider the QR decomposition

BTΠ = [Q1Q2]
[

R
0

]
, (34)

where Π is an m × m permutation matrix, QB = [Q1Q2] is orthonormal, Q1 ∈

RN×m and Q2 ∈ RN×(N−m) are made up of orthonormal columns and R ∈ Rm×m

is upper triangular and nonsingular because rank(B) = m. Let ~α = Q1~ν + Q2~β

and insert it into B~α = ~b, yielding the optimally stable decomposition of ~α

~α = Q1R−TΠT~b + Q2~β. (35)

In any elimination of degrees of freedom like ~α = ~v + Z~β, where ~v is a
constant vector and ~β ∈ RN−m, the columns of Z represent a basis of the null
space of B, since BZ = 0. (It is easy to prove that BQ2 = 0). Whether Z = Q2 or
a different basis of null(B), Jacobian entries are transformed as in (19) and

J(~β) = J(~α)Z, H(~β) = ZTH(~α)Z. (36)

In (36), J(~α) and H(~α) are (25) and (31), respectively. (Or J′ and H′ like in
(20) if rescaling like (18) has been included.)

4 The operator-Newton approach

Let us define the linearization of the nonlinear operatorW around a function
u(x) as the linear operator Lu such that

lim
‖v‖→0

W(u + v) −Wu − Luv
‖ v ‖

= 0. (37)

If that limit exists,Lu is unique and is called the Fréchet derivative ofW around
u [10]. Definition (37) is non-constructive. For our purposes, let us assume that
Lu exists and that all operators are regular enough so that

W(u + v) =W(u) +Luv + O(‖ v ‖2). (38)

Let LPDE
u and LBC

u be the linearization of WPDE and WBC, respectively. The
operator-Newton method for nonlinear elliptic BVPs is Algorithm 3 below.

13

Algorithm 3 Operator-Newton method without smoothing.

Data: initial guess u0(x), the linearized operators Lu = {LPDE
u ,LBC

u }

for k = 1, 2, ... until Rk = {RPDE
k ,RBC

k } stagnates do

A3.1. Compute the residuals


RPDE

k = −WPDEuk−1 if x ∈ Ω,

RBC
k = −WBCuk−1 if x ∈ ∂Ω

A3.2. Solve the BVP


L

PDE
uk

vk = RPDE
k if x ∈ Ω,

L
BC
uk

vk = RBC
k if x ∈ ∂Ω

A3.3. Update uk = uk−1 + vk

end for

4.1 Equivalence to Newton’s method

Note that Algorithm 3 is independent of the discretization. Let us assume
that every iteration of it is implemented on a pointset ΞN using the RBF φ,
i.e. ũk = [φ]~αk and ṽk = [φ]~γk. Then, the updating step (A3.3) is equivalent
to ~αk+1 = ~αk + ~γk+1. The matrix version of an iteration of Algorithm 3 reads
[Lkφ]~γk = − ~Wk, –i.e. exactly as in (4) but replacing ~α by ~γk, (LPDE,LBC) by
(LPDE

k ,LBC
k), and the right-hand side by − ~Wk.

Inverting that system for ~γk, the matrix form of the updating step (A3.3)
in Algorithm 3 gives ~αk+1 = ~αk − [Lkφ]−1~γk+1, which is Newton’s method if
[Lkφ] = Jk. To justify that this is indeed the case, consider the limit

lim
‖v‖→0

W(u + v) −Wu
‖ v ‖

= lim
‖v‖→0

Luv
‖ v ‖

, (39)

according to (37) and (38). Let ~γk = (γ(1)
k , . . . , γ

(N)
k)T. Substituting ũ(~αk) and ṽ(~γk)

for u and v and evaluating on xi ∈ ΞN,

lim
‖~γk‖→0

Wi(~αk + ~γk) −Wi(~αk)
‖ ~γk ‖

= lim
‖~γk‖→0

N∑
n=1
γ(n)

k Lkφin

‖ ~γ ‖
. (40)

Now, let us particularize to the direction γ(n)
k = δ jn, where δ jn is Kronecker’s

delta. Then, the left-hand side of (40) is ∂Wi/∂α j = Ji j, and

Ji j = Lkφi j. (41)

Thus, the collocated version of Algorithm 3 is not globally convergent.

Remark 3. The original operator-Newton algorithm by Fasshauer includes
an additional step for residual smoothing, and therefore our result here does

14

not pertain to that case. In fact, his research shows that smoothing may be
critical for performance, although difficult to implement in practice [12, 2].

5 Explicit formulas for prototypical PDEs

In this section, we derive explicit formulas for the Jacobian and Hessian of three
relevant classes of nonlinear elliptic differential operators, as well as for the
linearized operator required by the operator-Newton method. Those formulas
will be used later in Examples I-IV in Section 7.

5.1 Semilinear equations

In this case, the nonlinearity involves u but none of its derivatives. We consider
only the following equation, taken from [28]:

∇
2u − u3 = f if x ∈ Ω, u = g if x ∈ ∂Ω. (42)

The Fréchet derivatives for the operator-Newton method are

L
PDE = ∇2

− 3u2I, L
BC = I. (43)

For RBFTrust, since the BCs are linear, Z is obtained (along with Π and Q1)
from the QR decomposition of the block with the BCs, arranged as in (34):

[φ]T
∂ΩΠ = [Q1Z]

[
R
0

]
. (44)

Recall from (35) that, after finding the solution ~β∞ in the shrunken space RM,
the coefficients of the RBF interpolant are transformed according to

~α(~β) = Q1R−TΠT[g(xM+1), . . . , g(xN)]T + Z~β. (45)

The Jacobian and Hessian in the shrunken space are given by

J(~β) =

(
[∇2φ]Ω − 3diag[u2(~β)]Ω[φ]Ω

)
Z, (46)

H(~β) = ZT
(

[∇2φ]2
Ω + [φ]Ωdiag[15u4(~β) − 6u(~β)∇2u(~β)]Ω[φ]Ω −

−

(
[φ]Ω + [∇2φ]Ω

)
diag[3u2(~β)]Ω

(
[φ]Ω + [∇2φ]Ω

))
Z. (47)

The nodal values for the diagonal matrices are picked from ~u(~β) = [φ]~α(~β).

15

5.2 Quasilinear equations

Let us consider the quasilinear operator

W
PDEu = ∇ ·

(
G(u)∇u

)
− f , (48)

where G(t) : [0,∞) → R is smooth and t actually stands for |∇u|, i.e. G(u) =
G(|∇u|). This class includes:{

the operator G(t) = 1/
√

1 + t2 (see Example II), and
the p-Laplacian, G(t) = tp−2, (p ≥ 2) (see Example III).

First, we will produce a linearization of the PDE suitable for the operator-
Newton using a ”small increment” argument. Consider the gradient modulus:

|∇(u + v)| =
√
|∇u|2 + |∇v|2 + 2(∇u · ∇v) = |∇u|

√
1 + 2

∇u · ∇v
|∇u|2

+
(|∇v|
|∇u|

)2
. (49)

Under the condition |∇v|/|∇u| << 1, a Taylor approximation yields

|∇(u + v)| = |∇u|
(
1 +
∇u · ∇v
|∇u|2

+
1
2

(|∇v|
|∇u|

)2)
≈ |∇u| +

∇u · ∇v
|∇u|

+O(|∇v|/|∇u|)2. (50)

Using the definition (38), it is clear that L(|∇|)u = ∇u·∇
|∇u| . By the chain rule,

L
(G)u = G′(u)

∇u · ∇
|∇u|

(51)

and therefore, to first order in |∇v|/|∇u|,

G(u + v) ≈ Gu + G′(u)
∇u · ∇v
|∇u|

. (52)

with G,G′ and G′′ evaluated at |∇u|. Coming back to (48),

∇ · [G(u + v)∇(u + v)] = ∇ · [G∇u] + ∇ · [G∇v] +

+∇ · [G′
∇u · ∇v
|∇u|

∇u] + ∇ · [G′
∇u · ∇v
|∇u|

∇v] + O(|∇v|/|∇u|2). (53)

The first three terms on the rhs can be simplified to:

∇ · [G∇u] = G∇2u + G′
∆∞u
|∇u|

(54)

∇ · [G∇v] = G∇2v + G′
∇v · (∇u · ∇)∇u

|∇u|
(55)

∇ · [G′
∇u · ∇v
|∇u|

∇u] = G′
∇u · (∇u · ∇)∇v

|∇u|
+

+
(
G′′

∆∞u
|∇u|2

− G′
∆∞u
|∇u|3

+ G′
∇

2u
|∇u|

)
∇u · ∇v + G′

∇v · (∇u · ∇)∇u
|∇u|

, (56)

16

where we have introduced the infinity Laplacian inRd, ∆∞ =
∑d

i, j=1
∂2

∂xi∂x j

∂
∂xi

∂
∂x j

.
Regarding the rightmost term of (53), which is nonlinear in v, let

V := G′
∇u · ∇v
|∇u|

∇v. (57)

In order that |V| ≤ |G′||∇v|2 ≤
(
|∇v|
|∇u|

)2
≈ 0, it is sufficient that

|G′| ≤
1
|∇u|2

, or |G′(t)| ≤ 1/t2. (58)

Thus, if (58) holds, the surviving nonlinear term in (53) can be dropped. In the
operator-Newton method, the correction v around u obeys the linear PDE:

G∇2v + G′
∇u
|∇u|
· (∇u · ∇)∇v +

G′′|∇u|∆∞u + G′|∇u|2∇2u − G′∆∞u
|∇u|3

∇u · ∇v +

+2
G′

|∇u|
∇v · (∇u · ∇)∇u = RPDE if x ∈ Ω, (59)

where RPDE = f − div[G(u)∇u] is the residual to (48). In d = 2, (59) is

A
∂2v
∂x2 + B

∂2v
∂x∂y

+ C
∂2v
∂y2 + D

∂v
∂x

+ E
∂v
∂y

= |∇u|3RPDE (60)

where:

A(x, y) = G|∇u|3 + G′|∇u|2u2
x, (61)

B(x, y) = 2G′|∇u|2uxuy, (62)

C(x, y) = G|∇u|3 + G′|∇u|2u2
y, (63)

D(x, y) =
(
G′′|∇u|∆∞u + G′|∇u|2(3uxx + uyy) − G′∆∞u

)
ux + 2G′|∇u|2uxyuy, (64)

E(x, y) =
(
G′′|∇u|∆∞u + G′|∇u|2(3uyy + uxx) − G′∆∞u

)
uy + 2G′|∇u|2uxyux. (65)

The linearized PDE is elliptic as long as B2
− 4AC < 0, i.e. 1 + t G′

G > 0 or

G′/G > −1/t (66)

Let us check the linearization (58) and ellipticity (66) conditions for the PDEs
(48). For the least area operator, G′(t) = −tG3(t) and 0 ≤ G ≤ 1, so that both
(66) and (58) hold for any |∇u|. Regarding the p-Laplace operator, (66) holds,

17

but (58) leads to (p − 2)tp−1
≤ 1. For instance, for p = 2.6 as in Example III, the

linearization breaks down if |∇u| > (p − 2)1/(1−p) = 1.37.

Remark 4. The derivation of the linearized operator in terms of a ”small
increment” argument, like above, has the advantage that it sheds light on why
the operator-Newton method breaks down in the presence of high gradients
of the solution: it neglects contributions which are too large to be dropped,
namely the nonlinear term in v on the right-hand side of (53).

We write down now the formulas for J and H needed in RBFTrust. Expand-
ing the divergence before linearization, (48) reads:

G∇2u +
G′∆∞u
|∇u|

= f (67)

For Plateau’s problem (Example II) f = 0, d = 2 and, since 1 + |∇u|2 , 0,

WPDE = (1 + |∇u|2)∇2u − ∆∞u, WBC = u (68)

so that the non-zero entries of the RBF Jacobian (25) can be filled up with:

∂WPDE

∂uxx
= 1 + u2

y,
∂WPDE

∂uxy
= −2uxuy,

∂WPDE

∂uyy
= 1 + u2

x,

∂WPDE

∂ux
= 2uxuyy − 2uyuxy,

∂WPDE

∂uy
= 2uyuxx − 2uxuxy,

∂WBC

∂u
= 1. (69)

The non-zero second derivatives needed for the RBF Hessian are:

∂2WPDE

∂ux∂uxy
= −2uy,

∂2WPDE

∂uy∂uxy
= −2ux,

∂2WPDE

∂ux∂uyy
= 2ux,

∂2WPDE

∂uy∂uxx
= 2uy,

∂2WPDE

∂ux∂uy
= −2uxy,

∂2WPDE

∂u2
x

= 2uyy,
∂2WPDE

∂u2
y

= 2uxx. (70)

For the Hele-Shaw equation, f = 0 also, but the BCs either of Neumann or
Dirichlet kind, depending on the point on the boundary (see Example III):

W
PDE = |∇u|p−2

(
∇

2u + (p − 2)|∇u|p−2∆∞u
)
, W

BC =

{
W

N = N · ∇u
W

D = u − g (71)

In d = 2, N = (Nx,Ny). The first and second derivatives of WPDE with
respect to uxx,uxy,uyy,ux and uy are found as before. (Since they are rather
lengthy we do not write them down.) Since the BCs are linear, only the first
derivatives ofWBC are nonzero, namely

∂WD

∂u
= 1,

∂WN

∂ux
= Nx,

∂WN

∂uy
= Ny. (72)

18

When constructing the Jacobian and Hessian, notice that [φx] and [φy] are
antisymmetric. The linear block entering the QR decomposition (34) includes
not only the BCs (both Neumann and Dirichlet), but also the complementary
equations (33) for the Motz functions (80) if they are incorporated into the RBF
interpolant, as in Example III.

5.3 Fully nonlinear operator

Here, the nonlinearity involves the highest-order derivatives. In this class, we
consider the Monge-Ampère operator in Rd,

W
PDEu = det D2

du, (73)

where D2
du is the Hessian matrix of u : Rd � R. In d = 2 and d = 3,

D2
2u = uxxuyy − u2

xy, D2
3u = det


∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂z

∂2u
∂y∂x

∂2u
∂y2

∂2u
∂y∂z

∂2u
∂z∂x

∂2u
∂z∂y

∂2u
∂z2

 (74)

This PDE gives rise to a polynomial system of collocation equations and is
simpler to linearize. We assume Dirichlet BCs and write down the formulas for
d = 2. For the operator-Newton method,

L
PDE = uyy

∂2

∂x2 + uxx
∂2

∂y2 − 2uxy
∂2

∂x∂y
. (75)

For RBFTrust, Z,Q1 and Π are given by (44), and the Jacobian and Hessian
are:

J(~β) =
(

diag[uyy(~β)]Ω[φxx]Ω +diag[uxx(~β)]Ω[φxx]Ω−2diag[uxy(~β)]Ω[φxy]Ω

)
Z (76)

H(~β) =
1
2

ZT
(

[φxx]Ωdiag[2u2
yy(~β)]Ω[φxx]Ω + [φyy]Ωdiag[2u2

xx(~β)]Ω[φyy]Ω + (77)

[φxy]Ωdiag[12u2
xy(~β) − 4uxx(~β)uyy(~β)]Ω[φxy]Ω +(

[φxx]Ω + [φyy]Ω

)
diag[4uxx(~β)uyy(~β) − 2u2

xy(~β)]Ω

(
[φxx]Ω + [φyy]Ω

)
+(

[φxx]Ω + [φxy]Ω

)
diag[−4uyy(~β)uxy(~β)]Ω

(
[φxx]Ω + [φxy]Ω

)
+(

[φyy]Ω + [φxy]Ω

)
diag[−4uxx(~β)uxy(~β)]Ω

(
[φyy]Ω + [φxy]Ω

))
Z.

6 Remarks on solvability and uniqueness

The analytical formulas for the Jacobian and the Hessian offer insight into the
structure of the nonlinear RBF system ~W(~α) = 0. Sinceµ inherits the smoothness
of φ(r), the possible minima of µ are all critical points.

19

Local minima of the merit function (i.e. those for which µ > 0) have the im-
portant property that det J = 0, because ∇µ = JT ~W = 0 but ~W , 0. (Obviously,
the same property holds for any critical point of µ.) Therefore, nonsingularity
of J(~α) allows one to guarantee that RBFTrust will converge to a root–unless it
can drift towards ||~α|| � ∞ seeking to reduce µ. This is the idea of Theorem 3,
for which Theorem 2 below will be needed (see [17] and references therein).

Theorem 2 (Courant’s finite-dimensional mountain pass theorem) Suppose that
µ(~α) is

• continuous with continuous derivatives in RN,

• coercive (i.e. lim
||~α||�∞

µ(~α) = ∞), and

• possesses two different strict (i.e. isolated) minima ~α1 and ~α2.

Then, µ possesses a third critical point ~α3 such that µ(~α1) < µ(~α3) > µ(~α2)–therefore
distinct from ~α1 and ~α2.

Theorem 3 (Sufficient conditions for solvability and uniqueness of nonlinear RBF collocation)
Let µ(~α) = ~WT(~α) ~W(~α)/2 with ~W : RN

7→ R, and let J(~α) be the Jacobian of ~W. As-
sume that µ is coercive and that det J , 0 in RN. Then,

• There is one unique root ~α∗ to ~W(~α) = 0.

• Under the further conditions in Theorem 1, and assuming numerical precision
high enough to overcome possible ill-conditioning, RBFTrust with the full TRS
method will find it from any initial guess.

Proof. If the function is coercive, there is a minimizer ofµ and since µ is twice
differentiable and J is nonsingular, that minimizer is a root. For uniqueness,
assume that there were two roots. Then, Theorem 2 ensures the existence of a
third critical point with µ > 0 and therefore singular J, which is a contradiction.
For the second part, simply apply Theorem 1. �

Theorem 3 establishes a parallelism between the linear and nonlinear ver-
sions of Kansa’s method, with J playing the same role as the collocation matrix
K = [Lφ] from (4). Unfortunately, the assumptions of Theorem 3 are quite
elusive–even assuming numerical stability. For instance, consider a linear BVP
like (3), which can be regarded as a particular nonlinear one, and let us ana-
lyze its root structure from the point of view of µ(~α). The Jacobian of (4) is K

itself, and H = KTK. If det K , 0, H −
(
λmin(K)

)2
I > 0, so that µ(~α) is strongly

convex, and thus has a unique minimum, which must be a root. Nonetheless,
this could not be proved by Theorem 3 since lim||~α||�∞ µ(~α) = 0 along the di-
rection ~α = K−1[f (x1), . . . , g(xN)]T –the rhs vector in (4)–so that µ is not coercive
in the first place. Let us now come back to nonlinear problems. Even in the

20

simple and well-behaved Example I in Section 7, it does not look trivial to
prove (or disprove) coercivity and nonsingularity of J from (46). Summing up,
while combining the formulas for J and H with Theorem 3 looks theoretically
exploitable, we have been unable to do so.

7 Numerical experiments

In this section we test RBFTrust on four nonlinear elliptic BVPs with increas-
ing level of difficulty, taken from the literature. For comparison purposes, the
operator-Newton method and a Matlab canned implementation are also some-
times used. In sum, each of the problems I-IV is solved with one or more of the
following methods (see also Table 2):

• The operator-Newton method without smoothing (Section 4). We just
report whether convergence was or not achieved, mostly with the goal of
illustrating the shortcomings of this approach.

• Matlab’s fsolve using the TRA with dogleg TRS scheme. This method
relies on a finite-difference approximation to J and, as far as we know, is
the only way that the TRA has been employed in the RBF literature so far.

• RBFTrust, meaning that one of the three TRS schemes reviewed in Section
2 is combined with the analytic approximations to J and H in Section
3. Recall that those three TRS schemes are: dogleg (Section 2.1), full
(end of preamble of Section 2), and 2Dsub (Section 2.2). In order to
compare the various possibilities, they have been incorporated into a
single Matlab code written from scratch . Moreover, we sometimes test
scaling as described in Section 2.4. RBFTrust variations like those are the
new approach introduced and advocated in this paper.

With RBFTrust, the RBF formulas for the Jacobian (25) and Hessian (31) were
checked against finite-difference approximations produced with DERIVEST
(free Matlab program by John D’Errico), and found to agree within the numer-
ical tolerances. The RBFs used in the experiments are those in Table 1.

For every domain Ω, we consider an evaluation set of Ne >> 1 points (differ-
ent from collocation nodes) scattered over Ω. The error ε and the interpolation
residual to the PDE, R, are monitored there. For instance, the accuracy is es-

timated via RMS(ε) :=
√∑Ne

i=1 ε
2
i /Ne. The collocation residual Rc, of course, is

evaluated on the collocation nodes.
Convergence of RBFTrust to a root is declared as soon as µ stagnates as

µ = µ∞ and µ∞ is negligible small. This is a conservative criterion, for when
it happens, RMS(R) and RMS(Rc) will typically have stagnated some iterations
before, and RMS(ε), even before that.

21

Table 2: Methods used in Problems I-IV (U/S= unscaled/scaled J and H).

I II III IV
Method Cubic Plateau’s Hele-Shaw Monge-Ampère

fsolve dogleg + finite-differences J U
dogleg + analytic J U U U U

RBFTrust 2Dsub + analytic J and H U U,S U,S
full + analytic J and H U U,S U,S

linearization operator-Newton U U U U

7.1 Example I: diffusion equation with a cubic nonlinearity

The first example is the semilinear equation (42) solved on the square [0, 1]2 with
f such that the exact solution is uex(x, y) = sin (πx) sin (πy), and g = uex|∂Ω = 0
(see Figure 1). The shrunken J and H are (46) and (47), respectively. We solve
this problem on a grid-like pointset. As a starting guess, ~β0 = (0, . . . , 0). No
scaling was implemented.

Figure 1: Solution of Example I on an illustrative pointset. Symbols stand for: green • =
PDE collocation node; red o = BC collocation node; × = RBF center.

Let us start by picking Wendland’s WC4 RBF. On Table 3, all three TRS
approximations for RBFTrust converge in a similar number of iterations, albeit
they do not take the same CPU time. This is so because each TRS approximation
takes a different number of function evaluations (each requiring to solve a linear
system), although the ratio evaluations/iteration is always O(1)–see Section 2.
(In fact, 2Dsub ought to be substantially faster than full. The reasons why this
does not happen may be that N is not yet large enough, and/or that full uses

22

Table 3: N is the number of RBFs, µ∞ the value of the merit function at the converged
minimum, ε the error, κ the condition number, and the figures in parentheses along the
number of iterations are the CPU time in seconds.

Example I solved with RBFTrust and RBF=WC4 (L = 0.3)

N µ∞ RMS(ε) κ(J) iter(dogleg) iter(full) iter(2Dsub)

529 O(10−26) .01103 109 16(2.18) 16(5.35) 16(5.34)
676 O(10−26) .00675 219 16(4.49) 17(11.31) 17(11.20)
784 O(10−26) .00511 304 17(7.11) 17(17.60) 17(17.50)
1024 O(10−25) .00309 615 17(15.98) 17(39.45) 17(39.39)
1296 O(10−25) .00204 1157 17(32.50) 17(122.72) 17(73.08)
1681 O(10−24) .00130 2231 17(67.53) 17(161.81) 17(171.64)
2116 O(10−24) .00087 3982 18(144.91) 17(322.09) 17(328.72)

Table 4: Same notation as in Table 3, plus the total number of function evaluations
(fevals). N = 2116 not reported because it takes unacceptably long.

Example I solved with fsolve and RBF=WC4 (L = 0.3)

N µ∞ RMS(ε) κ(J) iterations CPU time (s.) fevals

529 O(10−25) .01103 109 4 308 2210
676 O(10−25) .00675 219 4 1063 2885
784 O(10−24) .00511 304 4 1446 3385
1024 O(10−24) .00309 615 4 4071 4505
1296 O(10−23) .00204 1157 4 10577 5785
1681 O(10−23) .00130 2231 4 32061 7610

Matlab’s built-in trustwhile 2Dsub is a non-optimized code.)
Given the mild nonlinearity of this problem, the operator-Newton method

was able to converge from ~β0 (as well as from all the other tested initial guesses).
Moreover, H is not required in order to enforce convergence, and hence the
simplest TRS scheme, dogleg–which only needs J–is the more efficient one.
Recall that the three TRS solvers of RBFTrust in Table 3 all use the analytical
J and H from Section 2. On the other hand, on Table 4, Example I is solved
with fsolve, whereby every iteration takes N − M function evaluations (M
boundary nodes) in order to approximate J with finite differences. Since the
Jacobians are well conditioned, fsolve is able to find the root the imperfect J
notwithstanding. However, computational times are much longer than with
RBFTrust. (Note that µ∞ is different from before because the convergence
criterion of fsolve is independent of that used in RBFTrust.)

Let us now pick the MQ RBF. On Tables 5 and 6, only the dogleg TRS
scheme was used, both with RBFTrust (i.e. analytical J, Table 5) and fsolve (i.e.
finite-differences approximation to J, Table 6). Comparing both, not only does
fsolve take much longer, but the finite-differences J is inadequate to provide
convergence already at mild condition numbers (larger than κ(J) ≈ 108). After
Table 6, we will not show more results involving finite-differences Jacobians.

Also on Table 5, asymptotic exponential convergence–as in linear elliptic

23

PDEs, see [8, 4]–is hinted: RMS(ε) = O
(
Cc/h

)
, 0 < C < 1. The fill distance h

is here proportional to 1/
√

N (see Figure 2). The possibility of c−convergence
remains an appealing feature of RBF collocation also with nonlinear problems.

Figure 2: h − c convergence of RMS(ε) in Example I (data from Table 5). Left: error vs.
c. Right: error vs.

√
N (note that in gridlike pointsets, 1/h ∼

√
N)

Table 5: Convergence with respect to c and N. R is the interpolation residual.

Example I solved with RBFTrust and RBF = MQ

N c RMS(ε) RMS(R) κ(J) µ∞ iterations CPU t (s.)

400 .08 .00264 3.65 O(102) O(10−25) 23 1.07
400 .16 .00098 1.40 O(104) O(10−23) 28 1.65
400 .24 .00036 0.52 O(107) O(10−21) 28 1.40
400 .32 .00013 0.19 O(109) O(10−18) 37 1.71
400 .40 4.4 × 10−5 0.07 O(1012) O(10−15) 42 1.77

324 .15 .00160 1.86 O(103) O(10−24) 26 0.65
729 .15 .00034 0.88 O(106) O(10−21) 28 10.3
1225 .15 9.5 × 10−5 0.44 O(108) O(10−18) 31 62.5
1600 .15 4.4 × 10−5 0.28 O(1010) O(10−17) 32 136.7
2025 .15 2.1 × 10−5 0.17 O(1011) O(10−15) 33 296.0

7.2 Example II: Plateau’s problem

Plateau’s problem (78) is a case of the least-surface equation where the solution
can be expressed as a function of (x, y). The solution on the circle Ω centred at
the origin and with radius R < π/2 is known as Scherk’s first minimal surface.
Let R = π/2 − s with s > 0. As s � 0, |∇u| close to ∂Ω grows unbounded, thus

24

Table 6: Same experiments as in Table 5. The case N = 1225 was aborted after 94
iterations due to exceedingly slow convergence (if at all).

Example I solved with fsolve and RBF = MQ

N c RMS(ε) RMS(R) κ(J) µ∞ iterations CPU time (s.) fevals

400 .08 .00264 3.65 O(102) O(10−24) 6 117 2382
400 .16 .00098 1.40 O(104) O(10−19) 10 189 3575
400 .24 .00036 0.52 O(107) O(10−14) 129 1765 32530

324 .15 .00160 1.86 O(103) O(10−19) 8 80 2313
729 .15 .00034 0.88 O(106) O(10−17) 33 6956 20659
1225 .15 − − O(108) 11.98 94 131181 78503

becoming numerically more challenging–see Figure 3.

∇ ·

(∇u√
1 + |∇u|2

)
= 0 if x ∈ Ω, u = log (cos x/ cos y) = uex|∂Ω if x ∈ ∂Ω. (78)

Figure 3: Solutions of Example II with radius R = −.10 + π/2 (left) and R = −.02 + π/2
(right). Note that scales vary.

We solve two instances of this problem (with s = .10 and s = .02) with
RBFTrust on a scattered pointset with N = 795 nodes, of which 80 are along
the boundary. The RBF is MATERN(α = 11, c = .10). With Example II, we test
five TRS methods: dogleg, full (scaled and unscaled), and 2Dsub (scaled and
unscaled). The scaling matrix is (21), and ∆0 is 1 if unscaled and 1010 if scaled.
The initial guess ~β0 is a random vector (but the same for all experiments).

25

Convergence is plotted in Figure 4. In both cases there is apparently a unique
root:

- For s=.02, ~α∗ : {RMS(ε) = .00550132,RMS(R) = 1021.08, κ(J) = 112276}.

- For s=.10, ~α∗ : {RMS(ε) = .00444585,RMS(R) = 42.576, κ(J) = 74966}.

While for s = .10 all five TRS variants of RBFTrust correctly converge to the
root, in the more difficult case (s = .02) dogleg stagnates at µ >> 0 (with
RMS(ε) ≈ .443). Actually, this value is not a local, non-root minimum (in fact
κ(J) = 275042), but rather the dogleg steps yield the same very small drop
as the Cauchy steps (≈ 193). Therefore, Hessian information is absolutely
critical in order to solve Example II with s = .02. Both the full and 2Dsub use
H. However, since 2Dsub solves the TRS in a two-dimensional, rather than
(N −M)−dimensional, space, each 2Dsub iteration is much cheaper than a full
iteration. Therefore, 2Dsub solves the problem faster, even though it may take
more iterations.

We also stress the robustness of RBFTrust, spanning 33 orders of magnitude
(fromµ(~α0) ≈ 1012 toµ(~α∞) ≈ 10−21) over a non-convex merit function landscape
and from a Gaussian random guess. Many more unreported experiments show
that the qualitative results in Figure 4 hold for other RBFs and for other random
guesses, always finding the same RBF solution.

On the other hand, scaling proves a disappointment, and in three out of
four cases scaled versions take longer to converge. This is seemingly due to the
worsening of κ(H).

Table 7: Example II (with s = 1) solved with the operator-Newton method from a
perturbed Laplacian guess. Left: no perturbation. Middle: convergence still takes
place. Right: a slightly larger perturbation leads to divergence.

~α0=Laplacian ~α0=Laplacian + ~δ/250 ~α0=Laplacian + ~δ/247
iteration] RMS(ε) RMS(Rc) RMS(ε) RMS(Rc) RMS(ε) RMS(Rc)

0 .00124 .1464 .00124 0.1464 0.00124 0.1464
1 .000378 .059 .0603 2.29 0.1221 3.93
2 .000162 .030 .0067 1.18 0.0594 5.42
3 5.00 × 10−5 .0151 .0020 0.4053 0.0781 17.29
4 4.20 × 10−5 .0081 .00071 0.2001 0.5668 19185
10 1.43 × 10−5 .00024 1.73 × 10−5 0.0041 ∞ ∞

60 1.39 × 10−5 6.6 × 10−16 1.39 × 10−5 6.15 × 10−15
∞ ∞

Let us use Example II to illustrate the shortcomings of the operator-Newton
method. As expected, and unlike RBFTrust before, the operator-Newton
method was unable to find a root from a random guess. Therefore, we picked
~β0 from ~α0 resulting of interpolating the solution of a Laplace equation with
the same BCs over the same pointset (we call this the ”Laplacian guess”). Even
with the Laplacian guess, the radius of Ω must be substantially smaller than

26

Figure 4: Merit functionµvs. RBFTrust iterations in Example II (left: radius R = π/2−.10;
right: R = π/2 − .02). TRS methods are: dogleg (blue), full (black) and 2Dsub (red).
Dashed lines stand for scaled J and H, and circles (only on the unscaled curves) for a
positive-definite Hessian at that iteration. The Hessian is critical for finding a root as
s � 0+ (and |∇u| � ∞ close to ∂Ω). Note also that scaled methods tend to take more
iterations, which is undesirable.

before in order to get the operator-Newton method to converge. Consequently,
we kept the same RBFs and N but shrank Ω to R = π/2 − 1(i.e. we let s = 1).
Notice that the solution is much flatter now and, in sum, the BVP is much less
challenging than the one solved before with RBFTrust. Only after those simpli-
fications, the operator-Newton method was finally able to converge. Further
investigating the performance of the operator-Newton, let ~δ be a random vector
drawn from a standard normal distribution,N(0, 1). Table 7 shows the effect on
convergence of a small perturbation over the Laplacian guess, highlighting the
lack of robustness of the operator-Newton method. Notice that the residual Rc
in Table 7 is the collocation residual, and that values of RMS(Rc). 10−14 strongly
hint to a root of the collocation system (6).

Wrapping up Example II, the operator-Newton method performs very
poorly compared to RBFTrust with dogleg, and the latter worse than Hessian-
based RBFTrust. In fact, in the presence of high gradients, even dogleg with
analytic J fails, and second-order information derived from the analytic H be-
comes indispensable.

27

7.3 Example III: simulation of powder injection molding

The three-dimensional creeping flow of molten polymer into a thin cavity can
in many cases be modeled by a two-dimensional free-boundary problem in-
volving the p-Laplace operator. This is known as the Hele-Shaw approximation
[1, 2]. At every timestep, the following nonlinear elliptic BVP for the pressure
field u(x, y) must be solved (here in dimensionless units):

∇ ·

(
|∇u|γ∇u

)
= 0 if x ∈ Ω, with mixed BCs


u = 1 if x ∈ ΓI
u = 0 if x ∈ ΓF
∂u/∂N = 0 if x ∈ ΓW .

(79)

ΓI represents the injection slit (where the pressure is enforced by the injection
machine), ΓF is the (frozen) free boundary, ΓW are the walls of the floor view
of the mold, and ΓI ∪ ΓF ∪ ΓW = ∂Ω. A typical value is γ = 0.6, which models
polyethylene. Figure 5 (left) shows a FEM numerical solution obtained over a
very fine mesh, which we take as a reference.

In addition to the nonlinearity, this problem has two more challenging
features. The first one are the BCs of derivative type, which degrade the
quality of the RBF solution. The second issue is the singularity in u which
takes place on both ends of ΓI due to the change of type of the BCs. Since the
RBF interpolant is made up of infinitely smooth functions, it cannot reproduce
the singularities and brings about oscillations around them, resulting in large
residual peaks–see Figure 5 (right).

We counter the former difficulty by enforcing the PDE also on some (here,
all but two) of the boundary nodes. This is the so-called PDEBC strategy [14],
whereby as many additional RBFs are added (usually placed off the boundary)
to keep the system square–see Figure 5 (left). Let us now address the presence
of nonsmooth boundary singularities. In the case of Laplacian flows (i.e. γ = 0),
the singularities can be effectively captured by enriching the RBF interpolant
as in (32) with Motz functions [4]:

hk(r, θ) = r(2k−1)/2 cos
[(2k − 1

2

)
θ
]
, k ≥ 1. (80)

For γ = 0, Motz functions (80) do not contribute residual, because they
are harmonic. Table 8 shows the results of testing the same idea with the p-
Laplacian flow (79). The collocation pointset is made up of N = 1152 scattered
nodes (166 along the boundary). Note that now there are 1152+164 RBFs due to
PDEBC (the PDE is not enforced on the singularities, but the Dirichlet BCs are).
Two RBFs were used, the MQ and the IMQ. The initial guess is the solution of a
Laplace equation with the same BCs. While the overall effect is not as dramatic
as in the linear case, adding a few (n) Motz functions still shows its benefits as
the condition numbers grow (n = a + a means that a Motz functions (80) with
k = 1, . . . , a are centred on each singularity). Without enrichment, accuracy
does not improve out of a larger value of c (it actually worsens). Moreover,
iterations are fewer, and the derivatives of the solution close to the injection area

28

are also much improved, which is important if, for instance, the velocity field
is needed. On the other side, because Motz functions do contribute residual
when γ , 0, there seems to be an optimal number of them, depending on the
RBF discretization.

Table 8: Effect of n Motz functions on the RBF interpolant in Example III.

RBF=IMQ (c = .75). Solver: RBFTrust+dogleg TRS

n iter µ∞ RMS(ε) MAX(ε) RMS(R) MAX(R) κ(J)

0 + 0 16 1.06 × 10−22 .0028 .015 20.35 497.07 1.59 × 1010

1 + 1 15 2.01 × 10−23 .0101 .020 1.94 59.11 4.25 × 1010

3 + 3 14 5.84 × 10−24 .0032 .009 0.23 6.14 8.37 × 1010

6 + 6 16 3.60 × 10−23 .0027 .014 0.06 1.94 3.88 × 1010

9 + 9 19 5.77 × 10−22 .0034 .013 1.06 25.96 1.63 × 1010

RBF=IMQ (c = 1.50). Solver: RBFTrust+dogleg TRS

n iter µ∞ RMS(ε) MAX(ε) RMS(R) MAX(R) κ(J)

0 + 0 49 1.35 × 10−16 .0051 .016 22.69 547.59 1.32 × 1011

1 + 1 25 9.90 × 10−19 .0018 .005 0.01 0.27 2.37 × 1011

2 + 2 20 9.28 × 10−19 .0018 .005 0.01 0.28 2.73 × 1011

3 + 3 23 1.47 × 10−18 .0028 .005 0.01 0.40 1.02 × 1013

4 + 4 22 9.66 × 10−19 .0033 .008 0.02 0.55 1.31 × 1014

Despite the remarkable ”filing” of the residual peaks by the Motz functions,
they do not entirely vanish (see Figure 5, bottom right). For that reason, the
operator-Newton method also fails to solve this problem, even if Motz functions
are incorporated into the interpolant (results not shown).

Example III was solved exclusively with the RBFTrust+dogleg method. The
reason is that condition numbers are higher now and they actually worsen with
n (see Table 8). The dogleg TRS scheme is the only one which can handle A
matrices with such condition numbers, thanks to the fact that for it, A = JT J–see
item 3 in Section 8 for further details.

7.4 Example IV: Monge-Ampère equation in 3D

The numerical handling of Monge-Ampère (and, in general, of second-order
fully nonlinear equations) is considered very difficult. According to [15], the
following was the only numerical example of a Monge-Ampère PDE in 3D at
the time of publication:

det(D2
3u) = f = (1 + r2) exp (3r2/2) if x ∈ Ω, u = exp (r2/2) if x ∈ ∂Ω, (81)

where r =
√

x2 + y2 + z2. The domain is the unit cube [0, 1]3 with uex being
the same as the BC. When f > 0 (as here), (81) has a unique convex solution
(for which the PDE is elliptic), but may have other non-convex solutions [7].

We solved (81) on a lattice-like pointset with N = 2197 nodes (of which
866 are on ∂Ω), using the solution of the related Poisson equation as a starting

29

Figure 5: Left: Solution of Example III. The injection inlet ΓI is between the arrows.
Notice the extra RBF centres (×) placed outside for PDEBC; except at both ends of ΓI–
where only the Dirichlet BC is enforced, for u is not smooth there. Along the front ΓF,
u = 0. Right: residual peaks at the singularities with 0 + 0 Motz functions (up) and 2 + 2
(bottom). Note that the vertical scale varies.

guess. The highly nonlinear character of this PDE is reflected in the fact that,
for N & 900 RBFs, RBFTrust with dogleg TRS ceases to converge to a root. For
larger problems than that, the Hessian is needed in order to obtain convergence.
This pattern is confirmed by all three RBFs used on Figure 6.

In Figure 6, the dogleg iterations end up having a similar (and extremely
small) convergence rate with steepest descent and, for practical purposes, get
all but stuck. On the other hand, using H results inµdropping by several orders
of magnitude the value of the Cauchy step, and eventually in convergence. For
each of the RBFs in Figure 6, the full and 2Dsub TRS schemes converge to
the same minimum, suggesting that RBFTrust is correctly picking the unique
convex solution (see Table 9).

In Example IV, scaling of 2Dsub and full (dashed lines on Figure 6; imple-
mented as in Example II) had again a mixed performance, taking sometimes
more iterations than the unscaled versions of RBFTrust and even failing to con-
verge with the MQ RBF (red dashed curve on the leftmost part on Figure 6).
Seemingly, diagonal scaling according to (21) was destabilizing RBFTrust.

As was to be expected, the operator-Newton method systematically failed
to solve Example IV except for small values of N.

Table 9 shows that the final accuracy (and conditioning) of the root is quite
dependent on the RBF used, and roughly proportional to the final interpolation
residual. We underscore that all accuracies on Table 9 are at least one order of

30

Figure 6: Merit function vs. RBFTrust iterations in Example IV, with N = 2197 and
using 3 RBFs: IMQ(c = .30) (left), MATERN(α = 8, c = .90) (centre), MQ(c = .22) (right).
Symbols as in Figure 4. Again, H is vital for convergence.

Table 9: Properties of ~α∞ in Problem IV for several RBFs.

RBF µ∞ RMS(ε) RMS(R) κ(J) κ(H)

Matérn(α = 12, c = .80) 3.2 × 10−20 .00760 121.51 202481 4.10 × 1010

IMQ(c = .30) 2.5 × 10−21 .00187 26.61 1.16 × 106 1.36 × 1012

MQ(c = .22) 1.8 × 10−21 .00027 6.03 173323 3.00 × 1010

Matérn(α = 8, c = .90) 2.6 × 10−18 5.08 × 10−5 1.13 14828 2.20 × 108

magnitude better that those reported in [15].

8 Discussion of the results of problems I-IV

1. In all well-conditioned problems which we have run, we have found a
distinct minimum of the merit function µ below or around the machine
error (≈ 10−15). In such cases, we observe that, at the converged minimum:
i) κ(J) clearly is not numerically singular; ii) H > 0; and iii) the final rate of
convergence is quadratic. For those reasons we tend to believe that those
converged minima are, in fact, roots of the collocation system. Moreover,
those roots are independent of the initial guess or TRS method used,
strongly suggesting that they are, in fact, unique.

2. Not in a single numerically stable experiment, whether reported or not,

31

did we find evidence of multiple roots.

3. The tradeoff between accuracy and stability–a hallmark of Kansa’s method–
carries over to nonlinear equations, albeit via a different mechanism.
Picking RBF interpolation spaces with better approximation properties
(by letting N or the RBF shape parameter grow), pushes the condition
number of the matrices involved (J and A) towards numerical singularity.
This, in turn, slows down the convergence rate of RBFTrust and lifts the
value of the minimum of the merit function that can be resolved. Beyond
the threshold of numerical instability, the RBFTrust iterations get stuck in
a local minimum with much residual and poor accuracy.

This tradeoff has a bearing on the better choice of the TRS approximation
method when higher accuracy is desired. On the one hand, A = H
(in the full and 2Dsub methods) should entail a better modeling of the
complicated residual landscape and thus allow deeper steps to be taken,
resulting in fewer iterations and better probability to find the root. On the
other hand, A = JT J (in the dogleg method) is numerically advantageous
because inverting JT J~x = ~b can be split into JT~y = ~b and then J~x = ~y.
Assuming–from (10)–that κ(H) ≈ κ(JT J) = κ2(J), the dogleg method can
in effect yield better RBF approximations of the solution before becoming
unstable than would be possible using the full Hessian.

4. The performance of the RBFTrust with the 2Dsub TRS solver is also re-
markably affected by ill-conditioning. We observed that for Hessians with
κ(H) & 1010, the estimation of the smallest algebraic eigenpair via Matlab
eigs failed because the Lanczos iterations did not converge. In such cases,
in order to test the 2Dsub scheme, we computed the exact eigenpair via
the QR decomposition of H–thus defeating the purpose of speeding up
the computations. In order to fully exploit the two-dimensional TRS ap-
proximation within RBFTrust, the Lanczos method must be replaced by
another algorithm more resistent to RBF ill conditioning.

5. More often than not, diagonal scaling (21) proved to be a counter–productive
addition which compounded the conditioning of H.

9 Conclusions

The RBFTrust approach developed here is a robust, easy to code, fast and ac-
curate solver for quite general nonlinear elliptic equations. Experiments show
that it is vastly superior to previous approaches based on the operator-Newton
method or the dogleg method with finite-difference Jacobians. Particularly
critical is the use of the analytic formulas for the Jacobian and Hessian of the
collocation system made available in this paper–especially so when the equa-
tion is highly nonlinear.

32

This paper deals exclusively with strict (Kansa-like) RBF collocation. While
the numerical results are very good, the theoretical considerations about solv-
ability and uniqueness in Section 6 were left undecided in either sense. In
practice, anyways, strict collocation is moot as long as the converged residuals
are negligible. The ultimate goal is to tackle much larger problems, along the
lines of the RBF-PU method [21].

10 Acknowledgements

Portuguese FCT funding under grant SFRH/BPD/79986/2011 and a KAUST
Visiting Scholarship at OCCAM in the University of Oxford are acknowledged.

The author thanks Holger Wendland for suggesting Example IV and for
helfpul discussions while in Oxford. The referees are acknowledged for their
meticulous reading, which led to a better and clearer presentation of the paper.

References
[1] F. Bernal and M. Kindelan, RBF meshless modelling of non-Newtonian Hele-Shaw flow, Engng.

Anal. Bound. Elem. 31, 863-874 (2007).

[2] F. Bernal and M. Kindelan, A meshless solution to the p-Laplace equation, in Progress on Meshless
Methods, A.J.M. Ferreira, E.J. Kansa, G.E. Fasshauer and V.M.A. Leitão (eds.) Springer, 17-35
(2009).

[3] F. Bernal, G.Gutiérrez and M.Kindelan, Use of singularity capturing functions in the solution of
problems with discontinuous boundary conditions, Eng. Anal. Bound. Elem. 33(2), 200-208 (2009).

[4] F. Bernal and M. Kindelan, On the enriched RBF method for singular potential problems, Eng. Anal.
Bound. Elem. 33, 1062-1073 (2009).

[5] B. Buchberger, Groebner bases: an algorithmic method in polynomial ideal theory. N.K. Bose (ed.),
Recent Trends in Multidimensional Systems Theory, Reidel 184-232 (1985).

[6] R.H. Byrd, R.B. Schnabel and G. A. Schultz, Approximate solution of the trust regions problem by
minimization over two-dimensional subspaces, Mathematical Programming 40, 247-263 (1988).

[7] S.Y. Cheng and S.T Yau, On the regularity of the Monge-Ampère equation det(∂2u/∂xi∂x j) = F(x,u).
Commun. Pure Appl. Math. 30(1), 41-68 (1977).

[8] A.H.D. Cheng, M.A. Golberg, E.J. Kansa and T. Zammito, Exponential convergence and h-c
multiquadric collocation method for partial differential equations. Numer. Meth. Part. Differ. Equat.
19, 571-594 (2003).

[9] P.P. Chinchapatnam, K. Djidjeli and P.B. Nair, Radial basis function meshless method for the steady
incompressible Navier-Stokes equations, Intern. Jour. Comp. Math. 84, 1509-1521 (2007).

[10] T. Dierkes, O. Dorn, F. Natterer, V. Palamodov and H. Sielschott, Fréchet derivatives for some
bilinear inverse problems, SIAM J. Appl. Math. 62(6), 2092-2113 (2002).

[11] G.E. Fasshauer, Newton Iteration with Multiquadrics for the Solution of Nonlinear PDEs, Comput.
Math. Applic. (43), 423-438 (2002).

[12] G.E. Fasshauer, C. Gartlang and J. Jerome, Algorithms Defined by Nash Iteration: Some Imple-
mentations via Multilevel Collocation and Smoothing, J. Comp. Appl. Math. (119), 161-183 (2000).

33

[13] G.E. Fasshauer, Meshfree Approximation Methods with Matlab. Interdisciplinary Mathematical
Sciences–Vol. 6. World Scientific Publishers, Singapore (2007).

[14] A.I. Fedoseyev, M.J. Friedman and E.J. Kansa, Improved multiquadric method for elliptic partial
differential equations via PDE collocation on the Boundary, Comput. Math. Appl. 43, 439-455 (2002).

[15] X. Feng and M. Neilan, Vanishing moment method and moment solutions for fully nonlinear second
order partial differential equations, J. Sci. Comput. 38(1), 74-98 (2009).

[16] B. Fornberg, E. Larsson and N. Flyer, Stable computations with Gaussian radial basis functions,
SIAM J. Sci. Comput. 33, 869-892 (2011).

[17] H. Ghaderi, Mountain Pass Theorems with Ekeland’s Variational Principle and an Application to the
Semilinear Dirichlet Problem. Uppsala University, U.U.D.M. Project Report 2011:30 (2011).

[18] Y.C. Hon and R. Schaback, On unsymmetric collocation by radial basis functions, Applied Math-
ematics and Computation 119, 177-186 (2001).

[19] E.J. Kansa, Multiquadrics–a scattered data approximation scheme with applications to computational
fluid-dynamics. I. Surface approximations and partial derivative estimates, Comput. Math. Appls.
19, 127-145 (1990).

[20] E.J. Kansa, Multiquadrics–a scattered data approximation scheme with applications to computational
fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput.
Math. Appls. 19, 147-161 (1990).

[21] A. Safdari-Vaighani, A. Heryudono and E. Larsson, A radial basis function partition of unity
collocation method for convection-diffusion equations arising in financial applications, Journal of
Scientific Computing 64, 341-367 (2015).

[22] L. Ling, R. Opfer and R. Schaback, Results on meshless collocation techniques. Engineering
Analysis with Boundary Elements 30(4), 247-253 (2006).

[23] J.J. Moré and D.C. Sorensen, Computing a trust region step, SIAM Journal on Scientific and
Statistical Computing, 4 553-572 (1983).

[24] J. Nocedal and S.J. Wright, Numerical Optimization. Springer Series in Operations Research
(1999).

[25] R.B. Platte and T.A. Driscoll, Eigenvalue stability of radial basis function discretizations for time-
dependent problems. Computers Math. Applic. 51. 1251-1268 (2006).

[26] G.A. Schultz, R.B. Schnabel and R.H. Byrd, A family of trust-region-based algorithms for uncon-
strained minimization with strong global convergence properties. SIAM J. Num. Anal. 22, 47-67
(1985).

[27] H. Wendland, Scattered Data Approximation. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, Cambridge, UK (2004).

[28] J. Xu, A Novel Two-Grid Method for Semilinear Elliptic Equations, SIAM J. Sci. Comput. 15(1),
231-237 (1993).

34

	1 Introduction
	1.1 RBF interpolation
	1.2 Kansa's method
	1.3 Nonlinear equations
	1.4 Rootfinding approach
	1.5 Operator-Newton (linearization) approach
	1.6 Outline of the paper
	1.7 Notation

	2 Overview of the trust-region algorithm
	2.1 The dogleg method
	2.2 2D subspace minimization of the TRS
	2.3 Convergence properties of the TRA
	2.4 Scaling

	3 The trust-region algorithm for RBF collocation
	3.1 RBF Jacobian and Hessian
	3.2 Elimination of linear equations

	4 The operator-Newton approach
	4.1 Equivalence to Newton's method

	5 Explicit formulas for prototypical PDEs
	5.1 Semilinear equations
	5.2 Quasilinear equations
	5.3 Fully nonlinear operator

	6 Remarks on solvability and uniqueness
	7 Numerical experiments
	7.1 Example I: diffusion equation with a cubic nonlinearity
	7.2 Example II: Plateau's problem
	7.3 Example III: simulation of powder injection molding
	7.4 Example IV: Monge-Ampère equation in 3D

	8 Discussion of the results of problems I-IV
	9 Conclusions
	10 Acknowledgements

