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In this Letter we identify the general rules that determine the synchronization properties of interconnected
networks. We study analytically, numerically and experimentally how the degree of the nodes through which
two networks are connected influences the ability of the whole system to synchronize. We show that con-
necting the high-degree (low-degree) nodes of each network turns out to be the most (least) effective strategy
to achieve synchronization. We find the functional relation between synchronizability and size for a given
network-of-networks, and report the existence of the optimal connector link weights for the different intercon-
nection strategies. Finally, we perform an electronic experiment with two coupled star networks and conclude
that the analytical results are indeed valid in the presence of noise and parameter mismatches.

PACS numbers: 89.75.Hc,89.75.Fb

Real networks often interact with other networks of simi-
lar or different nature, forming what is known as Networks-
of-Networks (NoN ) [1]. By considering a NoN , new per-
spectives in the understanding of classical network phenom-
ena, such as robustness [2–4], spreading [5, 6] or interaction
between modules [7, 8], can be obtained, sometimes with
counter-intuitive results. Similarly, while synchronization
in complex networks has been widely studied [9], very few
works have investigated synchronization in NoNs. Huang
et al. [10] showed that when two networks interact through
random connections an exact balance between the weight of
internal links in a network and the weight of links between
networks results in greater synchronization between the two
networks. It has also been shown that for multiple interact-
ing networks, random connections between distant networks
increase the synchronization of the complete NoN [11].

Real networks exhibit high heterogeneity of the node de-
gree, with hubs (i.e., high-degree) and peripheral (i.e., low-
degree) nodes [12]. What happens if connector links between
the networks, termed inter-links, are not randomly created,
but are instead chosen according to a particular connection
strategy? Carlson et al. [13] analyzed the influence that low-
degree nodes may have on the collective dynamics of net-
works. Wang et al. [14] showed that when two neuron clusters
get connected, both the heterogeneity of the network and the
degree (i.e. number of connections) of the connector nodes,
i.e. the nodes reached by inter-links, influence the coherent
behavior of the whole system. A recent study demonstrated
that the proper selection of connector nodes has strong im-
plications on structural (centrality) and dynamical properties
(spreading or population dynamics) occurring in a NoN [15].

In this Letter, we study in a systematic way how connector
nodes between a group of networks with heterogeneous topol-
ogy affect synchronization and stability of the resultingNoN ,

and provide general rules for electing in a non-random fashion
the connector nodes that maximize the synchronizability.

The stability of the synchronized state of a group of cou-
pled identical dynamical units is given by the corresponding
Master Stability Function (MSF) [16]. For a given dynamical
system and coupling form, the stability of synchronization de-
pends on the second lowest eigenvalue λ2, usually called the
spectral gap or algebraic connectivity, and the largest eigen-
value λN [17] of the network Laplacian matrix L [18]. Dy-
namical systems can then be classified according to their MSF
[19]: a) class I systems never synchronize irrespective of their
network topology, b) class II systems synchronize for values
of λ2 above a threshold given by the MSF, and c) class III
systems synchronize for eigenratios r = λN/λ2 lower than a
threshold determined by the MSF.

For isolated networks, the eigenratio r has been used as an
indicator of synchronizability both in theoretical [20, 21] and
in real systems such as functional brain networks [22, 23]. For
class III systems, obtaining a maximally synchronizable sys-
tem is tantamount to minimizing the eigenratio r. Nishikawa
et al. [24] showed that when the network structure and the link
weights were adequately transformed into unidirectional hier-
archical organizations, the minimum eigenratio r = 1 (since
λ2 ≤ λ3 ≤ ... ≤ λN ) was achieved.

Given a fixed number of nodes N and links L it is also
possible to reduce r using genetic algorithms obtaining the
so called entangled networks [25, 26], which are character-
ized by high homogeneity of the node degree, shortest path
and betweenness. Crucially, these results indicate that a good
strategy to enhance the synchronizability of a network is to
disconnect the network hubs and connect nodes with low de-
gree.

How to maximally synchronize two (or more) intercon-
nected networks, on the other hand, is still poorly under-
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stood. Figure 1(a) shows a qualitative example of two dif-
ferent types of connections between two networks, High-
degree/High-degree (HH) and Low-degree/Low-degree (LL).
Figure 1(b) depicts the synchronization error ε(t) of two scale-
free networks of Rössler oscillators [27] coupled with differ-
ent strategies. The high ε(t) obtained when both networks are
isolated decreases when a LL connection is created (t = 200),
but only goes to zero with a HH connection (t = 400), indi-
cating the attainment of complete synchronization.

The role of the connector nodes in synchronization can be
quantified by their influence on the value of the eigenvalues
λ2 and the eigenratio r. Figures 1(c-d) show the λ2 and the
r of two Barabási-Albert networks [17] of N = 200 nodes,
inter-connected with a unique link in all the N2 possible con-
figurations. As shown in Fig. 1(c), the region with the highest
λ2 turns out to be centered around the HH connections, while
LL results in a lower λ2, and the optimal strategy to connect
networks of class II dynamical systems would be through their
higher degree nodes. Regarding class III systems, Fig. 1(d)
shows that the HH connection is the best option to reduce the
eigenratio r and increase the synchronizability of the NoN .
Since isolated networks decrease their synchronizability when
connecting their high-degree nodes [25], the results for inter-
connected networks obtained in this Letter represent another
important example of how the behavior of a single network
may fundamentally differ from that of a NoN .

Recent studies [7, 8] on class II synchronization of interde-
pendent networks proved the existence of a phase transition
in λ2 after the addition of sufficient links, obtaining powerful
analytical results for general networks. However, the approx-
imations made by the authors, as well as the strategies used
to connect the networks, resulted in expressions that are not
dependent on the degree of the connector nodes. For these
reasons, those papers give no information on the influence the
degree heterogeneity may have on the synchronizability of a
network when the inter-links are selected according to differ-
ent strategies.

To obtain an analytical expression determining the influ-
ence of the connector nodes on the complete synchronization
of a NoN , we consider one of the simplest NoN showing
some degree heterogeneity: a system consisting of two star
networks connected by one inter-link. Each star consists of
N nodes, one high-degree node (H) connected to N − 1 low-
degree nodes (L). We call wij the weight of the link connect-
ing nodes i and j and, without loss of generality, we consider
all links inside each star (i.e. intra-links) to have the same
weight wintra. We then connect the two stars through a sin-
gle inter-link of weight winter = awintra according to three
different strategies: HH, LL and HL (note that, due to the
symmetry of the system, LH is equivalent to HL).

Complete synchronization depends on the eigenvalues of
the (weighted) Laplacian matrix. The symmetry of the con-
figuration allows to reduce the characteristic polynomial of
the Laplacian matrix so that λN and λ2 associated with the
HH, LL and HL strategies are respectively, and for all N and
a, the maximum and minimum roots of
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FIG. 1. (Color online). (a) Schematic representation of the intercon-
nection of two heterogeneous networks. HH corresponds to a strat-
egy connecting high-degree nodes and LL to the connection between
low-degree nodes. (b) Synchronization error ε(t) of two intercon-
nected Barabási-Albert networks of N = 200 Rössler oscillators at
three different stages: isolated, interconnected following a LL strat-
egy, and replacing the LL connection with a HH one. Equations of
the Rössler system are given in [27] and the parameters used in the
simulations are a = b = 0.2 and c = 5.7. ε(t) is obtained as
the average across all pairs of oscillators of the pairwise distance in
three dimensional phase space, 2

N(N−1)

∑
i<j ‖xi − xj‖, where xi

is the state vector of oscillator i and ‖ · ‖ denotes the (Euclidean)
norm. (c) λ2 of the NoN obtained from connecting two N = 200
Barabási-Albert networks with one inter-link, in all possible config-
urations. The node numbers are ordered according to the node de-
gree and, when coinciding, the eigenvector centrality. (d) Eigenratio
r = λN/λ2 for the same case as (c).

x3 + C2x
2 + C1x+ C0 = 0 , (1)

where C2 = −(1+N +2a), C1 = N +4a+ ξa(N − 2) and
C0 = −2a, while ξ is, depending on the connection strategy,
ξHH = 0, ξHL = 1 or ξLL = 2 [28] (see Section S1 of [38] for
more details). Without any loss of generality we have assumed
that wintra = 1, thus being winter = a. The eigenvalues
follow

λN,2 = N/2 + a±
√

(N/2)2 + a2 + (N − 2)a (2)

for the HH connection, while for the LL and HL strategies
they take a more complex analytical form (see Fig. 2(a) and
Table S1 of [38]).

For networks composed of class II systems, Eq. 2 yields
that increasing the weight of the inter-link a increases λ2 (de-
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creasing the network modularity [29]) and therefore the syn-
chronizability of the NoN . The same behavior characterizes
the LL and HL strategies (see Fig. 2(a) and Table S2 of [38]
for details). Furthermore, comparing Eq. 2 with those ob-
tained in the LL and HL strategies shows that λHH

2 > λHL
2 >

λLL2 for the meaningful values of N and a, that is, N > 2
and a > 0. Thus, for class II systems the optimal strategy is
always the one connecting high-degree nodes.

Next, we can investigate which of the strategies leads to the
lowest eigenratio r in class III systems. The totally algebraic
solution of the two-star system allows us to prove that, for all
feasible values of N and a, rHH < rHL < rLL (see Section
S1.3 of [38] for the details). Thus, HH turns out to be the strat-
egy optimizing synchronizability of the NoN . Figures 2(b-d)
show the evolution of r as a function of the inter-link weight
a for the three connecting strategies and for different network
topologies. Even though no closed analytical expression can
be found for complex topologies, the Laplacian of such net-
works can be studied numerically, leading to the same con-
clusions in complex networks. In all cases, the HH type of
connection leads to the lowest r, suggesting that the results
proved for the two star system are of general applicability.

Importantly, class III systems have an optimal inter-link
weight async minimizing r. This fact is easy to verify in the
case of two star networks, because for all connecting strate-
gies, lima→∞ r = lima→0 r = ∞ ∀ N > 2. Furthermore,
it is worth noting that the optimal inter-link weights aHH

sync,
aHL
sync and aLLsync do not coincide (see the arrows in Fig. 2(b-d)

and Section S1.3 of [38] for the analytical details).
To conclude the analytic study of the problem, we note that
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FIG. 2. (Color online). Synchronizability for two networks con-
nected by a single inter-link of weight a. (a) λ2 and λN for two star
networks of 6 nodes each. (b-c-d) Eigenratio r for: (b) two star net-
works (N = 6), (c) two scale-free networks (N = 500), and (d)
two Erdős-Rényi random networks (N = 500). Three connecting
strategies are shown: HH (black), HL (red), and LL (green). The
minima of the curves (arrows) correspond to maximum synchroniz-
ability [30]. Plots (a-b) were obtained analytically and (c-d) numeri-
cally.

FIG. 3. (Color online). Dependence of synchronizability of class
II and III systems on the size of the networks N . Averaged second
eigenvalue λ2 (a and b) and r (c and d) over 30 realizations of two
Erdős-Rényi networks and two scale-free networks of average degree
k̄ = 12. See Section S2 of [38] for details.

increasing the number of nodes always hinders synchroniz-
ability, as indicated by dλ2/dN < 0 ∀ a > 0 for class II
systems and dr/dN > 0 ∀ a > 0 for class III systems. This
result goes beyond two star networks and is valid for networks
of more complex topology. In Fig. 3 we can observe how the
scaling of synchronizability with N changes according to the
topology of the networks (see S2 of [38] for some theoretical
arguments lending support to these results).

We now prove the robustness of our results with a network
of electronic circuits. The experimental setup consists of two
diffusively coupled star networks of piecewise Rössler circuits
[27, 31] operating in a chaotic regime (see Section S4 of [38]
for details of the electronic circuits) [32]. They follow the
same two-star topology described above, with bothwintra and
winter as experimentally accessible parameters.

It is important at this stage to recall that while maximizing
λ2 (in class II) and minimizing r (in class III) increase the
synchronizability of a network, it is the MSF that ultimately
determines if complete synchronization is achieved [16]. Cou-
pling through the x variable leads to a class III system of
equations. For class III systems, the zeroes of the MSF (ν1
and ν2) determine the synchronization region, where the net-
work has to fulfill the conditions σλ2 > ν1 and σλN < ν2,
where σ is the coupling strength. The theoretical treatment
of the class III Rössler systems described in Sections S4 and
S5 of [38] indicates that the HH strategy is the only one ful-
filling the former requirements given by the MSF. For this
case, Fig. 4 shows qualitatively similar results for the syn-
chronization regions in the (wintra, winter) phase space ob-
tained theoretically (a) and experimentally (b) [33]. In the
latter, the synchronization region is determined by computing
the average of the synchronization error 〈ε〉 of all units of the
NoN , where the error between systems i and j is given by
εi,j = limT→∞ T−1

∫ T

0
‖xi(t)− xj(t)‖dt [34].

When the coupling is introduced through y, the systems be-
come of class II [35]. In this case, the MSF only has one
zero νc and synchronization only requires σλ2 > νc. Figure
4(c) depicts the synchronization regions obtained theoretically
for different connecting strategies. The HH strategy turns out
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FIG. 4. (Color online). Experimental verification of the phenomenol-
ogy presented here. (a) and (b) show the regions of complete syn-
chronization of two star networks of type III Rössler systems cou-
pled by a HH strategy. Neither HL (LH) nor LL strategies lead to
synchronization, as predicted by the theory and confirmed by the ex-
periments (not shown here). (c) and (d) depict class II Rössler sys-
tems. Regions correspond to: 1) no synchronization, 2) complete
synchronization with the HH strategy and 3) complete synchroniza-
tion with the HH and the LL strategies. Results are theoretical (a and
c) and experimental (b and d). The zeroes of the MSF are ν1 = 0.107
and ν2 = 2.863 for class III and νc = 0.0651 for class II.

to require less internal and external coupling. Qualitatively
similar results were obtained experimentally, as shown in Fig.
4(d).

In conclusion, in this work we showed that whenever two
networks are connected by one inter-link, the degree of the
connector nodes plays a fundamental role in achieving syn-
chronization. Connecting high-degree nodes is, by default, the
best synchronization strategy, while connecting low-degree
nodes is the worst option. Interestingly, increasing the number
of inter-links leads to the same qualitative results (see Sec-
tion S3 of [38] for details). Furthermore, synchronizability
always decreases as a power-law of the size of the system for
both classes. On the other hand, while increasing the inter-
link weight consistently favors complete synchronization for
class II systems, for class III there is an optimum value of
the inter-link weight that depends on the connecting strategy.
Our results are generic and independent of the size or topol-
ogy of the networks, as indicated by numerical simulations of
networks with more complex topologies (e.g., ER random or
scale-free).

Possible applications of our methodology could be the de-
sign of optimal interconnection strategies in groups of inter-
acting networks, such as power grids [36] and ad hoc mobile
networks [37], or the identification of the links to be deleted
in processes where high synchronizability plays against the
normal functioning of the system (such as in epilepsy [23]).
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