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Abstract. This work presents a novel policy iteration algorithm to tackle nonzero-sum stochastic
impulse games arising naturally in many applications. Despite the obvious impact of solving such
problems, there are no suitable numerical methods available, to the best of our knowledge. Our
method relies on the recently introduced characterisation of the value functions and Nash equilibrium
via a system of quasi-variational inequalities. While our algorithm is heuristic and we do not provide a
convergence analysis, numerical tests show that it performs convincingly in a wide range of situations,
including the only analytically solvable example available in the literature at the time of writing.

Résumé. Ce travail présente un nouvel algorithme d’itération sur les politiques pour approximer
numériquement les fonctions valeurs d’un problème de jeux impulsionnels stochastiques à somme non
nulle. Ces problèmes apparaissent naturellement de nombreuses situations économiques de concur-
rence entre acteurs. A notre connaissance, malgré l’intérêt pratique de solutions numériques à de
tels problèmes, il n’existe pas d’algorithmes appropriées. Notre méthode repose sur la caractérisation
récemment introduite des fonctions valeur et de l’équilibre de Nash par un système d’inégalités quasi-
variationnelles. Bien que l’on ne fournisse pas d’analyse de convergence, des tests numériques effectués
dans un large éventail de situations illustrent l’efficacité de notre algorithme. Enfin, nous montrons
qu’il converge à la solution dans le seul cas connu de solution analytique.

Keywords: stochastic impulse game, nonzero-sum game, Nash equilibrium, policy iteration, Howard’s algo-
rithm, quasi-variational inequality.

Introduction

Stochastic impulse games (SIGs) are at the intersection between differential game theory and stochastic
impulse control. In the case of one sole player, they reduce to stochastic impulse optimisation problems where
an agent seeks to control an underlying (or state variable)—otherwise governed by a stochastic differential
equation—in order to maximize the expected value of some target functional. One way in which she can
influence the underlying is this: whenever it leaves a continuation region (i.e. at her intervention times), she
suddenly shifts it back somewhere into the region (by providing an impulse). Together, the continuation region
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and impulses define what we will call a strategy. Thus, the control-theoretical problem typically boils down
to determining an optimal strategy as a function of the current value of the underlying. The purpose of the
analysis is to apply that optimal strategy to any specific realization of the underlying. When such a strategy
is followed, the expected value of the target functional—the largest possible—is called the value function. This
problem is a classical one and it is well understood by now [10]. In particular, a rigorous framework has been
put in place—combining Howard’s algorithm [3–5, 9] with viscosity-capturing finite difference schemes—which
allows for robust numerical approximations [7, 8, 10].

A natural extension are two-player SIGs. In such games, two players seek to control the underlying with
different, and often opposed, aims. Let us give two concrete examples, due to [1].

• Two central banks competing to influence the exchange rate between their respective currencies, both
seeking to devalue their own one. In this application, the exchange rate is modelled as a stochastic
process, and either central bank intervenes when it deems its currency too strong. Each bank’s strategy
is made up of the ensuing devaluation and the threshold exchange rate triggering it. Both quantities
are to be optimally determined in advance, by solving the game.
• A wholesale producer of energy and a big client of hers who resells it. Due to the high consumption of

the client, both players are capable of affecting the wholesale price of energy, with naturally opposed
targets (a high price versus a low one, respectively). Each player incurs costs when modifying the price
while possibly benefiting from state compensation upon adverse price movements led by the opponent.
In order to avoid superfluous costs, both players need a strategy, based on the current wholesale price,
determining the optimal triggering threshold and the extent of the price shift.

Contrary to one-player SIGs, the value functions in two-player SIGs (one for each player) cannot be naively
defined by maximisation. Instead, optimality can naturally be characterized via the notion of Nash equilibrium:
intuitively, the pair of value functions displays the best expected outcome in the sense that if a player changes
her strategy while her opponent does not, then the former can only be worse off. A pair of strategies at which
these values are attained is then called a Nash equilibrium. Because of this, two-player SIGs are distinctly
different (and more complex) from one-player SIGs, and the theoretical/numerical frameworks for the latter are
not suitable for the former. This is further accentuated in the so-called nonzero-sum SIGs (NZSSIGs), roughly
meaning that the losses (resp. gains) undergone by one player may not exactly translate into gains (resp. losses)
for the opponent. (For instance, the previously described examples are best modelled under this very flexible
framework.) NZSSIGs are in contraposition with the simpler and more particular zero-sum SIGs, in which both
value functions add up to zero—effectively reducing the problem to finding one. (This allows for more natural
extensions of the theoretical and numerical tools of the one-player case [2, 6].)

Due to the greater complication involved in the analysis, NZSSIGs are much underdeveloped. Very recently,
a breakthrough has been achieved in [1], where the value functions and a Nash equilibrium of a very general
class of NZSSIGs (assuming they exist and possess some regularity) have been characterized via a system of
quasi-variational inequalities (QVIs). Besides the theoretical interest of this link by itself, it opens up the
possibility of finding approximations to the value functions by numerically solving that system.

In this paper, we make the first attempt (to the best of our knowledge) at numerically solving NZSSIGs. In
a nutshell, the iterative algorithm we put forward treats the NZSSIG at each iteration as a combination of a
fixed point problem and a slowly relaxing one-player SIG. This allows us to take advantage of the machinery
for the latter. Because, at the moment, we lack a proof of convergence, the proposed algorithm is admittedly
heuristic. Instead, we report on a range of numerical experiments, which show convergence of the error with
respect to the discretisation. In fact, errors are quite satisfactory and—in the examples we have tackled—the
relative errors easily drop well below 0.1%. The algorithm can thus be used to assist further development of the
field, as well as to gain insight into applications modelled by NZSSIGs. For even crafted NZSSIGs with exact
solution are hard to construct: in fact, the authors of [1] also provide (as far as we know) the first example
in the literature—thanks to which we were able to validate our algorithm in the first place. (For the sake
of completeness, this solution has been included in Section 1.3.) Moreover, this example also evidences that
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even when an analytical solution is available, its computation in practice may involve parameters which require
solving complex nonlinear systems of equations—thus stressing the convenience of numerical approximations.

Let us outline the organization of the rest of the paper. We start in Section 2 by properly setting up NZSSIGs
and recalling the main result of [1], namely, the Verification Theorem with the corresponding system of QVIs.
For the sake of illustration, the concrete application of competition in energy markets is presented according
to this framework. In Section 3, we briefly review the state-of-the-art numerics for one-player SIGs, with an
emphasis on Howard’s algorithm, which will later become a pivotal ingredient of our own numerical method for
NZSSIGs. The latter is motivated, listed, and discussed in Section 4. Section 5 presents numerical evidence
supporting it, in the light of which we draw some conclusions in Section 6.

1. The theoretical model

1.1. Two-player nonzero-sum stochastic impulse games

In this section we introduce a general class of two-player NZSSIG, to which our numerical algorithm is
applicable. For the sake of briefness and pertinence, we will skip some of the most technical matters of the
rigorous construction of the model. We refer the interested reader to [1] for more details and a more general
modelling framework.

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space under the usual conditions, that supports a standard
one-dimensional Brownian motion W = (Wt). For each x ∈ R we consider a process X (the state variable)
starting at x,

Xt = x+

∫ t

0

µ(Xs)ds+

∫ t

0

σ(Xs)dWs +
∑

k: τ1
k≤t

δ1k +
∑

k: τ2
k≤t

δ2k, (1)

where:

(i) µ, σ : R→ R are Lipschitz continuous.
(ii) ui := {(τ ik, δik)}∞k=1 (i = 1, 2) is the control of player i, which consists of a sequence of stopping times τ ik

(the k-th intervention time of player i) and Fτ i
k
-measurable random variables δik (the k-th intervention

impulse of player i).

In words, when none of the players intervenes the state variable behaves as an Itô diffusion. The players can
at any time decide to shift this process by applying a certain impulse. The specific type of interventions are
determined by (threshold-type) strategies, which means that each player acts only when the state variable exits a
given region of R. More specifically, the control of player i is defined in terms of a strategy ϕi := (Ci, ξi), where
Ci ⊆ R is an open set (the continuation region) and ξi : Cic → R is a continuous function.1 Player i intervenes
if X exits Ci—i.e., if for some t ≥ 0 and ω ∈ Ω it holds Xt(w) /∈ Ci—by applying an impulse ξi(Xt(w)). We
decree that the game never stops and if both players want to intervene at the same time, then player 1 has the
priority. The latter assumption is a matter of convention and not very restrictive.2

Henceforth, we write Ex to denote the conditional expectation given X0− = x, and define the objective
function for player i given the strategies (ϕ1, ϕ2) and the starting point x of X as

J i(x;ϕ1, ϕ2) := Ex

[∫ ∞
0

e−ρisfi(Xs)ds+
∞∑
k=1

e−ρiτ
i
kφi
(
X(τ i

k)
− , δik

)
+
∞∑
k=1

e−ρiτ
j
kψi
(
X(τj

k)
− , δ

j
k

)]
, (2)

with i, j ∈ {1, 2}, j 6= i; where:

(i) ρi > 0 is the subjective discount rate of player i.

1For any A ⊆ R, Ac denotes the complement of A in R.
2Under the assumptions of the Verification Theorem 1.2.1, the value of the game and the Nash equilibrium found would not

change if player 2 had the priority instead. This can be checked by taking a pair (Ṽ1, Ṽ2) as in the theorem and noticing that

(Ṽ2, Ṽ1) solves the game in which the structures (costs, gains, rates and payoffs) of the players have been swapped without swapping
the priority.
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(ii) fi : R→ R is a continuous function giving the running payoff of player i.
(iii) φi : R2 → R (resp. ψi : R2 → R) is a continuous function giving the cost of intervention (resp. gain due

to the opponent’s intervention) for player i.

In addition, we will only consider pairs of strategies (ϕ1, ϕ2) such that the previous expectations are well defined
for all x ∈ R, and we refer to these pairs as admissible (see [1] for more details).3 Note for example that, for
payoffs with polynomial growth, the ‘no intervention strategies’ φ1 = φ2 = (R, ∅) are always admissible. In this
context, we say that the players behave optimally if their strategies form a Nash equilibrium. We recall that
(ϕ∗1, ϕ

∗
2) is a Nash equilibrium if it is an (admissible) pair of strategies such that, for all (ϕ1, ϕ2),

J1(x;ϕ∗1, ϕ
∗
2) ≥ J1(x;ϕ1, ϕ

∗
2) and J2(x;ϕ∗1, ϕ

∗
2) ≥ J2(x;ϕ∗1, ϕ2),

i.e., if player i changes strategy while player j does not, then on average player i will be worse off, and vice
versa. If a Nash equilibrium (ϕ∗1, ϕ

∗
2) exists, we define the value function for player i when using the strategies

(ϕ∗1, ϕ
∗
2) by

Vi(x) := J i(x;ϕ∗1, ϕ
∗
2), i = 1, 2. (3)

Our aim is to compute (V1, V2) for some Nash equilibrium, and more importantly, to retrieve from these values
the equilibrium itself.

1.2. The system of quasi-variational inequalities

In order to establish a system of QVIs for (V1, V2) we need to define one last ingredient, known as the
intervention operators, which will display the effect of each player’s intervention on the value functions. For any
two arbitrary functions Ṽ1, Ṽ2 : R→ R, i, j ∈ {1, 2}, i 6= j, and x ∈ R, the loss operator of player i is given by

MiṼi(x) := sup
δ∈R
{Ṽi(x+ δ) + φi(x, δ)}. (4)

If Ṽi = Vi this operator gives the recomputed present value of i due to the cost of her own intervention. If for
each x ∈ R there exists a unique δj(x) = δj

Ṽj
(x) that realizes the supremum in (4) , we also define the gain

operator of player i as

HiṼi(x) := Ṽi(x+ δj(x)) + ψi(x, δ
j(x)). (5)

If Ṽi = Vi this operator gives the recomputed present value of player i due to her opponent’s intervention.
Whenever we make use of a gain operator, we are implicitly stating that the above assumptions and notations
are in place. We also emphasize that HiṼi(x) depends on the whole function Ṽj through δj

Ṽj
and we will write

Hi(Ṽj)Ṽi(x) instead, when we want to make this dependence explicit.
We can now state the Verification Theorem, due to [1], that will allow us to tackle the problem of finding

(V1, V2) and a Nash equilibrium by numerically solving a deterministic system of QVIs. In the next theorem
we use the notation A for the infinitesimal generator of X when no interventions take place. That is, A is the
operator such that if g ∈ C2(S) for some S ⊆ R, then

Ag(x) = µ(x)g′(x) +
1

2
σ2(x)g′′(x), for x ∈ S. (6)

We concur that whenever we apply A to some function g, we are implicitly stating this function g is C2 at every
x at which we compute Ag(x).

3In [1] admissibility is defined pointwise for greater generality. We refrain from doing this for simplicity.
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Theorem 1.2.1 (System of QVIs). Let Ṽ1, Ṽ2 : R→ R such that for any i, j ∈ {1, 2}, i 6= j:
Mj Ṽj − Ṽj ≤ 0, in R,
HiṼi − Ṽi = 0, in {Mj Ṽj − Ṽj = 0},
max

{
AṼi − ρiṼi + fi,MiṼi − Ṽi} = 0, in {Mj Ṽj − Ṽj < 0} =: Cj ,

(7)

and Ṽi ∈ C2(Cj\∂Ci) ∩ C1(Cj) ∩ C(R) has polynomial growth and bounded second derivative on some reduced
neighbourhood of ∂Ci. Suppose further that (ϕ∗1, ϕ

∗
2), with ϕ∗i := (Ci, δiṼi

), is an admissible pair of strategies.

Then
(Ṽ1, Ṽ2) = (V1, V2) and (ϕ∗1, ϕ

∗
2) is a Nash equilibrium.

1.3. Example of application: competition in energy markets

We finish this Section by providing a specific example of application: competition in energy markets [1].
Let process X model the forward price of energy, evolving as a Brownian motion when there are no inter-

ventions. Consider the following two players: player 1 is an energy producer with unitary production cost s1,
so that in a simplified model her payoff is X − s1. Player 2 runs a large company that buys from player 1
and sells at a unitary price s2 > s1, with payoff s2 − X. Because of the high consumption of player 2, she
can also affect the price of energy in the same way as player 1. Whenever these players intervene they incur
a cost (advertising among other factors) which is modelled linearly for tractability—one constant component
and another proportional to the change induced in the energy price. At the same time, because of their impact
in the economy, the government subsidizes upon adverse movements in the energy price. For each player this
represents a gain when the opponent intervenes, which is modelled in the same way as the cost of intervention,
but with different parameters. We further assume that both players discount their winnings/losses at the same
rate ρ > 0 and they have the same cost/gain parameters. More specifically,

Xt = x+ σWt +
∑

k: τ1
k≤t

δ1k +
∑

k: τ2≤t

δ2k

and for i, j ∈ {1, 2}, i 6= j,

J i(x;ϕ1, ϕ2) := Ex

[∫ ∞
0

e−ρs(−1)i−1(Xs − si)ds−
∞∑
k=1

e−ρτ
i
k(c+ λ|δik|) +

∞∑
k=1

e−ρτ
j
k (c̃+ λ̃|δjk|)

]
, (8)

where 0 ≤ c̃ ≤ c, 0 ≤ λ̃ ≤ λ, (c, λ) 6= (c̃, λ̃), and 1− ρλ > 0. These parametric restrictions ensure among other
things the existence of a Nash equilibrium (see [1] for more details).

The exact solution to this game can be found by application of Theorem 1.2.1. To this purpose, the system
of QVIs (7) is heuristically solved, yielding candidates for value functions and a Nash equilibrium. This is
done, first, by making some educated guesses regarding the shape of the optimal continuation regions and value
functions. Second, by solving the ordinary differential equations (ODEs) in (7) where appropriate. Finally, by
imposing the regularity requirements of Theorem 1.2.1 through pasting conditions. Upon verification of the
remaining hypotheses, the following turns out to be the solution to the game:

V2(x) =

 ϕA1,A2(x∗1) + c̃+ λ̃(x∗1 − x) if x ∈ (−∞, x̄1],
ϕA1,A2(x) if x ∈ (x̄1, x̄2),
ϕA1,A2(x∗2)− c− λ(x− x∗2) if x ∈ [x̄2,+∞),

V1(x) = V2(2s̃− x),

where:

ϕA1,A2(x) = A1e
θx +A2e

−θx +
1

ρ
(s2 − x),
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s̃ :=
s1 + s2

2
, θ :=

√
2ρ/σ2, η := (1− λρ)/ρ,

x̄i := s̃+
(−1)i

θ
log

(√
η + ξ

η − ξ

(√
Γ + 1 +

√
Γ
))

, x∗i := s̃+
(−1)i

θ
log

(√
η − ξ
η + ξ

(√
Γ + 1 +

√
Γ
))

,

Ai := exp
(

(−1)iθs̃
)√η2 − ξ2

2θ

(
(−1)i+1

√
Γ + 1−

√
Γ
)
,

Γ :=
θ(c− c̃)

4ξ
+
θc(λ− λ̃)

4ηξ
+
λ− λ̃

2η

and ξ ∈ (0, η) is the unique zero of F (y) := 2y − η log
(
η+y
η−y

)
+ θc.

As it can be readily noticed, the analytical solution involves the computation of several parameters and the
resolution of at least one nonlinear equation. As a matter of fact, the number of parameters in this solution
was reduced making use of the symmetry in the problem. In a more general two-player NZSSIG under the
modelling framework of Section 1.1, if we assume the optimal continuation regions in Theorem 1.2.1 are semi-
bounded intervals, then an analytical solution can easily involve eight parameters: two finite limits of both
continuation regions, two maximizing points of the net value functions (subtracting intervention costs) and four
undetermined constants coming from the second order ODEs. Moreover, these parameters are the solution to a
nonlinear system of equations that arises from smooth pasting and optimality conditions [1, Def. 4.1.]. In the
more frequent than not situation in which this system cannot be simplified, computing the analytical solution
may become prohibitive. This further motivates the need for a numerical algorithm to solve the system of QVIs
(7).

Remark. To the best of our knowledge this is, at the time of writing, the only one example in the literature
of an analytically solvable NZSSIG. Henceforth, we will refer to it as the benchmark game.

2. Numerics for one-player SIGs: state of the art

Notation. Henceforward, finite grids will be denoted by K and S. For a fixed grid, we will use the same font
type when discretising an operator, e.g., M, H and A will be replaced by M, H and A. We shall specify later
the way the discretisations have been done in our experiments. We will not change notation for functions over
grids as their domain will always be clearly stated. The only exception will be those functions that have been
redefined to account for boundary conditions (BCs). Lastly, we recall that for any set A, RA denotes the set of
functions from A to R.

Policy iteration or Howard’s algorithm for (discrete) variational inequalities (VIs) was originally developed
in [3, 4, 9]. The method was then extended to QVIs [7, 8, 10], i.e., variational inequalities in which the obstacle
depends on the solution itself. Let K ⊂ R be a finite set (the grid). These problems have the form:

Find V ∈ RK: max
{
LV (x) + g(x), max

y∈K
ByV (x)− V (x)

}
= 0 for all x ∈ K, 4 (9)

where g ∈ RK and L,By : RK → RK are linear and affine operators resp., for each y ∈ K.
Problem 9 encomprises in particular a discrete localized version of a one-player SIG (i.e., a stochastic impulse

control problem) since the system (7) reduces in this case to one single QVI. Indeed, by an appropriate finite
difference approximation (more details in Section 3) one can take g = f |K (modified to account for Dirichlet

or Neumann BCs),5 A − ρ1Id ≈ L and M1Ṽ (x) ≈ maxy∈K ByṼ (x), with ByṼ (x) := Ṽ (y) + φ1(x, y − x). By

4Slightly more general formulations are also available.
5For any function F : A→ B and X ⊆ A, F |X denotes the restriction of F to X.
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their antisymmetric structure, two-player zero-sum SIGs can also be accommodated with a similar formulation
as a max-min double obstacle problem [1, page 7] for one single value function V := V1 = −V2, and the policy
iteration algorithm can be adapted [5].

However, this framework is not general enough to tackle the NZSSIGs described in Section 1.1 and the full
system of QVIs (7). There are, to the best of our knowledge, no available numerical methods to approach the
latter problem. We present now the classical policy iteration algorithm used to solve (9). It will be embedded
in the numerical scheme we will put forward to solve the much more general problem (7). While we note that
our later use of this algorithm is not fully within the theoretical scope studied in [7]—in particular, we will need
to relinquish the affine nature of the operators By, y ∈ K—the two following main assumptions will be in place
nonetheless (#K is the cardinal of set K):

Assumptions 2.1.1. (i) −L is a strictly diagonally dominant M -operator. That is, if L ∈ R#K×#K is the
canonical matrix of L,6 then

Lij ≥ 0 for all i 6= j and − Lii >
∑
j 6=i

Lij for all i.

(ii) By is a non-expansive function for ‖ · ‖∞, for all y ∈ K. That is,

‖ByṼ1 − ByṼ2‖∞ ≤ ‖Ṽ1 − Ṽ2‖∞, for all Ṽ1, Ṽ2 ∈ RK, y ∈ K.

We remark that, in particular, Assumption (i) will guarantee that Algorithm 1 is well defined, as the linear
operators Lk will be non-singular [5].

Algorithm 1 Policy iteration for one QVI (one-player SIG)

1: Set ε > 0 (numerical tolerance) and kmax ∈ N (maximum iterations).
2: Pick initial guess: V 0 ∈ RK.
3: Let k = 0 (iteration counter) and R0 = +∞.
4: while Rk > ε and k ≤ kmax do
5: Mk := maxy∈K ByV k.
6: αk := 1{LV k+g<Mk−V k} (action at each point).

7: Define Lk : RK → RK and gk ∈ RK by

LkṼ (x) :=

{
LṼ (x) if αk(x) = 0

−Ṽ (x) if αk(x) = 1
gk(x) :=

{
g(x) if αk(x) = 0

Mk(x) if αk(x) = 1.

8: Solve for V k+1: LkV k+1 + gk = 0.
9: Rk+1 := ‖V k+1 − V k‖.

10: k = k + 1.
11: end while

Note that in Algorithm 1, computing the operators Lk amounts simply to redefine a matrix row by row using
either the matrix of L or −Id. We have chosen an ‘operators-type’ notation for this paper, as it will simplify
matters in the sequel, when compared with its matrix counterpart.

3. Proposed algorithm for two-player NZSSIGs

Compared with the single-value-function problems in the previous Section, general two-player NZSSIGs are
distinctly more challenging. The main challenges are:

6If K is the grid: x0 < x1 < · · · < xM , then L is the matrix with columns Lj = L1{xj}, for j = 0, . . . ,M .
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• two value functions, governed by a system of QVIs, must be solved for,
• the dependence between (V1, V2) is highly nonlinear due to the presence of the gain operators Hi(Vj)Vi,
• each gain operator is expansive as a function of (Ṽ1, Ṽ2); and
• solutions will typically be less regular. For example, if (V1, V2) is the solution to the benchmark game in

section 1.3 then Vi is singular at x̄j for i, j ∈ {1, 2}, i 6= j (i.e., each value function is non differentiable
at the border of the opponent’s continuation region), in spite of the game having linear payoffs, costs and
gains. This is somehow to be expected, as Theorem 1.2.1 contemplates this lack of regularity within the
smoothness assumptions (compare to the classical Verification Theorems for one-player problems [10]
where greater regularity is assumed).

Algorithm 2 below is, as far as we know, the first ever numerical attempt at two-player NZSSIGs. At present,
it is admittedly heuristic and supported only by the numerical evidence reported in Section 4.

The remainder of this Section is organized as follows. We start by explaining the idea and motivating the
underlying heuristics. Then, we describe in detail the discretisation of the system of QVIs (7). Finally, we list
the new algorithm.

Heuristics. Having discretised the system of QVIs (7), we start from an initial guess (V 0
1 , V

0
2 ) to approximate

its solution. We seek an iterative procedure to consecutively compute (V k+1
1 , V k+1

2 ), given (V k1 , V
k
2 ) at the k-th

iteration.
Let i, j ∈ {1, 2}, i 6= j. A natural idea is, first, to partition the grid into the ‘approximate continuation

region’ of player j—{MjV
k
j − V kj < 0}—and its complement, the ‘approximate intervention region’; and then

to compute V k+1
i either by calculating a gain as Hi(V kj )V ki in the former case, or by solving one QVI with

Howard’s algorithm (Algorithm 1) in the latter. Note, however, that naively defining {MjV
k
j − V kj < 0} as the

‘approximate continuation region’ of player j poses difficulties.
Indeed, the discretisation of the loss operator Mj as Mj implies that even the true value function Vj will

generally not verify MjVj(x) − Vj(x) = 0 (or MjVj(x) − Vj(x) ≥ 0) for x in the true intervention region of
player j. We therefore need to relax this constraint to account both for numerical error and the discrepancy
between the discrete and space-continuous problems. Our experiments have shown that a successive relaxation
procedure turns out to be the most effective. Consequently, we define the approximate continuation region of
player j as {MjV

k
j − V kj < −rk} instead, where rk is a small positive number. By letting rk relax to a preset

small tolerance ε > 0, the iterative approximations will hopefully converge to the correct discrete solution.
It remains to schedule the relaxation procedure and to define a measure of convergence for the algorithm.

Regarding the former, having computed (V k+1
1 , V k+1

2 ), rk is linearly relaxed (line 11). (This relaxation proce-
dure is chosen for simplicity.). Then the largest pointwise residual to the system of QVIs (incurred by either
approximate value function) is calculated across the grid (line 12), taking into account the numerical tolerance
ε. We denote this residual Rk+1 and we consider the algorithm has converged when it drops below a certain
tolerance—unlike in Algorithm 1, where the residual is taken as the distance between consecutive approxima-
tions. This alternative approach has been chosen for being more informative. It reflects whether a solution to
the discrete system of QVIs has been found—as opposed to the algorithm stagnating—on top of giving valuable
information at each grid node.

By construction, the junctions between the approximate continuation and intervention regions for each of the
players will necessarily take place on top of a finite difference node. This may lead to numerical issues when the
exact value functions are non differentiable there (as will often be the case). Namely, the pointwise residual to
the QVIs at the junction nodes may not be made arbitrarily small by refining the grid—because the derivatives
contained in the residual are not defined at the exact junction, in the first place. In those cases, the algorithm
must be stopped at that point, since adding more grid nodes in a naive way cannot lead to any improvement.

As a final remark, we mention that numerical experiments show Algorithm 2 does not enjoy global con-
vergence (i.e. it is not guaranteed to converge from arbitrary initial guesses). Providing a good enough pair
(V 0

1 , V
0
2 ) is thus a practical issue; in Section 4, a natural way of constructing educated guesses is explained.
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Discretisation. Let S ⊆ R be a finite set. S is the grid we will use to discretise the system (7). In all of
the numerical experiments described in the sequel we have taken S as an equispaced grid of M steps between
certain xmin < 0 < xmax with |xmin|, |xmax| and M big enough (more about this below).

Let i, j ∈ {1, 2}, i 6= j, Ṽ1, Ṽ2 ∈ RS and x ∈ S. We proceed to define the discretised versions of the loss and
gain operators, over the grid S, as

MiṼi(x) := max
y∈S
{Ṽi(y) + φi(x, y − x)} Hi(Ṽj)Ṽi(x) := Ṽi(yj(x)) + ψi(x,yj(x)− x),

where

yj(x) := min

(
argmax
y∈S

{Ṽj(y) + φj(x, y − x)}
)
.

Next, we choose a finite difference scheme for the ODEs

0 = AṼi − ρiṼi + fi =
1

2
σ2Ṽ ′′i + µṼ ′i − ρiṼi + fi

which is consistent, monotone and stable, adding Dirichlet or Neumann-type BCs. In all of our experiments,
we have chosen an upwind finite difference scheme, where

Ṽ ′i (x) ≈
Ṽi
(
x+ sgn(µ(x))h

)
− Ṽi(x)

sgn(µ(x))h
Ṽ ′′i (x) ≈ Ṽi(x+ h)− 2Ṽi(x) + Ṽi(x− h)

h2
, 7

and Ṽi(xmin − h), Ṽi(xmax + h) were solved for using Neumann conditions on

Ṽ ′i

(
xmin −

1 + sgn(µ(xmin))

2
h

)
, Ṽ ′i

(
xmax +

1− sgn(µ(xmax))

2
h

)
respectively. How to get these conditions, and in particular how to choose xmin and xmax, is a problem-
specific question. In some situations, and particularly in the models numerically tested in this paper, one can
heuristically assert that at a Nash equilibrium the continuation region of player i should be a semi-interval
of the form Ci = (xi, xi)—with one end-point finite and the other infinite. Intuitively, one can further guess
that there should exist a unique y∗i ∈ (xi, xi) that maximizes the net value of player i when she intervenes
(see, e.g., [1, Sect. 4.2] and [2, Sect. 2.3.1]). These conjectures arise mainly from the observation of the payoff
functions f1, f2 which encode the goals of the players and roughly hint at some broad regions where each player
would like the state variable to remain at. On R\Ci and R\Cj one of the two players will intervene, thus giving
either

Vi(x) =MiVi(x) = Vi(y
∗
i ) + φi(x, y

∗
i − x) or Vi(x) = HiVi(x) = Vi(y

∗
j ) + ψi(x, y

∗
j − x).

If on the interiors (R\Ci)o and (R\Cj)o the derivatives
dφi(x,y

∗
i−x)

dx and
dψi(x,y

∗
j−x)

dx exist and do not depend
on y∗i , y

∗
j resp., differentiating the previous relations yields the Neumann conditions (provided xmin, xmax are

‘extreme’ enough). The previous requirements on the derivatives are satisfied, for example, if the cost and gain
structures have the form φi(x, δ) = gi(x) + ai|δ| and ψi(x, δ) = hi(x) + bi|δ|, for some differentiable functions
gi, hi : R→ R and ai, bi ∈ R. For the benchmark game the Neumann BCs read V ′1(xmin − h) = λ, V ′1(xmax) =

λ̃, V ′2(xmin − h) = −λ̃ and V ′2(xmax) = −λ. We will denote by A the discretised version of A and fi the
restriction of fi to S, redefined at minS and max S to account for the BCs.

For Algorithm 2 we recall that given any real number a, a+ denotes its positive part (i.e., a+ := max{a, 0})
and for any subset S ⊆ R, 1S denotes the indicator function of S.

7sgn denotes the sign function, i.e., sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise.
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Algorithm 2 Policy iteration for system of QVIs (two-player NZSSIG)

1: Set ε > 0 (numerical tolerance), 0 < α < 1, r0 > 0 (relaxation parameters) and kmax ∈ N (maximum
iterations).

2: Pick initial guess: (V 0
1 , V

0
2 ) ∈ RS × RS.

3: Let k = 0 (iteration counter) and R0 = +∞
4: while Rk > ε and k ≤ kmax do
5: for i=1, 2 (player i) do
6: j = 3− i (player j).
7: Ckj := {MjV

k
j − V kj < −rk}.

8: For x /∈ Ckj , let V k+1
i (x) = Hi(V kj )V ki (x).

9: For x ∈ Ckj , solve for V k+1
i (x) by applying Algorithm 1 to

max
{
AV k+1

i (x)− ρiV k+1
i (x) + fi(x), MiV

k+1
i (x)− V k+1

i (x)
}

= 0.

10: end for
11: rk+1 := max {αrk, ε} (relaxation).
12: Let Rk+1 be the largest pointwise residual to the system of QVIs, i.e.

Rk+1 := max
i,j∈{1,2},j 6=i

x∈S

{(
MiV

k+1
i (x)− V k+1

i (x)
)+
, (10)

∣∣Hi(V k+1
j )V k+1

i (x)− V k+1
i (x)

∣∣1Ck,ε
j

(x),∣∣max
{
AV k+1

i (x)− ρiV k+1
i (x) + fi(x),MiV

k+1
i (x)− V k+1

i (x)
}∣∣1S\Ck,ε

j
(x)
}
,

where Ck,εj := {MjV
k+1
j − V k+1

j < −ε}.
13: Let k = k + 1.
14: end while

Line 9 of Algorithm 2 deserves some special attention. Although at this step we want to solve a problem
restricted to the subgrid K = Ckj (for fixed k, i, j), we still need the information in S\Ckj in two ways, namely:

• To compute the non-local operators Mi.
• To restrict to K the equation AV k+1

i (x) − ρiV k+1
i (x) + fi(x) = 0, properly accounting for the original

BCs.

Suppose S is the grid x0 < x1 < · · · < xM and let us identify each point with its respective index. Let
A ∈ R(M+1)×(M+1) be the canonical matrix of A. For any subsets I, J ⊆ {0, . . . ,M}, let us write AI,J for the
submatrix of A which has rows indexed in I and columns indexed in J , and AI,J the associated operator. Put

Hk
i := V k+1

i |S\K = Hi(V kj )V ki |S\K and hki := maxHk
i . Then in order to apply Algorithm 1 we take

LṼ = AK,KṼ − ρiṼ , g = fi|K + AK,S\KH
k
i and ByṼ (x) = max{Ṽi(y) + φi(x, y − x), hki },

for all Ṽ ∈ RK, x, y ∈ K. We remark once again that the functions By fail to be affine operators. This, together
with some assumptions which are not satisfied, make this application of Algorithm 1 fall outside of the scope
of [7] (and even more of [8, 10]). However, it is easy to check that the main assumptions, Assumptions 2.1.1,
are still verified under our discretisation and we have observed unconditional convergence of this subroutine (to
very high orders of precision) in all the experiments we have ran.
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Lastly, we note that Algorithm 1 requires setting a numerical tolerance which needs not be the same as
the one of Algorithm 2. In fact, we have always taken it strictly smaller given the perceived unconditional
convergence of the former and its precision.8

4. Numerical results

In this section we assess the performance of Algorithm 2. We shall call the problems considered in the
experiments simply ‘games’. The two value functions V1, V2 are approximated as described in Section 3 on an
equispaced grid of M + 1 nodes, and the computational domain is the plotted one. In all the subsequent games,
ε = 10−8, α = 0.8 and r0 = 1. The largest pointwise residual (equation (10)) at convergence is denoted by R∞.

As mentioned before, the only NZSSIG for which an analytical solution is currently available is the benchmark
game in Section 1.3. Therefore, we shall eventually focus on that problem. However, we introduce two other
games first (for which we do not have an analytical solution). They illustrate how the initial guess for the
benchmark game can be constructed and provide further numerical evidence supporting Algorithm 2.

4.1. Parabolic game

This is a version of the benchmark game where the payoff is replaced by a concave parabola with roots rLi
and rRi :

f̂i(x) := −(x− rLi )(x− rRi ), rLi < rRi . (11)

Let us motivate this game. We seek to use as initial guess the value functions of the ‘unilateral games’, that
is, the control problems in which one of the players never intervenes (her continuation region is fixed and equal
to R). Removing the action of one of the players, however, may not always lead to a well-posed problem.
Indeed, for payoffs without maximum one could end up for example with ‘infinite-valued value functions’ or
‘infinite-valued optimal impulses’. This is indeed the case for the benchmark game. Thus, in order to skirt that
difficulty it is convenient to define variations of the benchmark with payoffs that attain a maximum, like (11).
Note that, when well-posed, the unilateral games can be readily solved with Howard’s algorithm (Algorithm 1).

Figure 1 shows the numerical solution, (V1, V2), to a parabolic game (pair of solid curves) along with the
initial guess (pair of dashed curves). The latter are, in turn, the value functions of the corresponding unilateral
games for players 1 and 2. It is intuitively clear that (V1, V2) approximate, over the grid, functions which indeed
satisfy the assumptions of the Verification Theorem 1.2.1. The Nash equilibrium exhibited in this Theorem—
(ϕ∗1, ϕ

∗
2)—can be retrieved from this graph. Indeed, note that in this case the cost for player i is φi = −100 and

her approximate continuation region is {MiVi−Vi < ε} = {maxVi−Vi−100 < ε}. Further, her optimal impulse
at a given x is the one that realizes (the discrete analogue of) the supremum in equation (4), which in this case
amounts to translating x to the maximizing point of Vi. Consequently, we get ϕ∗1 =

(
(−∞, 1.068),−1.848− x

)
and ϕ∗2 =

(
(−3.048,+∞),−0.120− x

)
.

8Note that although precision is assessed in a different way in Algorithm 1, the pointwise residuals to the QVIs on the corre-
sponding regions are afterwards checked as part of Algorithm 2



38 ESAIM: PROCEEDINGS AND SURVEYS

Figure 1. Value functions and Nash equilibrium with parabolic running payoffs: f̂1 = −(x+

4.5)(x − 1) and f̂2 = −(x + π)(x − 2.7). Overlaid, initial guesses (solutions of the respective

unilateral games) Parameters: ρ = 0.03, σ = 0.25, c = 100, c̃ = 30, λ = λ̃ = 0. Here, M = 1000;
check Table 1 for other values.

As it turns out, this parabolic game also converges from the ‘zero guess’ (V 0
1 = V 0

2 = 0). On Table 1, the
convergence of R∞ over a wide range of finite difference grids (with 301, 601, . . . , 3001 nodes) is compiled. In all
cases, both initial guesses lead to convergence (to within ε) of Algorithm 2. Nonetheless, the algorithm takes
in general fewer iterations when starting from the values of the unilateral parabolic games. (We stress that
those on Table 1 are the outer iterations of Algorithm 2. Within each one there is an inner loop of Howard’s
iterations. Thus the computational cost scales linearly with the number of outer iterations.)

M R∞ its.a its.b

300 1.4×10−12 54 53
600 4.0×10−9 74 77
1200 3.3×10−9 144 77
1800 9.7×10−9 95 77
2400 7.3×10−9 123 77
3000 5.9×10−9 215 103

Table 1. Parabolic game: largest residual to QVIs at convergence (R∞) vs. grid points
(M + 1). Iterations to convergence within ε = 10−8 starting from: zero guess (its.a) and value
functions for one-player games (its.b). (Same parameters as in Figure 1.)

Since the exact solution to the parabolic game is unknown, we cannot say anything about the convergence
of Algorithm 2 in continuous-space. On the other hand, we see the system of QVIs is (approximately) enforced
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to within ε � 1 by a pair of numerical functions which—also approximately—comply with the regularity
assumptions of Theorem 1.2.1. As such, they are the (approximate) value functions of the parabolic game.

We conclude this example by illustrating the interplay between the value functions which numerically solve
the system of QVIs, the Nash equilibrium derived from them, and the evolution of the optimally controlled
underlying. Once the optimal strategies (ϕ∗1, ϕ

∗
2) are available, they can be executed on specific realizations

of the game. Sticking to the parameters and numerical solution in Figure 1, Figure 2 depicts one exemplary
trajectory of the underlying in the time interval 0 ≤ t ≤ 1000, starting from x = 0 and subjected to the pair of
optimal strategies. For numerical purposes, let us define

Ĵ iT (x;ϕ1, ϕ2) := Ex

∫ T

0

e−ρisfi(Xs)ds+
∑

k: τ i
k≤T

e−ρiτ
i
kφi
(
X(τ i

k)
− , δik

)
+

∑
k: τj

k≤T

e−ρiτ
j
kψi
(
X(τj

k)
− , δ

j
k

) . (12)

Figure 2. Exemplary trajectory from x = 0 (parameters and solution from Figure 1). The
blue and red dashed lines are the intervention thresholds for players 1 and 2, respectively.

Figure 3. Approximations to the objective functions at x = 0 (solid curves) and x = −1
(dashed curves), obtained by Monte Carlo simulation (see text for details). Parameters and
optimal strategies from Figure 1. Compare with V1(0), V2(0), V1(−1) and V2(−1) there.
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Intuitively, Ĵ iT (x;ϕ1, ϕ2) → J i(x;ϕ1, ϕ2) (defined in (2)) as T → ∞. In fact, after T & 300, the inte-
grals in (12) for the parabolic game have essentially attained their asymptotic value. Thus, we simply take

J i(x;ϕ1, ϕ2) ≈ Ĵ iT=1000(x;ϕ1, ϕ2). With this clarification, Figure 3 shows in particular V1(0) = J1(0;ϕ∗1, ϕ
∗
2),

V2(0) = J2(0;ϕ∗1, ϕ
∗
2), V1(−1) = J1(−1;ϕ∗1, ϕ

∗
2), and V2(−1) = J2(−1;ϕ∗1, ϕ

∗
2), obtained by Monte Carlo sim-

ulation.9 They compare fairly well with the values of V1(0), V2(0), V1(−1) and V2(−1) in Figure 1 obtained
by our algorithm. (Even better agreement could be obtained by increasing M in that figure and reducing the
discretisation bias and statistical error of the Monte Carlo simulation, but this is good enough to make our
point.)

Figure 4. Empty blue [red] circles mean that the player 1 [2] has departed from her optimal
strategy while her opponent has not. By virtue of Nash equilibrium, she cannot be (within
numerical errors) better off than V1(x) [V2(x)]. Full circles: objective function of the player
who does not drop her optimal strategy. Parameters and optimal strategies from Figure 1.
(Note that results are subjected to numerical error.)

The Nash equilibrium itself can be visually explored in the following way. For a given starting point x,
we keep the optimal strategy for one of the two players, and slightly alter the strategy of the other one. For
concreteness, let us assume that player 1 ”moves” (i.e. ϕ1 = (1± 0.25U)ϕ∗1) while player 2 does not (ϕ2 = ϕ∗2).
(U is the uniform distribution, and ”±” means with equal chance.) Then, we proceed to calculate J1(x;ϕ1, ϕ

∗
2)

by Monte Carlo simulation as before. By definition of the Nash equilibrium, J1(x;ϕ1, ϕ
∗
2) can not be larger

than V1(x). Within numerical tolerance, this is indeed observed in Figure 4, where the blue empty circles
(representing J1(x;ϕ1, ϕ

∗
2)) do not lie over the blue solid curve (which represents V1(x)). Full blue circles

represent J2(x;ϕ1, ϕ
∗
2): note that the player who sticks to her optimal strategy may indeed improve over V2(x),

9The expected values in (12) are approximated by the mean over N = 200 realizations integrated with the Euler-Maruyama
method with time step ∆t = 0.001
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should her opponent depart from a Nash equilibrium. (When player 2 is the one who changes, the red circles
and red curve in Figure 4 apply instead.)

We stress, however, that Monte Carlo simulations such as those cannot prove that a pair of strategies form
a Nash equilibrium. (At most, they could disprove it.) The only way—in the current state of the theory—of
fully characterizing a Nash equilibrium calls for solving the system of QVIs—which Algorithm 2 has now made
possible.

4.2. Capped benchmark game

In this game, we replace the running payoffs of the benchmark by a version capped at K > 0:

f̄i(x) := min{(−1)i−1(x− si),K} (13)

We shall always take K = 5. Once again, the corresponding unilateral games are well-posed and their solutions
can be used as initial guess for the capped benchmark game. As in the previous example, the capped game also
seems to converge from the zero guess. Some convergence results are compiled in Table 2. Note that convergence
falters with M = 600 and M = 3300 (independently of kmax); we will come back to this later.

M R∞ its.

600 — ∞
900 6.5× 10−10 100
1200 8.8× 10−9 124
1500 7.4× 10−9 78
2700 4.1× 10−9 96
3000 6.7× 10−9 125
3300 — ∞

Table 2. Convergence of R∞ in the capped benchmark game using the zero guess. The hyphen
stands for lack of convergence within ε. Same parameters as in Figure 5.

Figure 5. Difference (in absolute value, less than 1%) between the (numerical, withM = 1200)
value functions of the capped benchmark game and those (exact) of the benchmark game—
justifying the former being used as initial guess for the latter. Parameters are: σ = 0.25, ρ =
0.03, c = 100, c̃ = 30, λ = 0.5, λ̃ = 0.3, s1 = −π/3, s2 = π/3 and K = 5 (for capped version of
game).
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The value functions of the capped benchmark game are a good approximation to those of the benchmark
game itself (see Figure 5). This seems to make sense: due to the action of the opponent and for σ � K, the
discarded portion of the payoff is not very relevant in practice.

4.3. Benchmark game with educated initial guess

Finally, we tackle the benchmark game, for which an exact solution is available (see Section 1.3). Contrary
to the previous examples, Algorithm 2 does not seem to enjoy unconditional convergence here. In fact, when
the zero guess was used, it failed to converge more often than not (not reported). In order to construct an
adequate initial guess, we first solve for the value functions of the capped benchmark game. Using them as the
initial guess, convergence was achieved in every experiment.

Figure 6. Value functions and Nash equilibrium of two instances of benchmark game. Initial
guess: solutions of capped benchmark games (K = 5). Overlaid, error of the initial guess.

Parameters: ρ = 0.02, σ = 0.15, s1 = −3, s2 = 3, c = 100, c̃ = 0, λ = λ̃ = 15, M = 1000 (left);

ρ = 0.03, σ = 0.25, s1 = −2, s2 = 2, c = 100, c̃ = 30, λ = 4, λ̃ = 3, M = 1000 (right).

The result of two experiments are plotted on Figure 6. The numerical approximations can hardly be dis-
tinguished from the exact solutions with the naked eye. As it was done with the parabolic game, once again
we can retrieve an approximate Nash equilibrium from the numerical solution. For the left figure, this is
ϕ∗1 =

(
(−2.82,+∞), 1.53− x

)
and ϕ∗2 =

(
(−∞, 2.82),−1.53− x

)
. When compared with the exact equilibrium,

the errors on the corresponding abscissae are smaller than 0.15, i.e., smaller than half the grid step.
On Tables 3 and 4, the convergence of the numerical approximation provided by Algorithm 2 to the true

solution is demonstrated. However, R∞ fails to drop below ε for a fine enough discretisation. This reflects a
pattern: R∞ stagnates as M grows. Upon closer inspection, it turns out that the stagnating largest pointwise
residual for each player takes place at the junction between the intervention and continuation regions of the
opponent, where the exact value function of the former player has a singularity (a kink). As discussed in Section
3, Algorithm 2 is always going to place those kinks at finite difference nodes. The overshooting residuals are
thus due to the inability of a numerical solution to reproduce a sharp, nonsmooth feature—where the finite
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difference derivatives grow unbounded as the distance between nodes goes to zero. Figure 7 illustrates this
situation. It can be seen that errors continue to be acceptable (far less than 1% relative error in the worst case).
We also highlight the fact that the kinks do not seem to bring about oscillations of the numerical solutions
around them—the notorious Gibbs’ phenomenon.

M R∞ |error| its.

500 3.8×10−10 0.687 126
1000 1.2×10−9 0.805 154
1500 7.2×10−9 0.512 157
2000 3.5×10−9 0.365 172
2500 — — ∞

Table 3. Convergence of Algorithm 2 for benchmark game. Same parameters as in Figure 6 (left).

M R∞ |error| its.

600 — — ∞
800 9.5×10−10 0.023 183
1000 3.7×10−9 0.330 177
1400 8.7×10−9 0.196 159
1800 6.8×10−9 0.121 226
2200 5.6×10−9 0.073 224
2600 — — ∞

Table 4. Convergence of Algorithm 2 for benchmark game (same parameters as in Figure 6 (right).

5. Conclusions

We have designed and tested a novel policy iteration algorithm—the first one as far as we know—to numer-
ically solve nonzero-sum stochastic impulse games (NZSSIGs). The approach consists in solving a system of
quasi-variational inequalities which characterizes the value functions and Nash equilibrium, exploiting a recent
theoretical breakthrough in [1].

Our algorithm computes iteratively the approximate solution by partitioning, for each of the players, the
discretised spatial domain into an approximate continuation region and an approximate intervention region.
They are defined through a relaxation parameter that evolves along the iterations. In the continuation region,
we solve one quasi-variational inequality by means of (a generalization of) Howard’s algorithm, whereas in the
complement, a gain is computed. A strategy for producing an educated initial guess to start the iterations—
which relies on solving two associated, standard impulse control problems—has been presented along with the
new Algorithm as well.

We have not carried out a convergence analysis. Instead, we have gathered plenty of numerical evidence
showing that the Algorithm can be applied confidently. In particular, we have performed convergence tests on
the only available—at the time of writing—example of an analytically solvable NZSSIG. In other test NZSSIGs
for which we do not have an analytic solution, we have explored consistency and numerical results on the value
functions and Nash equilibrium, also with satisfactory results.

Value functions of NZSSIGs can develop sharp kinks at the confluence between the continuation and the
intervention regions of the opponent. Capturing such features into numerical approximations is a pervasive
challenge of numerical analysis. Numerical tests show that the presence of such kinks may eventually put a cap
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Figure 7. Stagnation of accuracy: the pair withM = 1983 is fully converged (within numerical
tolerance); the pair with M = 1984 (overlaid) is not. The insets zoom in on both pairs of

functions. Parameters: ρ = 0.02, σ = 0.15, s1 = −1, s2 = 1, c = 100, c̃ = 30, λ = 4, λ̃ = 3.

to the accuracy attained by our algorithm. On the other hand, its stability is not affected by them. Moreover,
in every case the largest pointwise error was perfectly acceptable for the purposes of most applications.

In sum, the new Algorithm offers a means of gaining quantitative insight into applications modelled by
NZSSIGs. Natural continuations of the present work include the convergence analysis of the Algorithm, and
enriching the discretisation method so as to better capture singularities in the solutions.
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