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A B S T R A C T

In this paper, we have modified the stress integration scheme proposed by Choi and Yoon [1]; which is based on
the numerical approximation of the yield function gradients, to implement in the finite element code ABAQUS
three elastic isotropic, plastic anisotropic constitutive models with yielding described by Yld2004-18p [2],
CPB06ex2 [3] and Yld2011-27p [4] criteria, respectively. We have developed both VUMAT and UMAT sub-
routines for the three constitutive models, and have carried out cylindrical cup deep drawing test simulations
and calculations of dynamic necking localization under plane strain tension, using explicit and implicit analy-
ses. An original feature of this paper is that these finite element simulations are systematically compared with
additional calculations performed using (i) the numerical approximation scheme developed by Choi and Yoon
[1]; and (ii) the analytical computation of the first and second order yield functions gradients. This comparison
has shown that the numerical approximation of the yield function gradients proposed in this paper facilitates
the implementation of the constitutive models, and in the case of the implicit analyses, it leads to a significant
decrease of the computational time without impairing the accuracy of the finite element results. In addition, we
have demonstrated that there is a critical loading rate below which the dynamic implicit analyses are computa-
tionally more efficient than the explicit calculations.

1. Introduction

The pioneering work of Hill [5] was a turning point in the math-
ematical theory of anisotropic plasticity. By analogy with the von
Mises[6] yield criterion for isotropic materials, Hill [5] proposed
a quadratic yield function to model the macroscopic behaviour of
orthotropic metals which depends only on the deviatoric stresses and
is pressure independent. The model highlights due to its simplicity,
versatility and easy calibration procedure; so that 70 years after its
publication, the criterion of Hill [5] still is the anisotropic model most
widely used to describe the directionality of plastic properties of metal-
lic materials used in scientific and technological applications [7–12].
However, due to the fact that Hill’s yield function is quadratic in stresses
and contains only six independent parameters to describe the state of
anisotropy, it cannot capture with the same accuracy both the yield
stress and Lankford coefficients [13,14]. Hill [15] acknowledged what
he referred to as inevitable limitations in the range of validity of the 1948
prototype and proposed an improved yield criterion based on arbitrary
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linear combinations of equal non-integer powers of the principal values
of the deviatoric stress, together with the same powers of their differ-
ences. This criterion, specifically developed to describe the mechani-
cal response of textured sheets for situations in which the orthotropy
and the loading are co-directional [16,17], included 7 parameters to
describe material anisotropy, and provided extended flexibility without
sacrificing too much of the simplicity that was a main attraction of the
1948 proposal. Nevertheless, nor the original model, neither the 1979
improvement can describe the mechanical response of materials which
exhibit complex plastic anisotropy.

Many yield functions have been developed over the years to improve
the formulations of Hill [5,15]. For instance, Barlat and Lian [18]
extended to orthotropy the 2D model of Barlat and Lian [19] using
a linear transformation of the components of the stress tensor. The
anisotropic criterion of Barlat and Lian [18] captured the behavior
of orthotropic sheet metals under a full plane stress state including
4 independent material parameters, and showed remarkable capac-
ity to describe the yield surfaces computed with the Bishop and Hill
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[20] polycrystal model. Shortly after, Barlat et al. [21] extended to
orthotropic anisotropy the isotropic criterion proposed by Hosford [22]
in order to generalize the 2D model of Barlat and Lian [18] to any
complex three-dimensional stress state. However, the criterion of Bar-
lat et al.[21] cannot be used for materials with symmetries other than
the orthotropic symmetry. This motivated to Karafillis and Boyce [23]
to propose a non-quadratic yield criterion capable of describing differ-
ent states of material symmetry, including the most generalized case of
the totally asymmetric material. Following previous ideas of Barlat and
Lian [18] and Barlat et al. [21]; among others, Karafillis and Boyce [23]
used a fourth order tensor as a linear multiplicative operator acting on
the stress tensor to introduce material anisotropy. The predictions of the
model of Karafillis and Boyce [23] were found to be in good agreement
with experimental results for a variety of materials. The fourth order
tensorial operator introduced by Karafillis and Boyce [23] was further
used by Barlat et al. [24] to improve the model developed in Barlat et
al. [21]; introducing three additional material parameters which pro-
vided increased flexibility to describe the anisotropic response of dif-
ferent materials. The model of Barlat et al. [24] was demonstrated to
be particularly valid for materials which exhibit large pure shear yield
stress.

Following the works of Karafillis and Boyce [23] and Barlat et
al. [24]; the linear transformation-based anisotropic yield functions
became increasingly popular because, among other reasons, they allow
tailoring the number of anisotropy parameters without significant
impact on the mathematical structure of the constitutive model. Barlat
et al. [25] developed a plane stress yield function with 9 parameters to
describe the mechanical response of aluminum sheets using two linear
transformations of the Cauchy stress tensor. It was shown that the accu-
racy in the description of the flow stress anisotropy and Lankford coef-
ficients is increased as the number of linear transformations, and thus
the number of anisotropy parameters, increases. Bron and Besson [26]
extended the models of Barlat et al. [21] and Karafillis and Boyce [23]
using two linear transformations. The resulting 3D yield function, that
was demonstrated to be convex, contained 16 parameters and provided
accurate description of the plastic anisotropy of various aluminum sheet
samples. Two linear transformations were also used by Barlat et al.
[2] to formulate the so-called Yld2004-13p and Yld2004-18p yield
functions. These two anisotropic models were derived from different
isotropic criteria, so that they contain 13 and 18 anisotropic parame-
ters, respectively. The values of these parameters were computed for
2090-T3 and 6111-T4 aluminum alloys. The comparison between yield
functions predictions and experiments showed that both models capture
the main features of the anisotropic behaviour of 2090-T3 and 6111-
T4. Notably, the Yld2004-18p model described very accurately the
flow stresses in uniaxial tension and the Lankford coefficients of both
sheet materials. Two and three linear transformations were used by
Aretz and Barlat [4] to obtain the so-called Yld2011-18p and Yld2011-
27p yield functions, which contain 18 and 27 parameters, respectively.
While the Yld2011-18p model can be regarded as complementary to the
yield function Yld2004-18p proposed few years earlier (same number of
parameters but different behavior during calibration of the experimen-
tal data), the Yld2011-27p provided extended flexibility and improved
accuracy to describe the complex plastic anisotropy of AA 2090-T3 and
AA 3104-H19.

Most of the anisotropic yield criteria cited so far were specifically
developed to model metals with cubic structure. Hence, they are usu-
ally represented by even functions of stresses and do not capture the
tension/compression asymmetry in yielding characteristic of hexago-
nal closed packed metals. Cazacu and Barlat [27] proposed a yield
criterion to describe both the asymmetry and anisotropy in yielding
of magnesium and magnesium alloys using the generalized invariants
approach developed by Cazacu and Barlat [28]. The yield function of
Cazacu and Barlat [27] is an homogeneous function of degree three
in stresses and contains 18 material parameters. Shortly after, Cazacu
et al. [29] developed the so-called CPB06 yield criterion, in which the

degree of homogeneity is a material parameter to be determined, to
capture simultaneously the anisotropy and tension/compression asym-
metry of hexagonal closed packed metals. Similarly to Karafillis and
Boyce [23] and Barlat et al. [24]; the anisotropy was introduced using
a linear transformation of the stress deviator. For 3D stress conditions,
this yield criterion involves 9 independent anisotropy coefficients, 1
parameter to describe the strength differential effect and 1 more to
determine the degree of homogeneity of the yield function. Plunkett et
al. [3] extended the CPB06 model using two linear transformations and
derived the so-called CPB06ex2 yield criterion which contains a total
of 21 parameters, and represents with great accuracy both the tensile
and compressive anisotropy in yield stresses and Lankford coefficients
of materials with hcp crystal structure and of metal sheets with cubic
crystal structure. During the last few years, additional yield functions
to model the anisotropy and tension/compression asymmetry in yield-
ing of various metallic materials have been proposed, for instance, by
Nixon et al. [30]; Khan et al. [31]; Raemy et al. [32]; Kondori et al.
[33]; Park et al. [34]; Sanz et al. [35] and Lee et al. [36].

As a general rule, the ability of the yield functions to describe
complex anisotropic and tension/compression asymmetric behaviors
increases with the number of material parameters. However, accuracy
comes with a price. As the number of parameters increases: (i) larger
number of tests is needed to determine the material parameters (if
experimental data are not available, modelers also rely on numerical
data obtained from polycrystalline calculations, see Yoon et al. [37]
and Grytten et al. [38]), (ii) the implementation of the yield functions in
finite element codes becomes an increasingly laborious task and (iii) the
computational efficiency decreases. In particular, a key step in the finite
element implementation process is the computation of the yield func-
tion gradients (i.e. the derivatives of the effective stress with respect
to the stress components) which are required to calculate the effective
plastic strain increment and the tangent stiffness tensor, the latter being
necessary in implicit finite element solutions (e.g. Yoon et al. [39] and
Vadillo et al. [40]). For advanced yield criteria, in which anisotropy is
included using more than one linear transformation (see previous para-
graphs of this introductory section), the analytical forms of the first and
second order yield function gradients are lengthy and complex expres-
sions, which increases the difficulties associated to the implementation
of constitutive models in finite element codes. In order to alleviate this
problem, Aretz [41] proposed to use numerical approximations of the
yield function gradients, which is also an effective way to get rid of
the singularities that appear in their analytical counterparts [2,4]. Very
recently, Choi and Yoon [1] modified the stress integration algorithm
developed by Aretz [41] to implement in ABAQUS/Standard various
anisotropic constitutive models with distortional hardening under asso-
ciated and non-associated flow rules. In addition, the simple mathemati-
cal form of the numerical approximations suggests that their application
in the finite element implementation process could lead to significant
computational time reduction, facilitating the utilization of advanced
yield functions in large scale numerical simulations. Nevertheless, to the
authors’ knowledge, the anticipated computational efficiency of using
numerical approximations of the yield function gradients has not been
thoroughly investigated so far. In this regard, note that Choi and Yoon
[1] only performed relatively small simulations: single element calcu-
lations to evaluate the accuracy of the numerical approximations of the
yield function gradients, and deep drawing calculations where the blank
is modeled with a maximum of 2000 elements to check the number of
ears predicted by the various constitutive models investigated.

In this paper, we modify the numerical differentiation schemes pro-
posed by Aretz [41] and Choi and Yoon [1] to implement in the finite
element code ABAQUS three elastic isotropic, plastic anisotropic con-
stitutive models with yielding described by Yld2004-18p, CPB06ex2
and Yld2011-27p criteria, respectively. We have developed VUMAT and
UMAT subroutines for the three constitutive models, using both the ana-
lytical expressions and the numerical approximations of the first and
second order yield function gradients. We have carried out cylindri-
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cal cup deep drawing test simulations using the configuration reported
in Yoon et al. [37]; and calculations of dynamic necking localization
under plane strain tension with the finite element model developed by
N’souglo et al. [42]; using both implicit and explicit analyses. We have
identified that there is a critical loading rate below which the dynamic
implicit analyses are computationally more efficient than the explicit
calculations. Moreover, the systematic comparison between the finite
element results obtained with the analytical expressions and the numer-
ical approximations of the yield functions gradients has shown that,
while in the case of the explicit analyses using a VUMAT the procedure
used to calculate the stress derivatives hardly affects the computational
time, the utilization of the numerical approximations in implicit analy-
ses using a UMAT indeed leads to an important decrease of the compu-
tational cost. This decrease reaches up to 70% for some of the numerical
simulations presented in this paper, and it increases as the number of
elements in the finite element mesh increases. We have also shown that
the computational time required for the dynamic necking calculations is
between 5% and 45% smaller for the numerical differentiation scheme
proposed in this work in comparison with the formulation developed
by Choi and Yoon [1].

2. Constitutive framework

We consider three elastic isotropic, plastic orthotropic constitutive
models with yielding described by Yld2004-18p [2], CPB06ex2 [3]
and Yld2011-27p [4] criteria, respectively. These advanced yield cri-
teria were specifically developed to capture the mechanical response
of highly textured metallic materials which exhibit complex plastic
anisotropy. Section 2.1 sets out the general formulation of the three
constitutive models, while the specific features of each yield criterion
are shown in Sections 2.2, 2.3 and 2.4, respectively.

2.1. Basic features of the constitutive models

Elasto-plastic constitutive equations in finite element codes for large
deformation solid mechanical applications are mostly based on an
ad hoc extension of classical small-strain elasto-plasticity to the finite
deformation range. We assume the additive decomposition of the total
rate of deformation tensor d into an elastic part de and a plastic part
dp:

d = de + dp (1)

where the elastic part of the rate of deformation tensor is related to the
rate of the stress by the following linear elastic law:

▿
𝝈 = L ∶ de (2)

where
▿
𝝈 is an objective derivative of the Cauchy stress tensor, and L is

the tensor of isotropic elastic moduli given by:

L = 2GI′ + K1⊗ 1 (3)

with 1 and I′ being the unit second-order tensor and the unit devia-
toric fourth-order tensor, respectively. Moreover G and K are the shear
modulus and the bulk modulus (they are assumed constant).

In order to achieve incremental objectivity of the constitutive equa-
tions, ABAQUS considers the objective stress derivative to be defined
as:
▿
𝝈 = �̇� + 𝝈𝝎− 𝝎𝝈 (4)

where 𝝎 is a skew-symmetric tensor so that
▿
𝝈 coincides with the Green-

Naghdi objective derivative used by ABAQUS/Explicit if 𝝎 = 𝛀, where
𝛀 = ṘRT with R being the polar rotation tensor, and with the Jaumann
objective derivative used by ABAQUS/Standard if 𝝎 = w, where w is

the spin tensor (i.e. the skew-symmetric part of the velocity gradient
tensor). Note that ̇( ) denotes differentiation with respect to time.

The general expression for the yield criteria considered in this paper
is:

𝜙 = 𝜙
(
S̃′i , S̃

″
i , S̃

‴
i

)
(5)

where
(
S̃′i , S̃

″
i , S̃

‴
i

)
, with i = 1,2,3 (see equation (8)), are the principal

values of the second order deviatoric tensors s̃′, s̃″ and s̃‴, which are
defined by three linear transformations:

s̃′ = C′s (6a)

s̃″ = C″s (6b)

s̃″ = C‴s (6c)

where s is the deviatoric part of the Cauchy stress tensor 𝝈, and C′, C″

and C‴ are the matrices which contain the anisotropy coefficients:

C′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c′11 −c′12 −c′13 0 0 0

−c′21 −c′22 −c′23 0 0 0

−c′31 −c′32 −c′33 0 0 0

0 0 0 c′44 0 0

0 0 0 0 c′55 0

0 0 0 0 0 c′66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7a)

C″ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c″11 −c″12 −c″13 0 0 0

−c″21 −c″22 −c″23 0 0

−c″31 −c″32 −c″33 0 0 0

0 0 0 c″44 0 0

0 0 0 0 c″55 0

0 0 0 0 0 c″66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7b)

C‴ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c‴11 −c‴12 −c‴13 0 0 0

−c‴21 −c‴22 −c‴23 0 0 0

−c‴31 −c‴32 −c‴33 0 0 0

0 0 0 c‴44 0 0

0 0 0 0 c‴55 0

0 0 0 0 0 c‴66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7c)

with c′ij, c
″
ij and c

‴
ij being material parameters. Note that for Yld2004-

18p and Yld2011-27p yield criteria c′ii = c″ii = c‴ii = 0 with i = 1,2,3
(see Sections 2.2 and 2.4), i.e. for these two constitutive models the
matrices which contain the anisotropy coefficients only have 9 non-
zero coefficients. In equation (6), we have taken the order of the com-
ponents of the column vector representing the deviatoric stress tensor
to be s = {s11 s22 s33 s23 s31 s12}, with the Cartesian coordinate system
(1,2,3) being associated to the orthotropy axes of the material (1, 2
and 3 axes correspond to the rolling, transverse and normal directions,
respectively).

The ordered principal values of the tensor s̃′ are:

S̃′1 = 2
√(

H′
1

)2
+ H′

2 cos
(
𝜃

3

)
+ H′

1 (8a)

S̃′2 = 2
√(

H′
1

)2
+ H′

2 cos
(
𝜃 + 4𝜋
3

)
+H′

1 (8b)

S̃′3 = 2
√(

H′
1

)2
+ H′

2 cos
(
𝜃 + 2𝜋
3

)
+H′

1 (8c)
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with 𝜃 = arccos
(

q

p
3
2

)
, p =

(
H′
1
)2 + H′

2 and q =
2
(
H′
1

)3
+3H′

1H
′
2+2H

′
3

2 ,

where H′
1, H

′
2 and H

′
3 are the 1

st, 2nd and 3rd invariants of s̃′. Analo-
gous procedure is followed to obtain the principal values of the tensors
s̃″ and s̃‴.

Moreover, the yield condition is expressed as:

f = �̄� − 𝜎Y = 0 (9)

where �̄� = �̄� (𝜙) is the effective stress (the specific form of �̄� for the
three yield criteria considered is given in equations (19), (21) and (25))
and 𝜎Y is the tensile yield stress in the rolling direction (see also equa-
tions (19), (21) and (25)). The hardening of the material, which is con-
sidered to be isotropic and governed by the effective plastic strain �̄�p, is
assumed to be of the form:

𝜎Y = 𝜎0
(
𝜀0 + �̄�p

)n (10)

where 𝜎0, 𝜀0, and n are material parameters, see Table 1.
The effective plastic strain is defined as:

�̄�p = ∫
t

0
̇̄𝜀pd𝜏 (11)

with ̇̄𝜀p being the work-conjugate of the specific effective stress asso-
ciated to the yield criterion (see equations (19), (21) and (25)). Recall
that a superposed dot denotes differentiation with respect to time.

Moreover, assuming an associated plastic flow rule, the plastic part
of the rate of deformation tensor is:

dp = �̇�
𝜕�̄�

𝜕𝝈
(12)

where �̇� is the rate of plastic multiplier.
Since the effective stress is a first order homogeneous function in

stress (see equations (19), (21) and (25)), we have from the Euler’s
homogeneous function theorem that:

�̄� = 𝝈 ∶ 𝜕�̄�

𝜕𝝈
(13)

Therefore, the work conjugacy relation:

𝝈 ∶ dp = �̄� ̇̄𝜖p (14)

leads to the identity:

̇̄𝜀p = �̇� (15)

The formulation of the constitutive model is completed with the
Kuhn-Tucker loading-unloading conditions:

�̇� ⩾ 0, f ⩽ 0, �̇�f = 0 (16)

and the consistency condition during plastic loading:

ḟ = 0 (17)

Table 1 shows the initial density, the elastic constants, and the
hardening parameters used in the finite element simulations shown in
Section 7. The parameters values correspond to AA 2090-T3 and they
are taken from Yoon et al. [37] and Cvitanić et al. [43].

Table 1
Initial density, elastic constants and strain hardening
parameters for AA 2090-T3. Data after Yoon et al. [3,7] and
Cvitanić et al. [43].

Symbol Property and units Value

𝜌0 Initial density (kg∕m3) 2700
G Elastic shear modulus (GPa), Eq. (4) 26.92
K Bulk modulus (GPa), Eq. (4) 58.33

𝜎0 Material parameter (MPa), Eq. (10) 646
𝜀0 Material parameter, Eq. (10) 0.025
n Material parameter, Eq. (10) 0.227

2.2. Yld2004-18p yield criterion

The anisotropy is introduced using 2 linear transformations of the
stress deviator, equations (6a) and (6b), which provide 18 anisotropy
coefficients, equations (7a) and (7b), whose values must be determined
from experiments (recall that for Yld2004-18p yield criterion c′ii = c″ii =
0, with i = 1,2,3, and therefore the matrices C′ and C″ only have
9 non-zero coefficients). Note that, if C′ = C″, i.e. if the formulation
accounts for only one linear transformation, the Yld2004-18p criterion
reduces to the Yld91 model [21], provided that c′12 = c′21, c

′
13 = c′31

and c′32 = c′23.
The yield function is:

𝜙Yld04 =
3∑
i=1

3∑
j=1

|||S̃′i − S̃″i |||a (18)

and the associated effective stress is:

�̄� =
(
𝜙Yld04

𝜉

) 1
a

(19)

with 𝜉 = 4, so that �̄� reduces to the yield stress in the rolling direction
(see equation (9)).

The parameters values corresponding to AA 2090-T3 are given in
Table 2.

2.3. CPB06ex2 yield criterion

The model accounts for both the anisotropy and tension-
compression asymmetry of the material, which are introduced, as in
the case of the Yld2004-18p model [2], using 2 linear transformations
of the stress deviator (equation (6a) and (6b)). The CPB06ex2 yield cri-
terion contains 21 parameters: 18 to describe the anisotropy (c′ij and c

″
ij

in equations (7a) and (7b)), 2 for the tension-compression asymmetry
(k′ and k″ in equation (20)), and 1 to determine the degree of homo-
geneity of the yield function. Note that when C′ = C″ and k′ = k″, the
CPB06ex2 model reduces to the yield criterion developed by Cazacu et
al. [29].

The yield function is:

𝜙CPB06 =
3∑
i=1

(|̃S′i | − k′S̃′i )a + 3∑
i=1

(|̃S″i | − k″S̃″i )a (20)

and the associated effective stress is:

�̄� =
(
𝜙CPB06

𝜂

) 1
a

(21)

with

𝜂 =
3∑
i=1

(|𝜑′
i | − k′𝜑′

i )
a +

3∑
i=1

(|𝜑″
i | − k″𝜑″

i )
a (22)

where

𝜑′
1 =

−(2c′11 − c
′
12 − c

′
13)

3
, 𝜑′

2 =
−(2c′12 − c

′
22 − c

′
23)

3
,

𝜑′
3 =

−(2c′13 − c
′
23 − c

′
33)

3

𝜑″
1 =

−(2c″11 − c
″
12 − c

″
13)

3
, 𝜑″

2 =
−(2c″12 − c

″
22 − c

″
23)

3
,

𝜑″
3 =

−(2c″13 − c
″
23 − c

″
33)

3

(23)

Notice that the function 𝜂 is such that �̄� reduces to the tensile yield
stress in the rolling direction (see equation (9)).

The parameters values corresponding to AA 2090-T3 are given in
Table 3.
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Table 2
YLD2004-18p yield criterion. Parameters values for AA 2090-T3. Data after Barlat et al. [2].

Anisotropy parameters

c′11 c′12 c′13 c′21 c′22 c′23 c′31 c′32 c′33 c′44 c′55 c′66
0 −0.06989 0.93640 0.07914 0 1.00306 0.524741 1.36318 0 1.02377 1.06906 0.95432
c″11 c″12 c″13 c″21 c″22 c″23 c″31 c″32 c″33 c″44 c″55 c″66
0 0.98117 0.47674 0.57531 0 0.86682 1.14501 −0.07929 0 1.05166 1.14700 1.40462

Degree of homogeneity of the yield function

a
8

Table 3
CPB06ex2 yield criterion. Parameters values for AA 2090-T3. Data after Plunkett et al.[3].

Anisotropy parameters

c′11 c′12 = c′21 c′13 = c′31 c′22 c′23 = c′32 c′33
0.453 0.841 1.248 1.058 2.284 3.201
c′44 c′55 c′66 c″11 c″12 = c″21 c″13 = c″31
−1 −1 −1.026 −0.453 0.705 −1.148
c″22 c″23 = c″32 c″33 c″44 c″55 c″66
−0.139 0.519 −0.878 −1 −1 −1.978

Degree of homogeneity of the yield function

a
12

Tension-compression asymmetry parameters

k′ k″

0.054 0.027

2.4. Yld2011-27p yield criterion

The anisotropy is introduced using 3 linear transformations of the
stress deviator, equations (6a)-(6c), leading to 27 anisotropy coeffi-
cients, equations (7a)-(7c), thereby providing extended flexibility to
capture the mechanical response of materials with complex anisotropic
behaviour. Recall that for the Yld2011-27p model c′ii = c″ii = c‴ii = 0,
with i = 1,2,3.

The yield function is:

𝜙Yld11 =
3∑
i=1

3∑
j=1

|||S̃′i + S̃″i ||| a + 3∑
k=1

|||S̃‴i ||| a (24)

and the associated effective stress is:

�̄� =
(
𝜙Yld11

𝜁

) 1
a

(25)

with

𝜁 =
(4
3

)a
+ 5

(2
3

)a
+ 6

(1
3

)a
(26)

Similarly to the Yld2004-18p and CPB06ex2 criteria, the function 𝜁
is chosen so that �̄� reduces to the yield stress in the rolling direction
(see equation (9)).

The parameters values corresponding to AA 2090-T3 are given in
Table 4.

3. Integration of the constitutive equations

The numerical integration is a strain-driven process where the incre-
ment of the total strain tensor △𝜺 is given at a quadrature point, and
the stress tensor should be updated for the corresponding time incre-
ment. The incremental integration is local in space and occurs at each
quadrature point inside the finite elements. The three constitutive mod-
els presented in Section 2 have been implemented in ABAQUS/Explicit
and ABAQUS/Standard through user subroutines VUMAT and UMAT,
respectively, using the classical return mapping scheme [44,45]. The

specific algorithms used in the VUMAT and UMAT subroutines are
shown in Sections 3.1 and 3.2, respectively. The goal is to calculate
the increment of the effective plastic strain which is required to update
the stress state. In what follows, superscripts n and n + 1 denote the
previous and current time steps, respectively. The return is performed
at time n + 1.

3.1. Convex cutting-plane algorithm

We rewrite the yield condition as:

f n+1 = �̄�n+1 − 𝜎n+1Y = 0 (27)

The preceding relation is a non-linear algebraic equation in △�̄�p
which can be solved using an iterative Newton-Raphson procedure. For
that purpose, the previous expression is linearized as follows:

f n+1(k+1) ≈ f n+1(k) +
(

𝜕f
𝜕�̄�n+1

𝜕�̄�n+1

𝜕𝝈n+1
𝜕𝝈n+1

𝜕 △ �̄�p

)
(k)
𝛿�̄�p(k)

+
(

𝜕f
𝜕𝜎n+1Y

𝜕𝜎n+1Y
𝜕�̄�n+1p

𝜕�̄�n+1p
𝜕△ �̄�p

)
(k)
𝛿�̄�p(k) = 0 (28)

where k stands for the iterative index and:

𝜕f
𝜕�̄�n+1

= 1, 𝜕𝝈n+1

𝜕 △ �̄�p
= −L ∶ 𝜕�̄�n+1

𝜕𝝈n+1

𝜕f
𝜕𝜎n+1Y

= −1,
𝜕�̄�n+1p
𝜕△ �̄�p

= 1

(29)

From equation (28), 𝛿�̄�p(k) is calculated as:

𝛿�̄�p(k) =
f

𝜕�̄�

𝜕𝝈
∶ L ∶ 𝜕�̄�

𝜕𝝈
+ 𝜕𝜎Y

𝜕�̄�p

|||||||•n+1(k)

(30)

where •n+1(k) denotes that 𝛿�̄�p(k) is computed at the current time step
n + 1 for a given iteration k.

5
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Table 4
Yld2011-27p yield criterion. Parameters values for AA 2090-T3. Data after Aretz and Barlat [4].

Anisotropy parameters

c′11 c′12 c′13 c′21 c′22 c′23 c′31 c′32 c′33 c′44 c′55 c′66
0 0.12667 1.29525 0.28407 0 1.42858 0.604524 1.36079 0 1 1 0.8364
c″11 c″12 c″13 c″21 c″22 c″23 c″31 c″32 c″33 c″44 c″55 c″66
0 1.44953 0.99770 1.34779 0 1.00332 1.78676 −0.08678 0 1 1 1
c‴11 c‴12 c‴13 c‴21 c‴22 c‴23 c‴31 c‴32 c‴33 c‴44 c‴55 c‴66
0 −0.61319 0.39240 −1.31670 0 −2.31010 0.72917 0.75833 0 1 1 2.78319

Degree of homogeneity of the yield function

a
12

The increment of the effective plastic strain and the updated stress
state are calculated after every iteration as follows:

△�̄�p(k+1) = △�̄�p(k) + 𝛿�̄�p(k) (31)

𝝈
n+1
(k+1) = 𝝈

n+1
(k) − L ∶

(
𝜕�̄�n+1

𝜕𝝈n+1

)
(k)
𝛿�̄�p(k) (32)

The iterative procedure is performed until f n+1(k+1) is lower than a user-
defined tolerance. Then, the corresponding stress state is accepted as
the current stress state. Note that the convex cutting-plane algorithm
requires to obtain the first order yield function gradients (i.e. the first
derivative of the effective stress with respect to the components of the
stress tensor) to determine the increment of the effective plastic strain.

3.2. Implicit backward-Euler algorithm

We rewrite the yield condition and the flow rule as:

f n+1 = �̄�n+1 − 𝜎n+1Y = 0 (27 revisited)

gn+1 = △𝜺p −△�̄�p
𝜕�̄�n+1

𝜕𝝈n+1
= 0 (33)

These expressions are non-linear algebraic equations in △�̄�p which
can be solved using an iterative Newton-Raphson procedure. For that
task, the previous expressions are linearized as follows:

f n+1(k+1) ≈ f n+1(k) +
(

𝜕f
𝜕�̄�n+1

𝜕�̄�n+1

𝜕𝝈n+1
𝜕𝝈n+1

𝜕△ �̄�p

)
(k)
𝛿�̄�p(k)

+
(

𝜕f
𝜕𝜎n+1Y

𝜕𝜎n+1Y
𝜕�̄�n+1p

𝜕�̄�n+1p
𝜕 △ �̄�p

)
(k)
𝛿�̄�p(k) = 0 (28 revisited)

gn+1(k+1) ≈ gn+1(k) +
(

𝜕g
𝜕 △ 𝜺p

𝜕△ 𝜺p

𝜕𝜺n+1p

𝜕𝜺n+1p
𝜕 △ �̄�p

)
(k)
𝛿�̄�p(k)

+
(

𝜕g
𝜕𝝈n+1

𝜕𝝈n+1

𝜕△ �̄�p

)
(k)
𝛿�̄�p(k) +

(
𝜕g

𝜕△ �̄�p

)
(k)
𝛿�̄�p(k) = 0 (34)

where
𝜕f

𝜕�̄�n+1
= 1

𝜕f
𝜕𝜎n+1Y

= −1,
𝜕�̄�n+1p
𝜕△ �̄�p

= 1
(29 revisited)

and

𝜕g
𝜕△ 𝜺p

= I,
𝜕△ 𝜺p

𝜕𝜺n+1p
= I,

𝜕𝜺n+1p
𝜕△ �̄�p

= −L−1 ∶ 𝜕𝝈n+1

𝜕△ �̄�p

𝜕g
𝜕𝝈n+1

= −△ �̄�p
𝜕2�̄�n+1

𝜕𝝈n+1𝜕𝝈n+1

𝜕g
𝜕△ �̄�p

= − 𝜕�̄�n+1

𝜕𝝈n+1

(35)

where I is the unit fourth-order tensor.
From equation (34), we obtain:(
𝜕𝝈n+1

𝜕△ �̄�p

)
(k)
𝛿�̄�p(k) = −En+1(k)

(
gn+1(k) +

(
𝜕�̄�n+1

𝜕𝝈n+1

)
(k)
𝛿�̄�p(k)

)
(36)

where

En+1(k) =
(
L−1 +△�̄�p(k)

(
𝜕2�̄�n+1

𝜕𝝈n+1𝜕𝝈n+1

)
(k)

)−1

(37)

Inserting equation (36) into equation (28), we obtain:

𝛿�̄�p(k) =
f − 𝜕�̄�

𝜕𝝈
∶ E ∶ g

𝜕�̄�

𝜕𝝈
∶ E ∶ 𝜕�̄�

𝜕𝝈
+ 𝜕𝜎Y

𝜕�̄�p

|||||||•n+1(k)

(38)

The increment of the effective plastic strain and the updated stress
state are calculated after every iteration as follows:

△�̄�p(k+1) = △�̄�p(k) + 𝛿�̄�p(k) (31 revisited)

𝝈
n+1
(k+1) = 𝝈

n+1
(k) − En+1(k)

(
gn+1(k) +

(
𝜕�̄�n+1

𝜕𝝈n+1

)
(k)
𝛿�̄�p(k)

)
(39)

The iterative procedure is performed until f n+1(k+1) and g
n+1
(k+1) are lower

than a user-defined tolerance. Then, the corresponding stress state is
accepted as the current stress state. Note that the implicit backward-
Euler algorithm requires to obtain the first and second order yield func-
tion gradients (i.e. the first and second derivatives of the effective stress
with respect to the components of the stress tensor) to determine the
increment of the effective plastic strain.

4. Algorithmic tangent modulus

In this section, we derive the general expression of the algorithmic
tangent modulus, a critical factor in the UMAT implementation of the
constitutive models to preserve the quadratic rate of asymptotic conver-
gence of the iterative Newton-Raphson procedure (see equations (27)
and (33)). See, for instance, Yoon et al. [46] and Yoon et al. [39] for
additional details.

The stress at time n + 1 is:

𝝈
n+1 = 𝝈

n + L ∶ △𝜺 −△�̄�pL ∶
𝜕�̄�n+1

𝜕𝝈n+1
(40)

Differentiation of previous expression leads to:

𝛿𝝈 = L
(
𝛿𝜺− 𝜕�̄�n+1

𝜕𝝈n+1
𝛿�̄�p −△�̄�p

𝜕2�̄�n+1

𝜕𝝈n+1𝜕𝝈n+1
𝛿𝝈

)
(41)

which can be recast into:

𝛿𝝈 = L̄
(
𝛿𝜺− 𝜕�̄�n+1

𝜕𝝈n+1
𝛿�̄�p

)
(42)

6
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where:

L̄ =
(
L−1 +△�̄�p

𝜕2�̄�n+1

𝜕𝝈n+1𝜕𝝈n+1

)−1
(43)

Differentiation of the consistency condition, equation (27), leads to:

𝛿f =
(

𝜕f
𝜕�̄�n+1

𝜕�̄�n+1

𝜕𝝈n+1

)
𝛿𝝈 +

(
𝜕f

𝜕�̄�n+1Y

𝜕�̄�n+1Y
𝜕�̄�n+1p

𝜕�̄�n+1p
𝜕△ �̄�p

)
𝛿�̄�p = 0 (44)

Substituting equation (42) into equation (44) gives the following
relation:

𝛿�̄�p =
𝜕�̄�n+1

𝜕𝝈n+1
∶ L̄ ∶ 𝛿𝜺

𝜕�̄�n+1

𝜕𝝈n+1
∶ L̄ ∶ 𝜕�̄�n+1

𝜕𝝈n+1
+ 𝜕𝜎n+1Y

𝜕�̄�n+1p

(45)

Inserting equation (45) into equation (42) yields:

𝛿𝝈 = L̄ep ∶ 𝛿𝜺 (46)

where:

L̄ep =
⎛⎜⎜⎜⎝L̄−

L̄ ∶ 𝜕�̄�n+1

𝜕𝝈n+1
⊗ L̄ ∶ 𝜕�̄�n+1

𝜕𝝈n+1

𝜕�̄�n+1

𝜕𝝈n+1
∶ L̄ ∶ 𝜕�̄�n+1

𝜕𝝈n+1
+ 𝜕𝜎n+1Y

𝜕�̄�n+1p

⎞⎟⎟⎟⎠ (47)

is the algorithmic tangent modulus. Note that we need to obtain the first
and second order yield function gradients to calculate the algorithmic
tangent modulus.

The idea of giving details on the formulation of the constitutive
models in Section 2, and on the integration algorithms in Sections 3
and 4, stems from our goal of providing a self-contained manuscript,
that it is easy to follow and fully reproducible.

5. Numerical approximations for the stress derivatives

This section presents a numerical approximation of the first and sec-
ond derivatives of the effective stress with respect to the components
of the stress tensor. This is a simple alternative to the analytical deriva-
tives, which are given in Appendix A, that reduces the computational
time without impairing the accuracy of the finite element calculations
(see Section 7). As mentioned before, these derivatives are required for
the integration of the constitutive equations, namely, for the calculation
of the effective plastic strain increment in the convex cutting-plane and
the implicit backward-Euler algorithms, equations (30) and (38), and
for the calculation of the algorithmic tangent modulus, see equation
(47).

5.1. First derivative approximation

The interpolation polynomial of Lagrange, for a set of k + 1 data
points (x0, h(x0)), …,

(
xj, h(xj)

)
, …,(xk, h(xk)), where no two xj are the

same, is:

h(x) ≈
k∑
j=0

h(xj)Lj(x) (48)

where

Lj(x) =
k∏

m=0,m≠j
x − xm
xj − xm

= x − x0
xj − x0

…
x − xj−1
xj − xj−1

x − xj+1
xj − xj+1

… x − xk
xj − xk

(49)

For a set of 3 equally-spaced data points
(x0, h(x0)) , (x1, h(x1)) , (x2, h(x2)) which fulfill the conditions
x0 = x1 − a and x2 = x1 + a, the derivative of equation
(48) leads to:

𝜕h(x)
𝜕x

||||x1 ≈ h(x2) − h(x0)
2a

(50)

Particularization of previous expression for the derivative of the
effective stress with respect to the stress components leads to:

𝜕�̄�

𝜕𝜎ij
≈

�̄�(𝜎ij +Δ𝜎ij) − �̄�(𝜎ij −Δ𝜎ij)
2Δ𝜎ij

(51)

Notice that previous expression is equivalent to the central differ-
ence scheme used by Choi and Yoon [1]; see Appendix B, and different
from the forward difference scheme reported in Appendix A.2 of Ban-
abic et al. [47]; Appendix C of Barlat et al. [2] and Aretz [41].

5.2. Second derivatives approximation

The first three terms of the Taylor series expansion for approximat-
ing h(x1 + a) and h(x1 − a) about x1 are:

h(x)||x1+a ≈ h(x)||x1 + 𝜕h(x)
𝜕x

||||x1a+ 1
2
𝜕2h(x)
𝜕x𝜕x

||||x1a2 (52)

and

h(x)||x1−a ≈ h(x)||x1 − 𝜕h(x)
𝜕x

||||x1a+ 1
2
𝜕2h(x)
𝜕x𝜕x

||||x1a2 (53)

Adding equations (52) and (53) we obtain:

𝜕2h(x)
𝜕x𝜕x

||||x1 ≈ h(x1 − a) − 2h(x1) + h(x1 + a)
a2

(54)

Particularization of previous expression for the second derivative of
�̄� with respect to the stress components when ij = kl leads to:

𝜕2�̄�

𝜕𝜎ij𝜕𝜎ij
≈

�̄�(𝜎ij −Δ𝜎ij) − 2�̄� + �̄�(𝜎ij +Δ𝜎ij)
Δ𝜎2ij

(55)

Notice that previous expression is the same used by Choi and Yoon
[1]; see Appendix B.

Moreover, the first three terms of the Taylor series expansion for
approximating h(x1 + a, y1 + a) and h(x1 − a, y1 − a) about (x1, y1)
are:

h(x, y)||(x1+a,y1+a) ≈h(x, y)||(x1,y1) + 𝜕h(x, y)
𝜕x

||||(x1 ,y1)a + 𝜕h(x, y)
𝜕y

||||(x1,y1)a
+ 1
2
𝜕h2(x, y)
𝜕x𝜕x

|||||(x1,y1)a2 + 𝜕h2(x, y)
𝜕x𝜕y

|||||(x1,y1)a2
+ 1
2
𝜕h2(x, y)
𝜕y𝜕y

|||||(x1,y1)a2
(56)

and

h(x, y)||(x1−a,y1−a) ≈h(x, y)||(x1,y1) − 𝜕h(x, y)
𝜕x

||||(x1 ,y1)a − 𝜕h(x, y)
𝜕y

||||(x1,y1)a
+ 1
2
𝜕h2(x, y)
𝜕x𝜕x

|||||(x1,y1)a2 + 𝜕h2(x, y)
𝜕x𝜕y

|||||(x1,y1)a2
+ 1
2
𝜕h2(x, y)
𝜕y𝜕y

|||||(x1,y1)a2
(57)

Adding equations (56) and (57) leads to:

𝜕h2(x, y)
𝜕x𝜕y

|||||(x1 ,y1) ≈ h(x1 − a, y1 − a) − 2h(x1, y1) + h(x1 + a, y1 + h)
2a2

− 1
2
𝜕h2(x, y)
𝜕x𝜕x

|||||(x1 ,y1) − 1
2
𝜕h2(x, y)
𝜕y𝜕y

|||||(x1,y1) (58)

7
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Particularizing previous expression for the second derivative of �̄�
with respect to the stress components when ij ≠ kl leads to:
𝜕2�̄�

𝜕𝜎ij𝜕𝜎kl
≈

�̄�(𝜎ij −Δ𝜎ij, 𝜎kl −Δ𝜎kl) − 2�̄� + �̄�(𝜎ij +Δ𝜎ij, 𝜎kl +Δ𝜎kl)
2Δ𝜎ijΔ𝜎kl

− 1
2

𝜕2�̄�

𝜕𝜎ij𝜕𝜎ij
− 1
2

𝜕2�̄�

𝜕𝜎kl𝜕𝜎kl
(59)

where Δ𝜎 ij = Δ𝜎kl. Notice that previous expression is different from
the formulation used by Choi and Yoon [1]; see Appendix B, and thus an
original contribution of this paper. All the calculations shown in Section
7 are performed with Δ𝜎ij = Δ𝜎kl = 0.01 MPa. Nevertheless, we also
carried out simulations with Δ𝜎ij = Δ𝜎kl = 0.001 and 0.0001 MPa
and the differences in the numerical results (stress and strain fields in
the specimen) were negligible. Moreover, we have checked that the rel-
ative error of the numerical derivatives with respect to their analytical
counterparts, for the three stress steps Δ𝜎ij = Δ𝜎kl = 0.1, 0.01 and
0.001 MPa, is less than 10−8 for all the calculations performed in this
work, thus having negligible influence in the finite element results (see
Section 7.1).

Notice that the simple form of equations (51), (55) and (59), in com-
parison with the analytical derivatives shown in Appendix A, greatly
facilitates the implementation of the constitutive models in finite ele-
ment codes. It was also pointed out by Barlat et al. [2] that the sin-
gularities of the analytical derivatives shown in Appendix A.4 can be
avoided by using numerical approximation of the yield function gra-
dients. As it will be shown in Section 7, using the numerical approxi-
mation of the second derivative leads to a significant decrease of the
computational time in simulations performed with UMAT subroutines
in ABAQUS/Standard implicit calculations. In addition, the computa-
tional cost of the numerical approximations proposed in this paper is
smaller than that of the numerical differentiation scheme used by Choi
and Yoon [1]; see Section 7.2. The comparison performed in Section 7
between the computational efficiency of the numerical differentiation
schemed used in this paper and the approach of Choi and Yoon [1] is
a novel aspect of this manuscript. In this regard, note that Choi and
Yoon[1] only performed small scale simulations: single element calcu-
lations to evaluate the accuracy of the numerical derivatives, and deep
drawing simulations where the blank is modeled with a single layer of
shell elements to check the number of ears predicted by the various con-
stitutive models investigated. The larger scale calculations presented in
Section 7, with finite element models including tens of thousands of
elements, are an original contribution of this paper.

6. Finite element models

This section presents the finite element models developed in
ABAQUS [48] to carry out cylindrical cup deep drawing test calcu-
lations (Section 6.1) and simulations of dynamic necking localization
under plane strain tension (Section 6.2) with AA 2090-T3 specimens
modeled with the three yield criteria presented in Section 2.

6.1. Cup deep drawing

Fig. 1 shows a schematic representation of the cylindrical cup deep
drawing process. The specific tools and blank dimensions are given in
Table 5.

Taking advantage of the problem symmetry and the orthotropy of
the material, only a quarter section of the cup is analyzed. The loading
condition is a prescribed constant velocity imposed to the punch of
0.4 m∕s. Similarly to Aretz and Barlat [4]; a blank-holder force of 5.5 kN
for the quarter model (corresponding to approximately one percent of
the initial yield stress of the material in the rolling direction) has been
applied during the simulations. The friction is modeled with Coulomb’s
law, with a friction coefficient equal to 0.1 for all contact surfaces [37].

Fig. 1. Tools and blank geometries for cylindrical cup deep drawing. This figure
is adapted from Yoon et al. [39,46].

Punch, holder and die are modeled as rigid solids. Moreover, the
blank has been meshed with tri-linear solid elements with 8-nodes
(C3D8 in ABAQUS notation). We have used 5 different meshes (mesh
1, …,mesh 5) in which the number of elements trough the thickness
increases from 1 to 5. The number of elements in each mesh is: 5915,
11830, 17745, 23660 and 29575. The goal is to illustrate the compu-
tational time saving obtained with the numerical approximation of the
stress derivatives as the number of elements of the model increases.
The mesh design of the blank with 5 elements through the thickness is
shown in Fig. 2.

To the authors’ knowledge, there are just few relevant papers using
several solid elements through the thickness of the blank to simulate
deep drawing of circular cups [49]. Deep drawing calculations are usu-
ally performed with a single solid element through the thickness of the
specimen, notably when advanced constitutive models are used (see
Yoon et al. [37]; Vladimirov et al. [50]; Shutov et al. [51], often with
the aim of limiting the computational time. Shell type elements have
also been used in several works [1,4,39,52]. As mentioned before, the
cylindrical cup deep drawing test calculations performed in this paper
with finite element models that include tens of thousands of elements,
are an original contribution of this work.

6.2. Plane strain tension

This section presents the 2D finite element model used to simu-
late dynamic necking localization under plane strain tension. Material
points are referred to using a Cartesian coordinate system with posi-
tions in the reference configuration denoted as (X,Y). The specimen is
under plane strain constraint in the out-of-plane direction. The origin of
coordinates is located in the center of mass of the specimen, see Fig. 3.
We use the same finite element model as N’souglo et al. [42] who, fol-
lowing the earlier work of Xue et al. [53]; modeled a plate subjected
to plane strain tension, and with geometric periodic perturbations, as
an array of unit cells with sinusoidal spatial imperfections given by the
following expression:

h = h0 − 𝛿
[
1+ cos

(2𝜋X
L0

)]
(60)

where h is the perturbed thickness of the unit cell and 𝛿 is the ampli-
tude of the imperfection. Moreover, L0 and h0 are the initial length and
the unperturbed thickness of the unit cell, respectively (see Fig. 3). Due
to the symmetry of the problem, only a quarter of the unit cell is ana-
lyzed, see Fig. 3. For all the calculations presented in Section 7.2, the
rolling direction is aligned with the X axis. Finite element simulations
will be conducted for several normalized cell lengths varying within the
range 0.5 < L0

h0 ≤ 6, with Δ = 2𝛿
h0 = 0.2% and h0 = 2 mm. Hereinafter,

8
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Table 5
Tools and blank dimensions for the cup deep drawing test. Data after Yoon et al. [37].

Dp (mm) Dd (mm) Db (mm) rp (mm) rd (mm) e (mm) t (mm)

97.46 101.48 158.76 12.7 12.7 2.7 1.6

Fig. 2. Blank mesh used in the finite element simulations. Five elements through the thickness of the sheet. Total number of elements: 29575.

Fig. 3. Finite element model. Mesh and boundary conditions. A large imperfection amplitude has been shown in the figure for better illustration of the geometric
perturbation. This figure is taken from N’souglo et al. [42]. The specimen is under plane strain constraint in the out-of-plane direction.

the normalized cell length will be also referred to as cell size. Note that
the spatial imperfection is imposed on lines X = constant which is the
orientation naturally selected by the material to trigger a neck under
plane strain tension when the orthotropy and the loading are codirec-
tional. The initial and boundary conditions used in the finite element
model are:

Vx (X,Y,0) = �̇�0xxX

Vy (X,Y,0) = −�̇�0xxY
(61)

and

Ux (0,Y, t) = 0, Uy (X,0, t) = 0

Vx
(
L0∕2,Y, t

)
= �̇�0xxL

0∕2
(62)

where �̇�0xx is the initial strain rate imposed on the loading direction.
The finite element model is meshed with four-node bilinear plane

strain elements with reduced integration and hourglass control (CPE4R
in ABAQUS notation), with initial dimensions ≈ 25 × 25 𝜇m2.

7. Sample results

In this section, we present sample finite elements results for
deep drawing (Section 7.1) and dynamic necking localization under
plane strain tension (Section 7.2). We have performed implicit and
explicit finite element simulations using UMAT and VUMAT subrou-
tines, respectively, with the analytical derivatives of Appendix A, the
numerical approximations of Section 5, and the numerical differen-
tiation scheme developed by Choi and Yoon [1]; which is shown in
Appendix B. Note that we provide access to the UMAT and VUMAT
codes developed in this paper. Recall that the convex cutting-plane

9
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Table 6
CPU time for cup deep drawing finite element simulations performed with the three yield criteria presented in Section 2. The results
obtained with the analytical derivatives of Appendix A (denoted with -A) and the numerical approximations of Section 5 (denoted with
–N) are compared. The simulations have been performed using a dynamic implicit analysis in ABAQUS/Standard and UMAT
subroutines for the yield functions implementation.

CPU time (units in kiloseconds)

Yld2004-18p-A Yld2004-18p-N CPB06ex2-A CPB06ex2-N Yld2011-27p-A Yld2011-27p-N

1 Element 128.752 60.520 107.991 61.940 132.977 62.957
2 Elements 211.607 80.443 184.322 87.444 229.964 90.574
3 Elements 319.536 109.008 265.738 118.439 327.210 120.531
4 Elements 411.566 132.924 355.614 159.813 435.562 154.776
5 Elements 544.324 174.803 448.508 205.446 567.211 199.222

Fig. 4. Comparison between finite element simulations (FEM) and experimental results. Cup height u as a function of the angle with respect to the rolling direction 𝜃.
The experimental data are taken from Yoon et al. [37]. The finite elements results are obtained with the analytical derivatives of Appendix A (denoted with -A) and
the numerical approximations of Section 5 (denoted with –N). The calculations are performed with 1 element trough the thickness of the sheet. (a) Yld2004-18p-A
and Yld2004-18p-N. (b) CPB06ex2-A and CPB06ex2-N. (c) Yld2011-27p-A and Yld2011-27p-N. The simulations have been performed using a dynamic implicit
analysis in ABAQUS/Standard and UMAT subroutines for the yield functions implementation.

algorithm used to code the VUMAT involves only the first derivative of
the yield function gradients, which takes the same form in the numer-
ical differentiation scheme developed in Section 5 and in the formu-
lation proposed by Choi and Yoon [1]; see Appendix B. All the calcu-
lations have been performed with a personal computer using a single
CPU with the following features: Intel(R) Core(TM) i7 − 8550U CPU
@1.80 GHz1.99GHZ.

7.1. Cup deep drawing

This section presents the results corresponding to the cup deep draw-

ing finite element calculations. The simulations have been performed
using a dynamic implicit analysis in ABAQUS/Standard and UMAT sub-
routines for the yield functions implementation. The calculations are
terminated when the displacement of the punch reaches 60 mm, so
that we make sure that the deep drawing operation has been com-
pleted (additional punch displacement does not lead to further speci-
men deformation, see Figs. 6 and 7). Table 6 shows the CPU times cor-
responding to the simulations performed with the three yield criteria,
using five different meshes for the blank in which the number of ele-
ments trough the thickness varies from 1 to 5 (see Section 6.1). The CPU
times obtained with the analytical derivatives of Appendix A (denoted

10
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Fig. 5. Comparison between finite element simulations (FEM) and experimental results. Cup height u as a function of the angle with respect to the rolling direction
𝜃. The experimental data are taken from Yoon et al. [37]. The finite elements results are obtained with the numerical approximations of Section 5 (denoted with
–N). The calculations are performed with 1 element and 5 elements through the thickness of the sheet. (a) Yld2004-18p-N. (b) CPB06ex2-N. (c) Yld2011-27p-N. The
simulations have been performed using a dynamic implicit analysis in ABAQUS/Standard and UMAT subroutines for the yield functions implementation.

with -A) and the numerical approximations of Section 5 (denoted with
–N) are compared. Using the numerical approximations leads to a sig-
nificant decrease of the computational time for the three yield cri-
teria, and this decrease is greater as the number of elements in the
mesh increases. This is an original result of this paper. Namely, for
the Yld2004-18p criterion, the CPU times obtained using the numerical
approximations of the yield function gradients are ≈ 47% and ≈ 32%
of those obtained using the analytical derivatives for the meshes with 1
and 5 elements trough the thickness, respectively. For the CPB06ex2
model these percentages are ≈ 57% and ≈ 46% (i.e. smaller com-
putational time decrease than in the case of Yld2004-18p criterion),
and for the Yld2011-27p model they are ≈ 47% and ≈ 35%, respec-
tively. It becomes apparent that the decrease of the computational
time using the numerical approximations enables to perform larger
scale ABAQUS/Standard calculations. For instance, the CPU time for
Yld2004-18p-N with 5 elements through the thickness is only 1.35 times
the CPU time corresponding to Yld2004-18p-A with 1 element trough
the thickness.

A key point is that, despite the significant reduction in computa-
tional time, the results are practically the same using the analytical
derivatives and the numerical approximations of the yield functions
gradients. Fig. 4 shows finite element results for the cup height u as
a function of the angle with respect to the rolling direction 𝜃. The
cup height is measured when the displacement of the punch reaches
60 mm (when the simulation is terminated). The calculations are per-
formed with 1 element trough the thickness. The finite elements results
correspond to: (a) Yld2004-18p-A and Yld2004-18p-N, (b) CPB06ex2-

A and CPB06ex2-N and (c) Yld2011-27p-A and Yld2011-27p-N (same
notation used in Table 6). The u − 𝜃 curves obtained with the analyti-
cal derivatives and the numerical approximations are virtually on top
of each other (we have checked that this agreement occurs for the 5
meshes investigated). Moreover, note that we also compare the finite
element results with the experimental data reported by Yoon et al.
[37] for AA 2090-T3. The qualitative agreement between the predic-
tions of the three yield criteria and the experiments is satisfactory (note
that Yoon et al. [37] already compared these experiments with the pre-
dictions of the Yld2004-18p-A criterion), with a maximum of the cup
height for an intermediate value of 𝜃, and minima near the rolling and
transverse directions, with the cup height being greater for 𝜃 = 0◦ than
for 𝜃 = 90◦. However, the three models show quantitative differences
with the experiments, especially in the prediction of the cup height for
𝜃 = 0◦, and in the maximum value of u for 𝜃 ≈ 50◦. According to
Yoon et al. [37]; the discrepancies between the numerical predictions
and the experiments could be partially attributed to the fact that the
center of the blank was not aligned properly with the centers of the die
and the punch during the drawing test.

Fig. 5 shows the comparison of the cup height results obtained with
the numerical approximation of the yield function gradients of Section 5
for the meshes with 1 and 5 elements trough the thickness of the sheet,
for the three yield criteria: (a) Yld2004-18p-N, (b) CPB06ex2-N and (c)
Yld2011-27p-N. Note that the results with 1 element trough the thick-
ness were already presented in Fig. 4. The increase in the number of ele-
ments shifts upwards the u − 𝜃 curves, such that the cup height, for any
angle 𝜃, is ≈ 1 mm greater when 5 elements trough the thickness are
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Fig. 6. Finite element simulations. Cup deep drawing calculations. Contours of effective plastic strain �̄�p corresponding to calculations performed with Yld2004-18p
yield criterion. Comparison between results obtained with the analytical derivatives of Appendix A (denoted with -A) and the numerical approximations of Section
5 (denoted with –N). Calculations performed with 1 and 5 elements trough the thickness. (a) Yld2004-18p-A and 1 element trough the thickness. (b) Yld2004-18p-N
and 1 element trough the thickness. (c) Yld2004-18p-A and 5 elements trough the thickness. (d) Yld2004-18p-N and 5 elements trough the thickness. The simulations
have been performed using a dynamic implicit analysis in ABAQUS/Standard and UMAT subroutines for the yield function implementation.

used, leading to slightly better quantitative agreement with the experi-
ments of Yoon et al. [37]. Moreover, increasing the number of elements
generally helps to describe plastic localization phenomena, reducing the
pathological mesh sensitivity obtained with rate-independent materials
in problems where inertia forces are not relevant [54]. The contours
of effective plastic strain presented in Fig. 6 for the Yld2004-18p cri-
terion show a comparison between the results obtained with the ana-
lytical derivatives and the numerical approximation of the yield func-
tion gradients proposed in Section 5, for simulations performed with
1 and 5 elements trough the thickness. The contours are taken when
the displacement of the punch reaches 60 mm (when the simulations
are terminated). All the isocontours have the same color coding, so that
effective plastic strains ranging from 0 to 0.7 correlate with a colour
scale that goes from blue to red. Effective plastic strains greater than
0.7 remain red, so that the red zones in the cups correspond to areas
with highly localized plastic deformation and important thinning of the
thickness of the cup. These red zones, which are located between the 8
ears that develop in the cups (which are numbered in Fig. 6(a)) have
greater extension for the calculations performed with 5 elements trough
the thickness of the specimen, illustrating the influence of the mesh in
simulating plastic localization processes (when rate-independent mate-
rials are used). As stated by Yoon et al. [37]; the Yld2004-18p criterion,
unlike many other phenomenological yield functions, shows the capa-
bility of predicting more than four ears in cup drawing. Moreover, note
that the contours of plastic strain for the calculations performed with
the analytical derivatives and the numerical approximation of the yield
function gradients proposed in Section 5 are virtually identical (com-
pare Fig. 6(a) and (c) with Fig. 6(b) and (d), respectively). In future

works, it is recommended to include strain rate and temperature effects
in the evolution of the yield stress of the material, in order to develop a
more comprehensive analysis on the material aspects that control plas-
tic localization in deep drawing operations.

Fig. 7 shows contours of effective plastic strain �̄�p corresponding
to calculations performed with 5 elements trough the thickness of the
sheet for CPB06ex2 and Yld2011-27p criteria. The color coding is the
same used in Fig. 6. The results obtained with the analytical derivatives
of Appendix A and the numerical approximation of the yield function
gradients of Section 5 are compared: (a) CPB06ex2-A, (b) CPB06ex2-
N, (c) Yld2011-27p-A and (d) Yld2011-27p-N. As for the Yld2004-18p
criterion, the procedure used to calculate the stress derivatives has no
influence on the plastic strain contours (compare Fig. 7(a) and (c) with
Fig. 7(b) and (d), respectively). Eight ears are formed in the four calcu-
lations shown in Fig. 7, being the height of numbers 2, 4, 6 and 8 greater
than the height of the other four. On the other hand, the yield criterion
plays a role in the localization zones between the ears of the cup, which
have slightly greater extension in the case of CPB06ex2 model (compare
Fig. 7(a) and (b) with Fig. 7(c) and (d), respectively). Nevertheless, the
distribution of plastic strains in the specimen is similar for both yield
criteria.

7.2. Plane strain tension

This section presents the results corresponding to the dynamic plane
strain tension calculations. We have performed simulations with both
UMAT and VUMAT subroutines, using the numerical approximation of
the yield function gradients of Section 5 and the numerical differen-
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Fig. 7. Finite element simulations. Cup deep drawing calculations. Contours of effective plastic strain �̄�p corresponding to calculations performed with 5 elements
trough the thickness. Comparison between results obtained with the analytical derivatives of Appendix A (denoted with -A) and the numerical approximations of
Section 5 (denoted with –N). (a) CPB06ex2-A. (b) CPB06ex2-N. (c) Yld2011-27p-A. (d) Yld2011-27p-N. The simulations have been performed using a dynamic
implicit analysis in ABAQUS/Standard and UMAT subroutines for the yield functions implementation.

tiation scheme developed by Choi and Yoon [1]; which is shown in
Appendix B. While we do not show the results for the sake of brevity, we
have checked that the explicit calculations with the analytical expres-
sions of the yield function gradients are not computationally more
expensive, which brings out that the numerical approximation of the
yield function gradients is computationally advantageous only if the
second order yield function gradients are involved in the integration
scheme (i.e. for the UMAT, as shown in Section 7.1). The calculations
are carried out for two imposed initial strain rates �̇�0xx = 100 s−1 and
10000 s−1 (see Section 6.2). This range of strain rates is usually attained
in high energy rate forming processes, such as electromagnetic and elec-
trohydraulic forming, in which the formation of dynamic necks imposes
limitations to the material formability [55,56].

Fig. 8 shows the evolution of the necking strain �̄�neck with the cell
size L0∕h0, for dynamic implicit and explicit simulations performed for
�̇�0xx = 100 s−1 with the numerical approximation of the yield function
gradients and the three yield criteria. The implicit calculations are per-
formed with the numerical approximation of the stress derivatives of
Section 5 and the numerical differentiation scheme developed by Choi
and Yoon [1]; see Appendix B. Recall that explicit calculations only
require the first derivative of the yield function gradients, which is the
same in the scheme developed in Section 5 and in the formulation pro-
posed by Choi and Yoon [1]. The necking strain corresponds to the
effective plastic strain measured in the finite element located at the
upper right corner of the thickest section of the cell (see the yellow
marker in Fig. 3) when the effective plastic strain rate equals 10−3 s−1
in that specific element (similar procedure was applied in Rodríguez-
Martínez et al. [57] and N’souglo et al.[42,58]). This condition indi-
cates that plastic strain has been localized in the center of the specimen

and the ends of the cell are unloaded. The necking strain decreases non-
linearly with the cell size, displaying a concave-upwards shape, with a
large slope for small values of L0∕h0, which is gradually reduced with
the increase of the cell length. The large values of the necking strain
for short cells are due to the stabilizing effects of stress multiaxiality,
which delay necking formation [42,57,58]. The results obtained for the
three yield criteria are very similar, qualitatively and quantitatively,
with slightly larger necking strains for the CPB06ex2 model. However,
these differences are hardly noticeable unless the �̄�neck − L0∕h0 curves
are plotted in the same graph. Still, we do not choose such represen-
tation of results because it would make the comparison between the
UMAT and VUMAT results less clear. Notice that the results presented
in Fig. 8 bring out that the necking strains predicted by the implicit and
the explicit calculations are virtually the same. The key outcome is that
the implicit analyses performed with the UMAT, using both the numer-
ical differentiation scheme developed in this paper and the formulation
of Choi and Yoon [1]; are significantly cheaper in terms of computa-
tional cost, see Table 7 (the CPU time is taken approximately when the
necking condition is met). The maximum computational saving corre-
sponds to L0∕h0 = 0.5, for which the CPU time of the implicit calcula-
tions is ≈ 50 times less, and the minimum computational saving corre-
sponds to the longest cell length considered L0∕h0 = 6, for which the
implicit calculation is completed in a CPU time which is ≈ 30 times less.
Moreover, note that the CPU time for the calculations with the UMAT
increases with L0∕h0 due to the increase of the number of elements with
the cell size. In contrast, for the explicit calculations, the computational
time decreases, reaches a minimum for an intermediate cell size, and
then increases. In this case, the CPU time seems to be a balance between
the increase of the number of elements with L0∕h0, and the decrease
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Fig. 8. Finite element results. Evolution of the necking strain �̄�neck with the cell length L0∕h0. Comparison between dynamic implicit and explicit simulations
performed with UMAT and VUMAT subroutines, respectively. The imposed initial strain rate is �̇�0xx = 100 s−1. The results are obtained with the numerical approx-
imation of the yield function gradients of Section 5 and the numerical differentiation scheme proposed by Choi and Yoon [1]; which is shown in Appendix B. The
calculations are performed with three yield criteria: (a) Yld2004-18p-N, (b) CPB06ex2-N and (c) Yld2011-27p-N.

Table 7
CPU time for plane strain finite element simulations performed with the three yield criteria presented in Section 2. The CPU time is taken
approximately when the necking condition is met. The imposed initial strain rate is �̇�0xx = 100 s−1. Comparison between dynamic implicit and
explicit simulations performed with UMAT and VUMAT subroutines, respectively. The results are obtained with the numerical approximation of the
yield function gradients of Section 5 and the numerical differentiation scheme proposed by Choi and Yoon [1]; which is shown in Appendix B.

CPU time (units in kiloseconds)

Cell length Yld2004-18p CPB06ex2 Yld2011-27p

UMAT UMAT - Choi
and Yoon [1]

VUMAT UMAT UMAT - Choi
and Yoon [1]

VUMAT UMAT UMAT - Choi
and Yoon [1]

VUMAT

0.5 0.186 0.252 52.877 0.251 0.216 54.118 0.265 0.273 61.560
1 0.260 0.368 23.880 0.288 0.346 24.600 0.321 0.479 28.500
2 0.409 0.525 19.500 0.400 0.522 20.820 0.519 0.728 26.580
3 0.581 0.762 22.440 0.568 0.763 23.760 0.728 0.994 31.020
4 0.753 0.991 26.700 0.757 0.977 28.980 0.918 1.233 36.600
5 0.940 1.254 32.580 0.945 1.213 35.160 1.143 1.529 39.660
6 1.107 1.445 37.980 1.093 1.392 37.800 1.657 1.796 52.260

of the simulation/necking time with the increase of the cell size (due
to the decrease of the necking strain). The small computational time
of these simulations with UMAT will allow to perform efficient large
scale calculations of dynamic formability problems (and other local-
ization related problems), within a range of strain rates < 1000 s−1
which is less studied in the literature, partly due to the elevated com-

putational cost of performing explicit analyses for intermediate strain
rates (e.g. in our previous works, Zaera et al. [59]; N’souglo et al. [42]
and Rodríguez-Martínez et al. [57]; the minimum loading rate studied
is 500 s−1, 4000 s−1 and 5000 s−1, respectively). This research is left
as future work. In addition, notice that for the implicit calculations the
computational time obtained with the numerical differentiation scheme

14



N. Hosseini and J.A. Rodríguez-Martínez Finite Elements in Analysis and Design 192 (2021) 103538

Fig. 9. Finite element results. Evolution of the necking strain �̄�neck with the cell length L0∕h0. Comparison between dynamic implicit and explicit simulations
performed with UMAT and VUMAT subroutines, respectively. The imposed initial strain rate is �̇�0xx = 10000 s−1. The results are obtained with the numerical
approximation of the yield function gradients of Section 5 and the numerical differentiation scheme proposed by Choi and Yoon [1]; which is shown in Appendix B.
The calculations are performed with three yield criteria: (a) Yld2004-18p-N, (b) CPB06ex2-N and (c) Yld2011-27p-N.

developed in this paper is generally between 5% and 25% lower than
in the case of the formulation of Choi and Yoon [1]. This is an orig-
inal result of this paper which brings out the effect that the specific
form of the numerical approximation used for the second derivatives
of the yield function gradients has on the computational cost of these
simulations.

Fig. 9 shows the evolution of the necking strain �̄�neck with the cell
length L0∕h0, for greater strain rate �̇�0xx = 10000 s−1. Unlike in the case
of 100 s−1, the value of �̄�neck reaches a minimum for an intermediate
value of the cell size ≈ 3, and increases for large values of L0∕h0 due
to the influence of inertia, which is more important as the strain rate
increases [57,60,61]. The necking strains calculated with the implicit
and explicit analyses are very similar, as in the case of the results for
the lower strain rate presented in Fig. 8. In contrast, unlike for 100 s−1,
the CPU time is greater for the implicit calculations performed with
the UMAT, see Table 8. For L0∕h0 = 0.5, using the VUMAT leads
to a computational saving which depends on the constitutive model
and ranges between 5% and 20% with respect to the implicit calcula-
tions performed with the numerical differentiation scheme of Section
5, and for L0∕h0 = 6 the computational saving increases up to 250%
for the Yld2011-27p yield criterion. These results bring out that there is
a critical loading rate from which implicit analyses are comparatively
less efficient than the explicit calculations. The key point is that, in
comparison with the simulations performed for 100 s−1, the CPU time

decreases two orders of magnitude for the explicit calculations, whereas
it increases for the implicit computations, using both the numerical dif-
ferentiation scheme developed in this paper and the formulation of Choi
and Yoon [1]; for most of the cell lengths investigated (it is multiplied
by 2 for the greater values of L0∕h0). Moreover, the computational cost
of both implicit and explicit calculations increases with the increase of
the cell size. Notice that this was not the case for the explicit calcula-
tions for the lower strain rate 100 s−1, for which the CPU time was min-
imum for an intermediate value of L0∕h0. The difference is the increase
of the necking strain for long wavelengths for 10000 s−1, which is added
to the fact that the number of elements increases with L0∕h0, resulting
in a longer CPU time as the cell size increases. Note also that for the
implicit calculations, the computational time obtained with the numer-
ical differentiation scheme developed in this paper is between 15% and
40% lower than that obtained with the formulation of Choi and Yoon
[1]. This comparative analysis is an original contribution of this paper.

8. Concluding remarks

In this paper we have implemented in ABAQUS three advanced
yield criteria using both analytical derivatives and numerical approx-
imations of the yield functions gradients. Specifically, we have devel-
oped UMAT and VUMAT subroutines for the Yld2004-18p, CPB06ex2
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Table 8
CPU time for plane strain finite element simulations performed with the three yield criteria presented in Section 2. The CPU time is taken
approximately when the necking condition is met. The imposed initial strain rate is �̇�0xx = 10000 s−1. Comparison between dynamic implicit and
explicit simulations performed with UMAT and VUMAT subroutines, respectively. The results are obtained with the numerical approximation of the
yield function gradients of Section 5 (denoted with –N) and the numerical differentiation scheme proposed by Choi and Yoon [1]; which is shown in
Appendix B.

CPU time (units in kiloseconds)

Cell length Yld2004-18p-N CPB06ex2-N Yld2011-27p-N

UMAT UMAT - Choi
and Yoon [1]

VUMAT UMAT UMAT - Choi
and Yoon [1]

VUMAT UMAT UMAT - Choi
and Yoon [1]

VUMAT

0.5 0.223 0.444 0.196 0.224 0.266 0.210 0.277 0.344 0.227
1 0.411 0.755 0.228 0.412 0.492 0.237 0.502 0.650 0.259
2 0.752 0.983 0.272 0.755 0.912 0.294 0.916 1.533 0.339
3 1.126 1.336 0.370 1.110 1.353 0.391 1.351 1.853 0.475
4 1.509 1.890 0.551 1.582 1.817 0.560 1.826 2.368 0.653
5 1.934 2.436 0.701 1.977 2.327 0.743 2.304 2.928 0.884
6 2.322 3.556 0.996 2.310 5.379 1.017 2.839 3.576 1.150

and Yld2011-27p models, with material parameters values correspond-
ing to aluminium alloy 2090-T3. We have shown that using the numer-
ical approximation of the yield functions gradients greatly simplifies
the implementation of the constitutive models, which is a particu-
larly laborious task for the yield criteria considered in this paper, if
the analytical expressions of the stress derivatives are used. More-
over, we have performed cylindrical cup deep drawing test simulations
and calculations of dynamic necking localization under plane strain
tension using implicit and explicit analyses in ABAQUS/Standard and
ABAQUS/Explicit, respectively. The finite element results have shown
that, while the explicit analyses performed with the VUMAT are virtu-
ally insensitive to the procedure used for the calculation of the yield
function gradients, the implicit analyses with the UMAT, which involve
the computation of second order yield function gradients, greatly ben-
efit from using the numerical approximation for the stress derivatives,
leading to a decrease in the computational time up to 70% for some
of the deep drawing calculations performed. In addition, the dynamic
necking simulations have brought out that there is a critical value of
loading rate below/above which the implicit/explicit analysis is compu-
tationally more efficient. For the lower strain rate investigated 100 s−1,
the implicit analyses are between 30 and 50 times computationally
cheaper than the explicit simulations. In contrast, for the greater strain
rate investigated 10000 s−1, the implicit calculations are up to 2.5 times

more expensive. Note also that the implicit dynamic necking calcu-
lations have been performed with both the numerical differentiation
scheme developed in this paper and the formulation proposed by Choi
and Yoon [1]; the latter being between 5% and 45% computationally
more expensive for the finite element simulations carried out in this
work.
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Appendix A. Analytical expressions for the stress derivatives

This Appendix shows the analytical expressions for the first and second derivatives of the effective stress with respect to the components of the
stress tensor for the three constitutive models presented in Section 2.

Appendix A.1. Yld2004-18p yield criterion

The first derivative of the effective stress with respect to the components of the stress tensor is:

𝜕�̄�

𝜕𝜎ij
= 𝜕�̄�

𝜕𝜙Yld04

𝜕𝜙Yld04
𝜕𝜎ij

(A.1)

with:

𝜕𝜙Yld04
𝜕𝜎ij

=
3∑
a=1

3∑
b=1

6∑
c=1

𝜕𝜙Yld04

𝜕S̃′a

𝜕S̃′a
𝜕H′

b

𝜕H′
b

𝜕s̃′c

𝜕s̃′c
𝜕𝜎ij

+ 𝜕𝜙Yld04

𝜕S̃″a

𝜕S̃″a
𝜕H″

b

𝜕H″
b

𝜕s̃″c

𝜕s̃″c
𝜕𝜎ij

(A.2)

where S̃′a, H
′
b and s̃

′
c are the principal values, the invariants and the independent components, respectively, of the tensor s

′ (see equation (6)).
Similarly, S̃″a , H

″
b and s̃

″
c denote the same quantities for the tensor s

″.
The second derivative is:

𝜕2�̄�

𝜕𝜎ij𝜕𝜎kl
= 𝜕2�̄�

𝜕𝜙Yld04𝜕𝜙Yld04

𝜕𝜙Yld04
𝜕𝜎ij

𝜕𝜙Yld04
𝜕𝜎kl

+ 𝜕�̄�

𝜕𝜙Yld04

𝜕2𝜙Yld04
𝜕𝜎ij𝜕𝜎kl

(A.3)

with:

𝜕2𝜙Yld04
𝜕𝜎ij𝜕𝜎kl

=
3∑
a=1

3∑
b=1

3∑
c=1

3∑
d=1

6∑
e=1

6∑
f=1

𝜕2𝜙Yld04

𝜕S̃′a𝜕S̃′b(
𝜕S̃′a
𝜕H′

c

𝜕H′
c

𝜕s̃′e

𝜕s̃′e
𝜕𝜎ij

)(
𝜕S̃′b
𝜕H′

d

𝜕H′
d

𝜕s̃′f

𝜕s̃′f
𝜕𝜎kl

)

+ 𝜕2𝜙Yld04

𝜕S̃″a𝜕S̃″b

(
𝜕S̃″a
𝜕H″

c

𝜕H″
c

𝜕s̃″e

𝜕s̃″e
𝜕𝜎ij

)(
𝜕S̃″b
𝜕H″

d

𝜕H″
d

𝜕s̃″f

𝜕s̃″f
𝜕𝜎kl

)

+ 𝜕2𝜙Yld04

𝜕S̃′a𝜕S̃″b

(
𝜕S̃′a
𝜕H′

c

𝜕H′
c

𝜕s̃′e

𝜕s̃′e
𝜕𝜎ij

)(
𝜕S̃″b
𝜕H″

d

𝜕H″
d

𝜕s̃″f

𝜕s̃″f
𝜕𝜎kl

)

+ 𝜕2𝜙Yld04

𝜕S̃″a𝜕S̃′b

(
𝜕S̃″a
𝜕H″

c

𝜕H″
c

𝜕s̃″e

𝜕s̃″e
𝜕𝜎ij

)(
𝜕S̃′b
𝜕H′

d

𝜕H′
d

𝜕s̃′f

𝜕s̃′f
𝜕𝜎kl

)

+
3∑
a=1

3∑
b=1

3∑
c=1

6∑
d=1

6∑
e=1

𝜕𝜙Yld04

𝜕S̃′a

𝜕2S̃′a
𝜕H′

b𝜕H
′
c(

𝜕H′
b

𝜕s̃′d

𝜕s̃′d
𝜕𝜎ij

)(
𝜕H′

c
𝜕s̃′e

𝜕s̃′e
𝜕𝜎kl

)

+ 𝜕𝜙Yld04

𝜕S̃″a

𝜕2S̃″a
𝜕H″

b 𝜕H
″
c

(
𝜕H″

b
𝜕s̃″d

𝜕s̃″d
𝜕𝜎ij

)(
𝜕H″

c
𝜕s̃″e

𝜕s̃″e
𝜕𝜎kl

)

+
3∑
a=1

3∑
b=1

6∑
c=1

6∑
d=1

𝜕𝜙Yld04

𝜕S̃′a

𝜕S̃′a
𝜕H′

b

𝜕2H′
b

𝜕s̃′c𝜕s̃′d

(
𝜕s̃′c
𝜕𝜎ij

)(
𝜕s̃′d
𝜕𝜎kl

)

+ 𝜕𝜙Yld04

𝜕S̃″a

𝜕S̃″a
𝜕H″

b

𝜕2H″
b

𝜕s̃″c 𝜕s̃″d

(
𝜕s̃″c
𝜕𝜎ij

)(
𝜕s̃″d
𝜕𝜎kl

)

+
3∑
a=1

3∑
b=1

6∑
c=1

𝜕𝜙Yld04

𝜕S̃′a

𝜕S̃′a
𝜕H′

b

𝜕H′
b

𝜕s̃′c

𝜕2 s̃′c
𝜕𝜎ij𝜕𝜎kl

+ 𝜕𝜙Yld04

𝜕S̃″a

𝜕S̃″a
𝜕H″

b

𝜕H″
b

𝜕s̃″c

𝜕2 s̃″c
𝜕𝜎ij𝜕𝜎kl

(A.4)
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Appendix A.2. CPB06ex2 yield criterion

The first derivative of the effective stress with respect to the components of the stress tensor is:

𝜕�̄�

𝜕𝜎ij
= 𝜕�̄�

𝜕𝜙CPB06

𝜕𝜙CPB06
𝜕𝜎ij

(A.5)

where:

𝜕𝜙CPB06
𝜕𝜎ij

=
3∑
a=1

3∑
b=1

6∑
c=1

𝜕𝜙CPB06

𝜕S̃′a

𝜕S̃′a
𝜕H′

b

𝜕H′
b

𝜕s̃′c

𝜕s̃′c
𝜕𝜎ij

+ 𝜕𝜙CPB06

𝜕S̃″a

𝜕S̃″a
𝜕H″

b

𝜕H″
b

𝜕s̃″c

𝜕s̃″c
𝜕𝜎ij

(A.6)

and the second derivative is:

𝜕2�̄�

𝜕𝜎ij𝜕𝜎kl
= 𝜕2�̄�

𝜕𝜙CPB06𝜕𝜙CPB06

𝜕𝜙CPB06
𝜕𝜎ij

𝜕𝜙CPB06
𝜕𝜎kl

+ 𝜕�̄�

𝜕𝜙CPB06

𝜕2𝜙CPB06
𝜕𝜎ij𝜕𝜎kl

(A.7)

with:

𝜕2𝜙CPB06
𝜕𝜎ij𝜕𝜎kl

=
3∑
a=1

3∑
b=1

3∑
c=1

3∑
d=1

6∑
e=1

6∑
f=1

𝜕2𝜙CPB06

𝜕S̃′a𝜕S̃′b(
𝜕S̃′a
𝜕H′

c

𝜕H′
c

𝜕s̃′e

𝜕s̃′e
𝜕𝜎ij

)(
𝜕S̃′b
𝜕H′

d

𝜕H′
d

𝜕s̃′f

𝜕s̃′f
𝜕𝜎kl

)

+ 𝜕2𝜙CPB06

𝜕S̃″a 𝜕S̃″b

(
𝜕S̃″a
𝜕H″

c

𝜕H″
c

𝜕s̃″e

𝜕s̃″e
𝜕𝜎ij

)(
𝜕S̃″b
𝜕H″

d

𝜕H″
d

𝜕s̃″f

𝜕s̃″f
𝜕𝜎kl

)

+
3∑
a=1

3∑
b=1

3∑
c=1

6∑
d=1

6∑
e=1

𝜕𝜙CPB06

𝜕S̃′a

𝜕2S̃′a
𝜕H′

b𝜕H
′
c(

𝜕H′
b

𝜕s̃′d

𝜕s̃′d
𝜕𝜎ij

)(
𝜕H′

c
𝜕s̃′e

𝜕s̃′e
𝜕𝜎kl

)

+ 𝜕𝜙CPB06

𝜕S̃″a

𝜕2S̃″a
𝜕H″

b 𝜕H
″
c

(
𝜕H″

b
𝜕s̃″d

𝜕s̃″d
𝜕𝜎ij

)(
𝜕H″

c
𝜕s̃″e

𝜕s̃″e
𝜕𝜎kl

)

+
3∑
a=1

3∑
b=1

6∑
c=1

6∑
d=1

𝜕𝜙CPB06

𝜕S̃′a

𝜕S̃′a
𝜕H′

b

𝜕2H′
b

𝜕s̃′c𝜕s̃′d

(
𝜕s̃′c
𝜕𝜎ij

)(
𝜕s̃′d
𝜕𝜎kl

)

+ 𝜕𝜙CPB06

𝜕S̃″a

𝜕S̃″a
𝜕H″

b

𝜕2H″
b

𝜕s̃″c 𝜕s̃″d

(
𝜕s̃″c
𝜕𝜎ij

)(
𝜕s̃″d
𝜕𝜎kl

)

+
3∑
a=1

3∑
b=1

6∑
c=1

𝜕𝜙CPB06

𝜕S̃′a

𝜕S̃′a
𝜕H′

b

𝜕H′
b

𝜕s̃′c

𝜕2 s̃′c
𝜕𝜎ij𝜕𝜎kl

+ 𝜕𝜙CPB06

𝜕S̃″a

𝜕S̃″a
𝜕H″

b

𝜕H″
b

𝜕s̃″c

𝜕2 s̃″c
𝜕𝜎ij𝜕𝜎kl

(A.8)

Appendix A.3. Yld2011-27p yield criterion

The first derivative of the effective stress is:
𝜕�̄�

𝜕𝜎ij
= 𝜕�̄�

𝜕𝜙Yld11

𝜕𝜙Yld11
𝜕𝜎ij

(A.9)

with:

𝜕𝜙Yld11
𝜕𝜎ij

=
3∑
a=1

3∑
b=1

6∑
c=1

𝜕𝜙Yld11

𝜕S̃′a

𝜕S̃′a
𝜕H′

b

𝜕H′
b

𝜕s̃′c

𝜕s̃′c
𝜕𝜎ij

+ 𝜕𝜙Yld11

𝜕S̃″a

𝜕S̃″a
𝜕H″

b

𝜕H″
b

𝜕s̃″c

𝜕s̃″c
𝜕𝜎ij

+ 𝜕𝜙Yld11

𝜕S̃‴a

𝜕S̃‴a
𝜕H‴

b

𝜕H‴
b

𝜕s̃‴c

𝜕s̃‴c
𝜕𝜎ij

(A.10)

18



N. Hosseini and J.A. Rodríguez-Martínez Finite Elements in Analysis and Design 192 (2021) 103538

The second derivative reads:

𝜕2�̄�

𝜕𝜎ij𝜕𝜎kl
= 𝜕2�̄�

𝜕𝜙Yld11𝜕𝜙Yld11

𝜕𝜙Yld11
𝜕𝜎ij

𝜕𝜙Yld11
𝜕𝜎kl

+ 𝜕�̄�

𝜕𝜙Yld11

𝜕2𝜙Yld11
𝜕𝜎ij𝜕𝜎kl

(A.11)

with

𝜕2𝜙Yld11
𝜕𝜎ij𝜕𝜎kl

=
3∑
a=1

3∑
b=1

3∑
c=1

3∑
d=1

6∑
e=1

6∑
f=1

𝜕2𝜙Yld11

𝜕S̃′a𝜕S̃′b(
𝜕S̃′a
𝜕H′

c

𝜕H′
c

𝜕s̃′e

𝜕s̃′e
𝜕𝜎ij

)(
𝜕S̃′b
𝜕H′

d

𝜕H′
d

𝜕s̃′f

𝜕s̃′f
𝜕𝜎kl

)

+ 𝜕2𝜙Yld11

𝜕S̃″a𝜕S̃″b

(
𝜕S̃″a
𝜕H″

c

𝜕H″
c

𝜕s̃″e

𝜕s̃″e
𝜕𝜎ij

)(
𝜕S̃″b
𝜕H″

d

𝜕H″
d

𝜕s̃″f

𝜕s̃″f
𝜕𝜎kl

)

+ 𝜕2𝜙Yld11

𝜕S̃‴a 𝜕S̃‴b

(
𝜕S̃‴a
𝜕H‴

c

𝜕H‴
c

𝜕s̃‴e

𝜕s̃‴e
𝜕𝜎ij

)(
𝜕S̃‴b
𝜕H‴

d

𝜕H‴
d

𝜕s̃‴f

𝜕s̃‴f
𝜕𝜎kl

)

+ 𝜕2𝜙Yld11

𝜕S̃′a𝜕S̃″b

(
𝜕S̃′a
𝜕H′

c

𝜕H′
c

𝜕s̃′e

𝜕s̃′e
𝜕𝜎ij

)(
𝜕S̃″b
𝜕H″

d

𝜕H″
d

𝜕s̃″f

𝜕s̃″f
𝜕𝜎kl

)

+ 𝜕2𝜙Yld11

𝜕S̃″a𝜕S̃′b

(
𝜕S̃″a
𝜕H″

c

𝜕H″
c

𝜕s̃″e

𝜕s̃″e
𝜕𝜎ij

)(
𝜕S̃′b
𝜕H′

d

𝜕H′
d

𝜕s̃′f

𝜕s̃′f
𝜕𝜎kl

)

+
3∑
a=1

3∑
b=1

3∑
c=1

6∑
d=1

6∑
e=1

𝜕𝜙Yld11

𝜕S̃′a

𝜕2S̃′a
𝜕H′

b𝜕H
′
c(

𝜕H′
b

𝜕s̃′d

𝜕s̃′d
𝜕𝜎ij

)(
𝜕H′

c
𝜕s̃′e

𝜕s̃′e
𝜕𝜎kl

)

+ 𝜕𝜙Yld11

𝜕S̃″a

𝜕2S̃″a
𝜕H″

b 𝜕H
″
c

(
𝜕H″

b
𝜕s̃″d

𝜕s̃″d
𝜕𝜎ij

)(
𝜕H″

c
𝜕s̃″e

𝜕s̃″e
𝜕𝜎kl

)

+ 𝜕𝜙Yld11

𝜕S̃‴a

𝜕2S̃‴a
𝜕H‴

b 𝜕H
‴
c

(
𝜕H‴

b
𝜕s̃‴d

𝜕s̃‴d
𝜕𝜎ij

)(
𝜕H‴

c
𝜕s̃‴e

𝜕s̃‴e
𝜕𝜎kl

)

+
3∑
a=1

3∑
b=1

6∑
c=1

6∑
d=1

𝜕𝜙Yld11

𝜕S̃′a

𝜕S̃′a
𝜕H′

b

𝜕2H′
b

𝜕s̃′c𝜕s̃′d

(
𝜕s̃′c
𝜕𝜎ij

)(
𝜕s̃′d
𝜕𝜎kl

)

+ 𝜕𝜙Yld11

𝜕S̃″a

𝜕S̃″a
𝜕H″

b

𝜕2H″
b

𝜕s̃″c 𝜕s̃″d

(
𝜕s̃″c
𝜕𝜎ij

)(
𝜕s̃″d
𝜕𝜎kl

)

+ 𝜕𝜙Yld11

𝜕S̃‴a

𝜕S̃‴a
𝜕H‴

b

𝜕2H‴
b

𝜕s̃‴c 𝜕s̃‴d

(
𝜕s̃‴c
𝜕𝜎ij

)(
𝜕s̃‴d
𝜕𝜎kl

)

+
3∑
a=1

3∑
b=1

6∑
c=1

𝜕𝜙Yld11

𝜕S̃′a

𝜕S̃′a
𝜕H′

b

𝜕H′
b

𝜕s̃′c

𝜕2 s̃′c
𝜕𝜎ij𝜕𝜎kl

+ 𝜕𝜙Yld11

𝜕S̃″a

𝜕S̃″a
𝜕H″

b

𝜕H″
b

𝜕s̃″c

𝜕2 s̃″c
𝜕𝜎ij𝜕𝜎kl

+ 𝜕𝜙Yld11

𝜕S̃‴a

𝜕S̃‴a
𝜕H‴

b

𝜕H‴
b

𝜕s̃‴c

𝜕2 s̃‴c
𝜕𝜎ij𝜕𝜎kl

(A.12)
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Appendix A.4. Singular cases

The derivatives 𝜕S̃′a∕𝜕H′
b, with a = 1,2,3 and b = 1,2,3, are:

𝜕S̃′a
𝜕H′

1
=

(S̃′a)2

(S̃′a)2 − 2H′
1S̃

′
a − H′

2

(A.13a)

𝜕S̃′a
𝜕H′

2
=

S̃′a
(S̃′a)2 − 2H′

1S̃
′
a − H′

2

(A.13b)

𝜕S̃′a
𝜕H′

3
= 2
3
(
(S̃′a)2 − 2H′

1S̃
′
a − H′

2

) (A.13c)

which are not defined when:

(S̃′a)
2 − 2H′

1S̃
′
a − H

′
2 = 0 (A.14)

which leads to:

S̃′a = H′
1 ±

√
(H′

1)2 +H
′
2 (A.15)

The comparison of previous expression with equation (8) shows that if 𝜃 = 0 the derivatives 𝜕S̃′2∕𝜕H
′
b and 𝜕S̃′3∕𝜕H

′
b are not defined; and if

𝜃 = 𝜋 the derivatives which are not defined are 𝜕S̃′1∕𝜕H
′
b and 𝜕S̃

′
2∕𝜕H

′
b (see Barlat et al. [2]). This problem can be circumvented by direct calculation

of the derivatives ∂𝜑∕∂H′
b, which requires to express 𝜑 as a function of H′

b. Nevertheless, such procedure introduces additional complications to
the calculation of the effective stress derivatives shown in Appendix A.1, Appendix A.2 and Appendix A.3. Obviously, the same singular cases are
encountered in the derivatives 𝜕S̃″a∕𝜕H″

b and 𝜕S̃‴a ∕𝜕H‴
b .

Appendix B. Numerical approximations for the stress derivatives proposed by Choi and Yoon [1]

This Appendix shows the numerical approximation of the first and second derivatives of the effective stress with respect to the components
of the stress tensor proposed by Choi and Yoon [1] to implement in ABAQUS/Standard various anisotropic constitutive models with distortional
hardening under associated and non-associated flow rules. Note that the difference with respect to the numerical differentiation scheme developed
in this paper resides in equation (B.3), which in the case of Choi and Yoon [1]; who took the expression from Aretz [41]; involves the calculation
of additional terms, increasing the computational time.

Appendix B.1. First derivative approximation

𝜕�̄�

𝜕𝜎ij
≈

�̄�(𝜎ij +Δ𝜎ij) − �̄�(𝜎ij −Δ𝜎ij)
2Δ𝜎ij

(B.1)

Appendix B.2. Second derivatives approximation

𝜕2�̄�

𝜕𝜎ij𝜕𝜎ij
≈

�̄�(𝜎ij −Δ𝜎ij) − 2�̄� + �̄�(𝜎ij +Δ𝜎ij)
Δ𝜎2ij

(B.2)

𝜕2�̄�

𝜕𝜎ij𝜕𝜎kl
≈

�̄�(𝜎ij −Δ𝜎ij, 𝜎kl −Δ𝜎kl) − �̄�(𝜎ij −Δ𝜎ij, 𝜎kl +Δ𝜎kl) − �̄�(𝜎ij +Δ𝜎ij, 𝜎kl −Δ𝜎kl) + �̄�(𝜎ij +Δ𝜎ij, 𝜎kl +Δ𝜎kl)
4Δ𝜎ijΔ𝜎kl

(B.3)

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.finel.2021.103538.
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