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and Maŕıa, cannot be missed. They have always known how to support and motivate
me (and often bear with me) in any of my endeavors, from my first steps, literally.

Thank you all from the heart.

iv



Agradecimientos

En primer lugar, quiero agradecer a mis hijos (Juan, Luna y Aurora) todo el apoyo
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Abstract

The proportional integral derivative feedback control is currently the most widely
used system at industrial level, not just for simple systems, but also for highly com-
plex ones, or even for new research developments. The main reason behind their
widespread use is their simple implementation and the large number of available de-
sign tools. Only when it is strictly required, more advanced techniques such as robust,
adaptive, predictive, or intelligent control are applied. In one way or another, all these
advanced control systems have a common task: to achieve satisfactory results in the
control of a system where classical techniques fail.

One difficult problem to solve from a classical control point of view is uncertainty.
The classic methods approach is based on some specifications and a model of the
system to be controlled. This model, although it is considered to have some modeling
error, is assumed to be invariable and correct. In other words, it is assumed to be
certain. However, the reality is very different. At best, we can say that the system is
invariant to some degree, and that the error is small enough. This lack of information
about the system is known in the literature as uncertainty.

One of the existing solutions to this problem comes from robust control, whose
strategy is to design systems that are unaffected by plant variations, meaning that
even with an inaccurate model, or with changing parameters, usually gain, the system
response remains almost constant. Some examples of robust control are H-infinity
control, sliding mode control or quantitative feedback theory. All these methods are
complicated in both implementation and design, and therefore, are usually applied
only when classical control fails.

Halfway between the complexity of these methods and the simplicity of classical
control is the fractional order control, based on the application of non-integer calculus
to classical control methods. The great advantage of fractional order control compared
to the previous methods consists in its close similarity to the classic control techniques,
allowing many tools to be adapted from the classic control. Another great advantage
compared to classic control is their great versatility, providing robust designs for a
wide range of different plants.

Naturally, fractional control also has its drawbacks. Firstly, the implementation
of fractional order operators is more difficult than the integer ones, leading to a

xi



significant research effort, still growing, to find straightforward and reliable imple-
mentations. Secondly, the tuning of fractional order controllers involves the solution
of non-linear equations, which normally requires high computational effort and added
complexity.

The problem of fractional controller tuning is addressed in this thesis in a novel
way, seeking always simplicity in the calculations. The approach derives from a basic
concept, followed by a mathematical analysis that provides simple but meaningful
operations to calculate the parameters of the controller. Thanks to this approach,
the solution can be found avoiding the use of numerical methods, while providing
extensive information on the tuning process. The result is the formulation of a new
tuning method that is swift and straightforward and avoids the limitations of the
currently available methods.

The excellent results obtained are coincident with other more complex solutions,
but avoiding the use of numerical methods at all times. The precision and simplicity
of the tuning method also allows an adaptive approach when a system identification
algorithm is provided. Available alternatives in the field of fractional adaptive control
are currently based on implicit adaptive techniques. The low computational cost of
the new tuning method also makes explicit adaptive control possible, resulting in a
robust control with an optimal operating point at all times.

This solution, novel in the field of adaptive fractional control, allows a more com-
plete solution to the uncertainty problems, since it combines the robustness of frac-
tional order control with the flexibility of adaptive control. On the one hand, the
robust controller prevents fast plant parameter changes to affect the system’s per-
formance, as long as they are close to the operating point. On the other hand, the
adaptive algorithm changes the operating point in case of a major variation in plant
parameters. The key to this combination is that the fractional controller provides the
time needed for adaptation, which is usually on the order of seconds, while maintain-
ing the robustness of the system’s behavior.

In addition, since the computational cost of the proposed methods is very low,
their implementation on low-cost embedded platforms offers an amazing opportunity
for the development and standardization of advanced control techniques. This in
turn would allow the improvement of many current systems without the need of large
equipment investment and the application of robust adaptive control to a much larger
number of systems than those covered in the current landscape.

The excellent results offered by both robust and adaptive fractional control meth-
ods are widely evidenced in the experimental part of this thesis through their appli-
cation to several plants, including robotic joints, soft robotic links and autonomous
vehicles.
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Resumen

El control proporcional integral derivativo con realimentación es en la actualidad el
sistema más usado a nivel industrial, no solo en sistemas sencillos, sino también en sis-
temas de gran complejidad, incluso en nuevos desarrollos de investigación. Este tipo
de control es muy usado debido sobre todo a su sencilla implementación y al gran
número de herramientas de diseño disponibles. Solo en caso de ser estrictamente
necesario, se aplican técnicas mas avanzadas como el control robusto, adaptativo,
predictivo, o inteligente. De una u otra forma, todos estos sistemas de control avan-
zado tienen una tarea en común: conseguir resultados satisfactorios en el control de
un sistema cuando fallan las técnicas clásicas.

Uno de los problemas con dif́ıcil solución desde un punto de vista clásico de control
es el de la incertidumbre. El enfoque de los métodos clásicos es el del diseño en base
a una serie de especificaciones y un modelo del sistema a controlar. Este modelo,
aunque se considera que puede tener cierto error de modelado, se supone invariable
y perfecto. Dicho de otro modo, se supone como cierto. Sin embargo, la realidad es
muy distinta. En el mejor de los casos, podemos afirmar que el sistema es invariable
hasta cierto punto, y que el error es suficientemente pequeño. Toda esta falta de
información sobre el sistema se conoce en la literatura como incertidumbre.

Una de las soluciones existentes a dicho problema es el control robusto, cuya
solución pasa por diseñar sistemas imperturbables por las variaciones de la planta,
de forma que, a pesar de que el modelo sea impreciso, o que los parámetros, normal-
mente la ganancia, cambien, la respuesta del sistema permanezca lo más invariable
posible. Algunos ejemplos de control robusto son H-infinity control, sliding mode con-
trol o quantitative feedback theory. Todos estos métodos son más complicados tanto
en la implementación como en el diseño, y por lo tanto, se aplican por lo general
exclusivamente cuando el control clásico falla.

A medio camino entre la complejidad de estos métodos y la simplicidad del control
clásico se encuentra el control de orden fraccionario, basado en la aplicación del
cálculo no entero a las técnicas de control clásico. La gran ventaja del control de
orden fraccionario frente a las técnicas anteriores radica en su gran parecido con las
técnicas clásicas de control, lo que permite que muchas de las herramientas disponibles
se puedan adaptar desde el control clásico. La otra gran ventaja en comparación con
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el control clásico es su gran versatilidad, lo que permite realizar diseños robustos para
muy diversos tipos de planta.

Por supuesto, el control fraccionario también tiene sus desventajas. En primer
lugar, la implementación de los operadores de orden fraccionario es más complicada
que los de orden entero, lo que ha originado un gran esfuerzo de investigación, aún en
auge, para encontrar implementaciones sencillas y fiables. Por otro lado, el ajuste de
los controladores de orden fraccionario implica la solución de ecuaciones no lineales,
lo que requiere normalmente de técnicas con un esfuerzo computacional elevado y una
complejidad añadida.

En esta tesis se trata el problema del ajuste del controlador fraccionario desde
una forma novedosa, buscando en todo momento la simplicidad en los cálculos. La
propuesta parte de un concepto sencillo, seguido de un desarrollo matemático que
resuelve el cálculo de los parámetros del controlador mediante operaciones simples
pero significativas. Gracias a este enfoque, la solución se plantea evitando el uso de
métodos numéricos, a la vez que se ofrece abundante información sobre el proceso de
ajuste. Esto permite el desarrollo de un nuevo método de ajuste rápido y sencillo que
evita las desventajas de los métodos actualmente disponibles.

Los resultados obtenidos son excelentes, coincidiendo en su solución con otros más
complejos, pero evitando en todo momento el uso de métodos numéricos. La precisión
y sencillez del método de ajuste permite además su aplicación en sistemas adaptativos
en caso de disponer de un algoritmo de identificación de sistemas. Actualmente,
las propuestas disponibles en el campo del control adaptativo fraccionario se basan
en técnicas adaptativas impĺıcitas. Dado el coste computacional mı́nimo del nuevo
método de ajuste, el control adaptativo expĺıcito también es posible, permitiendo el
control robusto en un punto óptimo de operación en todo momento.

Esta solución, de novedosa aplicación en el campo del control fraccionario adap-
tativo, permite una solución más completa a los problemas de incertidumbre, ya que
une la robustez del control de orden fraccionario con la flexibilidad del control adap-
tativo. Por un lado, el controlador robusto permite que las variaciones rápidas en los
parámetros de la planta no afecten al comportamiento del sistema, siempre que estén
cerca del punto de operación. Por otra parte, el algoritmo de adaptación cambia el
punto de operación en caso de una variación mayor en los parámetros de la planta.
La clave de esta combinación está en que el controlador fraccionario proporciona el
tiempo necesario para la adaptación, que suele ser del orden de segundos, mientras
que mantiene la robustez en el comportamiento del sistema.

Además, dado que el coste computacional de los métodos propuestos es muy re-
ducido, su implementación en plataformas embebidas y de bajo coste ofrece una
incréıble oportunidad de desarrollo y estandarización de las técnicas avanzadas de
control. Esto permitiŕıa la mejora de muchos sistemas actuales sin la necesidad de
una gran inversión en equipos y la aplicación del control adaptativo robusto a un
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número de sistemas mucho más amplio de los que se abordan en el panorama actual.
Los excelentes resultados que ofrecen ambos métodos de control fraccionario ro-

busto y adaptativo están ampliamente demostrados en la parte experimental de esta
tesis mediante su aplicación en varias plantas, entre las que se encuentran articula-
ciones robóticas, eslabones robóticos blandos y veh́ıculos autónomos.
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Chapter 1

Introduction

Control engineering has dealt with uncertainty since its inception. In fact, something
so fundamental such as the concept of negative feedback, emerged as a solution to an
uncertainty problem.

During the development of the first telephone lines, electronic amplification devices
had a strong non-linear behavior. That was not a problem for the telegraph lines,
that use constant signals, because it can be solved with a simple gain adjustment.
But voice signals traveling through the newly developed phone lines, were fluctuating
and uncertain, resulting in wave distortion due to non-linear amplification. Harold
Stephen Black then proposed applying negative feedback to electronic amplifiers to
improve the tracking of the input reference. As a result, the amplifier output is linear
to the input, and therefore it is possible to boost the signal with much less distortion.

Previous works had already discussed the feedback topic, but Harold Black was
the first to propose negative feedback as a control method in [11], and therefore is
considered a pioneer in the field. To some point, the foundations of control engineering
were built by Black, and later by Harry Nyquist and Hendrik Wade Bode, during those
years in the Bell Telephone Laboratories.

In this case, the use of negative feedback made possible to address the problem
of uncertainty in the input and disturbance signals. This method is still today the
main solution to input uncertainty, but this is only one of the uncertainties existing
in a control system. The other two uncertainty problems found in control engineering
are modeling uncertainties and noise. The scope of this thesis falls into the second
problem: model uncertainty.

Most control strategies are based on the analysis of a system model, but the
concepts of uncertainty and modeling are closely linked, like those of measurement
and error. Absolutely all models are subject to uncertainty, showing a different degree
depending on the system, from small uncertainties, such as an almost ideal simple
pendulum model, to large uncertainties, as is the case of weather evolution. This
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modeling uncertainty can also be divided into two other groups. Systems that have
a known structure but unknown parameters are usually classified under parametric
uncertainty, to differentiate from the systems with unmodeled dynamics, usually due
to non-linear behaviors.

Problem severity due to uncertainty is also different depending on the system
considered, for example, weather forecasts work with large uncertainties, but the
consequences of a prediction error are slight. However, a small modeling uncertainty
in one of the systems in a nuclear power plant can have catastrophic results. Most
control systems are halfway between these ends, therefore, some uncertainties may
be neglected depending on the application, although they are always problematic.

For example, common uncertainty problems found in robotics and automation
range from accuracy errors to system instability. All of them are undesirable, but the
second group is much more dangerous than the first. Although stability errors are
not catastrophic, they can lead to a good deal of damage, to the system itself and to
the environment, including people in the area.

Therefore, many control approaches evolved to cope with uncertainty. As an
example, without the aim of providing a complete list, the following control strategies
pursue the solution of these problems:

� Feedback: Input uncertainties and disturbances.

� Stochastic: Signal uncertainties or noise.

� Robust: Model uncertainties and non-linearity.

� Adaptive: Time varying and non-linear systems.

Robust and adaptive techniques address the uncertainty of system parameters
from different perspectives. Robust control consists of making the system insensitive
to parameter variations using a constant controller while adaptive control addresses
the variability of system parameter by changing the controller parameters in order to
achieve a uniform final performance.

This thesis contribution is based on these two strategies, robust and adaptive
control, from a fractional calculus perspective, which deals with the generalization of
classical calculus by using non-integer (fractional) orders.

While in integer calculus the operators are integral or derivative, using the ex-
ponent to specify how many times the operator is applied, in fractional calculus the
same exponents and operators are used, but the exponent is allowed to have any
real number value. Therefore, concepts such as second order derivative (d2/dx2) are
allowed, but one and a half order derivative (d1.5/dx1.5) is also possible.

This exponent generalization do not have still a known definite physical meaning,
such as, for instance, the integer derivative, but this is not a problem as long as the
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mathematics remains coherent. In fact, the integer derivative is also no more than a
concept, commonly used for real world modeling because it is consistent with reality,
but still a concept.

Although this idea may look strange at first, there are many operators that have
been generalized in mathematics, producing valuable results. For instance, consider
the ubiquitous power function.

Multiplication leads to power function as the notation of a repeated product:

b · b · n... · b = bn = x; b, x ∈ R, n ∈ Z.

Letting the exponent to be a fraction, we find the concept of root, where b can be
found as b = x

1
n , because:

bn = b · b · n... · b = x
1
n · x

1
n · n... · x

1
n = x; x ∈ R, n ∈ Z.

Similarly, repeated use of a fractional derivative operator (D
1
n ) results in:

D
1
nD

1
n n...D

1
nf(t) = Df(t) =

d

dt
f(t); n ∈ Z, (1.1)

showing the concept of fractional operator. Note that these operators can be grouped,
therefore, Eq. (1.1) can be written as:

Dα1Dα2 ...Dαmf(t) =
d

dt
f(t); αi ∈ Q, α1 + α2 + ...+ αm = 1 (1.2)

Since Dαm is a separate operator, it is also possible to apply just this fractional
operator to f(t):

Dαmf(t) = g(t); αm < 1, g(t) =
dαm

dt
f(t) (1.3)

and since αm < 1, and the composition of all the operators is df(t)/dt, the outcome
g(t) must fall somewhere between f(t) and df(t)/dt. Do not take the above example
as a demonstration, for a complete fractional order derivative definition see [12].

This particular class of operators are useful in control engineering, both in the
modeling of physical systems, as they improve the models based on ordinary differ-
ential equations (ODEs), and also in the design of robust controllers, improving their
performance compared to their integer counterparts.

Modeling using fractional differential equations (FDEs) has been successfully used
in the mathematical description of many processes such as heat transmission, flow
diffusion, abnormal relaxation, and other physical phenomena, including engineering
systems modeling. Detailed reference on general FDEs can be found at [13] or [14],
some modeling examples are shown in [12] or [15], and common plants used in control
engineering like DC motors are modeled using fractional derivatives in [16] or [17].
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Robust controller design using fractional operators is known in the literature as
fractional order control. The advantage of fractional controllers over integer con-
trollers lies in their superior versatility. Just as fractional modeling with FDEs can
describe behaviors that are impossible to model using ODEs, fractional controllers are
able to implement filters that can shape plant characteristics in a way that integers
cannot. Note that a controller can be seen as a filter applied to the error signal.

Hendrick Bode was the first describing a fractional order calculus application to
robust control, which later described in [18]. According to this paper, the fractional
transfer function modelGbi = (ωgc/s)

µ would be able to maintain overshoot character-
istics despite changes in the system gain. This feature is known today as iso-damping,
and the transfer function Gbi is generally called Bode’s ideal because of that.

The advantage of fractional order controllers applied to robust control will be
evidenced by their frequency response analysis in chapter 2. The tightness of integer
controllers, hampers robustness specifications in many cases, while their fractional
counterparts can meet any robustness specification as their frequency response is
much more varied and flexible.

Given their advantages, robust fractional controllers have been the subject of
intensive research over the past three decades, addressing the essential issues, although
there are still a lot of issues that need to be solved. There are many tools available
for integer controller tuning, but unfortunately they are not directly applicable to
fractional order control.

The problem of fractional controller tuning has been addressed many times from
the early works in [19] to the latest proposals like [20]. Due to the nonlinear nature
of the equations to be solved, a common problem in these proposals is the high
computational complexity and the lack of information on the tuning process.

Although recent works such as [21] and [22], or the follow-up [23] use a graphical
solution to avoid the computational complexity, the proposed plots do not offer infor-
mation about the process and the graph is tailored for the combination of a controller
and a plant, therefore, a new plot is needed for different plants. Moreover, an observer
must visually spot the curve intersection, which impairs the computerization of the
algorithm.

This thesis addresses that problem by using a graphical solution for the nonlinear
equations, but the graphs are designed to be meaningful about the controller parame-
ters, providing a great understanding of the tuning process. This provides a quick and
easy solution for the class of controllers defined with a fractional operator known as
fractional proportional derivative (FPD) and fractional proportional integral (FPI),
which can be used in robust control of any given system.

Also, the algorithm is straightforward and the graph can be tabulated, mean-
ing that the entire process can be easily computerized. This provides a direct and
unique tuning solution using very low complexity software capable of running on low
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cost/power boards and embedded hardware systems. This is a very interesting fea-
ture, useful in areas like robotics and automation, automotive industry, aerospace
and many others.

Furthermore, this leads to the second proposal of this thesis, which is an indirect
fractional order adaptive controller (FOAC). Many works address this issue through
a direct approach, generally with a fractional reference model, but an indirect ap-
proach is not available to date. Although both strategies show good results, there are
important differences in terms of implementation and applicability.

While direct strategies can sometimes result in simple equations that reduce com-
putational complexity, they are limited to systems that meet certain conditions, and
often adapt to them. For example, given that one of the implementation conditions
is stability of both the plant and its inverse (minimum phase systems), the range of
controllable plants that use this strategy is reduced, especially for discrete time sys-
tems. Also, performance must be specified using a reference model, therefore, even if
the model is feasible, the controller required to achieve these specifications may not
be.

Although different solutions have been proposed to overcome some of these lim-
itations, as discussed in [24] or [25], direct adaptive control cannot always be used.
Find a detailed description of direct adaptive methods in [26].

Unlike the direct approach, indirect (or explicit) adaptive methods use current
plant parameter estimates to determine controller parameters using a tuning method.
This allows for a wide variety of control laws and plant estimation combinations.
However, a previous system identification is always required.

Regarding parameter estimation, the general idea is based on an adjustable plant
model to compare predicted and actual output. That difference is used by a model
adaptation algorithm to minimize this error, so that a correct description of the plant
is achieved asymptotically for the current sequence of inputs and outputs. See [27]
for a summary of current parameter estimation methodologies.

Once the plant parameter estimation convergence is solved, which is indeed a
critical issue for indirect adaptation schemes, literally any tuning method based on a
plant model can be used. That leads to the second main contribution of this thesis,
a novel fractional adaptive control scheme based on the previously described tuning
method.

Given the high computational requirements of currently existing tuning methods,
all fractional adaptive strategies are direct, using fractional reference models, but
keeping integer order in adaptation algorithms and controllers. This thesis describes
and demonstrates how an indirect adaptive strategy can also be used in a fractional
order controller. The key is that all tuning operations can be carried out within
a sampling period thanks to the efficiency of the new proposed method. This is
considered one of the major contributions of this thesis.
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1.1 Background

The existing solutions to the problem of parametric uncertainty raised above are very
diverse, from the simplest proportional integral derivative (PID) controller, to the
latest control techniques, each with its pros and cons.

PID controllers are very simple and inexpensive, which is a great advantage when
it comes to implementation, but the results are not so impressive. Advanced con-
trollers can be very effective, but also difficult to implement, and often require special
equipment or advanced skills.

Midway between these two ends, other techniques are available, which are also
very efficient in solving the problems described. For example, the solution proposed
from the field of robust control is to make the final system resistant to changes in the
parameters through a controller designed to minimize the impact of those changes.

The two problems addressed here are uncertainty and variability of system pa-
rameters, generally known as parametric uncertainty. In classic control theory, these
parameters refer to coefficients of the transfer function, as in:

Y (s)

U(s)
= G(s) =

bnbs
nb + ..+ b1s

1 + b0
anasna + ..+ a1s1 + a0

, (1.4)

or the place of system poles and zeros in the s plane as follows:

Y (s)

U(s)
= G(s) = k

(s− o1)(s− o2)..(s− ono)

(s− p1)(s− p2)..(s− pnp)
. (1.5)

Note that differences in plant and model coefficients may be due to an incorrect
modeling or also to plant time variability.

On the contrary, non-parametric uncertainty refers to those behaviors that are
not considered in the model, but that exist in the actual system. This can happen
due to unmodeled dynamics, truncation of high frequency modes, or non-linearity.

Although robust controllers are known to cope with both types of uncertainties,
the objective of the robust controllers considered here is to provide robustness to
parameter variations due to modeling uncertainties or plant changes during system
operation. Non-parametric uncertainty will be addressed later in this work through
the use of adaptive strategies.

1.1.1 Parametric robustness

The robust control concept is based on achieving desired design performance despite
potential plant changes. Although the idea is very simple, a wide range of solutions
are possible, from a basic robust PID control as in [28] or [29] to more advanced
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works such as the sliding mode control shown in [30], or the methods described in
[31], based on applying non-integer calculus to PID controllers.

A commonly accepted consensus on robust control origins, place it in the feedback
stability analysis works by Harry Nyquist [32] and Hendrik Bode [18], where the ideas
of stability or gain and phase margins were introduced.

Based on these concepts, the most widely used robust control approach was de-
vised. Since feedback behavior depends on open loop system parameters such as
phase margin and crossover frequency (see [33] for details), a system that maintains
these values static should display a closed loop constant behavior despite parameter
variations. For example, the closed loop metrics that are directly dependent on it,
such as overshoot, will remain constant. This is generally known as iso-damping, and
is a generally desired feature of robust systems. For example, consider the following
Bode’s ideal transfer function:

G1 =
1

s1.5
, (1.6)

which has a constant phase margin at all frequencies. As shown on the left side of
Fig. 1.1, any variation in system gain will result in the same phase margin, resulting
in the constant overshoot on the right side of the figure.
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Figure 1.1: Open loop Bode diagram and feedback time response for Eq. (1.6) exam-
ple system showing constant overshoot despite gain variability (iso-damping).

Note that, due to different crossover frequencies, other metrics such as peak or
settling times actually change.

A fractional exponent in the Bode’s ideal transfer function is needed to allow the
phase margins to be different from 0 deg and 90 deg, which is why many authors
consider the works in [18] as the beginning of the development of the fractional order
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control field. Likewise, chapter 2 will show how fractional controllers bring significant
benefits to robust system design using this approach.

Although the usual physical systems considered in control engineering are far from
being robust in the sense described, a controller that keeps these values constant is
possible, which means that we can improve the robustness of the system by using
a convenient controller. This is the approach commonly followed in fractional order
control.

Many works like [34], [31], [35], or [36], to name a few, use flat phase specification
in open loop as a robustness constraint in robust controller design. Its formulation is
shown in the following equation:(︃

d(arg (C(jωgc)G(jωgc)))

dω

)︃
ω=ωgc

= 0. (1.7)

The flat phase specification in Eq. (1.7) will ensure that changes in plant gain
will not change the open loop phase around a frequency of interest. As described
before, thanks to the similar phases for different gains, the system response will show
a constant overshoot despite the gain variations.

1.1.2 Performance specifications

Apart from robustness, other specifications should be considered for controller tuning.
Since the robustness constraints are best described in the frequency domain, it is
common for the rest to be specified in the same way, and the same approach will be
used in this thesis.

As discussed above, the frequency domain design specifications are based on the
phase margin and crossover frequency features of the open loop frequency response.
These are related to closed loop features such as bandwidth frequency and resonant
peak height, which in turn are related to transient time response properties such as
overshoot and peak time. Table 1.1 shows a summary of the most common constraints
used in the frequency domain performance specification.

Physical Effect Closed loop Open loop
meaning defined specification specification

Damping ratio Overshoot Resonant peak dB Phase margin
Response speed Peak time Bandwidth Crossover frequency

Table 1.1: Equivalence between frequency specifications and time response.

These correspondences are often complex formulas (see [37]), therefore, a common
practice is to specify performance directly in terms of open loop variables which is
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easier, knowing the expected time response results. For example, the curves shown
in 1.2, obtained from [37], allow to find the phase margin from any desired damping
ratio, and approximate the bandwidth frequency (i.e., the time response speed) from
the open loop gain crossover frequency.
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Figure 1.2: Curves showing relationships between phase margin and damping ratio
(left) and between bandwidth frequency and crossover frequency (right). Source:
Norman S. Nise, Control Systems Engineering.

Therefore, in related works such as [29] and [38], the usual control specifications
are crossover frequency (ωgc) and phase margin (ϕm). As stated, the first is related
to the system responsiveness (peak time) and the second to stability (overshoot).
Equations (1.8) and (1.9) formulate these specifications, respectively:

|C(jωgc)G(jωgc)|dB = 0 dB, (1.8)

arg (C(jωgc)G(jωgc)) = −π + ϕm, (1.9)

where C(jωgc) is the controller frequency response at ωgc, G(jωgc) is the plant fre-
quency response at ωgc, and ϕm is the desired open loop phase margin for the con-
trolled system.

Once the gain crossover frequency ωgc and the phase margin ϕm are selected, a set
of three nonlinear equations with three unknowns must be solved to find the controller
parameters.

Since the standard design is based on the general second order model shown in
Eqs. (1.10) as follows:

G(s) =
ω2
n

s(s+ 2ξωn)
(1.10a)



10 Chapter 1. Introduction

F (s) =
ω2
n

s2 + 2ξωns+ ω2
n

, (1.10b)

only two parameters (ξ and ωn) can be defined.
Therefore, the usual performance specifications are based on the last two con-

strains defined in Eqs. 1.8 and 1.9. Considering more constraints would require more
adjusting parameters, and, since plant conditions are normally fixed, a controller with
sufficient setting parameters is required.

Considering three constraints, a robust design using reduced PID variants such
as PI or PD is not possible due to the reduced number of parameters, unless one
specification is dropped, or another parameter is introduced as in fractional control.
A controller having at least three adjusting parameters will be needed in order to
meet the three requirements discussed.

1.1.3 Robust control

The simplest first type of controller that we can use to meet robust constraints along
with performance specifications is the standard PID controller. Although their control
parameters are sufficient to achieve specifications defined in Eqs. (1.8), (1.9) and (1.7),
their integer nature with fixed asymptotes and slope, makes it difficult to meet these
three requirements at the same time.

It will be shown in chapter 2, that controller and plant slopes must be opposites
at the crossover frequency to fulfill Eqs. (1.9) and (1.7) at the same time, therefore,
the results are restricted to a series of conditions for the plant and specifications. For
example, chapter 2 shows how small plant slopes will force the controllers to have
phases close to −90, 0 or 90 deg. The possible specifications are then reduced to the
cases where the equation solution is possible, which is a reduced set of the possibilities
described in the previous section 1.1.2. Therefore, using a PID controller leaves some
performances out of scope due to controller limitations.

Despite these limitations, the simplicity of PID controllers implementation makes
them very attractive, and therefore several works attempt to get a robust performance
using them, but the result is always restricted to certain plant types, and often require
specific conditions or limited specifications.

For example, in [28] a Bode’s ideal transfer function is used as the performance
specification model, and then a minimization method is used to obtain the parameters
that best approximate the step response of the model. Works like [39] and [40] deal
with the robustness problem also by optimizing a PID controller, with similar results
in different plant types.

In [29], the relay method is used to obtain the plant parameters, and then a set
of rules derived from Eqs. 1.9, 1.7, and a particular constraint, are used to find
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the PID parameters that make the system robust. The drawback of this method is
that crossover frequency can not be specified, which restricts the number of useful
specifications.

Among the tuned controllers in [1], a PID is considered for comparison, and is
tuned by the numerical solution of Eqs. 1.8, 1.9 and 1.7. The result, in addition
to losing a parameter by producing a zero solution for the derivative gain, is only
possible by relaxing the constraint in Eq. (1.7), resulting in a system whose phase is
not completely flat.

All the aforementioned works must restrict the controlled plants or the specifi-
cations reached to cope with the limited PID robustness possibilities. A solution to
these limitations while keeping the PID controller structure, and almost all simplicity,
is discussed below.

1.1.4 Fractional order controllers

A better approach to satisfy Eq. (1.7) is fractional order control. When the derivative
and integral exponents are allowed to be non-integers, additional degrees of freedom
can be used, making it possible to meet more specifications. So, a fractional order PD
(FOPD), shown in Eq. (1.11), or a fractional order PI (FOPI), shown in Eq. (1.12),
can be used to grant all three control specifications:

C(s) = kp + kds
µ, (1.11)

C(s) = kp +
ki
sλ

. (1.12)

As chapter 2 will show, the key advantage of fractional calculus in robust control
applications is the astonishing variety of frequency responses that a fractional order
system can provide. For example, the final phase (at the asymptotic curve) of a
fractional derivative can range from 0 deg to 90 deg while the exponent ranges from
0 to 1, while the phase of integer first order derivative has a fixed value of 90 deg.
This feature allows fractional controllers to shape any open loop system with a flat
phase around a specified frequency, as discussed above, achieving robustness around
that specified design frequency.

The large number of contributions using fractional controllers to solve the ro-
bustness problem in control reveals the convenience of this approach when it comes
to finding controllers capable of meeting the above robustness requirements. Some
works use root locus analysis for the fractional controller tuning (see [41], [15]), but
most current methods are based on frequency analysis, probably due to its straight-
forward generalization from integer calculus and its convenience in robust controller
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design. According to [42], the existing frequency-based tuning methods for fractional
controllers can be classified into three groups:

� Analytical: Solving the constraint equations for controller parameters. This
group needs the solution of equation sets for controller tuning. Since these
equations are often nonlinear, a numerical solution is generally needed, but the
problem formulation remains analytical. A good example of this approach is
found in [31].

� Numerical: Finding controller parameters by optimizing selected fitness func-
tions. The numerical approaches used in fractional order controller tuning are
based on different optimization methods. Some of them are:

Particle swarm optimization (PSO) described in [43],

Artificial bee colony (ABC) as in [44],

Cuckoo search (CS) from [45], or

Differential evolution (DE) stated in [46],

but literally any method can be used to find the controller parameters. Some
examples using optimization algorithms for fractional controller tuning can be
found in [47].

� Tuning rules: Formulas that define controller parameters based on fixed condi-
tions. Through these methods, only a certain set of specifications is possible,
the same set that is used to calculate the formulas, so their application is very
restricted, and can often only provide approximate results. Find an example of
fractional controller tuning rules in [39].

Recent developments that explore the use of iterative methods for parameter tun-
ing, are found in [22], but only some parameters are solved in this way, and the flat
phase specification is still solved by optimization. Therefore, we could still place this
approach within the category of numerical methods.

See [42] for a more detailed description of current fractional tuning methods.
Some recent works have proposed an alternative apart from this classification.

Graphical equation solving methods (linear and nonlinear) have gained a lot of at-
tention in the field of fractional order control. It avoids the problems of numerical
solvers, but current proposals that follow this approach are based on highly com-
plex graphical representations, and require a complete restart of the algorithm if the
control requirements or problem conditions change.

This thesis addresses these problems mentioned above through a fractional-order
control design methodology presented in chapter 2. It provides full tuning of any FPI
or FPD controller based on the specifications defined by Eqs. 1.8, 1.9, and 1.7. Once
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the desired loop phase margin and crossover frequency have been selected, a series of
steps ensures the resulting controller robustness through an intuitive graphical rep-
resentation of the iso-slope curves showing all possible controller tuning possibilities.

Although the robust fractional controllers discussed above are appropriate for
linear time invariant (LTI) systems, they experience limitations when the controller
is used in time variant (LTV) or nonlinear (NLTI). The problem is that the fractional
controller is fixed and designed for a specific plant, and therefore, the robustness range
is limited to that specification. When plant parameters change beyond some point,
the robust control steps out of the range, and the robust performance is weakened.

A useful method to address this plant parameter variation problem is adaptive
control. The different controller designs using this approach are described below.

1.1.5 Adaptive controllers

Adaptive control addresses uncertainties and plant variability through the analysis of
system inputs and outputs. Tracking the plant model changes, they can adapt the
controller so that final system performance remains unchanged.

This field has attracted the interest of many researchers around the world, re-
sulting in a large number of contributions and many adaptive schemes with different
approaches. Modern adaptive control systems may be classified into the following
groups:

� Open-Loop: This method uses the values of environment variables for the con-
troller adjustment, based on previous plant knowledge and the desired perfor-
mance. Therefore, it is called open-loop, because it is not dependent on current
system performance but on the variables chosen. A good example of this ap-
proach is gain scheduling control, in which the controller parameters are found
in a table (schedule) depending on the environment measured variables.

� Multiple Model Switching: The idea behind this approach is to update the
plant model by choosing it from a previously identified model list. A separate
block, usually called supervisor, is in charge of selecting the model that best
matches the system’s current response and set the controller accordingly. There
are some similarities with open loop adaptive control in the sense that controller
calculations can also be performed offline, resulting in a gain scheduling method
based on system response rather than an environment variable.

� Direct: Also called implicit. This approach is based in the performance defined
by a target model. The current system output is compared with this target
model performance, then, the error is used to adjust the controller so that the
resulting system performance is as close as possible to the target model. The
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flagship example of this method is the model reference adaptive control (MRAC)
method.

� Indirect: Also called explicit. The concept underlying this kind of control is
not difficult. Given an on-line identification method providing a plant model,
and a controller whose tuning is based on the previous model and performance
specifications, applying the tuning method to an up to date plant model will
bring the resulting system up to specification despite plant changes. This idea
was originally introduced by Rudolf Emil Kálmán in [48].

The aim of this introduction is not to provide a detailed list, but to show that
the ways in which this objective can be achieved are very diverse, although they still
have common elements.

Since all of them depend on system identification, a common drawback of adaptive
systems is that the time required for model parameter stabilization may be long, which
makes adaptive systems unable to track rapid variations.

The speed of parameter change is not important in robust controllers, as long as
these variations fall within the operation range.

Therefore, by combining these two systems, an adaptive robust controller can
address both problems. The main problem of adaptive systems can be addressed
with a robust controller and the drawbacks of time variability can be addressed by
applying an adaptive scheme.

The application of an adaptive scheme in combination with robust controllers, is
usually known in the literature as adaptive robust control. This topic will be described
next.

1.1.6 Adaptive robust control

Combining a robust controller with an adaptive control method, the robustness prop-
erties can be improved by extending its operation to LTV or NLTI systems, resulting
in a system with stable performance in the presence of rapid plant variations and able
to cope with long-term plant variability.

When the robust controller used has a fractional order, it is known in the liter-
ature as adaptive fractional control. Although this approach has only recently been
discovered, the large number of contributions suggests a broad interest from the con-
trol community in combining the robustness of a fractional order controller with the
flexibility of adaptive control.

In the second part of this thesis, the fractional order controller tuning method de-
tailed in the first part (iso-m) will be improved using continuous adaptive methods.
This method is not based on a reference model, but rather on performance specifi-
cations, thus it is included in the classification of indirect adaptive methods, keeping
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the benefits of a performance-based controller tuning while extending its capabilities
to LTV and NLTI systems. There is no similar approach found in the literature.

In the next section, we will discuss a summary of current solutions to the uncer-
tainty problems discussed above, and the control approaches proposed to deal with
them. A discussion of early and current proposals in the fields of fractional, robust,
adaptive, robust-adaptive, and adaptive-fractional control applications are shown.

1.2 State of the art

Most control systems deployed today in industrial applications are based on propor-
tional integral derivative (PID) controllers (see [49]). The mathematical description
of a PID is based on a differential equation that relates the input error signals to the
control signal as shown at Eq. (1.13).

PID(t) = kpe(t) + ki

∫︂ t

0

e(t) + kd
d

dt
e(t), (1.13)

where e(t) is the measured error obtained through negative feedback, and PID(t) is
the control signal produced by the PID controller.

That well-known integral and derivative operators used in Eq (1.13) are attributed
to the renowned scientists Isaac Newton and Gottfried Leibniz.

During the early days of infinitesimal calculus, another field arose from Leibniz’s
idea of using non-integer exponents in a derivative operator. At this point, the basics
of fractional order calculus were settled.

Despite this early start, it fell into oblivion for many years, as no direct application
was found. Then, new breakthroughs in physics required a new advanced modeling
tool, more accurate than classic calculus. The usual integer modeling was found to
be not accurate enough to define some systems in physics and materials science, and
a straightforward solution was found using non-integer calculus.

1.2.1 Fractional order systems

The fractional order calculus was then rediscovered to provide a better mathematical
description of recently discovered physical phenomena, such as abnormal material
relaxation of viscous-elastic materials, and to improve the accuracy of the old ones,
such as heat diffusion. Since then, it has been successfully used in very different
fields, from economics, for example in [50], where the fractional order model of an
economic system is used, to physics, for example in [51] where the use of fractional
order models for anomalous relaxation processes is proposed.

Fractional order system modeling has also found applications in control engineer-
ing, as shown in the works of [16], which proposes a fractional model of a DC motor,
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and that of [17], which uses a fractional order model of a synchronous motor belong-
ing to a servomechanism, reporting a significant improvement in accuracy versus the
integer order model. A more theoretical approach is found in [52], where simulations
of the dynamic properties of fractional order systems are shown using numerical and
analytical methods.

However, the main engineering application of fractional calculus is undoubtedly
the design of robust controllers.

1.2.2 Fractional order controllers

The reasons leading to the discussed PID controllers widespread are their simple
implementation and the large number of easy tuning methods available. Nevertheless,
this simplicity has its drawbacks.

Although PID controllers perform very well in many well-defined linear time in-
variant (LTI) systems, more advanced control techniques are needed when the plant
exhibits different problems such as non-linear behavior or time variant properties.

Although every model has some degree of uncertainty, most common control en-
gineering applications that show these problems are nonlinear and time variant sys-
tems. A perfect solution for the extension of the classic control functionalities while
maintaining a good amount of its tools and simplicity is found in fractional order
controllers (FOC).

One of the first proposals that uses fractional calculus and robust systems together
is the ”Commande Robuste d’Ordre Non Entier” (CRONE) system. It was first
described in [19], followed by two revisions and currently in its third version (see
[53]). The CRONE system not only solves the controller tuning problem, but it also
addresses the implementation of fractional operators, which is still an open topic
today. Subsequently, in [54], the fractional derivatives and integrals (FDI) control
was proposed, where trial and error tuning showed superior performance compared
to variable structure controllers (VSCs).

The Fractional Proportional Integral Derivative controller (FOPID or PIλDµ) was
later introduced by Podlubny in [55], establishing a baseline that was supported
initially by many contributions. Although this extension of the ubiquitous PID con-
troller is by far the most widely used today, the possibilities for defining fractional
controllers are broader, as showed in this survey by Xue [56] in 2002, where four dif-
ferent fractional order controllers, including CRONE, lead-lag, fractional order PID,
and tilted-integral-derivative (TID) controllers are compared.

Nevertheless, most contributions address fractional controllers as a generalization
of the PID controller. This is probably due to the simple control law and strong
similarities to the ubiquitous PID controller, allowing classic design tools to adapt
from integer to fractional exponents.
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Based on this scheme, a flexible joint manipulator control was successfully ad-
dressed in [34], featuring a tuning using frequency specifications. Later, in [31], one
of the most popular tuning and auto-tuning approaches of such controllers was pro-
posed, which included a comprehensive experimental study, followed by the proposal
of implementation of these controllers in commercially available hardware in [38].

Since then, after these initial steps, the field of fractional robust control has re-
ceived a lot of attention, mainly from the fields of robotics and automation, and the
automatic guided vehicle.

In the world of automatic guided vehicle (AGV), recent studies (see [57]) have
shown how integer order controllers have performance limitations related to some
control requirements. As discussed before, fractional order controllers provide a good
balance between dealing with a more demanding control structure while maintaining
simplicity and easy tuning capabilities, therefore, some proposals use them to avoid
the limitations of this integer order controller.

For example, in [58] a FOPID controller is used for parking maneuver lateral
control, and a fractional controller is explored in [59] where the relationship between
vehicle speed and fractional order of the controller is considered.

Cruise control systems are also good candidates for robust controller implemen-
tation, as system parameters use to change, for instance, when different slopes are
found in the road. For example, a fractional order proportional integral (FOPI) con-
troller is used in [60] for speed control of a gas-propelled vehicle, and in [61] a hybrid
fractional controller is used for adaptive cruise control (ACC) of low speeds.

In the field of automation, some important works are, for example, the DC motor
feedback fractional controller proposed by [35], [62] and [63] to name a few. For
further reference on fractional control applied to electric motors, find a survey in [47].

Regarding the application of fractional control in robotics, the work in [64] is
devoted to the fractional control of a legged robot, later works such as [36] and [4]
show the application of fractional controllers to service and humanoid robotics.

An emergent field showing non-linearity issues is soft robotics, where material
properties show a high non-linear behavior due to the presence of plastics and rubbers.
In recent years, an increasing number of robust soft robotics applications have been
proposed. These systems show significant control complexity due to the non-linear
properties of soft materials, but in works such as [65] or [1], a successful robust control
of the nonlinear soft link of a robotic soft neck has been reported through the use of
fractional order controllers.

But fractional control is not exclusively applied in Robotics and AGV. Some other
contributions are, for example [66] in the aerospace engineering, or the wind turbine
robust control in [30] and the power plant fractional fuzzy controllers of [67] in the
field of energy.

There are still many open problems to solve in the fractional order control field, but
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the principal current issues are the implementation of fractional order operators, and
the controller tuning. Implementation is a more mathematical issue, and is outside
the scope for this engineering thesis, but a very detailed description of the problem
can be found in the books [12] and [42]. A good introduction to the controller tuning
problem can also be found in these books.

However, this thesis approach is centered on the controller tuning problem. A
summary of the current approaches available for fractional order controller tuning is
provided below, followed by a discussion on recent and past contributions.

Although some works address fractional controller tuning using root locus like
[41] and [15], most methods are based on frequency analysis, probably due to their
straightforward generalization of integer calculus and their convenience in robust
controller design. According to [42] the existing frequency-based tuning methods for
fractional controllers can be divided into three groups:

� Analytical: Solving the constraint equations for controller parameters

� Numerical: Finding controller parameters through optimization of selected fit-
ness functions

� Tuning rules: Formulas defining controller parameters that roughly meet control
specifications

Examples of the analytical approach can be found in [31] and later works, such
as [35], [36], or [68]. This option requires the solution of equation sets for controller
tuning. Since these equations are often nonlinear, a numerical solution is often needed,
but the formulation of the problem remains analytical, and these methods are still
considered in the first group.

Numerical approaches used in fractional order controller tuning are based on dif-
ferent optimization methods. One example is, for instance the work in [63], using
the PSO algorithm to find the controller parameters for a DC motor robust control
scheme. Other works like [62], use an ABC algorithm for tuning a fractional controller
in a speed control scheme. A similar approach with CS algorithm is used in [69] for
controller tuning of an artificial muscle actuator, and in [70] to find the controller
gains in a six-degrees of freedom under-actuated system. More examples are avail-
able at [67] or [71], and a comparative study of fractional order controllers tuned by
optimization algorithms can be found in [47].

Finally, tuning rules can also be used on fractional controllers like in [39], but they
can only provide approximate results and their application is restricted to a limited
number of plant types.

Recent developments have explored the use of iterative methods for parameter
tuning, as in [22], but only some parameters are solved in this way, and the flat phase
specification is still solved by optimization.
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An important drawback of classic tuning methods found in the literature is their
computational complexity, which is addressed mainly through numerical or optimiza-
tion methods as discussed above. Although they can be very accurate, numerical
and optimization solvers are highly dependent on initial conditions and tend to get
stuck at local minima, therefore, they often need some trial and error or additional
information.

This problem has been solved in very different ways. For example in [31], an ele-
gant solution was proposed, using an integer tuning method as a first approximation
to the fractional order controller parameters. In this way, the initial conditions are
close enough to the final solution, and the problem of convergence is solved. Also,
narrowing down the possible solutions, as proposed in [72], can help, but even so, the
numerical solution of nonlinear equations is tricky and computationally complex.

To avoid the numerical solver, some authors have proposed a graphical solution to
the controller tuning problem, such as [73], [21] and [23]. In that works, the plots of
selected controller parameters are drawn on the same graph, based on the constraint
equations. Finding the curve intersections will show what parameter values satisfy all
the equations at once. This approach avoids the complex numerical solution described
before, but requires a new plot for each controller tuning. Therefore, start over is
needed in the event of changes in control requirements or plant parameters, and the
implementation in a computer algorithm is difficult, as the curve intersection must
be found through visual inspection.

This reveals another drawback of the current approaches. During the application
of these previous methods, no information about the result accuracy is provided, and
there are no directions on how to reduce the error. A different approach, providing
information on the contribution of each parameter to the final loop performance could
contribute to the state of the art and solve this problem.

In this thesis, an approach having all these features is proposed. The tuning
method for fractional order controllers described in chapter 2 provides a great insight
about the tuning process while avoids the use of numerical solvers. The resulting
nonlinear equations are arranged in a way that provide an important insight about
the tuning process, and allow the solution through many methods. Among them,
the graphical approach is highly recommended, because all possible controller tuning
possibilities are shown at a glance in the graphs, offering a great understanding of
the tuning process.

This method is based on the specifications defined by Eqs. 1.8 and 1.9. When the
desired loop phase margin and crossover frequency are specified, a series of steps pro-
vides the required controller parameters in order to have a robust behavior according
to Eq. 1.7.

Unlike other methods shown in the literature, equations and curves have been
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arranged in such a way that the fractional controller tuning can be done in a very in-
tuitive and simple way, since a designer can observe the effects of parameter variations
graphically and change the controller accordingly to reduce the error.

This not only makes it easier to tune the controller parameters, but also avoids
problems related to local minima. Therefore, the method adapts easily to any type of
system dynamics, which is ideal for promoting the widespread adoption of fractional
controllers.

Since the computational effort is drastically reduced compared to the aforemen-
tioned methods, this approach can be implemented in low power embedded hardware
platforms, reducing weight, energy and cost, making it an optimal solution for robust
control embedded applications.

Although fractional controllers are suitable for time variant (LTV) or non-linear
(NLTI) systems, their application has some limitations. The problem is that they are
designed for a static system, so the range is limited to that particular specification.
When plant parameters exceed a certain value, the control design becomes unreli-
able, weakening robust performance. As discussed earlier, adaptive control is often
proposed as a solution to this problem.

1.2.3 Adaptive control

Adaptive control is a popular method for addressing the parametric uncertainty. With
this approach, plant uncertainties and variability are addressed through system input-
output analysis and identification, with the goal of controller re-calibration to ensure
consistent final performance.

Therefore, the essential component of an adaptive approach is system identifica-
tion. The entire algorithm is based on the characteristics of that component, and
especially on its convergence and stability properties. An excellent description of
modern system identification algorithms is available at [27].

Although there are many options available for system identification with impres-
sive parameter estimation results, convergence and stability problems are much more
critical in adaptive systems, therefore, in many approaches a very simple system
identification algorithms like the least squares algorithm is used.

This algorithm is usually attributed to Gauss for his ”method of calculating the
orbits of celestial bodies”, but in Legendre’s previous book [74], the basis was already
established. Its excellent properties converted this method in a standard with nu-
merous revisions and variations. One of the most used is the recursive least squares
(RLS) identification algorithm, which is the choice for the adaptive system described
in this thesis. For references on recursive least squares and similar algorithms see
[75].

Having a reliable system identification, there are many ways in which adaptive
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properties can be achieved in a system, leading to a variety of adaptive control strate-
gies.

During adaptive control inception around the 1950s (see [76]), many adaptive
schemes were described using different approaches, including works with the relevance
of [48] by Rudolf Emil Kálmán. Since then, this field has attracted the interest of
many researchers around the world, which has generated numerous contributions.

As discussed before, adaptive control systems can be classified in four groups:
Open-Loop, Multiple Model Switching, Direct and Indirect.

� Open-Loop: The values of some environment variables are used for controller
tuning, but the system performance is not considered. For example, gain
scheduling control.

� Multiple Model Switching: A model is selected from a list by the supervisor
block based on the current response and is used for controller tuning accordingly.
Similar to the previous scheme, but based on the system response instead of
the environment variable.

� Direct: Performance based on a target model. The controller tuning is carried
out so that system performance is as close as possible to the target model. This
method is also called implicit in other classifications.

� Indirect: Based on system identification and a general controller tuning method.
Keeping control specifications constant, the resulting performance should be
similar despite plant changes. This method is also called explicit in other clas-
sifications.

Apart from the above classification, some recent works have introduced artificial
intelligence systems to solve different direct adaptive control problems, for example,
in [77] a neural network is used to find the near-optimal control signal during a gravity
compensation task of a two-link flexible-joint robot, and then the results are compared
to different control schemes, showing the new approach advantage.

Some recent works using adaptive control strategies are provided below.
Open-Loop adaptive methods were developed during the beginning of high alti-

tude plane flights in the past century. Gain scheduling control systems were used to
solve the problem with changing flight conditions due to different airplane altitudes.
Examples of current applications in robotics are the feed-forward control schemes in
the works of [78], where an invariant performance is achieved for different inclinations
in a humanoid robot with a gain scheduling method, or the proposal in [79], where
a model predictive control and a gain scheduling control are used to obtain invariant
push recovery behavior in a wheeled humanoid robot.
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Multiple model switching was developed together with the open-loop adaptive
method. Both methods have many similarities, but an important difference is the
concept of supervisor block. Some examples of this approach applied in industrial
systems are found in [80] and [81]. During the development of artificial intelligence
around the 1980s, new supervisor options appeared, and proposals such as [82], using
fuzzy logic, or [83], based on neural networks, were developed. Some recent works
using this method are [84], [85], [86], and [87].

Direct adaptive control beginning could be placed in the past century fifties
decade. Early works on direct adaptive control can be found in [88] where the popu-
lar model reference adaptive control approach (MRAC) was proposed .This was soon
followed by [89], where a method based on least squares and pole placement design
was described. Later, in [90], it was reported computational speed improvements
compared to indirect schemes due to a double system identification algorithm. Find
a detailed survey on initial direct adaptive works in [91].

Today’s works following this methodology are, for example, [92], where a robot
gripper grasps arbitrary solids using an adaptive algorithm based on slip and force sen-
sor measurements, or [93], where a projection algorithm is used to enhance the MRAC
turbulence isolation system precision and is compared to recursive least squares based
RLS-MRAC and standard controllers.

Indirect adaptive control was also developed during the 1950s decade. Using a
plant identification along with a general tuning method was originally introduced by
Kálmán in [48].

The important work in [94] soon followed, changing to a more static approach,
where the plant subject to adaptation has unknown parameters, but they are consid-
ered constant. Although the definition is not clearly stated, this static approach is
generally known in the literature as self tuning regulators (STR). This work impor-
tance resides in the fact that also addresses the stability problem, a very important
issue in adaptive control, through parameter convergence. Another important con-
tribution in [95] soon followed on stability conditions for the RLS-based family of
MRAC controllers.

Following closely, contributions such as [89] were proposed, using a pole placement
technique together with RLS identification to propose three different direct and in-
direct adaptive control algorithms, including a discussion on the limitations of some
direct methods and the similarities between both schemes. An important issue de-
scribed in this paper is that direct methods using zero cancellation have a significant
limitation on the minimum phase plant requirement. Therefore, the use of other con-
troller tuning methods is recommended to avoid the problem. A good example of
using this control scheme can be found in [96], along with a summary on stability
conditions, a fundamental topic in adaptive control.

Thanks to its flexibility, contributions to indirect adaptive control are very diverse,
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as literally any tuning method can be used since system identification provide with
proper plant parameters. For example, in [97], the online adjusted neural network
model of a system is used to train a neural controller for a specified target behavior.
Both networks are models of a single hidden layer, and experiments report good
tracking capabilities in linear and non-linear plants.

The controllers used can be quite advanced like the neural network proposal above,
or very simple like in [98], where an RLS based piece-wise estimation algorithm is
used to find the process parameters of a car engine catalyst, and then tune a PID
controller in order to deal with parameter uncertainty as the catalyst ages. A similar
example is the work presented in [99], where piece-wise linear models of an aircraft
are estimated in case of damage, and a model reference controller is used to keep the
impaired response as close as possible to normal conditions.

The above discussion is intended to provide an overview of past and current adap-
tive methods. See [100] for a more detailed description of the above classification.
See also [101] for an overview of the adaptive control development from early works
to current contributions and [102] for a detailed survey of different modern adaptive
control applications.

Although adaptive systems can address any issue related with NLTI or LTV sys-
tems, there are some problems that affect this kind of controllers. The main drawback
of adaptive systems is the long time required for model parameter stabilization, which
means that adaptive systems cannot track rapid variations.

When the non-linearity of the system is small, or the plant changes are slower than
the identification algorithm, this is not a problem. However, it is only applicable to
very specific situations, such as parameter changes caused by system aging. A more
general application for NLTI and LTV systems requires some additional considera-
tions.

Fortunately, the robust control performance discussed in the previous sections
is not affected by rapid system variations as long as they are within the operating
range. Thus, on the one hand, the main problem of adaptive systems can be addressed
with a robust controller, and on the other hand, the time variability drawbacks of
robust systems can be addressed by applying an adaptive scheme. This leads to the
combination of both methods to obtain a robust controller capable of coping with a
wide range of time varying systems. The result is a system with stable performance
in the presence of rapid plant variations and capable of dealing with long-term plant
variability.

1.2.4 Robust adaptive control

This synergy was thoroughly studied some years ago by researchers such as Landau
and Karimi, who used a multiple model adaptive scheme and a closed-loop output
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error (CLOE) algorithm in [81] for the tuning of a set of robust control schemes,
including CRONE and state feedback controllers.

Other more recent proposals are, for example, [103], which uses the sliding mode
control (SMC) after a RLS based plant estimator to combine robustness with adapt-
ability in one single system, or [104], where a recursive algorithm is introduced to
identify an uncertain Wiener nonlinear plant and then used for a SMC controller
adjustment.

If a certain type of controller is chosen to increase the system robustness of the
adaptive scheme, a more specific field arises. For example fractional order control
combined with an adaptive scheme leads to a field known in the literature as adaptive
fractional control. In this case, the robustness properties of the fractional controller
are improved by the adaptive system, allowing to extend the controller’s operation to
LTV or NLTI systems.

1.2.5 Adaptive fractional order control

This is a very recent field, but the large number of contributions suggests significant
interest from the control community in a system that combines the robustness of
fractional controllers with the flexibility of adaptive control.

Different authors have addressed the problem of fractional controller adaptation
in very different ways. For example, in [105], a fractional pole is used in a Model
Reference Adaptive Control (MRAC), improving the set of candidates to be used
as a model, thus enhancing the set of specifications. In a similar approach, Ladaci
[106] uses a different transfer function that also offers a new set of model candidates,
naming the method as fractional order model reference adaptive control (FOMRAC)
scheme.

In these approaches, the controller exponent is not part of the adaptation, resulting
in a system that adapts the controller parameters to meet fractional specifications,
but using an integer order controller.

A similar approach is used in [107], where an Internal Mode Control (IMC) scheme
with a fractional parameter is applied. This approach features a non-integer exponent
inside the loop, but it is still different from a fractional order controller adaptation,
as no controller tuning is performed.

All the previous methods are based in a model reference approach, and despite
using fractional order operators, they do not take full advantage of the adaptive frac-
tional order controllers, since the control approaches they propose are either adaptive
with an integer order controller, using a fractional order reference model, or FOC
controllers with fixed parameters and an adapting filter.

The only approach found in the literature using an actual robust fractional order
controller, tuned through an adaptive algorithm is the one proposed in [38]. In that
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work, an initial identification based on the relay’s algorithm is applied to obtain the
current plant parameters, and then Monje’s method [31] is used to tune the fractional
controller. After tuning, the system enters the operational state, where no further
identification or tuning is done.

Given that system identification is only available during the initial stage, any
eventual plant changes deteriorate the controller performance, making the proposal
useful for time invariant plants, but showing the same drawbacks discussed regarding
robust controllers for LTV or NLTI plants.

In order to use the properties of robust fractional control in an adaptive scheme
suitable for to LTV and NLTI systems, the controller should be re-tuned for any
eventual plant changes. In this point is where all the previous approaches fail, as the
current fractional tuning methods are too slow for that, several times slower than the
real plant, making this approach impossible.

In [1] and Chapter 2, a tuning method with reduced computation efforts and
very competitive performances results is described. Using this method, the controller
tuning is possible inside a single loop during the plant operation.

This leads to the second proposal of this thesis; The improvement of the fractional
tuning method from Chapter 2 through the use of adaptive methods, as described
in Chapter 3. This method is not based on a reference model but on parameter
specifications, therefore it falls within the classification of indirect adaptive methods,
keeping the benefits of a performance based controller tuning.

1.3 Objectives

Given the drawbacks discussed in Section 1.1 regarding the existing methods, a
workaround that addresses these issues may prove useful in the field of control engi-
neering. The main objective of this thesis is to provide that approach and address
the problems described.

1.3.1 Tuning approach for robust fractional order controllers

In the case of fractional order control, the state-of-the-art in section 1.2 describes how
current approaches are often based on numerical methods and optimization, making
the adjustment process difficult and unreliable.

The problems related to these solvers are well known. First, the initial conditions
are critical to find a successful solution for the system, since the algorithm convergence
depends on these initial conditions. And secondly, the local minima found during the
execution of the algorithm can lead to incorrect solutions. Also, an expert knowledge
of the solver is important to guarantee reliable results.
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Although careful attention must be paid to the process to ensure a correct result,
the solver does not provide any information on how the outcome can be improved,
often resulting in a series of trial and error attempts. This requirement of a close
process supervision limits its integration with other systems, such as adaptive control,
and also makes it difficult to retune the controller in the event of a specification
change. One valuable virtue of PID controllers is that parameter changes have a well-
defined effect on the plant, allowing the controller to be retuned and fine adjusted
to change the desired behavior. This is not possible using the current approaches
available in fractional order controllers.

This thesis proposes a new fractional order control design methodology (iso-m)
described in chapter 2 that combines the simplicity of a PID with the robustness
of a fractional controller. The proposed tuning algorithm can be used to solve both
problems described. The graphical solution of the proposed nonlinear equation avoids
the problems of numerical methods of initial conditions and convergence. Addition-
ally, it provides a single, straightforward solution for the fractional exponent value
needed to meet the required performance specifications. Due to the particular layout
of the graphics, a great deal of information is provided during the tuning process.
The controller limits are directly observed thanks to the iso slope curves, allowing the
designer to see all the control options for a given plant at a glance.

The graph also shows how the change direction of controller parameters to fit a sin-
gle specification without affecting the others. This is particularly useful for mismatch
correction and for controller fine-tuning, e.g., during equipment commissioning.

These features were evidenced in the experimental works shown in chapters 4, 5
and 6, and in the works published in the papers [4], [5], [1], and [3].

Specially in [1], a detailed description of the iso-m approach is given, and is com-
pleted by a step-by-step application example. Furthermore, the new method is com-
pared with similar results from the implementation of different alternatives, including
Monje’s method [31] and with a PID designed by using the method described in [29].

In this research papers, the particular cases of FOPD and FOPI have been consid-
ered, since they are sufficient to meet all robustness specifications, while the complete
FOPID controller can be considered in a future research if needed.

1.3.2 Tuning approach for adaptive fractional order controllers

Another advantage of the new proposed method for controller tuning is that all the
parameters are bounded or computed using bounded functions, which is important
for the application of adaptive techniques, as shown in Chapter 3. Nevertheless, the
most relevant iso-m method property for its application in an adaptive scheme, is the
minimal computing power required. This allows for an indirect (or explicit) adaptive
approach using a fractional controller, which is unique at the moment, as no similar
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approach could be found in the literature.

Current adaptive fractional methods show very limited use of fractional con-
trollers, due to the significant computational effort required for tuning. This is why
the new method is critical for the proposed fractional adaptive algorithm, since it
allows the controller parameters to be recalculated in a tiny fraction of the time com-
pared to current methods. Also, since the computations are extremely simple, they
can be implemented on a standard computer without the need for specific hardware
or software tools. The computer code written specifically for the experimental tests,
available at https://github.com/munozyanez/fcontrol shows how the operations
needed for the tuning are extremely simple. This code was programmed as a control
library providing all functions that solve the necessary operations for both proposed
control approaches.

The closest approach found in the literature using an actual fractional controller
tuning method is described in [38].

Unlike the other adaptive fractional order methods, based in a model reference
approach, this proposal is based on performance specifications and a specific tuning
method. A system identification is run in the plant during initial calibration. Later,
using that plant model, and a tuning method, the controller is adjusted in order to
get the specified system performance. Therefore, this work fits within the category
of self tuning regulators (STR).

STR approach is useful for time invariant plants, but, although it provides very
good results applied to LTI systems, it has the same drawbacks stated regarding
robust controllers for LTV or NLTI. In the event of plant changes during the system
operation, the controller performance will be affected. For the adaptation to be valid
for these systems, identification must be continuously done during system operation,
usually known in the literature as online identification.

The scheme using online identification combined with some controller tuning
method is known in the literature as continuous adaptation (CA). This approach
is similar to STR, but with the difference of applying the adaptation during system
operation. Therefore, when plant changes are detected, the adaptation scheme will
update the controller parameters in order to keep the initial specifications.

The classic fractional tuning methods are very slow for this purpose, with com-
puting times much longer than most plant’s time constants, making a continuous
adaptation approach impossible. The only way to use a fractional controller tuning
inside a CA scheme is by means of a method fast enough to run in-line within the
control loop. Having updated tuning parameters for every loop iteration, the STR
can be turned into an adaptive CA system, extending its use to a broader range of
plants, from totally invariant to time variant or non-linear.

Chapter 2 and the works in [1], show how it is possible to reduce the computational
efforts while achieving very competitive controller performances, allowing application

https://github.com/munozyanez/fcontrol
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of the tuning method in real time. Therefore, controller adaptation based on control
specifications could be carried out during the plant operation, avoiding the constant
plant parameters constraint of a self tuning regulator.

This proposed fractional adaptive control scheme is composed by:

� Identification algorithm

� Iso-m tuning method

� Fractional controller Implementation

Whether these three items can run in real time, a continuous adaptation is pos-
sible, resulting in the new adaptive method described in Chapter 3. The obvious
benefit of this approach is the power to cope with time invariant plants, obtaining a
robust and adaptable system, capable of dealing with plant changes and uncertainties
at the same time.

Both new proposed methods can be useful in many applications, including the
control of variant and non-linear systems, such as the three platforms proposed below
for testing and validation. All of these plants share a common problem: uncertainty.
However, their types are different depending on the system.

The first platform, an autonomous car, allows us to experience robustness in the
presence of the uncertainty caused by load changes.

The second platform, the TEO humanoid robot, will allow to experiment with
load changes in a system showing different kinds of non-linearity.

Finally, the soft neck, a challenge in robust control design, presents all kinds of
uncertainties. On the one hand, the highly non-linear soft material presents a variety
of elastic and plastic behaviors. On the other hand, the design and geometry of the
neck cause plant parameter changes for the different tendon configurations. Because
of that, it is particularly difficult to obtain a dynamic model and design a robust
control for this system.

A summary of these platforms is shown next.

1.3.3 Experimental platforms

A short description of the three systems considered and their uncertainties is pro-
vided here, but a detailed description of each platform is provided along with the
experiments and results at the end of the thesis, in Chapters 4, 5, and 6.

1.3.3.1 Autonomous car

The first system considered is the Hybrid Honda Accord 2014 autonomous car shown
in Fig. 1.3.
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Figure 1.3: Autonomous car proposed as a test platform.

This car is equipped with all the sensors and actuators needed for any task in
advanced driving assistance systems (ADAS), and is available for researchers in the
Lawrence Berkeley National Laboratory (US). One useful ADAS task currently un-
der research is the ability to automatically control the accelerator and brake pedals
simultaneously is known as adaptive cruise control (ACC).

ACC systems must maintain a desired speed similar to current cruise control
systems, but if an object or vehicle is detected, the set speed must change to maintain
a safe distance accordingly. Two control loops are usually needed in order to perform
this task.

The high-level control is designed to adjust the distance to the vehicle in front,
while the low level loop represents the system that manages the accelerator and
brake actuators to follow a certain reference acceleration generated by the upper
layer. The vehicle position and speed variables are fed back and used to define the
desired distance.

However, it has been observed how the vehicle speed does not fully reach the ref-
erence, which is probably due to unmodeled dynamics. Other potential performance
problems are changes in the mass of the vehicle or the slope of the road.

As a summary, parameter uncertainties in this system are:

� Changing payloads

These uncertainties will be solved using the robust fractional controller described
in Chapter 2. All the tuning process, results and discussions are shown in Chapter 4
.
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1.3.3.2 Humanoid robot TEO

Another controller testing platform considered is the Task Environment Operator
(TEO) humanoid robot in Fig. 1.4, a robot built by the Robotics Lab team of the
Carlos III University of Madrid.

Figure 1.4: Humanoid robot TEO.

The parameters of the system are not unknown in this case, but there are two
sources of uncertainty; Gravitational effects on robot forearm link and the changing
payloads held by the robot gripper. The first issue causes plant model mismatches
during operation, and the second affects the system gain.

Therefore, a fractional robust control on robot joints is proposed to avoid perfor-
mance variability.

A complete description of the system, the tuning process, and a discussion of the
results are provided in Chapter 5. Also, a comparison of the different robust control
approaches and the system robustness to mass changes will be shown.

Two fractional order controllers (FPD and FPI), tuned with different methods
are used in the robot forearm joint position control. The methods used for tuning
are; The Monjes’s method as described in [31], the ABC optimization algorithm from
[44], and the proposed iso-m from Chapter 2.

As a summary, the uncertainties of the TEO elbow joint parameters are due to:

� Changing payloads
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� Gravity effects

1.3.3.3 Soft robotic neck

The last platform considered is the soft neck described in [7] shown at Fig. 1.5.

Figure 1.5: Soft robotic neck used for validation.

This robotic platform is an excellent test bed for robust and adaptive controllers,
due to its inherent operational characteristics.

This robot system is designed to act as the neck of a humanoid. It is bio-inspired
in the sense that it intends to replicate the same movement capabilities of a human
neck. The central soft link acts as the cervical spine made of soft material, which is
bent by three tendons, allowing any neck inclination and orientation to be reached.

Since we are talking about a neck, it must handle weights mounted on the hu-
manoid head, such as cameras, electronics or whatever else is required. Therefore,
a variable payload of up to 1000 g has been considered. It is expected to operate
properly despite changes in load or tilt, with no change in performance, like a human
neck.
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The challenge is that even under constant payload, the force required to bend
the central link increases with the bending angle due to the elastic properties of
the material. Also, there are different effects of payload gravity based on mass and
inclination. As a result, the different inclinations of the neck change the parameters
of the plant.

Also, the models available in [6] and [7] provide only kinematics, and there is no
transfer function available that describes the behavior of the soft link, making system
identification a must.

As a summary, the uncertainties of the plant parameter present in the soft neck
are due to:

� Unknown dynamic model

� Changing payloads

� Gravity effects

� Time variability

The proposed new adaptive fractional control system was used to address these
uncertainty problems. Chapter 6 will show how robust and adaptive controllers out-
perform standard control in comparison.

1.3.4 Control problem

The problems found in these platforms are related to uncertainty as discussed above.
Since both the reference and perturbation signals are unknown, there is input

uncertainty. The solution, both in classic and robust control, is provided through a
feedback loop. All methods discussed in this thesis are based on this premise.

Furthermore, the described systems have changing loads or non-linearity, which
makes the plant parameters variable or unknown, which is generally known as mod-
eling uncertainty.

The problems of this type found in the previous plants are:

� Parameter variability

� Non linearity

The aim of this thesis is to describe two new easy-to-use methods for tackling
these kinds of problems. In that direction, the theory of fractional order control is
used to achieve system robustness to parameter changes, and the theory of adaptive
controllers is used to provide the system with adaptability to time variability or
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non-linearity problems. Two new methods, robust and adaptive, are proposed as a
solution to this problem while addressing the drawbacks found in current alternative
methods.

A wide range of systems can be improved by using the new robust and adaptive
methods. For example, the applications of this thesis approaches in the control of
the soft neck described in [7] had excellent results. Likewise, TEO humanoid robot,
described in [108], and the autonomous car described in [3] show how effective and
useful the proposed methods are.

The new methodologies are detailed in Chapters 2 and 3.

In order to assist in the description of the new methods, two example systems will
be used throughout the document where appropriate.

1.3.5 Systems for theoretical validation

Two systems will be used as an example throughout the description of the algorithms
proposed in this thesis. First and second order standard systems are very convenient
for this, as they can be used to define a wide variety of systems to be controlled and
present a wide range of possible tuning problems.

The standard models used in control engineering, described with Eqs. (1.10) have
two defining parameters. To use the simplest possible example system with a full set
of time response specifications, we will use the following values:

� ωn = 1 rad/s,

� ξ = 0.5,

resulting in the following first order system:

G(s) =
1

s(s+ 1)
. (1.14)

The frequency and time response of this system is shown below in Fig. 1.6
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Figure 1.6: Frequency and time response of the first order example system.

Using an integrator and unitary feedback in the system described by the Eq. (1.14)
results in the standard second order system definition described by Eq. (1.15).

F (s) =
1

s2 + s+ 1
. (1.15)

The frequency and time response of this second order system is shown below in
Fig. 1.7.
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Figure 1.7: Frequency and time response of the second order example system.

These systems will be helpful in the description of the tuning methods proposed
in Chapters 2 and 3.
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1.4 Scientific contributions

During the development of this thesis the following research works were published:
A. Journals:

1. Muñoz, J.; Monje, C. A.; Nagua, L. F. & Balaguer, C. (2020), ’A graphical
tuning method for fractional order controllers based on iso-slope phase curves’,
ISA Transactions. (Q1, Impact Factor: 4.305).

2. Flores, C.; Muñoz, J.; Monje, C. A.; Milanés, V. & Lu, X.-Y. (2020), ’Iso-
damping fractional-order control for robust automated car-following’, Journal
of Advanced Research 25, 181 - 189. (Q1, Impact Factor: 6.992).

3. Mena, L.; Monje, C. A.; Nagua, L.; Muñoz, J. & Balaguer, C. (2020), ’Test
Bench for Evaluation of a Soft Robotic Link’, Frontiers in Robotics and AI 7,
27.

4. Muñoz, J.; Monje, C. A.; Casa, S. M. d. l. & Balaguer, C. (2019), ’Joint
Position Control Based on Fractional-Order PD and PI Controllers for the Arm
of the Humanoid Robot TEO’, International Journal of Humanoid Robotics
16(06), 1950042. (Q4, Impact Factor: 1.394).

� Awarded with: Best paper in ”Special Issue on Modelling and Control of
Humanoid Robots (IROS 2018)”

- Pending publications (accepted):

5. Muñoz, J.; Copaci, D. S.; Monje, C. A.; Blanco D. & Balaguer, C. (2020), ’Iso-m
based adaptive fractional order control with application to a soft robotic neck’,
IEEE Access. (Q1, Impact Factor: 4.098).

6. Copaci, D. S.; Muñoz, J.; González, I.; Monje, C. A.; & Moreno, L. (2020),
’SMA-driven soft robotic neck: design, control and validation’, IEEE Access.
(Q1, Impact Factor: 4.098).

B. Conferences:

1. Quevedo, F.; Munoz, J.; Castano, J.A.; Monje, C. A. & Balaguer, C. (2020),
Model Identification of a Soft Robotic Neck, in ’2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)’, IEEE, , pp. –.

2. Mena, L.; Monje, C. A.; Nagua, L.; Muñoz, J. & Balaguer, C. (2019), Sen-
sorización de un sistema de eslabón blando actuando como cuello robótico, in
’Actas de las Jornadas Nacionales de Robótica’, Universidad de Alicante, , pp.
98-102.
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3. Munoz, J.; Monje, C. A.; Martin, F. & Balaguer, C. (2018), A Robust Control
Method for the Elbow of the Humanoid Robot TEO Based on a Fractional
Order Controller, in ’2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)’, IEEE, , pp. 6378–6383.

4. Nagua, L.; Muñoz, J.; Monje, C. A. & Balaguer, C. (2018), A first approach to a
proposal of a soft robotic link acting as a neck, in ’Actas de las XXXIX Jornadas
de Automatica, Badajoz, 5-7 de Septiembre de 2018’, Área de Ingenieŕıa de
Sistemas y Automática, Universidad de Extremadura, , pp. 522-529.

5. Nagua, L.; Monje, C.; Muñoz Yañez-Barnuevo, J. & Balaguer, C. (2018), Design
and performance validation of a cable-driven soft robotic neck, in ’Actas de las
Jornadas Nacionales de Robótica’, Universidad de Valladolid, .

1.5 Document organization

The document is divided into seven chapters, of which the first four are introductory
and theoretical developments, and the following, from Chapter 4 onwards, are devoted
to experimental results and conclusions.

In the first chapter, an introduction to the problems addressed in the thesis is pro-
vided. Chapter 1 starts introducing the uncertainty problem, describing the different
kinds of uncertainties found in control systems.

These problems are usually solved through robust and adaptive techniques, also
introduced and described in this chapter. Section 1.1 provides a detailed definition
of robustness and the different uncertainty problems that can be solved using these
methods. The central scope of this thesis, the fractional order control, is also described
in more detail during this section. Finally, a definition of adaptive systems is also
provided, specially oriented to its application to robust control systems.

After this introduction, a deeper analysis of the current solutions to similar prob-
lems found in the literature is reviewed in the section 1.2 with the title of State of the
art. During this section, the strengths and shortcomings of the different approaches
are discussed, while giving possible solutions to the problems raised. This thesis ad-
dress many of the discussed problems through the proposal of two novel methods,
which are discussed in the subsequent chapter.

The discussion of section 1.3 gives a detailed idea of how the proposed methods
solve the problems described in the previous sections. In addition, three test platforms
and two example plants are introduced. These systems will be used during the thesis
for description of the methods, and for testing and experimentation. The aim of this
section is merely introductory. A much more detailed description of the real plants
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and the experiments performed is provided in the second part of the thesis, during
the last chapters.

Once the problems and solutions are described, the thesis theoretical development
is presented. The chapters 2 and 3 provide a detailed description of the mathematical
foundations of the thesis.

Chapter 2 describes in detail the mathematical development of the iso-m method.
All operations and procedures are deeply explained in this section, providing theoret-
ical proof of the proposed method validity. Also a detailed step-by-step description
of the method application is found in this chapter. The example plants are used
here in order to make a clearer explanation of the method application. The research
contributions of this chapter have been published in the high impact paper [1].

In the same way, a complete theoretical description of an adaptive scheme applica-
tion to the aforementioned iso-m method can be found in chapter 3, where the theory
behind the adaptive iso-m method can also be found. The research contributions of
this chapter will soon be published in the high impact paper [2].

Finally, last chapters are devoted to describe the experimentation which has been
carried out in different real systems, including an autonomous car, a humanoid robot,
and a soft neck.

One of the systems improved using the proposed robust controller is shown in
chapter 4. In this case, a cruise control system for an autonomous vehicle is involved.
These systems have a high uncertainty due to changes in the road, which can be
addressed, as explained in this chapter, by robust fractional control. The results
presented in this chapter have also been published in the high impact paper [3].

Chapter 5, describes a system developed for the robust control of the TEO hu-
manoid robot right arm joint. These systems are variant and non-linear because
of the variable load applied to the motor due to the different configurations of the
robot. Also, the masses of the grasped objects are different, adding more system
uncertainty. The results presented in this chapter have been also published in the
high impact papers [4], [5].

During chapter 6, the system developed for soft neck inclination control and its
results are described. In this case, the high non-linearity of the plant required full
system application, robust and adaptive. As shown in this chapter, the system high
variability makes the robust control fail in the most extreme inclinations. Although
the results of only robust control are quite good, it is observed how the adaptive
control improves system response in cases where plant parameters are out of the
robust control range. The different results presented in this chapter have been also
published in the high impact papers [6], [7], [8], [9], [1] [10] , and [2].

As a summary, the proposed methods, that solve many of the robust control
drawbacks described in the first part of the thesis, can be used in literally any system
to provide a robust control. The method simplicity makes it a great option in order
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to promote the use of robust and fractional systems in a wide variety of plants.
Finally, chapter 7 outlines the main conclusions extracted from this thesis and its

results, pointing out the most promising ideas in this area and the future works that
will follow.



Chapter 2

Tuning approach for robust
fractional order controllers

2.1 Introduction

Current fractional order tuning methods discussed in chapter 1.2 have one common
drawback, a complete lack of awareness during the tuning process. Solving a set of
non-linear equations can be done accurately with a numerical solver, but no infor-
mation about the tuning process is obtained. Usually, a priori knowledge about the
controller tuning, or even trial and error may be required. A common problem is the
use of wrong initial conditions that lead to local minima, offering unsuitable solutions,
or no solution at all.

Therefore, it is important to find new tuning methods that show a better insight
and help to avoid such situations by offering tuning directions trough the entire
process.

The new method discussed here address the tuning problem through a graphical
approach. To meet the design specification described by Eq. (1.7), an opposite slope
is sought in the controller, resulting in slope cancellation in the open loop frequency
response.

As a numerical solver is avoided in the non-linear equation set solution, the com-
puting effort is drastically reduced, resulting in simple algorithms that are well suited
for applications with limited computation resources, such as embedded hardware or
PLCs, while showing very competitive results compared to the current methods.

39
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2.2 Slope cancellation tuning methods

According to the phase additive property, cascading systems such as controller and
plant result in a new combined diagram with curves equivalent to the sum of their
individual plots. Since the slope is the curve derivative, the slopes are also added,
due to derivation linearity property.

Based on that, a controller needs an opposite plant slope at the specified frequency
(ωgc) to cancel the slopes to zero. For example, first order plants show negative phase
slopes in the range of 0 rad/dec to −1.1513 rad/dec (−65.96 deg/dec). If the slope
at some specific frequency is, say, −1 rad/dec, using a controller with an equivalent
positive slope (1 rad/dec) will result in a flat slope at this frequency.

The first attempt to find such a controller can be made using a standard PID ap-
proach. Although it is possible in some cases, these controllers have severe limitations
as will be shown below.

2.2.1 Slope cancellation for PID controllers

The integer PID controller defined by Eq. (2.1) has a pole at origin, therefore, the
minimum phase (Φpid) it can achieve is −90 deg, as limω→0Φ(C(s)) = −j, and having
two zeros, the phase will increase to a maximum of 90 deg, as limω→∞Φ(C(s)) = j.
Between these two asymptotes, the controller can show any positive phase slope from
0 to ∞, by properly setting integral and derivative parameters.

Cpid(s) = kp + kds+ kis
−1 =

kps+ kds
2 + ki

s
,= k

(s+ a)(s+ b)

s
, (2.1)

where kp = kd(a+ b), ki = kdab and k = kd.

For this type of controller, the kd parameter defines a static gain, as seen on the
right side of (2.1), which affects only the magnitude plot, and the zeros define the
phase curve, determined by kp and ki parameters. As the system must be feasible,
only real or conjugate complex zeros can be used.

When the zeros are Real numbers, they define the frequencies where constant
phase slope of m = 1.1513 rad/dec is obtained in the controller. For instance, the
left Bode diagram in Fig. 2.1 shows the frequency response for a controller with
z1 = 0.01 rad and z2 = 100 rad. As the zeros get closer, their slopes begin to add
up, overtaking the constant slope of m = 1.1513 rad/dec to a maximum of m =
2.3026 rad/dec for the case of a repeated Real zero, shown in the right Bode diagram
of Fig. 2.1.
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Figure 2.1: PID Controller Bode plots showing one pole at origin and two real zeros at
different frequencies ω1 = 0.01 rad, ω2 = 100 rad (left), and repeated ω1 = ω2 = 1 rad
(right).

When the zeros are complex conjugate numbers, their magnitude and angle define
the phase frequency and slope. For example, Fig. 2.2 shows two controllers with
a = 1ei, a = 1e−i (left), and a = 1e1.5i, a = 1e−1.5i (right). Note how a phase angle is
related to the slope in the phase plot.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

20

40

60

Frequency (rad/s)

M
a
g
n
it
u
d
e
 (

d
B

)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

−100

100

Frequency (rad/s)

P
h
a
s
e
 (

d
e
g
re

e
)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

−20

20

40

60

Frequency (rad/s)

M
a
g
n
it
u
d
e
 (

d
B

)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

−100

100

−50

50

Frequency (rad/s)

P
h
a
s
e
 (

d
e
g
re

e
)

Figure 2.2: PID Controller Bode plots showing one pole at origin and two complex
conjugate zeros with module one (frequency ω = 1 rad), and different angles, 1 rad
(left), and 1.5 rad (right).

Therefore, any plant slope can be canceled using a PID controller. When s = jω
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in Eq. (2.1), the PID as a function of frequency is:

Cpid(ω) = kp +
ki
jω

+ kdjω = kp

(︃
1 +

1

τijω
+ τdjω

)︃
= kp

(︃
1− j

1

τiω
+ jτdω

)︃
, (2.2)

that is a complex function where integral gain ki = kp/τi and derivative gain ka = kpτa.
Due to constant kp is not related to phase, the following alternative can be used to
compute phase equations:

Cpid(ω)

kp
= 1− j

1

τiω
+ jτdω = 1 + j

(︃
τdω − 1

τiω

)︃
. (2.3)

Taking arg at both sides of Eq. (2.3) results in:

arg

(︃
Cpid(ω)

kp

)︃
= arg

(︃
1 + j

(︃
τdω − 1

τiω

)︃)︃
, (2.4)

and being kp scalar,

arg

(︃
Cpid(ω)

kp

)︃
= arg(Cpid(ω)) = Φc(ω). (2.5)

According to Eqs. (2.4) (2.5), the phase depends on parameters τi, τd, and variable
ω. The controller phase as a function of frequency is given by:

Φc(ω) = arctan

(︃
τdω − 1

τiω

)︃
. (2.6)

On the other hand, according to the second specification the controller must fulfill
Eq. (1.9):

arg (C(jωgc)G(jωgc)) = argC(jωgc) + argG(jωgc) = ΦC(ωgc) + ΦG(ωgc) = −π + ϕm,
(2.7)

then,

Φc(ωgc) = −π + ϕm − ΦG(ωgc). (2.8)

Therefore, since all values on the right side of Eq. (2.8) are specifications, ΦC(ωgc)
is a known value. Now taking tan on both sides of Eq. (2.6) a better equation is
found:

tan (Φc(ω)) = τdω − 1

τiω
. (2.9)
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Putting Eqs. (2.9) and (2.8) together, and specifying for ωgc, results in the first
robust PID tuning equation:

tanΦc(ωgc) = τdωgc −
1

τiωgc

= tan (ϕm − π)− tan (ΦG(ωgc)) = Tgc, (2.10)

where Tgc is used for reference simplification.
At the same time, the controller phase slope can be computed based on the deriva-

tive of Φc(ω) in Eq. 2.6. As the Bode phase plot uses log10 scale for ω variable in ab-
scissas axis, slope calculations will be simplified by the change of variable x = log10(ω).
Taking the derivative with respect to log10(ω) on both sides of the equation results
in:

m =
dΦc(ω)

d log10(w)
=

dϕ(x)

dx
=

d

dx
arctan

(︃
τd10

x − 1

τi10x

)︃
, (2.11)

then, solving derivative and undoing the variable change:

m =
log(10)

(︂
τd10

x + 1
τi10x

)︂
1 +

(︂
τd10x − 1

τi10x

)︂2 =
log(10)

(︂
τdω + 1

τiω

)︂
1 +

(︂
τdω − 1

τiω

)︂2 =
log(10)

(︂
τdω + 1

τiω

)︂
1 + tan(Φc(ω))2

, (2.12)

Again, specifying for ωgc and rearranging, results in the second robust PID tuning
equation:

m =
log(10)

(︂
τdωgc +

1
τiωgc

)︂
1 + T 2

gc

=⇒
m(1 + T 2

gc)

log(10)
= τdωgc +

1

τiωgc

= Mgc, (2.13)

where all known values are condensed into the constant value Mgc.
Therefore, the final result is a two equation deterministic system, which allows

the parameter solution and the controller tuning based on the initial specifications:{︄
τdωgc +

1
τiωgc

= Mgc =
m(1+T 2

gc)

log(10)

τdωgc − 1
τiωgc

= Tgc = tan (ϕm − π)− tan (ΦG(ωgc))
(2.14)

Solving (2.14) for τd and τi results in the following tuning equations for integral
and derivative time parameters according to the desired specifications:{︄

τd =
1

2ωgc
(Mgc + Tgc)

τi =
ωgc

2
(Mgc − Tgc).

(2.15)
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However, some restrictions have to be addressed prior to the implementation of
this method. They are mainly due to the controller phase limits (−90 deg to 90 deg),
and feasibility conditions.

Controller phase limits affect the range of possible phase margins; Since both,
plant and controller add to the final phase, there will be possible minimum and
maximum phase margins depending on the plant and crossover frequency. This is a
minor concern, as most plants and controllers will fall in the possible range of phase
margins.

Unfortunately, feasibility conditions are much more restrictive. This forces that
both integral and derivative parameters are positive, and therefore, the feasible solu-
tions for set of Eqs. (2.14) are reduced. If τd and τi must be positive, then Mgc + Tgc

and Mgc − Tgc must be positive too, therefore:

⎧⎨⎩Mgc + Tgc > 0 ⇒ Mgc > −Tgc ⇒ m(1+T 2
gc)

log(10)
> −Tgc ⇒ m

log(10)
> −Tgc

1+T 2
gc

Mgc − Tgc > 0 ⇒ Mgc > Tgc ⇒ m(1+T 2
gc)

log(10)
> Tgc ⇒ m

log(10)
> Tgc

1+T 2
gc

(2.16)

Using trigonometric identities and Tgc definition from (2.10), the restrictions result
in:

{︄
m

log(10)
> − tan(Φc(ωgc))

1+tan2(Φc(ωgc))
⇒ m

log(10)
> − sin(2Φc(ωgc))

2
m

log(10)
> tan(Φc(ωgc))

1+tan2(Φc(ωgc))
⇒ m

log(10)
> sin(2Φc(ωgc))

2
,

(2.17)

which can be summarized as:

{︄
m > −1

2
log(10) sin(2Φc(ωgc))

m > 1
2
log(10) sin(2Φc(ωgc)).

(2.18)

Since the controller phase ranges are (−90, 90) deg, plotting the slope (m) as a
function of Φc(ωgc) for that range in Fig. (2.3) graphically shows the limitations of
the controller. Both conditions must be fulfilled simultaneously, consequently, only
the positive values are plotted.
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Figure 2.3: Minimum possible slope for a PID controller while complying with flat
slope constraint in Eq. (1.7).

Notice how the ability of the controller to produce small slopes decreases near
phase angles of −45 deg and 45 deg. For example, a 20 deg/dec phase slope can
only be achieved with controllers that have phases in the ranges (−90,−80) deg,
(−10, 10) deg and (80, 90) deg. Looking now at Fig. (2.1) it becomes clear that those
ranges match the lower slope parts of the phase plot.

This is a huge constraint, as the phase margin specification will be severely re-
stricted when the required slope is small. As plant greater phase slopes are located
close to their pole frequencies, this type of controller can be robust around them, but
it cannot satisfy robustness constraints elsewhere, since pole distant frequencies have
smaller slopes.

After slope cancellation (if possible), adjusting gain to fulfill Eq. (1.9) can be
done through Eq. (2.19).

k =
1

|1 + 1/τijωgc + τdjωgc||G(jωgc)|
. (2.19)

2.2.2 Slope cancellation for fractional order controllers

A simple but powerful generalization of the PID controller that allows to overcome
the previous limitations is based on fractional calculus. Since PID controllers contain
integral and derivative operations, a generalization of these operator exponents, al-
lowing them not only to be integers but also rational (hence fractional) or even real
numbers, provides greater flexibility while retaining most PID controller simplicity.

The building blocks of integer order controllers are the binomial Laplace variable
factors (usually called poles and zeros). Here, we will use an equivalent fractional
factor to define the controllers.
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The fractional order zero equivalent in fractional order calculus can be formulated
as follows:

Za(s) = 1 +
(︂s
a

)︂α
=

aα + sα

aα
= 1 + τas

α, (2.20)

where parameter α defines the fractional derivative exponent, and τa = 1/aα. The

parameter a = 1/τ
(1/α)
a defines the cutoff frequency as will be shown.

In the same way, the definition of the fractional order pole is:

Pa(s) =
1

1 +
(︁
s
a

)︁α =
aα

aα + sα
=

1

1 + τasα
, (2.21)

The Bode plot in Fig. (2.4) shows the frequency response for fractional zero (left)
and pole (right) with example exponents α = 1.2 and frequency a = 1.
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Figure 2.4: Example Bode plots for fractional zero (left) and pole (right) with expo-
nents α = 1.2 and parameter a = 1.

The left Bode diagram based on the fractional order zero, shows how singular
phase values happen at frequencies DC (ω = 0) and w → ∞, resulting in the following
asymptotic values:

� ω = 0 ; ( 1
τaωα = ∞) → ϕ = 0 rad

� ω = ∞ ; ( 1
τaωα = 0) → ϕ = απ/2 rad,

and the cutoff frequency (ωco):

� ω = τ
−1/α
a ; ( 1

τaωα = 1) → ϕ = απ/4 rad.
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A similar observation can be made for the pole, resulting in:

� ω = 0 ; ( 1
τaωα = ∞) → ϕ = 0 rad

� ω = ∞ ; ( 1
τaωα = 0) → ϕ = −απ/2 rad,

and the cutoff frequency (ωco):

� ω = τ
−1/α
a ; ( 1

τaωα = 1) → ϕ = −απ/4 rad.

Further analysis will show how the exponent (α) is related to controller phase and
maximum slope, while the time constant (τa) defines the cutoff frequency.

When s = jω in Eq. (2.20) the exponent affects both terms j and ω, resulting
in sα = (jw)α = jαwα. Then, Za is a complex function of the frequency, and can be
written as:

Za(ω) = 1 + τaω
α · jα = 1 + τaω

α · e(jπ/2)α. (2.22)

Now, finding the phase by taking arg of Eq. (2.22) results in:

arg(Za(ω)) = arg
(︁
1 + τaω

α · e(jπ/2)α
)︁
= Φz(ω), (2.23)

and computing the arg results:

Φz(ω) = arctan

(︃
τaω

α sin(απ/2)

1 + τaωα cos(απ/2)

)︃
= arctan

(︄
sin(απ/2)

1
τaωα + cos(απ/2)

)︄
, (2.24)

Due to the logarithmic scale in the phase Bode plot, the slope derivative will be
simplified using x = log10(ω) and τx = 1/(τa10

xα) variable changes, resulting in:

Φz(x) = arctan

(︄
sin(απ/2)

1
τa10xα

+ cos(απ/2)

)︄
= arctan

(︃
sin(απ/2)

τx + cos(απ/2)

)︃
. (2.25)

Being Φz(x) the phase, the slope as a function of x is found through the derivative
of the previous expression:

m(x) =
dΦz(ω)

d log10(w)
=

dΦz(x)

dx
=

d

dx
arctan

(︃
sin(απ/2)

τx + cos(απ/2)

)︃
. (2.26)

Therefore, solving (2.26), the slope equation is:

m(x) =
log(10)α sin(απ/2)(︃(︂

sin2(απ/2)
τx+cos(απ/2)

)︂2
+ 1

)︃
(τx cos(απ/2))

2

=
log(10)α sin(απ/2)

τx +
1
τx

+ 2 cos(απ/2)
. (2.27)
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Replacing τx +
1
τx

for σx, the slope formula results in:

m(x) =
log(10)α sin(απ/2)

σx + 2 cos(απ/2)
, σx = τa10

−xα + τa10
xα, (2.28)

and removing the variable change:

m(ω) =
log(10)α sin(απ/2)

σω + 2 cos(απ/2)
, σω = τaω

−α + τaω
α, (2.29)

Now, the highest slope (mmax) frequency, coincident with ωco will be found. Only
the σω term depends on ω in Eq. (2.29), therefore, the extreme mmax value for the
slope is bounded to σω extreme values, more specifically, mmax matches the lowest σω

value.
The derivative of σω results in the following equation:

dσω

dω
= σ′

ω =
d

dω

(︃
τaω

α +
1

τaωα

)︃
=

ατaω
α

ω
− α

ωτaωα
. (2.30)

Making the derivative equal to zero and solving for ω results in:

τaω
α =

1

τaωα
=⇒ ω =

1

τ
(1/α)
a

= a. (2.31)

While it is obvious from the phase curve that it is a maximum for the slope and
a minimum for σω, the second derivative can be used to find out.

dσ′
ω

dω
=

d

dω

(︃
ατaω

α

ω
− α

ωτaωα

)︃
=

α[τ 2aω
2α(α− 1) + α + 1]

τaω(α+2)
. (2.32)

When ω = a, the second derivative is:

dσ′
ω

dω

⃓⃓⃓⃓
ω=a

=
2α2

a2
, (2.33)

that is always positive for any α, or a, making the point a minimum for σω, and
therefore a maximum for the slope (mmax). Using the value of ω = a in (2.29), the
formula for maximum slope results:

mmax =
log(10)α sin(απ/2)

2 + 2 cos(απ/2)
=

log(10)

2
· α tan(απ/4). (2.34)

Now placing ω = a in Eq. (2.24) the phase results in ϕ(ωco) = απ/4, as expected.
As a summary, when ω = a the plot shows its maximum slope, the phase value is

exactly half of its asymptotic value, as defined for the cutoff frequency, and therefore
ωco = a.
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The same reasoning leads to the same result for the fractional pole, obviously
with different sign. Since the slope must be negative for the pole, there is a minimum
instead of a maximum.

Now these blocks can be used to create the fractional controller transfer function,
allowing to use all the previous results to study and tune them.

The simplest integer controller could be a proportional differential (PD), composed
by a zero and a static gain. The fractional counterpart should be defined by the same
blocks. Hence, the fractional order proportional derivative controller (FOPD) will be
defined with a zero and a static gain, as shown in (2.35).

FOPD(s) = k(1 + τds
δ) = kp + kds

δ, (2.35)

where kd = kτd, and kp = k.

Adding an integrator to the above equation, the fractional order proportional
integral (FOPI) controller is defined. Equation (2.36) shows the result.

FOPI(s) =
k(1 + τis

ι)

τisι
= kp + ki

1

sι
, (2.36)

where ki =
k
τi
, and kp = k.

Allowing negative values for the exponent, a single equation can define both FOPI
and FOPD controllers. The usual derivative notation is positive while integral is
negative, therefore, the first fractional order controller can be defined similarly to
(2.35) by:

FOC1(s) = kp + kas
α = k(1 + τas

α), (2.37)

where α is a fractional derivative exponent, α ∈ R| − 2 < α < 2, the proportional
gain kp = k and the derivative gain ka = kτa.

A controller defined by Eq. (2.37) can show any phase slope and gain margin
in the range (0,∞) depending on the gain k and the exponent α. Therefore, phase
cancellation is always possible with this fractional controller for arbitrary target fre-
quencies and gain margins, making fractional controllers the best option to overcome
the PID limitations discussed above.

For example, Fig. (2.5) shows two controllers defined by (2.37) with different
phases and slopes at the cutoff frequency ωco = 1 rad/s for the exponents α = 1.5
and α = −0.5. Notice how all the phase slopes are positive while the phase can be
negative (FOPI) o positive (FOPD).
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Figure 2.5: Examples of controller Bode plots for different α exponents (left: α = 1.5,
right: α = −0.5), and crossover frequency ωgc = 1 rad/s. The slopes are positive in
both but the phase can be negative (FOPI, right) or positive (FOPD, left).

Note that mmax does not depend on any parameter except α in Eq. (2.34). This
could be used to cancel any known plant phase slopes simply by finding the proper
exponent at the specified frequency.

Equation (2.34) cannot be solved for α, but plotting mmax versus α as in Fig. 2.6
can be used to graphically find the α exponent for any required slope. Another option
is curve fitting. For example, Fig. 2.6 shows two fits using function m = a tan(bα)2,
hence the exponent can be obtained as α = b−1arctan(

√︁
m/a).
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Figure 2.6: Maximum slope (mmax) versus α. Eq (2.34) direct values (solid line) and
two approximations using the function m = a tan(bα)2 with parameters a=1.7969,
b=0.6628 (triangles), and a=2.2824, b=0.6176 (diamonds).
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Therefore, this type of controller can show any slope, and would cancel any known
plant phase slope using the correct exponent in the s Laplace variable. A flat phase
area around the defined frequency is obtained by fulfilling the robustness constraint
equation. This is not bad, but not much different from the previous PID controller,
capable of canceling the slope, but unable to achieve a target phase margin. Fortu-
nately, the method can still be improved by specifying the controller phase as before.

As in section 2.2.1, the controller phase is a known value, as it depends on the
specifications (see (2.8)). The values for the controller phase do not depend on the
static gain, and therefore, it will be equivalent to that of the fractional zero discussed
earlier:

Φc(ω) = arg(FOC1(ω)) = arg

(︃
FOC1(ω)

k

)︃
= arctan

(︄
sin(απ/2)

1
τaωα + cos(απ/2)

)︄
, (2.38)

then using the crossover frequency specification (ωgc) and taking the tan of Eq. (2.38)
yields:

tan(Φc(ωgc)) =
sin(απ/2)

1
τaωα

gc
+ cos(απ/2)

. (2.39)

Isolating 1
τaωα

gc
in Eq. (2.39), results in:

1

τaωα
gc

=
sin(απ/2)

tan(Φc(ωgc))
− cos(απ/2). (2.40)

Then, for the specified frequency (ωgc) the term 1/τaω
α
gc can be replaced in Eq.

(2.29) as follows:

σw =
sin(απ/2)

tan(Φc(ωgc))
− cos(απ/2) +

1
sin(απ/2)

tan(Φc(ωgc))
− cos(απ/2)

. (2.41)

Replacing σω in the slope Eq. (2.29) and simplifying, as shown in Eq. (2.42) gives
m as a function of Φc(ωgc) and α:

m = log(10)α
1− tan(Φc(ωgc))

tan(απ/2)

tan(Φc(ωgc)) +
1

tan(Φc(ωgc))

=
log(10)

sin(Φc(ωgc))
α

(︃
1− tan(Φc(ωgc))

tan(απ/2)

)︃
.

(2.42)
Now it is possible to specify the controller phase (Φc) and solve for α. Remember

that the phase in Eq. (2.42) is only the controller phase. To find a solution for the
open loop phase margin specification in Eq. (1.9), the system phase must be known.

One of the options discussed above must be used to find a solution, as it is not
possible to isolate the variable of interest.
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2.3 Graphical method for exponent solution

For a graphical solution, figure 2.7 shows the resulting iso-slope (iso-m) curves relating
the controller phase Φc in deg, the fractional order α and the slope m in deg/decade,
both for positive and negative controller phase contributions (according to the control
specifications).
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Figure 2.7: Iso −m graph. Fractional order exponent α in ordinates and controller
phase Φc [deg] in abscissas. Iso-m curves in [deg/decade].

Note that between both iso-m plots, all possible phases and slopes can be covered,
offering a much better solution than the previous PID controller which failed to
provide small slopes together with certain phase values according to Fig. 2.3. The
phase is positive in the case of FOPD (top) but negative in the case of FOPI
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(bottom), then the controller phase in Fig. 2.7 will be subtracted instead of added,
and will be in the region of negative exponents, as can be seen in the controller phase
axis for the FOPI curve.

2.4 Function approximations for exponent solution

Similar to the function approximations shown at Fig. 2.6, another option to approx-
imate a solution to (2.42) is to find a curve with equivalent shape. Due to the higher
complexity of that equation, finding that curve is much more difficult, and it lacks the
advantages provided by the graphical method. Therefore, the graphical is preferred,
as it offers a powerful tool for fractional order controller tuning that will be described
next.

2.5 Controller parameters computations

Once the exponent is found, in order to cancel the phase slope of the system, the
frequencies must match: the phase cancellation must occur at the specified crossover
frequency. Knowing the exponent α and given ωgc, τa can be calculated from Eq.
(2.40) as follows:

τa =
1

ωα
gc

(︂
sin(απ/2)

tan(Φc(ωgc))
− cos(απ/2)

)︂ . (2.43)

Using this equation, τa can be found so that the slope matches ωgc, hence allowing
to set the frequency where cancellation is planed. In the special case when m = mmax,
Eq. (2.43) simplifies to τa = 1/ωα, and the exponent can be obtained from Fig. 2.6
or the fitted curve.

Finally, the crossover gain must meet the specifications, that is, the magnitude of
the open loop must be exactly one at the crossover frequency. Using Eq. (1.8), k will
be found as:

k =
1

|(1 + τa(jωgc)α)G(jωgc)|
. (2.44)

Once all the parameters are solved for FC1, a tuning based on initial Eqs. (1.8),
(1.9) and (1.7) is found, thus meeting the design specifications while providing robust
performance.

A summary of all the previous operations that ted to the order one controller
tuning is detailed below.
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2.6 Step by step iso-m controller design

The steps required for the fractional first controller (FOC1) tuning with the new
iso-m method are summarized below. Two values must be specified:

� Target crossover frequency ωgc

� Target phase margin ϕm

Then, method implementation is as follows:
Step 1: Find the plant phase Φs and the slope ms at the selected frequency.
Having a system model or just frequency response data, the phase and its slope can
be obtained. Their units are Φs deg and ms deg/log(ω).
Step 2: Find the controller required phase and slope ΦC and mc . Knowing
the system phase Φs and the target phase margin ϕm, the required controller phase
is calculated from the equation Φc = (−Φs + ϕm − 180) deg. Then, the required
controller phase slope is obtained as mc = −ms deg/log(ω).
Step 3: Obtain the exponent α. Using these previous values (controller phase
and slope), the exponent α is obtained, for instance, graphically from Fig. 2.7.
Setp 4: Compute τa from α and ωgc. Using Eq. (2.43) the solution for τa is
obtained, so the calculated controller has the correct slope at the specified frequency.
Step 5: Compute k according to ωgc. To meet the specification in Eq. (1.8),
k can be computed as in Eq. (2.44) so open loop system gain will be 0 dB at the
crossover frequency ωgc.
Step 6: Final solution. Once all the parameters are known, the controller is:

FOC1(s) = k(1 + τas
α) = kp + kas

α, (2.45)

where α comes from Fig. 2.7, τa comes from Eq. (2.43), k comes from Eq. (2.44) and
ka = kτa.

2.7 Examples of application of the iso-m tuning

method

Next, the iso-m method will be applied to tune both example systems described in
1.1, following the step by step method shown at the previous section. Selected control
specifications are:

� Desired crossover frequency ωcg = 10 rad/s

� Desired phase margin ϕm = 60 deg



2.7. Examples of application of the iso-m tuning method 55

Using these values, the system response overshot will help to notice the iso-
damping property caused by the flat phase of the open loop system around the
crossover frequency (Eq. (1.7)).

The steps shown at the previous section will be followed in this example.

2.7.1 First order system

The first order system (G) was defined in chapter 1.3. The frequency response of Fig.
1.6 shows all required information needed from the plant for controller tuning. Using
the above specifications and the method steps, a fractional controller will be tuned.

Step 1: The system phase and phase slope found at ωgc are Φs = −84.26 deg
ms = −13.12 deg/log(ω) respectively. Note that a transfer function is not needed if
the system frequency response around the desired ωcg is available.
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Figure 2.8: System phase and phase slope at the selected crossover frequency ωcg =
10 rad/s in the plant Bode diagram.

Step 2: The opposite of that system phase slope, is m = 13.12 deg/log(ω), which
is the controller phase slope required. The phase needed to achieve the phase margin
specification at ωcg is Φc = (−(−84.26) + 60− 180) deg, Φc = −35.74 deg.

Step 3: Based on that two values, the exponent resulting from Fig. 2.7 is α =
−0.54.

Step 4: Using these values, τa is computed using Eq. (2.43), resulting τa = 8.51.

Step 5: Finally, k can be computed using Eq. (2.44), resulting k = 3.12, which
makes open loop system gain to be 0 dB at wcg = 10 rad/s.

Step 6: Therefore, controller parameters are : kp = 3.12, ka = 26.52, α = −0.54,



56 Chapter 2. Tuning approach for robust fractional order controllers

with the following transfer function:

C(s) = 3.12(1 + 8.51s−0.54) = 3.12 + 26.52s−0.54. (2.46)

Frequency and time responses of the first order system using the iso-m fractional
controller can be found at Fig. 2.9.
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Figure 2.9: Open loop Bode diagram and step feedback response of the first order
system with the fractional order controller designed using the iso-m tuning method.

Note how all specifications are fulfilled in the Bode diagram, including flat phase
around ωcg = 10 rad/s. Closed loop step responses for different system gains are
drawn in this figure, evidencing the constant overshoot (iso-damping property). Note
also the controller integrator effect due to the negative operator exponent resulting
in a null stationary error.

The exponent results negative due to the combination of plant phase and specified
phase margin. Given that the controller contribution to phase is negative, also the
exponent is.

Let’s see another example where the exponent required is positive.

2.7.2 Second order system

The second order system (G) was defined in chapter 1.3. The frequency response of
Fig. 2.10 shows all required information needed from the plant for controller tuning.
Observe how tiny is the phase for the original plant at ωcg = 10 rad/s. This will force
the exponent to be positive in order to increase its value according to the required
phase margin. Therefore, Using the above specifications and the method steps, a
fractional derivative controller will result.
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Step 1: The system phase and phase slope found at ωgc are Φs = −174.20 deg
ms = −13.52 deg/log(ω) respectively.
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Figure 2.10: System phase and phase slope at the selected crossover frequency ωcg =
10 rad/s in the plant Bode diagram.

Step 2: The opposite of that system phase slope, is m = 13.52 deg/log(ω), and
the controller phase slope required. The phase needed to achieve the phase margin
specification at ωcg is Φc = (−(−174.20) + 60− 180) deg, Φc = 54.20 deg.

Step 3: Based on that two values, the exponent resulting from Fig. 2.7 is α =
0.70.

Step 4: Using these values, τa is computed using Eq. (2.43), resulting τa = 0.96.

Step 5: Finally, k can be computed using Eq. (2.44), resulting k = 18.50, for an
open loop system gain of 0 dB at wcg = 10 rad/s.

Step 6: Therefore, controller parameters are : kp = 18.50, ka = 17.77, α = 0.70,
with the following transfer function:

C(s) = 18.50(1 + 0.96s0.70) = 18.50 + 17.77s0.70. (2.47)

Frequency and time responses of the second order system using results can be
found at Fig. 2.11.
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Figure 2.11: Open loop Bode diagram and step feedback response of the second order
system with the fractional order controller designed using the iso-m tuning method.

Note how all specifications are fulfilled in the Bode diagram, including flat phase
around ωcg = 10 rad/s. Closed loop step responses for different system gains are
drawn in this figure, evidencing the constant overshoot (iso-damping property). Ob-
serve how this time there is no integrator effect as the operator exponent is positive,
resulting in a not null stationary error. Getting an integrator is possible at the cost
of the system speed through crossover frequency reduction.

The exponent results positive due to the combination of plant phase and specified
phase margin. The system needs a positive component in order to raise the phase
value from ϕ = −174.20 deg to ϕ = −120 deg according phase margin. Another
option could be to decrease the phase margin, although it is not a good option for
this system, due to the very low value that would be needed.

Probably, a much better option for this system is to use an adaptive controller
like shown in the next chapter as one of the major contributions of the thesis.



Chapter 3

Tuning approach for adaptive
fractional order controllers

Although Robust controllers are useful in many cases, they still have limitations, no-
tably, robustness is limited to a certain operating range. Adaptive control schemes
allow these robust controllers to be adapted to plant changes, increasing their ap-
plication range, usually known as adaptive robust control. In this chapter, the new
tuning method described in Chapter 2 will be improved for its use in a wider set of
scenarios through the use of adaptive methods.

3.1 Introduction

The iso-m method robust properties are based in the application of fractional order
controllers. As discussed in chapter 1.2, the approach using a fractional order robust
controller within an adaptive scheme is known in the literature as adaptive fractional
order control.

Existing works have addressed the problem of fractional controller adaptation
in very different ways, but most current approaches are based on implicit or direct
adaptive control. However, the full potential of fractional order controllers for robust
control is not achieved in these proposals. In most cases, the controller is either not
part of the adaptation scheme, or even not a fractional order controller.

Explicit or indirect adaptive control provides a more complete approach to adap-
tive fractional order control. Using this scheme, plant system identification techniques
are used in order to obtain an updated plant model. Then, the controller is tuned
according to plant parameters and user specifications. Therefore, as they use an ac-
tual robust controller and a specification based tuning method, the full potential of
the fractional order controllers is brought to the system. The result is a combination

59
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of robust behavior for small quick plant variations, but with a controller always cor-
rectly tuned in the event of larger differences in the plant parameters thanks to the
adaptive scheme.

Among the current proposals, the only approach near to explicit adaptive strategy
is found in [38]. There, a self tuning method is used, in which the system identifica-
tion runs during initial calibration. After the adaptation period, if plant parameters
converge, the controller is tuned, which finish the adaptation and puts the system in
production status.

In this scheme, usually known as STR, the adaptation is performed just during
the initial stage, which is useful for LTI plants, but displays the same problems found
with robust controllers for LTV or NLTI plants.

This kind of uncertain plants require different techniques, like, for instance, the
continuous adaptation (CA) approach, which applies the adaptive scheme during the
whole system operation. In this case, any changes detected in the plant will update
the controller parameters according to the initial specifications.

Using this scheme, a fractional order control could be proposed for time varying
plants. The inconvenience of CA methods is that they require very fast controller
tuning methods, providing a result within a very small margin, usually less than a
sampling period.

Classic fractional tuning processes are too slow for that, several times longer than
plant time constants, and this makes the continuous adaptation approach unfeasible.

A possible solution is to use the tuning method described in Chapter 2, which is
fast enough to work in-line within the control loop. In this way, new tuning parameters
can be found for each iteration of the loop, turning the robust iso-m method into an
adaptive CA system, and expanding the suitable plants to LTV or NLTI.

The new approach described here deals with fractional controller parameter con-
tinuous adaptation, including time constants, gains and fractional exponents. The
same performance specifications defined previously for the iso-m method are used.
The result is a robust and adaptable system, able to deal with plant changes and
uncertainties at once.

The proposed fractional adaptive control scheme is basically composed of:

� Identification algorithm

� Iso-m tuning method

� Fractional order controller

Since these three items can run in a real time basis, the continuous adaptation
approach is possible, resulting in the adaptive iso-m method described next.
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3.2 Adaptive approach

As a continuous adaptive controller, the very first problem to be solved is the online
system identification. Any real time method is applicable, but it must have the
necessary features to be feasible in the adaptive control scheme.

Although model accuracy is important, algorithm speed is also significant. The
fresher system information the better controller adaptation. Moreover, as an online
identification algorithm, loop frequency could limit the speed of our system, reducing
the frequency specification range.

Therefore, recursive Least Squares (RLS) is a suitable solution, as it offers a very
fast algorithm, and a good accuracy for the required data, that is, the system phase
and its slope for the cutoff frequency.

Empirical Transfer Function Estimate (ETFE) is another possibility, but the lim-
itations are identical to those found with RLS, and its computation effort is much
higher, since it includes matrix multiplication and Fourier transforms. On the other
hand, such an implementation would have a clear advantage: a priori knowledge of
the system order would not be necessary.

Given the real time constraint, the priority is a low computation effort, therefore,
the closed loop RLS method will be used.

3.3 RLS system identification

The discrete RLS method consists of a series of sequential steps computed in a recur-
sive loop, making the identification error tend to zero and thus allowing to track the
changes in plant parameters during the execution of the algorithm.

Assuming zero delay for all the signals, a discrete domain SISO plant model can
be described by the following transfer function:

Y (z)

U(z)
= G(z) =

b1z
−1 + ..+ bnbz

−nb

1 + a1z−1 + ..+ anaz−na
=

B

A
(3.1)

which can be expressed in a compact form as:

AY (z) = BU(z) (3.2)

where A and B are polynomials in z−1 (delay operator), and Y (z) and U(z) are Z
transform signals of plant output and input respectively. Equations (3.3) and (3.4)
show the expanded polynomials with coefficients ai and bi.

A = a0z
0 + a1z

−1 + ..+ anaz
−na, (3.3)

B = b0z
0 + b1z

−1 + ..+ bnbz
−nb. (3.4)
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Note that the polynomial exponents can not be positive due to the assumption of
a deterministic environment. Putting Eqs. (3.2), (3.3) and (3.4) together:

a0Y (z)+a1z
−1Y (z)+ ..+anaz

−naY (z) = b0U(z)+b1z
−1U(z)+ ..+bnbz

−nbU(z). (3.5)

Then, finding the Z−1 transform of Eq. (3.5) together with the time shift property
Z−1[z−iY (z)] = y(t− i) and Z−1[z−iU(z)] = u(t− i), results in:

a0y(t) + a1y(t− 1) + ..+ anay(t− na) = b0u(t) + b1u(t− 1) + ..+ bnbu(t− nb), (3.6)

where y(t) is the plant output variable at time t, and u(t) is the plant input variable
at the same instant.

Usually a0 = 1 to show the current system response as a function of past inputs
and outputs, otherwise all coefficients can be divided by a0 and renamed, so a0 = 1
can be considered without any loss of generality. It is also common that plants lack
of a direct term, therefore b0 = 0 (so they are out of scope as of now). Replacing and
rearranging results in Eq. (3.7).

y(t) = −a1y(t − 1) − .. − anay(t − na) + b1u(t − 1) + .. + bnbu(t − nb), (3.7)

that can be packed in a matrix form:

y(t) = θϕ′(t− 1), (3.8)

where θ = [a1, .., ana, b1, .., bnb] is the plant parameters array, while the values in
ϕ(t − 1) = [−y(t − 1), ..,−y(t − na), u(t − 1), .., u(t − nb)] store all previous system
inputs and outputs.

Equation (3.8) represents the output prediction of the model based on past inputs
and outputs (ϕ(t− 1)), and model parameters (θ).

Recursive identification methods use Eq. (3.8) as a predictor for the next system
output, just advancing the index one position:

ŷ(t+ 1) = θ̂(t)ϕ′(t), (3.9)

therefore, a predicted system output ŷ is available for a known set of past inputs and
outputs based on the current model estimate (θ̂). Notice that the hat notation (ŷ,
θ̂) means estimated values in contrast to the real ones without any marking. A time
index (θ̂(t)) is introduced to show that θ̂ could change during identification, or if the
system is time variable. Figure 3.1 shows the basic scheme for the implementation of
the identification method.
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Figure 3.1: Block diagram of a simple RLS identifications system. The model error
(ϵ) is used by the RLS algorithm to update (dashed line) the estimated model.

The difference between predicted (ŷ) and real (y) system output is the prediction
error (ϵ), as shown in Fig. 3.1 and Eq. (3.10).

ϵ(t) = y(t)− ŷ(t) ⇒ ϵ(t+ 1) = y(t+ 1)− ŷ(t+ 1) (3.10)

When y(t+1) becomes available, this error will be used to compute θ̂(t+1), that
is an improved plant estimate while the error is reduced. Here, each identification
method uses the error in a different way. For example, in the least squares, the
squared error of all the previous identification data is considered. The algorithm is
summarized in the following equations:

θ̂(t+ 1) = θ̂(t) + F (t+ 1)ϕ(t)ϵ(t+ 1), (3.11)

F (t+ 1) = F (t)− F (t)ϕ′(t)ϕ(t)F (t)

1 + ϕ(t)F (t)ϕ′(t)
, (3.12)

ϵ(t+ 1) = y(t+ 1)− θ̂(t)ϕ′(t), (3.13)

where ϵ(t + 1) is the prediction error according to Eqs. (3.10) and (3.9), making
the algorithm a function of known input and output data ϕ(t) and the immediate
previous model estimate(θ̂(t)).

At this point, RLS method is only applicable to LTI systems, because all past
identification data is stored in the gain matrix (F ) giving naturally more weight to
the (more numerous) previous inputs over the current ones.

Therefore, some modifications are needed for LTV system identification. As will
be shown during stability analysis, the most suitable method for this case is time
variable forgetting factor, described in [27], which introduces one parameter and one
equation that shape the algorithm in order to change the impact of past identification
data. Variable forgetting factor RLS is summarized in the following revised equations:
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θ̂(t+ 1) = θ̂(t) + F (t+ 1)ϕ(t)ϵ(t+ 1), (3.14)

λ1(t)F (t+ 1) = F (t)− F (t)ϕ′(t)ϕ(t)F (t)

λ1(t) + ϕ(t)F (t)ϕ′(t)
, (3.15)

ϵ(t+ 1) = y(t+ 1)− θ̂(t)ϕ′(t), (3.16)

where λ1(t) is the forgetting factor.

For λ1(t) = 1 the basic RLS method is obtained, giving preference to past values
(more precisely to the large sets of data). In order to reduce the effect of past values
towards more current ones, forgetting factor method requires λ1(t) < 1, where the
smaller λ1(t), the greater preference for current values (stronger forgetting factor).
When λ1(t) = 0, 1/λ1(t) = ∞, F (t + 1) can not be computed, therefore the method
requires 0 < λ1(t) < 1.

Using this factor, the adaptation speed can be changed according to different ap-
proaches, from basic filters to specific functions, depending on how λ1(t) is computed.

An interesting option for continuous identification systems is to modify the adap-
tation speed based on the PE content of the input signal. In the function shown
in (3.17) λ1 decreases for uncorrelated ϕ(t) values, and the estimate parameters are
updated more often when the input signal is PE. Otherwise, λ1 increases.

λ1(t) = 1− ϕ(t)F (t)ϕ′(t)

1 + ϕ(t)F (t)ϕ′(t)
(3.17)

With this method, we can ensure that the system identification is only updated
when a sufficiently rich spectrum is available, which ensures that the estimations
converge asymptotically (see [109] and [27]) while avoiding the corruption of plant
estimates in a sustained steady state. This feature is also critical for stability analysis.

All previous identification techniques are based on the assumption that inputs
and outputs are not correlated, as in open loop configuration, but this is not true for
feedback systems, where input and output signals are combined. Therefore, further
analysis is needed when the adaptive system is to be used in a feedback configuration.

The control scheme for RLS applied in a feedback system is shown in Fig. 3.2.
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Figure 3.2:

Again, the modeling error is obtained from the difference of the current system
(y) and the model (haty) outputs.

ϵcl(t) = y(t)− ŷ(t) ⇒ ϵcl(t+ 1) = y(t+ 1)− ŷ(t+ 1). (3.18)

Therefore, the error prediction is similar to RLS, and Eq. (3.10) can be used
with a remark, a new equation that relates u and y arises from the feedback loop
(u(t) = ref(t)−y(t)). During closed loop operation, the system inputs are correlated
with the outputs, resulting in a poor PE input signal.

Åström showed in [110] how to solve the correlation problem by filtering both
signals with a filter that includes the estimation of the closed loop system poles, and
the inverse of the controller, as follows:

L =
C−1

(C−1Â+ B̂)
=

1

(Â+ CB̂)
. (3.19)

Therefore, using that filter in the inputs and outputs solves the correlation prob-
lem. Note that while Â and B̂ are the plant estimate parameters, C is the actual
controller. Since the above expression matches the feedback model poles, and these
will tend to the design poles when the error tends to zero, it is common practice to
use the design poles. In our case, the closed loop poles are not defined, but we can
find a filter based on the target open loop system response.

As shown in section 1.1, our target open loop system is a Bode’s ideal transfer func-
tion defined by crossover frequency and phase margin specifications, CG = (ωgc/s)

µ,
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the closed loop function results in:

CG

1 + CG
=

(︃
ωµ
gc

sµ + ωµ
gc

)︃
, (3.20)

where µ = (ϕm/90− 2) and the phase margin (ϕm) is given in deg.
Note that the closed loop poles are fractional too, so the filter L should also

be. Several approaches to L definition are valid here, from an integer invariant filter
approximation roughly similar to closed loop poles, to update L with each new C,
Â and B̂ obtained in tuning and plant identification. During the stability analysis
it will be shown that first option is more suitable, but the tuning method will be
described first.

3.4 Real time controller tuning

Once the plant is identified, these parameters are used for controller tuning through
the method described in chapter 2.

The controller definition used in the iso-m method has three adjustable parame-
ters, kp, ka, and α. Finding the controller parameters that meet all these constraints
is the problem to be solved for fractional robust controller tuning. In order to find
these parameters using the iso-m method, the specifications defining the performance
of the resulting system must be established.

The described method’s frequency specifications used for fractional controller tun-
ing are:

� ϕm: Phase Margin relative stability.

� ωcg: Crossover frequency system dynamics.

� Flat phase specification defined in Eq. (1.7).

The first, (ϕm), is related to stability and overshoot while the second (ωgc) specifies
the system responsiveness (rise time). To apply these specifications, Eqs. (1.8) and
(1.9) are used in chapter 2 to solve the controller parameters for a known plant.

Flat phase specification ensures that plant changes will not affect the open loop
phase margin (ϕm), therefore, the feedback response will show a constant overshoot
despite plant variations (iso-damping).

We defined RLS in the previous section with a forgetting factor as a function of
the signal PE content. This ensures that plant identification converges to a reliable
solution if the conditions are met. Therefore, an updated plant model (Ĝ) must be
available to be used in the controller tuning.
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Also, according to 2, the required information from the system model is the phase
and the slope at the specified gain crossover frequency. The plant estimate discrete
transfer function can be obtained from online identification parameters, which pro-
vides phase and slope estimates for any frequency, considering that z = eTjω. These
terms can be computed for the crossover frequency as follows. First, the phase and
magnitude of the plant can be found as:

ϕ̂G = tan

(︄
ℑ(Ĝ(eTjωgc))

ℜ(Ĝ(eTjωgc))

)︄
, (3.21a)

|Ĝ| =
√︂
ℑ(Ĝ(eTjωgc))

2
+ ℜ(Ĝ(eTjωgc))

2
, (3.21b)

then the plant slope can be computed as follows:

m̂G =
d(G(eTjωgc))

d log10 ω
. (3.22)

Once the phase and slope of the plant are obtained and the control specifications
are defined, the controller can be tuned according to the iso-m method. Thanks to the
online identification described above, the phase and slope of the plant are obtained
in a continuous basis, and a fractional controller can be tuned according to the iso-m
method for each update of the estimates of the plant parameters.

Then, using these values, the phase and slope required by the controller are ob-
tained by Eqs. (3.24) as follows:

ϕC = ϕm − ϕ̂G − 180, (3.23)

mC = −m̂G. (3.24)

Note that ϕm is known from the controller specifications.

Then, similarly to Eq. (2.42), the following Eq. (3.25)

mC =
log(10)

sin(ϕC)
α

(︃
1− tan(ϕC)

tan(απ/2)

)︃
, (3.25)

can be used to calculate the exponent (α). Although it can not be solved directly for
α, several options were previously proposed as solutions, including the plot shown in
figure 2.7, a lookup table, and the fit function.

As controller tuning needs to be done in real time, the lookup table or the fit
function are the best options for the adaptive iso-m exponent computation.
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Having α exponent and crossover frequency (ωgc), τa can be calculated using Eq.
(2.43).

τa =
1

τxωgc
α

; τx =
sin(απ/2)

tan(ϕC)
− cos(απ/2) (3.26)

Finally, controller gain is computed using Eq. (1.8), fulfilling the crossover fre-
quency specification.

k =
1

|1 + τa(jωgc)α||Ĝ|
(3.27)

Once all three parameters are found and the controller is tuned according to the
specifications, it can be used in our adaptive scheme after the identification step.
These two steps will be repeated alternatively during the continuous adaptation op-
eration.

Thanks to the robustness of the system, performance will not change for the
operating point, and thanks to the adaptability of the system, plant changes will
update the controller tuning to obtain the same specifications of the original operating
point. To have a functional adaptive system, stability must be ensured, which is
discussed in the next section.

3.5 Stability analysis

The most important part of the adaptive control applied to LTV plants is the stability
analysis. It is challenging because, even though the tuning method is known, con-
troller tune depends on identification, which is uncertain because of the time varying
nature of the plant. Therefore, re-tuning can result in an unstable system.

The immediate solution to this problem is to verify that all possible controller
tuning results are within a stability range. To ensure this, the following conditions
must be met:

� Identification error decreases asymptotically

� Plant parameter estimates (θ̂) are bounded and converge to a value

� Controller tuning method results are bounded and stabilize the system

For the first condition, Landau demonstrated in [95] that, if the a posteriori error
can be written as a filtered function of the measured error:

ϵ(t+ 1) = H[y(t+ 1)− θ̂(t)ϕ′(t)], (3.28)
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then the sufficient condition for the error to decrease asymptotically is that the ex-
pression H(z)− λ2/2 must be strictly positive real, where 1 ≤ λ2 < 2 and H(z) is
the H filter discrete transfer function.

Note that filtering the observation vector ϕ through the filter L defined at Eq.
(3.19), as described in the previous section, is equivalent to Eq. (3.28), therefore we
can choose L = H, solving both problems at once. That makes the filter update option
not feasible for L, so a static filter is the best option, since all previous conditions
can be met.

For the second stability condition, there is an additional requirement. The gain
matrix F has to be strictly positive as well, which in our case is given by the chosen
computation method for λ1, which avoids updating the gain matrix (F ) when the
input is not rich enough in frequency.

Therefore, both first and second stability conditions are granted if the filter L is
chosen correctly.

Regarding the third condition, since the tuning inputs are specifications and plant
model, both are bounded if the first two conditions are met.

As tuning is done using the iso-m method described, and knowing that plant
identification converges to reliable phase and slope data, we can check the tuning
output range to verify the final stability of the system. Figure 2.7 shows how, for any
possible phase and slope value, the exponent alpha is bounded in the interval (−2, 2),
so we can be sure that the controller parameters are all correct numbers, although it
does not mean that the resulting controller stabilizes the system.

About the final system’s stability, given the way we defined the specifications, it
will be implicitly ensured if the controller is properly tuned. Note that, since the
phase margin is among the initial specifications, once the method is implemented
correctly, we can accurately guarantee how good the system stability is, or even
change through this parameter if it is not suitable. In short, when using the iso-m
method for controller tuning, stability is not only granted, but specified.





Experimental results

Having robust and adaptive schemes completely specified, it is time to validate the
results in real platforms.

Iso-m and adaptive iso-m methods experimentation results are discussed in the
following chapters. Previously described control strategies will be used in different
platforms with varying degrees of uncertainty and non-linearity for testing and vali-
dation.

These experiments are intended to assess the performance of proposed methods
and compare the results with other control schemes. For this purpose, iso-m (robust
and adaptive variants) will be compared with diverse fractional order (FOC) and an
integer order (IOC) controllers.

First, an iso-m robust autonomous driving car experiment is discussed in Chapter
4. Next, a set of robust control experiments are shown for the case of a humanoid
robot arm in Chapter 5. Finally, robust and adaptive iso-m controllers are tested in
the soft neck control system developed in [7] and equipped with an MPU-9250 sensor
as in [8] in Chapter 6.
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Chapter 4

Experimental Results:
Autonomous car

This chapter presents and discuss the results obtained in the robust iso-m method
application to the control of a Hybrid Honda Accord 2014 autonomous vehicle shown
in the figure 4.1.

Figure 4.1: Front image of the autonomous car proposed as a test platform, showing
front sensors.

The sensors available for control applications mounted in the car are:

� Five RADAR, three front and two back.

� Five LIDAR, two front and three back.

73
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� Two RBG 2D cameras at front.

� One GNSS, with its antenna on top.

The locations of these sensors are shown in Figs. 4.1 and 4.2.

Figure 4.2: Back image of the autonomous car, showing back sensors.

Among the control applications in ground transport, usually known as advanced
driving assistance systems (ADAS), we can find the adaptive cruise control (ACC).
This application deals with the throttle and brake pedals management in order to
maintain a constant velocity while keeping a safety distance to next vehicle.

This ACC functionality must ensure that, in the event of a detected object in the
driving direction, the speed will be reduced in order to maintain a safe distance at all
times as shown in Fig. 4.3. See [111] for a survey on different ACC systems.

Figure 4.3: String of ACC-controlled vehicles.

This spacing, applied to all vehicles on the road, may provide additional safety
and reduce emissions, as stated in [112]. Nevertheless, current ACC applications
are still only available as a comfort feature for high-end vehicles, probably due to the
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expensive control equipment required in order to avoid known issues. Therefore, their
impact on overall safety and pollution is very low, as shown in [113]. A cheap, robust
control ACC application may help in the widespread adoption of these systems.

4.1 Current approaches

As seen in Chapter 1, many industrial control systems use standard PID controllers.
ACC proposals are not the exception, and available systems are normally based on
PD or PI controllers. Although these first systems show a correct performance (see
[114], [115] and [116]), recent studies as [57] have demonstrated that production
systems still exhibit some performance limitations when coping with all ACC control
requirements. Therefore, more advanced control structures are needed to deal with
the increasing demanding specifications.

For example, approaches like the Model Predictive Control (MPC) described in
[117], which improves the car-following performance, or theH∞ robust control applied
in [118], have been used to mitigate the effects of the plant uncertain dynamics.

A major shortcoming of these methods is the added complexity, which requires
non-standard equipment, resulting in a fundamental issue when considering real-world
platform applications. As shown before, fractional order controllers are an excellent
solution to these issues, allowing a simple but powerful control design.

In the field of intelligent transport systems (ITS), the fractional order control has
been applied to both lateral and longitudinal motion problems of autonomous vehicle
control. For example, in [58] a FOPID algorithm is presented for lateral control in
parking maneuvers, and in [119], the speed of the vehicle is used to compute the
order of a fractional controller. Regarding vehicle longitudinal speed control, a FOPI
controller is proposed in [60] for the cruise control system in gas powered vehicles, and
later, Hosseinnia et al. implemented a hybrid fractional controller in [61] for cruise
control at low speeds.

In this chapter, the fractional order iso-m control design methodology described
in Chapter 2 is applied to the ACC control of the autonomous vehicle as in [3]. The
plant considered, and the control scheme implemented is described next.

4.2 Plant model

The proposed ACC scheme is shown in Fig. 4.4. It is composed of two main blocks,
the fractional order controller and the set of actuators and low-level control systems.
Therefore, robust control is applied in the high level system, considering the other
low level systems as a compact block.

This high level control is designed to regulate the distance to the preceding vehicle.
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Figure 4.4: ACC proposed control scheme.

A more detailed diagram of the loop shown in Fig. 4.4 is provided in Fig. 4.5.
Note that indices are used in the figure to differentiate between cars, where i ∈ [1, N ]
is the currently considered car index, being N the vehicle string size, as in Fig. 4.3.

Figure 4.5: High level control loop.

The system acting on the throttle and brake is considered as Gpi(s). This sub-
system has its own loop and performance specification, and is designed to deliver the
reference acceleration required by the top layer. Therefore, changes in the speed and
position of the vehicle depend on its performance. At the high level, the desired dis-
tance is obtained through a feedback loop with a reference established by the spacing
policy, which in our case is a constant time gap as in [120].

The constant time gap technique consists of calculating the required distance as
the product of the vehicle speed (position time derivative) by a time gap h, adding
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a minimum safety distance, resulting in the expression Hi(s) = hs+ 1. The benefits
of this approach are a greater loop stability, thanks to the addition of a zero in the
feedback loop, and a closer resemblance to the usual ways of a human driver.

The difference between the measured and the desired gap is the spacing error ei(s),
which is fed to the controller Ci(s) producing a high-level control action ui(t) based
on this error. The control signal then corrects the longitudinal speed of the vehicle
by means of the acceleration set by the low level control loop Gpi(s). Note that
this block is made up of subsystems and loops needed to control vehicle acceleration,
therefore the input and output signals must be the same (DC gain of 1) after the
transient period. Find a more detailed description of this block below.

4.3 Low level control layer

The acceleration tracking block Gpi(s) design specifications are the following:

� Acceleration reference precision tracking.

� Robustness to changing road conditions.

The low level control layer loop must fulfill these specifications in order to allow
the high level layer to perform correctly. In order to design the control loop, the
following vehicle longitudinal acceleration ai(t) model is used:

Mvai(t) =
τth,i(t)− τbr,i(t)

rw
− Fa(xi̇ (t))− Fg(θr)− Fr(θr, µ), (4.1)

where Mv is the vehicle mass, rw the wheel radius, θr is road steepness, and µ is the
friction. Motor and brake torques, are, respectively τth,i(t) and τbr,i(t), see [121] for
a detailed discussion on this model. Disturbances are produced by the aerodynamic
resistance Fa, the gravitational force Fg and the rolling resistance force Fr.

The low level layer should track the reference acceleration using the throttle and
brake system torques, τth,i(t) and τbr,i(t). An extensive set of tests were conducted in
open loop configuration on the Honda Accord for dynamic modeling. Mapping the
effects of control signals on acceleration as a function of the vehicle speed allows robust
control of the throttle or brake pedals required to apply the desired acceleration using
the current measured speed. The structure of this low level control layer is shown in
Fig. 4.6.
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Figure 4.6: Low level control layer block diagram (Gpi(s))

Coming from the high level control loop, the required acceleration ui(t) enters
the block Gpi(s) through the controller Cll,i(s), which grants a low sensitivity for
the disturbances. Although this controller is a good candidate for robust control
techniques, its design is left out of this work to be treated in future developments.

The Cll,i(s) controller output is the control signal aref (t). This reference, combined
with the current speed measurement, is used to decide the necessary action to achieve
the required acceleration. This is done by means of the previously discussed mapping,
resulting in the desired throttle (uth,i) or brake (ubr,i) command levels that are applied
to the vehicle.

These maps are designed to provide the low-level control block with unitary DC
gain, and are specific to the vehicle being mapped, in this case the Hybrid Honda
Accord 2014. The specific torque commands obtained by mapping are introduced into
the propulsion and brake systems, which provide the necessary torques to accelerate
the vehicle as required by the high-level loop. These systems are shown in Fig. 4.6 as
the throttle and brake transfer functions Gth,i(s) and Gbr,i(s), defined by the following
functions:

Gth,i(s) =
τth,i
uth,i

=
Kth

s/ωth + 1
;

Gbr,i(s) =
τbr,i
ubr,i

=
Kbrω

2
br

s2 + 2ξbrωbrs+ ω2
br

;

(4.2)

The last two blocks in Fig. 4.6 represent the vehicle dynamics defined in Eq. (4.1).
Disturbances Fa and Fr are speed related, and therefore, they have been considered
previously in the mapping. Their effects are included in the vehicle dynamics block.
However, the disturbance Fg is caused by changes in vehicle mass and road slope,
which are uncertain at the controller design time. Given their low frequency, they
can be modeled by a DC gain parameter ∆. Therefore, the last block shown as ∆ in
Fig. 4.6 represents Fg and other uncertain plant disturbances.
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In order to find a dynamic model for the low level loop, a test profile, especially
designed for modeling and analysis, was performed to obtain the real system response.
The results are shown in Fig. 4.7, where correct stabilization times are found after
positive (throttle) and negative (brake) acceleration targets. This is important for the
closed loop stability, and prove that the maps used in this case are working correctly.
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Figure 4.7: Acceleration (top) and speed (bottom) modeling profiles and system
responses used in the empirical model of low level block Gpi(s)

The data captured from this profile response was used to find an empirical model
for the low level control dynamics through system identification Gpi(s) = Ai(s)/Ui(s),
resulting in:

Gpi(s) =
Ai(s)

Ui(s)
=

∆ · 4.51
s+ 3.717

, (4.3)

where ∆ represents the possible DC gain disturbances of the plant. Considering a
default value of ∆ = 1, the resulting frequency and time responses are shown in Fig.
4.8.
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Figure 4.8: Bode diagram of the open loop system Gpi(s)

Note how the low level loop DC gain is not unitary as it should, probably due
to unmodeled dynamics, leading to small inaccuracies in the speed tracking results.
This error can be considered within the DC gain disturbances of the low level loop,
modeled by ∆ parameter in Eq. (4.3).

Once the low level Gpi(s) loop layout has been found, the plant considered for the
robust control inside the high level loop can be defined. The high level loop shown
at Fig. 4.5 has the following open loop expression:

Li(s) = Ci(s)Gpfi(s)Hi(s), (4.4)

where Gpfi(s) = Gpi(s)/s
2 corresponding to the dashed line block in that figure.

The purpose of the high level Ci(s) robust controller design is robustness to these
uncertainties, as well as other specifications, such as stability or response bandwidth
requirements. The desired frequency response shape for this high level loop is a high
gain at low frequencies, stable response at medium frequencies, and low gain at high
frequencies granting noise rejection, as described in [122].

The transfer function Hi(s) is a problem in the robust design, because changes
in the gap policy will change the plant response, affecting robustness. In addition,
the Bode’s ideal function based robust scheme, requires the feedback to be unitary.
In order to solve these problems, Hi(s) function is introduced as a pole in the Ci

controller, resulting in:

Ci(s) =
FOPD(s)

Hi(s)
, (4.5)

where FOPD(s) is the fractional order controller proposed.
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The result of the feedback control shown at Fig. 4.5 in that case is:

Fi(s) =

FOPD(s)
Hi(s)

Gpfi(s)

1 + FOPD(s)Gpfi(s)
, (4.6)

or, rearranging in order to have a unitary feedback loop:

Fi(s)Hi(s) =
FOPD(s)Gpfi(s)

1 + FOPD(s)Gpfi(s)
, (4.7)

As we can not get Fi(s) to be robust, but we can get Fi(s)Hi(s), we will adjust
the controller for that system. Then, to get a robust behavior in the high level loop,
it is enough filter the input using Hi(s) transfer function.

Therefore, the robust control design for the loop in Fig. 4.5 proposed is based on
the unitary feedback of the loop defined by Lri(s) = FOPD(s)Gpfi(s). The plant
model used in the iso-m tuning method is then:

Gpfi(s) =
∆ · 4.51
s+ 3.717

· 1

s2
. (4.8)

Frequency response of this model is shown at Fig. 4.9
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4.4 Fractional order controller

Once the plant model is defined, specifications ωgc and ϕm must be selected for iso-
m tuning. Some overshoot will help to compare the responses in order to evaluate
the robustness. According Fig. 1.2, the phase margin required for a damping factor
of ξ = 0.5 is 50 deg, enough for an acceptable overshoot. A closed loop system
bandwidth of 1 rad/s or higher is required to grant a fast response. Using Fig. 1.2,
and Fig. 4.9 it is checked that the closed loop bandwidth will be higher than ωgc,
therefore, a value of 1 rad/s is valid. As a summary, the specifications chosen are:

� ωgc = 1 rad/s

� ϕm = 50 deg

Therefore, the considered open loop transfer function is Lri(s) = (kp + kas
α)Gpfi(s)

as discussed above. The term Hi(s) is not considered for controller design, but in-
cluded after solving the parameters kp, ka, and α as the pole 1/Hi(s).

Controller tuning according iso-m method is described next.
Given the plant description and the Fig. 4.9 Bode diagram, the phase slope at

the gain crossover frequency is ms = −33 deg/log(ω), and the phase ϕs = −195 deg.
As flat phase is granted using iso-m method, just the following steps are needed for
the robust controller tuning:

Step 1: Plant phase slope and phase are ms = −33 deg/ log10(ω) and ϕs =
−195 deg respectively at ωgc = 1 rad/s, as found through Eq. (4.3) or Fig. 4.9.

Step 2: Plant’s opposite phase slope is used as controller phase slope, resulting
m = 33 deg/log10(ω). Also, the controller phase required to achieve the phase margin
specification at ωgc is ϕc = (−(−195) + 50− 180) deg, ϕc = 65 deg. Therefore, using
Fig. 2.7 an exponent α = 0.91 is found.

Step 3: From these results, τa value is found through Eq. (2.43), resulting
τa = 2.964.

Step 4: Finally, k is found using Eq. (2.44), which results in k = 0.2607, making
the open loop system gain to be 0 dB at wcg = 1 rad/s.

Step 5: Resulting controller parameters are:

kp ka α
0.2607 0.7741 0.91

Table 4.1: Iso-m FOPD controller parameters for the autonomous car.

Given the positive exponent, we can say it is a fractional proportional derivative
controller (FOPD), with a transfer function as follows:

FOPDi(s) = 0.2607(1 + 2.964s0.91) = 0.2607 + 0.7741s0.91 (4.9)
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Based on that, the resulting controller is:

Ci(s) = 0.2607
(1 + 2.94s0.91)

hs+ 1
=

0.2607 + 0.7741s0.91

hs+ 1
. (4.10)

The frequency response of the Lri(s) open loop using this controller is shown in
Fig. 4.10.
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Figure 4.10: Frequency (left) and time (right) responses using FOPD controller tuned
with iso-m method.

Observe how fulfilled phase and frequency specifications are shown, presenting a
flat phase slope around the crossover frequency, and how step response overshoot is
preserved despite the different system gains (iso-damping).

4.5 Integer order controller

The performance obtained with the robust controller will be compared with an integer
order PD controller (IOPD), designed with the same phase margin and crossover
frequency specifications. The obtained IOPD controller results PDi(s) = 0.373 +
0.7662s.

The open loop response of the system using this controller is shown at Fig. 4.11.
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Figure 4.11: Frequency (left) and time (right) responses using IOPD controller.

Now the specifications are not completely fulfilled, presenting a certain phase slope
around the crossover frequency. Therefore, step response overshoot is not the same
for the different system gains.

The reason for this difference is that integer controller is unable to meet the
robustness requirements, as shown in Fig. 4.12. The IOPD (blue line) and the FOPD
(red line) fulfill the phase margin and crossover frequency requirements, but only the
later shows a flat phase at the crossover frequency.
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Figure 4.12: Frequency response comparison of the IOPD and FOPD controllers.
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4.6 Simulation results

A simulation including plant gain variations was carried out to analyze the perfor-
mance of the controller. The system responses are shown in Figure 4.13 for the
proposed controller and the plant model. Observe how the performance is greatly
improved, showing a constant overshoot in the interdistance plot (bottom).
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Figure 4.13: Simulation results including plant DC gain variations. Plots of leader
and controlled vehicles with index 2, 3 and 4 (black, blue, red and green lines, respec-
tively).

This simulation shows the analysis of a 4 vehicle chain. The first vehicle is com-
manded to follow an acceleration profile (in black), while the followers are tracking
the leader using the designed ACC controller with a time gap of h = 1.5s. The
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graph on the top shows the speed of all vehicles, the middle shows the evolution of
the spacing error and the bottom figure presents the distances between vehicles. The
vehicles in the chain are set with different DC gain disturbances, where the index 1,
2, 3 and 4 vehicles are set with ∆ = [1.0, 0.76, 1.1, 1.3], respectively.

Speed changes introduced by the leader are correctly followed by the entire chain,
according the desired policy of constant time gaps. It is important to note the iso-
damping property achieved, resulting in the same stability and overshoot of closed
loop response for all vehicles despite the different DC gains. This robustness feature
is highly desirable for automated vehicle tracking systems, since a difference in road
slope, vehicle mass, or powertrain dynamics can produce unwanted results.

Another simulation showing the response comparison for the case of a vehicle in
the string equipped with either the IOPD (blue line) or the FOPD (red line) controller
is provided in Fig. 4.14.
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Figure 4.14: Comparison showing the last vehicle (index 4) ACC-control response in
the cases of IOPD (blue line) and FOPD (red line) controllers.

The leader vehicle follows the same speed profile presented in Fig. 4.13, and the
graphs shows speed (top) and distance error (bottom). A slightly higher overshoot
can be observed for the IOPD vehicle, due to the gain change produced by the Delta
disturbance. Using the fractional order controller instead of the IOPD, not only the
spacing error is more stable, but the absolute error is reduced by 17%. This feature is
especially useful when dealing with heterogeneous dynamics chains. The iso-damping
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property would play a key role to ensure a consistent tracking performance of the
different vehicles ACCs.

4.7 Experiment description

The controller designed using the iso-m method was approximated with a six (integer)
order transfer function. It was later discretized using Tustin’s method with a 0.05s
sampling period in order to transfer to the vehicle’s real time computer. The discrete
high-level controller transfer function results in:

Ci(z) =
0.3621z6 − 1.193z5 + 1.087z4 + 0.4256z3 − 1.301z2 + 0.7669z − 0.1482

z6 − 3.53z5 + 3.937z4 − 0.2446z3 − 2.575z2 + 1.788z − 0.3746
(4.11)

This controller was set on the Hybrid Honda Accord 2014 platform in Fig. 4.1 and
evaluated on a highway scenario. The target vehicle was tracked using front radar,
and the time gap set to h = 1.5s.

4.8 Results

The preceding (leading) and subject (following) vehicle measured speeds are shown
in Fig. 4.15. Observe how the controlled vehicle tracks the speed oscillations with
a good accuracy. In addition, the speed changes are tracked without amplification,
showing the controller’s capacity to provide stable tracking of the chain’s next vehicle.
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Figure 4.15: Preceding (leading) and controlled (following) vehicle speeds

According to the 1.5s time gap spacing policy, the distance to preceding vehicle
must evolve proportionally to the subject vehicle’s speed. The experiment measured
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spacing gap is plotted at Fig. 4.16, showing a correct evolution compared to the Fig.
4.15.
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Figure 4.16: Measured distance towards preceding vehicle

The spacing error through the experiment is shown in Fig. 4.17. Note the absolute
value lower than 1.8m and under 1.8m most of the time.

60 70 80 90 100 110 120 130

Time (s)

-2

-1

0

1

2

S
p
ac

in
g
 e

rr
o
r 

(m
)

Figure 4.17: Spacing gap error used for feedback control

These results show the proposed control method potential to grant a safe and
stable tracking ACC system, even at highway speeds and despite possible changes in
road slope or other disturbances affecting the low-level system gain.

It is important to note that the experimental results obtained are coherent with
the previously presented simulation results, in terms of speed propagation and spacing
error magnitudes. This confirms the feasibility of the approach and its benefits added
to real-world applications.



Chapter 5

Experimental Results: Humanoid
robot TEO

The second platform considered is the elbow joint of TEO, a full-size humanoid robot
developed by the Robotics Lab team of Carlos III University of Madrid [108], shown
in Fig. 5.1.

Figure 5.1: Humanoid robot TEO. Control system (yellow) and applied masses (blue).

89
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It is an improved version of its predecessor RH1. TEO (RH2) has six joints on
each limb, making a total of 24 DOF for all four limbs. The joints for the trunk and
head pitch-yaw add four DOF, resulting in a combined 28 DOF robot.

The system to be controlled will be the forearm (see Fig. 5.1). Since the other
joints are kept static, the system can be modeled as a solid of 8 cm diameter and
20 cm length, rotating around the joint axis.

During this experiment, several integer and fractional controllers will be tested
and compared to validate the proposed control methods.

5.1 Similar approaches

Many works have addressed similar problems using fractional order controllers. A
significant number of papers, especially when motion control is involved, focus on the
derivative controller. This scheme considers the position sensor as an integrator that
enables the cancellation of steady state errors while simplifying the controller to a
PD. For example, in [52] Dorcak proposed this scheme, and later, in [35], a FOPD
controller was used for the first time for the control of a DC motor. This approach
is also proposed in [123] and [63], and has been successfully applied in the field of
robotics. For example, in [36] this strategy was applied for a robot joint control, and
in [64] for the control of a legged robot.

5.2 Plant model

A plant model is required for the design and simulation of the controller. The joints
of the robot, including the elbow, are made up of a driver-motor-gear system:

� Driver: Technosoft iPOS3604 MX-CAN; 400 W, 12-50 Volt, 8 Amp (intelligent
motor driver).

� Motor: Maxon EC 45; flat 42.8 mm, brushless, 70 Watt.

� Gear: Harmonic Drive� (of different ratios).

Since the motor velocity is managed through the iPOS3604 intelligent driver,
featuring a micro-controller with an existing motion profile, the velocity response
of the joint is different from a standard DC motor. The existing velocity profile
was trapezoidal, as shown in Fig. 5.2, which means that the speed change is made
through a ramp (therefore trapezoidal), allowing only two possible acceleration values
(currently ±10 deg/s2), with a software limited velocity (saturation at 24 deg/s). The
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benefit of this profile is a good balance of current input, but it makes the plant
nonlinear and makes modeling more difficult.
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Figure 5.2: Velocity system response to a sinusoidal input, showing constant acceler-
ation and saturation at 24 deg/s. Although the frequency is the same for the input
and the output, their wave forms are different.

The model that best fits the described behavior is shown in Fig. 5.3 and is based
on a constant acceleration constraint.

Figure 5.3: Block diagram of the system. Left to right: Input, Difference, Sign, Gain,
Integrator, Saturation, Output.

The sign block makes linear modeling not possible. Therefore, an approximation
model will be used. The proposed alternative is a unit feedback system with a gain
and an integrator, with a closed loop transfer function G(s) = 1/(0.1s+ 1), similar
to the plant described in Fig. 5.3, with saturation and sign blocks removed.

Therefore, as long as the operation stays below the saturation levels of this model,
the approximation will be valid for design and simulation. To check the model, a
unitary step was introduced in the linear and non-linear models using a simulation
tool (scilab xcos), resulting in the plot shown in Fig. 5.4. Given the similarity of the
response curves (97.4%), the use of the linear model for controller design purposes
may be acceptable.
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Figure 5.4: Response to a feedback unit step in deg/s showing the difference between
linearized and nonlinear models.

Although there is obviously a difference between the two systems, it will be ne-
glected given the robustness properties of the proposed control schemes. It is assumed
that the differences between the model and the plant will not be significant for control
tasks, as will be proven in the experimental results section.

Therefore, the motor will be modeled as a first order system, with velocity input
and joint velocity output. The plant gain is one because the motor is commanded from
the intelligent driver, where all ratios, (including gear ratio) are already considered,
making velocity targets to be expressed in joint units.

If the encoder signal is used for the control loop, the angular position must be
considered as the system output. In this case, if the target velocity is used as the
system input, an integrator must be considered in the transfer function, resulting in
Eq. (5.1).

G(s) =
1

(0.1s+ 1)s
(5.1)

The frequency response of the plant model is shown in Fig. 5.5, where a phase
margin of ϕm = 84.3 deg and a gain crossover frequency of ωc = 0.995 rad/s can be
observed.
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Figure 5.5: Bode diagram for the system model with transfer function in Eq. (5.1).

Given the actuator described, the plant model for TEO’s elbow joint, considering
the same velocity input and joint position output, is similar to the described system,
but presents a changing gain, due to the inertial properties and the effects of gravity.

During the experiments, different payloads will be attached to the robot’s hand,
in order to verify the robustness properties of each controller. The time response for
each method will be studied in order to analyze the robustness of the system to mass
changes. Also, to include the effects of gravity, the input reference will be a negative
step moving the arm down. In this way, the system performance in the presence of
modeling uncertainties will be tested.

The proposed controllers are FOPD and FOPI. Both can be defined by the same
equation as follows:

C(s) = kp + kas
α, (5.2)

since the derivative fractional order α can have negative values. The parameter kp is
the proportional gain and ka is the derivative/integral gain.
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The control specifications to meet are defined in Eqs. (1.8), (1.9), and (1.7). The
first two specifications define performance in the usual sense of stability (overshoot)
and responsiveness (peak time), and the third gives robustness to:

� Plant gain changes

� Model uncertainties

The gain of the plant is mainly affected by its payload, as demonstrated in [124].
Therefore, meeting the third specification will make the system robust to payload
changes.

The gain crossover frequency should be lower than the plant cutoff frequency to
avoid saturation, but there is no reason to use a lower frequency. Then, the maximum
available ωgc = 1 rad/s is specified.

The plant phase margin at that frequency is 84.3 deg, therefore, the plant phase
is Φs = −95.7 deg. The derivative controller specifications must be above this phase
margin, since they add phase to the final system, and in the same way, the inte-
gral controllers specifications must be below that margin. Therefore, the following
specifications are considered:

� FOPD: ϕm = 110 deg

� FOPI: ϕm = 70 deg

Given these specifications, the controller tuning is done using three different meth-
ods to compare.

5.3 Monje’s fractional order controller

The first method considered is the one described in [31]. According to the Monje’s
method, the following specifications will be used:

1. Phase margin ϕm at crossover frequency ωc:

� |C(jωc)G(jωc)|dB = 0 dB

� arg (C(jωc)G(jωc)) = −π + ϕm

2. Plant gain changes robustness:

�

(︂
d(argF (s)

dω

)︂
ω=ωc

= 0, F(s) being the open loop system.
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Using numerical methods like [125] and [126], a solution was obtained that met
the above constraints for the following controller parameters: kp = 0.463, τd = 0.621,
µ = 0.495. The Bode diagram of the open loop system with this controller and the
step response are shown in Fig. 5.6, where the specifications are clearly met. It can
be verified that the phase slope is flat at the selected frequency (ωc = 1 rad/s), and
that ϕm = 110 deg.
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Figure 5.6: Frequency and step responses for the FOPD based on Monje’s method.

Notice how the specifications are met in terms of phase margin and crossover
frequency.

5.4 Artificial Bee Colony (ABC) algorithm

Using the ABC algorithm as in [44], with the following parameters:

� employed: 50,

� onlookers: 50,

� iterations: 100,

� acceleration coefficient upper bound: 1,

the following controller parameters were found: kp = 0.009, τd = 0.996, µ = 0.99.
The results are shown in Fig. 5.7.
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Figure 5.7: Frequency and step responses for the FOPD controller based on the ABC
algorithm.

Note how the specification of the gain crossover frequency ωc = 1 rad/s is achieved,
but with ϕm = 175 deg, much higher than desired. It is a common problem in
optimization methods, while one of the specifications is met, the other gets stuck at
local minima.

5.5 Fractional order controller based on the iso-m

method

Given that the flat phase specification in Eq. (1.7) is granted automatically using the
iso-m method, which provides robustness to parameter variations, just the following
steps are to be taken:

Step 1: The plant phase slope at ωgc = 1 rad/s is ms = −12.94 deg/ log10(ω),
and the phase is Φs = −95.7 deg, as found through Eq. (5.1) or in the frequency
response shown in Fig. 5.5.

Step 2: The controller phase slope is then m = 12.94 deg/log10(ω), which is the
opposite of the plant, and the controller phase required to achieving the specification
of the phase margin at ωgc is ϕc = (−(−95.7) + 110 − 180) deg, ϕc = 25.7 deg.
Therefore, using Fig. 2.7 we find an exponent α = 0.49.

Step 3: According to these values, τa value is found using Eq. (2.43), resulting
in τa = 1.31.

Step 4: Finally, k can be computed using Eq. (2.44), resulting in k = 0.4671,
which makes the open loop system gain to be 0 dB at wcg = 3 rad/s.

Step 5: The resulting controller parameters are:
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kp ka α
0.4671 0.6120 0.49

Table 5.1: Iso-m FOPD controller parameters for the elbow of TEO.

Given the positive exponent, we can say it is a fractional proportional derivative
controller (FOPD), with the following transfer function:

C(s) = 0.4671(1 + 1.31s0.49) = 0.4671 + 0.6120s0.49 (5.3)

The resulting Bode diagram is shown in Fig. 5.8. A flat slope is observed at the
specified frequency, as well as a crossover frequency according to the requirements.
The step response of the controlled system is also shown on the right side of figure.
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Figure 5.8: Bode diagram (left) and step response (right) for the FOPD controller
based on the iso-m method.

5.6 Experiment description

Once the different controllers have been tuned, they will be implemented and tested
in the real platform, and the results will be discussed.

For the controller implementation, an integer order approximation for sα, based
on an iterative algorithm described in [127], will be used for each exponent. Then,
the transfer function for sα will be discretized, using Tustin’s method with a sampling
period of ts = 0.01.

During the experiment, the robot is standing with all joints blocked, except the
fourth joint of the right arm, which will receive a −30 deg step input starting from the
position of 60 deg. The arm will move following a downward trajectory, going through
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the worst case of uncertainty, since the gravity force is opposite to the control effort.
Different masses will be attached to the tip to test the robustness of each controller.
The masses will vary from 0 kg to 2 kg in steps of 500 g, which gives a forearm weight
variation of 64.5%, since its total weight is 3.1015 kg

5.7 Results

The same performance and robustness specifications have been set for all controllers,
but not all specifications were met for the ABC controller. Therefore, a clear advan-
tage of the fractional order controllers obtained using the iso-m and Monje’s method
is observed in Fig. 5.9, where the system performances are shown for the case of no
load at the tip.

0 20102 4 6 8 12 14 16 18

40

60

30

50

25

35

45

55

t[s]

p
o
s
[d
e
g
]

ABC

Monje

isow

0 20102 4 6 8 12 14 16 18

0

200

100

150

50

t[s]

p
o
s
[d
e
g
]

ABC

Monje

isow

Figure 5.9: Comparison in the case of zero payload for all controllers, showing time
response (top), and control signal (bottom). Step input of −30 deg.

The robustness of the different controllers is shown in Fig. 5.10. Note that the
response is invariant for Monje’s and iso-m methods despite the different loads at
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the tip, starting with 500 g and reaching 2000 g. Again, the results are worse for the
ABC-based control system, since the phase is not flat around ωgc.
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Figure 5.10: Comparison of the responses of all controllers for different masses at
the tip. Step input of −30 deg. Iso-m (top), Monje’s (middle) and ABC (bottom)
methods.
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Regarding performance, both iso-m and Monje’s methods show very similar re-
sults, the former showing a slightly faster response. The results of the ABC method
are worse, presenting a very high settling time (800 s). The steady state error is zero
for Monje’s and iso-m control systems. The ABC controller should cancel the error
as well, but the system is too slow. Table 5.2 shows detailed performance data for
each method from Fig 5.10.

Method Overshoot Rise t. s Sett. t. s ∆O
Monje’s 0 4.94 6.35 0
iso-m 0 4.64 5.83 0
ABC 0 ≥ 20 ≥ 20 -

Table 5.2: Performance comparison results including overshoot variation (∆O) for
TEO robot

5.8 Fractional order controller after joint replace-

ment

After the first set of experiments, during some maintenance works, the elbow motors
and other parts were replaced, making it necessary to obtain a new plant model. A
frequency identification was performed on the real system, and then the result was
approximated by Levy’s method for complex curve fitting [127]. The result is shown
in Eq. (5.4).

G(s) =
1

s+ 1.25
(5.4)

Based on this approximation, the Bode plot shown in Fig. 5.11 was obtained.
The original frequency response of the system is also shown in the figure.
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Figure 5.11: Frequency system identification results. Bode diagrams of the measured
system (left) and approximate model (right).

Therefore, a first order system was approximated using Levy’s method, and con-
sidering the encoder output (additional pole at the origin), the resulting model is
shown in Eq. (5.5). This new model will be used for the FOPI controller tuning.

G(s) =
1

(s+ 1.25)s
(5.5)
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Figure 5.12: Bode diagram for the new system model with transfer function in (5.5)
(left) and unitary feedback step response in deg (right).

Using the model in Eq. (5.5), a fractional FOPI controller was tuned and tested
on the real robot.
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Comparison with the results presented in the previous sections is not possible be-
cause the plant models are different; therefore, more convenient control specifications
have been used:

� ωc = 0.5 rad/s

� ϕm = 35 deg

Note the very low phase margin that is needed in order to make the controller
FOPI (i.e. negative exponent). This is the reason why FOPD is preferred for this
type of plants that include an integrator. Now, we will apply the iso-m method to
tune the controller.

Given the system slope of −45 deg/ log10(ω) found in the Bode diagram of the
system in Fig. 5.12 and according to Fig. 2.7, clearly α = −0.858. Then, using Eq.
(2.43), a value of τa = 0.5517 is found.

Finally, k = 0.43385 is computed using (2.44), making the magnitude 0 dB at
ωgc = 0.5 rad/s. Therefore, the result is the following:

C(s) = 0.43385(1 + 0.5517s−0.858) = 0.43385 + 0.2394s−0.858 (5.6)

The resulting open loop Bode diagram and unitary feedback step response are
shown in Fig. 5.13. A null slope is observed at the specified frequency, as well as a
gain crossover frequency according to the requirements.
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Figure 5.13: Bode diagram and step response for FOPI controller based on the
counter-slope method.

The defined controller was tested on the robot arm. A setup similar to the other
experiments was used for the FOPI. A downward trajectory was used, starting at
50 deg with a target of 40 deg.
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In Fig. 5.14 a robust response is shown despite the different masses. Notice how
the overshoot is invariant for variable loads at the tip, starting with 0 g and reaching
2000 g.
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Figure 5.14: Comparison of the time responses of the FOPI controller for different
masses at the tip. Step input of −10 deg.

Table 5.3 shows the performance results data for the FOPI experiment.

Method Overshoot Rise t. s Sett. t. s ∆O
iso-m (FOPI) 0.45 5.85 16.6 0

Table 5.3: FOPI performance data including overshoot variation (∆O) for TEO robot





Chapter 6

Experimental results: Soft robotic
neck

Another platform considered in this thesis is the bio-inspired robotic soft neck devel-
oped in the works of [7] and [9]. Given the non-linear and variable properties of this
platform, it provides an excellent test bench for this type of controllers.

Some current modeling and control approaches are discussed below.

6.1 Current soft robotic designs

Soft robotics is an emergent field showing non-linearity problems that need to be
solved. Trying to address these new non-linearity problems, soft robots have received
a lot of attention in the recent years.

Some efforts are devoted to improving soft material models to allow a better
understanding of soft robotics systems, for example as in [128] where three charac-
terizations (Ecoflex 00-30, Mold Max 14NV, and Smooth-Sil 950) are provided for
different soft robotics materials.

At the same time, in the field of robot modeling, new proposals have been studied,
such as [129], modeling a soft robotics gripper for different actuation valves and
pressures, or the soft neck model proposed in [65], where a two tendon actuator
system was used to tilt a soft material in a single direction.

Regarding control, model accuracy is less important than feasibility in a control
scheme. As discussed above, a simple system identification algorithm may be pre-
ferred for control due to convergence and stability properties. For example, in [130]
a characterization of the frequency response of a self healing material pouch actuator
is used for PID controller tuning, using a dual control scheme where compression and
relaxation are treated separately with a different controller each, and in [131] a simple
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feed-forward compensation rule following a friction model inverse is enough to control
tension in a wearable robot.

However, more advanced control schemes have also been used in soft robotics, for
example, in [132] a neural network is trained using finite element simulations, and
later used to control a multi-segment soft tentacle robot made of a Nitinol needle
inside a Helmholtz coil, or the embodied intelligence proposal from [133] where the
robot shape is exploited for kinematic resolution in a bio-inspired octopus robotic
arm. For a reference on other older soft robotics proposals and solutions, find a
survey in [134].

In this chapter, the two novel controllers will be used to control the soft neck
prototype based on the works in [7], showing how these type of systems can be
controlled using robust and adaptive fractional controllers.

The system to be controlled is the robotic soft neck shown in Fig. 6.1. The
purpose of the neck is to tilt any system such as cameras and sensors mounted on the
humanoid’s head to arbitrary orientations. This design features a central soft link,
which acts as a spine, and a parallel cable driven mechanism (CDPM), which acts as
tendon actuators. The three tendons are configured to bend the central link, causing
the upper platform to reach different inclinations and orientations within a range.

Its main components, shown in Fig. 6.1 are:

1. Base.

2. Moving platform.

3. Soft link.

4. Tendons.

5. Actuators.

6. Tilt sensor.

Each of the three actuators located on the base consist of:

� Driver: Technosoft iPOS4808 MX-CAN; 400 W, 12-50 Volt, 8 Amp (intelligent
motor driver).

� Motor: Maxon RE 16, 16 mm, Graphite Brushes, 4.5 Watt.

� Gear: Maxon planetary gear head GP16A (24 : 1).

� Encoder: Maxon MR Type M, 128–512 CPT (2048 positions).
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Figure 6.1: Robotic soft neck prototype (left) and kinematics model (right). 1. Base;
2. Moving platform; 3. Soft link; 4. Tendons; 5. Motors; 6. Tilt sensor.

This prototype was made from 3D printed materials, including the central soft
link weighing 125 g, designed to hold 1000 g at the tip, resulting in a payload-mass
ratio of 800%. The target neck positions are fully defined by the tilt and orientation
of the upper platform, which in turn depends on the tendon arrangement. Therefore,
the problem of neck control is reduced to finding the correct action for each tendon
in order to achieve the expected outcome.

A first control approach was made in [7], where inverse kinematics is used to find
the length of each tendon to reach the platform targets. Due to the winch mechanism,
each cable length takes a specific motor angular position, therefore, servo-control is
necessary to reach and hold the desired platform inclination and orientation.

Later, in [8] it was discussed how open loop kinematics configuration tends to
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result in positioning errors, and a feedback loop was proposed as future work. This
section follows that approach, using a feedback configuration for both the proposed
robust and adaptive iso-m methods.

To design and tune these robust and adaptive controllers, a model is needed, which
will be discussed next.

6.2 Plant model

The soft neck is non-linear and time variant from various perspectives. First, the
different neck inclinations place a changing load on the motor, which means that gain
depends on the neck inclination, resulting in plant parameter uncertainty and time
variation. In addition, the material of the central link is a polymer with unknown
viscoelastic behavior, which adds non-linearity and more uncertainty. Therefore, we
are facing a time varying system with uncertainty and non-linearity.

The proposed control schemes are known to address these problems, but some a
priori knowledge of the system is needed for controller design. Knowing that con-
trollers can deal with the non-modeled plant dynamics, a simple model is proposed.
Let’s first analyze the inputs and outputs of the system.

The actuators are managed from an intelligent driver, therefore, the input possi-
bilities are the acceleration (torque), velocity and position references for each motor.
The state for these variables can also be obtained from the driver, which offers ve-
locity and position measurement outputs, and a rough estimate of torque through
coil current for each motor, resulting in a total of nine inputs and the same number
of outputs. These variables are time derivatives of one another, so the number of
degrees of freedom (DoF) remains three for the actuation system.

Additionally, the tilt sensor provides the actual neck inclination and orientation
so that speed and acceleration of the upper platform can also be obtained through
their time derivatives, adding another six output variables to our plant.

Now the system variables must be set to define the control scheme. In [65], a
possible approach was proposed using torques, bending the central soft link to the
desired inclination and orientation. Another approach based on tendon lengths was
used in [8].

Both proposals show good results, but to obtain a compact system, only integrated
torque sensor, with rather rough available precision, could be considered, ruling out
the first option.

Therefore, tendon lengths or velocities can be used as control variables. Consider-
ing that the actuators are based on DC motors, a good choice for the control variable
is velocity. Additionally, the tilt sensor data readings provide tip inclination, which
is more related to velocities than torques, resulting in a simpler model. Therefore,
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the experiment approach is based on feedback control of the tilt sensor signal using
tendon velocity actuators.

Since the main cause of the uncertainty and non-linearity of the neck is the bending
angle of the central soft link, which depends on the tilt, but not on the orientation,
we will focus on the inclination movement of the neck. Therefore, as the experiment
only involves inclinations, the neck can be actuated using a single tendon, simplifying
the model input to motor velocity. As a result, the plant model is based on velocity
inputs and neck inclinations outputs.

An integrator is expected to emerge from this configuration, due to the relationship
between tendon velocity and platform inclination, therefore, a pole located at z = 1
must be found during identification. Also, since the plant is considered as the target
velocity input to the inclination output, dc motor dynamics, soft link behavior, and
sensor measurements are included in the system. This leads to the introduction of
an additional pole to capture this dynamics, resulting in a second order plant model
estimate. Any additional plant behavior is neglected, as it is expected to be many
orders of magnitude below.

Once the variables have been defined, the neck kinematics will be considered to
find a convenient correlation between the inputs and outputs of the system, making
identification easier.

A neck kinematic model was proposed in [7], but a dynamic model is not provided,
therefore, a modeling technique will be applied at first. Given the control methods
that are being tested, the RLS identification described in chapter 3 is the best choice,
as it can be used in both schemes. Required plant model phase and slope at gain
crossover frequency can be obtained from the resulting RLS model.

Due to the properties of the neck, the model is expected to change for different
inclinations, making it a time varying system. Although the iso-m tuning method
is applicable only to invariant systems, considering we are talking about a robust
control method, an average steady plant model will be used for tuning.

To find this steady plant parameters, RLS identification was performed for a
10 deg step reference and 0 g payload during 150 s. The input and output variables
of the system used for identification are shown in Fig. 6.2.
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Figure 6.2: Capture data used for RLS system identification. Motor velocity input
(left) and tip inclination output (right).

The results of the RLS identification of the input and output signals in Fig. 6.2
are shown in Fig. 6.3. Parameter convergence is correct after a few seconds of RLS
identification, where the evolution with time of the parameters of the system transfer
function (left) and the pole-gain model (right) are shown for the 0 g case. Notice how
the pole located at z = 1 converges immediately, and how the second pole and the
gain are stable throughout the experiment.
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Figure 6.3: Convergence of system parameters (left) and pole-gain model (right)
during system identification for the case of 0 g payload.

Using the average of stable values (those after 20 s) shown in Fig. 6.3, the following
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transfer function was obtained:

G(z) =
0.08207

z2 − 1.184z + 0.1838
≈ 0.08207

(z − 1)(z − 0.184)
, (6.1)

and the time and frequency responses of this system are as follows:

Figure 6.4: Open loop frequency response and unit feedback step response plots.

This model is the result of a recursive online identification method, therefore, the
integrator pole is not located at z = 1, but very close. It is not important for iso-m
controller tuning, as long as the specified crossover frequencies are kept above 1 rad/s.
The figure 6.4 shows the difference between the RLS result and the same system with
the pole forced to be exactly at z = 1 by rounding the pole value to three decimal
digits.

6.3 Fractional order controller

The system to be controlled is the described soft neck, so the specification will be
chosen close to a real human neck. In clinical works such as [135], it is possible
to find that normal speed of neck motion is around 150 deg/s, and considering the
artificial neck mechanics, a crossover frequency of ωgc = 3 rad/s will give similar
speed and good reference tracking, while remaining slightly below the original system
bandwidth, avoiding saturation.

Next the soft neck system will be tuned step by step using the iso-m method
described previously in chapter 2. Given the intention of evaluating the robustness
of the system, a low phase margin is chosen to force a time response overshoot.

According to Fig. 1.2, the phase margin required for a damping factor of ξ = 0.5
is 50 deg, enough for an acceptable overshoot.
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A closed loop system bandwidth of 3 rad/s is required as discussed before. Using
Fig. 1.2, it is observed that the closed loop bandwidth will be very similar to ωgc,
therefore, a value of 3 rad/s is valid.

Therefore, the experiment control specifications are:

� Desired crossover frequency ωgc = 3 rad/s

� Desired phase margin ϕm = 50 deg

The open loop crossover frequency flat phase is also inherently granted through
this tuning method (using Eq. (1.7)), which provides robustness to parameter varia-
tions. The following steps are needed for tuning:

Step 1: Plant phase slope at ωgc is ms = −14 deg/log(ω), and phase ϕs =
−95 deg. It can be found through Eq. (6.1) or in the frequency response shown in
Fig. 6.4.

Step 2: Controller phase slope is then m = 14 deg/log(ω), which is the opposite
of the plant, and the controller phase required to achieve the specification of the phase
margin at ωgc is ϕc = (−(−95) + 50− 180) deg, ϕc = −35 deg. Therefore, looking at
Fig. 2.7 an exponent α = −0.55 is found.

Step 3: According to these values, τa is found using Eq. (2.43), resulting in
τa = 3.9523.

Step 4: Finally, k can be computed using Eq. (2.44), resulting in k = 0.2037,
which makes the open loop system gain 0 dB at wcg = 3 rad/s.

Step 5: The resulting controller parameters are:

kp ka α
0.2037 0.8052 −0.55

Table 6.1: Iso-m controller parameters for the soft neck.

Given the negative exponent, we can call it a fractional proportional integral
controller (FOPI), with the following transfer function:

FOPI(s) = 0.2037(1 + 3.9523s−0.55) = 0.2037 + 0.8052s−0.55. (6.2)

The frequency (open loop) and time (feedback) simulation responses of the system
with this controller are shown in Fig. 6.5. You can see how the specifications are
met in the Bode diagram. This figure also shows the closed loop step responses
for different system gain multiples (MxG) and fractions (G/D), showing constant
overshoot (iso-damping property).
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Figure 6.5: Iso-m resulting open loop Bode diagram (left) and step feedback response
(right). Specifications: ωgc = 3 rad/s, ϕm = 50 deg. Gain range (gain∗1.3, gain/1.3).

6.4 Integer order controller

Now, to compare the robustness of the system, an integer controller will be applied
with the same parameters obtained by the iso-m method, with the exponent brought
to the nearest integer order (-1). Although a better tuning of this controller can
be achieved, the goal is a robustness comparison, hence the tuning method is not
relevant.

Considering an integer order PI (IOPI) controller that has the same parameters
found above, the following values are obtained:

kp ka α
0.2037 0.8052 −1

Table 6.2: IOPI controller parameters for the soft neck.

The integer controller transfer function is as follows:

IOPI(s) = 0.2037(1 + 3.9523s) = 0.2037 + 0.8052s. (6.3)

In Fig. 6.6 the frequency (open loop) and time response are shown for different
payload configurations using the integer controller. Note that the flat phase specifi-
cations are not met in the Bode diagram and iso-damping is not shown in the time
response plots.
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Figure 6.6: Open loop Bode diagram (left) and step feedback response (right) of
the system with integer PI controller used to compare robustness. Parameters kp =
0.2037, ki = 0.8052. Gain range (gain ∗ 1.3, gain/1.3).

Once the FOPI and PI parameters are found, the last controller considered in this
experiment is described.

6.5 Adaptive fractional order controller

The third control scheme tested in the soft neck is the adaptive iso-m. As described in
chapter 3, the performance specifications are the same as in the robust iso-m method,
which means that the phase margin and crossover frequency must be provided. Us-
ing the specifications from the previous sections, a more meaningful comparison is
obtained, hence the specifications are:

� Phase Margin: ϕm = 50 deg

� Gain crossover frequency: ωgc = 3 rad/s

According to chapter 3, the phase and slope information is obtained through Eqs.
(3.21) at a specified gain crossover frequency, based on plant parameters estimate (Ĝ).
Therefore, before the iso-m tuning, the updated plant estimation is found using RLS
including a PE signal in the system input to ensure parameter convergence. After
that, the plant phase and slope estimates (ϕ̂, m̂G) are computed using Eqs. (3.21)
and (3.22) and plant estimate (Ĝ).

Next, as described in chapter 3, the required phase and slope of the controller are
obtained using Eqs. (3.24):

ϕC = 50− ϕ̂G − 180, (6.4)

mC = −m̂G. (6.5)
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To obtain the controller exponent (α) a solution to Eq. (3.25) must be found. In
chapter 2 several options are proposed as solutions, including the plot shown in figure
2.7, a lookup table, and the fit function. The second option was implemented in the
real system for its simplicity and accuracy.

Having found α exponent and knowing the crossover frequency (ωgc = 3 rad/s),
τa can be calculated using Eq. (2.43).

τa =
1

τx3α
; τx =

sin(απ/2)

tan(ϕC)
− cos(απ/2) (6.6)

Finally, using Eq. (3.21) and the plant estimate (Ĝ) gives the magnitude at
crossover frequency (|Ĝ|), and then, the controller gain is computed using Eq. (2.44),
fulfilling Eq. (1.8) for crossover frequency specification:

k =
1

|1 + τa(j · 3)α||Ĝ|
(6.7)

Once all three parameters are found and the controller is tuned according to
the specifications, it can be used in the feedback loop of the adaptive scheme. As
plant identification is done seamlessly, as well as controller tuning based on the latest
estimate, the system will keep the specifications unchanged despite plant variations.
These two identification and tuning steps will be repeated alternately during the
continuous adaptation operation.

Stability was discussed in chapter 3, where parameter convergence and specifi-
cations were found to be the keys. Their importance will be shown below through
experimentation.

6.6 Experiment description

First, in order to compare the theoretical and actual performances, step responses are
presented under different payload conditions for the FOPI and the IOPI controllers.

Then, knowing that the plant parameters are variant, a second experiment will
be carried out, aimed at determining how the plant changes depend on the neck in-
clination. This experiment has varying target inclinations to check system variability
versus inclination for the case of zero payload. Target inclinations are set twice (up-
wards and downwards) to verify that equivalent results are obtained for similar input
conditions.

Finally, the main experiment consists of a series of inclination targets in the range
of 10 deg to 30 deg, following the same pattern as the previous experiment. A sequence
of step inputs will be programmed to push the plant to different working conditions.
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This sequence of target positions used in the last two experiments is shown in Fig.
6.7 for reference.

0 10 20 30 40 50 60 70

time (sec)

0

5

10

15

20

25

30
N

e
c
k
 i
n
c
lin

a
ti
o
n
 t
a
rg

e
t 
(d

e
g
)

Figure 6.7: Target positions during the main experiment.

Using this trajectory, all three controllers, FOPI, IOPI and then the adaptive iso-m
controller will be tested. All experiments will be repeated using four different payload
configurations from 0 g to 600 g, in order to discuss the effects of mass variation on
the system.

In the adaptive controller experiment, an initialization period is required. This
initial phase is intended to populate the identification system matrices and vectors,
in order to offer an adequate and stable model estimate when continuous adaptation
begins. The input signal at this stage is a frequency rich sinusoidal linear combination,
designed to have sufficient PE order to ensure good initial identification. After this
twenty seconds stage, the system enters continuous adaptation mode.

6.7 Results

The first experiment performed is a step response similar to that modeled in Figs. 6.8
and 6.9. The step height is 10 deg to get a valid output signal, and different masses
will be set to verify robustness to mass changes. The results of this experiment are
shown in Fig. 6.8 for the case of IOPI controller and in Fig. 6.9 for the case of FOPI
controller.
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Figure 6.8: Integer controller (IOPI) neck step response (left) and control signal
(right) for different payloads.
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Figure 6.9: Iso-m fractional controller (FOPI) neck step response (left) and control
signal (right) for different payloads.

The integer PID controller, although highly oscillating, as expected from the pres-
ence of an integer order integral, is stable for the identified model and for the set of
payloads considered.

Compared with the theoretical results, a certain degree of similarity can be ob-
served. Notice how the impact of the payload variation is not that important in
the experiment, revealing that the plant gain is not as dependent on the payload as
expected, probably due to the neck geometry.
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Now, a second experiment is analyzed, aimed at determining the variations in
the parameters of the plant depending on neck inclination. This experiment was
performed using the sequence of target inclinations previously described in Fig. 6.7.

The time response and control signal results are shown in Fig. 6.10.

0 10 20 30 40 50 60 70

time (sec)

0

5

10

15

20

25

30

35

N
e
c
k
 i
n
c
lin

a
ti
o
n
 (

d
e
g
)

Payload 000g

0 10 20 30 40 50 60 70

time (sec)

-1

-0.5

0

0.5

1

1.5

2

C
o

n
tr

o
l 
s
ig

n
a

l 
(r

a
d

/s
)

Payload 000g

Figure 6.10: Step response (left) and control signal (right) for zero payload in the
case of varying inclinations during system identification.

System identification was performed during this experiment producing the results
shown in Fig. 6.11, where a greater response variability is observed.
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Figure 6.11: System identification results of the experiment with varying inclinations.
Evolution with time of transfer function parameters (left) and model poles and gain
(right).
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Notice how the change in plant parameters is most noticeable at different incli-
nations. For example, regarding system gain, it can be clearly seen how its values
decrease to a minimum coinciding with the highest inclination, and then increase
again to values similar to those obtained for the same inclination. The opposite be-
havior can be observed in the pole z2, which means that the response of the system
becomes slower at higher inclinations, probably due to the elastic behavior of the
soft link. Again, the pole at z = 1, shown in the figure as z1 converges very quickly
showing good stability.

Based on these results, greater variability due to changing inclinations than pay-
loads is expected in the next experiment. Since the test is designed to examine the
influences separately, it is possible to assess the effect of each factor on the final result.

At first, the result of the integer controller experiment is shown in Fig. 6.12,
where, as expected, variability is mainly influenced by neck inclination, except from
the 600 g payload, leading to instability in some cases.
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Figure 6.12: Step response (left) and control signal (right) for different payloads in
the case of varying inclinations for the integer IOPI controller.

You can see how stability is significantly reduced at high inclinations, which is
not surprising knowing that system gain decreases as inclination increases. Looking
at the Bode diagram in Fig. 6.6 you can see how the phase tends to −180 deg at low
frequencies. Given the shape of the magnitude curve, a gain decrease will inevitably
reduce crossover frequency, thereby shortening the phase margin.

This behavior was already predicted by the time response simulation in Fig. 6.6,
where the amplitude of the sine wave increases for those cases where the gain de-
creases, and reaches its maximum in the case of minimum gain (gain/1.3). Therefore,
the predicted variability is noticeable in the system time response as seen in Fig. 6.12
due to target inclination.
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Note one of the integer controllers drawbacks regarding system phase. The prob-
lem here is that the double integrator of the system will always result in a −180 deg
phase for low frequencies. Fractional controllers avoid that problem by featuring ex-
ponents greater than −1. See for example, the α = −0.55 of the FOPI controller,
raising the phase and avoiding the instability area as shown in 6.5.

The second controller tested in this experiment is the previously designed frac-
tional FOPI. The results for the step input sequence are shown in Fig. 6.13, with a
substantially more robust performance compared to the previous case.
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Figure 6.13: Step response (left) and control signal (right) for different payloads in
the case of varying inclinations for the fractional FOPI controller.

As expected, the robust controller shows similar performances for the different
mass configurations, and a small difference can be observed for different inclinations.
Again, the impact of payload on performance is not significant, except for the case of
zero payload, where a clear difference in overshoot is shown at 30 deg inclination. As
discussed earlier, the robust controller is designed for an operation range, which in our
case can be considered centered at 10 deg inclination, where the system identification
was done. To explain this behavior, it is necessary to observe the system parameters
throughout the experiment.

Figure 6.14 shows the evolution over time of the system identification parameters.
Notice how the plant gain reaches the lowest value coincident with the top inclina-
tion, which explains the performance differences in the time response plot. Since the
controller gain is constant, a plant gain decrease leads to open loop gain reduction,
up to the saturation point, causing the system to be unable to achieve the required
control signal velocities. On the right side of Fig. 6.13 you can see how the control
signal remains high for a longer time, which shows the saturation of the system.
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Figure 6.14: System identification results for different payloads during the step se-
quence experiment. Evolution of transfer function parameters (left) and model poles
and gain (right) for the fractional FOPI controller.

Once the payload increases, it causes the system gain to recover the values of the
lower inclinations, as seen in Fig. 6.14, solving the saturation problem. The reason
is that the inclination causes a neck mass dislocation that contributes to the central
link bending. It is interesting to note how the gain variation with payload is smaller
for lower inclinations, as the weight is less off-centered.

Apart from the first case, the three remaining payload configurations have similar
performances and the overshoot is almost invariant for the iso-m method despite mass
differences or inclinations, starting from 0 g and reaching 600 g; therefore, robustness
is achieved with this tuning methods for the proposed payload configurations also
reaching a zero steady state error.

In contrast, the integer controller response shows how performance is affected by
both, mass and inclination, leading to instability in some cases, mainly in decreasing
inclination trajectories. Once the plant parameters change, the performance deterio-
rates. Note how overshoot and oscillations increase as inclination angle decrease.

With the fractional order controller, the integral action is alleviated by its frac-
tional order, allowing the system to achieve zero steady state error but with a much
less oscillatory response. Also, another benefit of the fractional controller is that,
thanks to the non-integer exponent of the integrator, the system phase never reaches
the value of −180 deg at low frequencies, as can be seen in Fig. 6.5, thus avoiding
the aforementioned problem with low plant gains using the integer controller.

The results of the third controller, adaptive iso-m, are shown in figure 6.15. You
can see how the system response is preserved for varying payloads and inclinations.
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Figure 6.15: Step response (left) and control signal (right) for different payloads in
the case of varying inclinations for the adaptive iso-m controller.

Note how this time the same performance is maintained throughout the exper-
iment. Control signals are now invariant for different payloads, meaning that no
saturation is reached at any point. Figure 6.16 shows the estimated parameter values
of the plant during the experiment, where a correct parameter convergence is observed
for all mass configurations.
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Figure 6.16: System identification results for different payloads during the step se-
quence experiment. Evolution of transfer function parameters (left) and model poles
and gain (right) for the adaptive iso-m controller.

Note how the convergence of the system parameters is correct on the plot, while
the identification is still able to track plant changes, and how the pole located at
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z = 1 convergence is very fast, and the other pole and the gain evolve through
the experiment. As is known, slightly lower gains and slower system responses are
obtained for high inclinations.

Figure 6.17 shows all the parameters of the adaptive controller parameters ob-
tained during the experiment (left) and the values of plant phase and magnitude at
the crossover frequency according to the plant estimates (right). It is interesting to
see how the adaptive controller parameters evolve during the experiment.
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Figure 6.17: Controller parameters obtained using the iso-m method based on the
estimated system (left) and magnitude at crossover frequency based on the plant
estimates (right).

Since the iso-m tuning is based on the phase and magnitude values shown on the
right side of Fig. 6.17, the resulting controller parameters shown on the left side show
an inverse relationship with that curve. It can be seen that the high controller gains
coincide with low plant magnitudes, which means that the controller counteracts the
system gain reductions by increasing its own gain. As a result, the time response of
the adaptive system is invariant, as shown in Fig. 6.15.

The information found in the phase and magnitude plot in Fig. 6.17 during
the experiment is very interesting. These values were obtained from the system
identification parameters and Eqs. (3.21). Note that the phase convergence is fast
and remains constant throughout the experiment, while the magnitude changes with
inclination similar to the plant gain as discussed before.

Although plant phase and magnitude values are not used in FOPI and IOPI
experiments, as their controller parameters are constant, their plots are shown in Fig.
6.18 for comparison. Since the system describes the same trajectory, similar plots are
expected for all three experiments.
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Figure 6.18: Phase and magnitude of the plant estimates using RLS online identifi-
cation for the FOPI controller (left) and IOPI controller (right) experiments.

See how the phase is quickly set and maintained throughout the experiment while
magnitude changes with the inclination, relating high inclinations to low magnitudes.
Again, the gain variation with payload is smaller for lower inclinations. These plots
are similar in all the experiments, which can be considered as a validation of the
results found through the experiments performed.

To further compare the differences in performance for the three tuning methods
proposed, the numerical results of the three controllers are now provided.

Table 6.3 shows detailed performance data gathered from Figs. 6.12, 6.13 and 6.15
in the average case of 20 deg step located at 10 s (30 s for the adaptive controller).
The worst values are shown within all payload configurations.

Min. (%) Max. (%) (∆O%) Max. (s) Max. (s)
Method Overshoot Overshoot Variation Rise time Settling time
IOPI 5.65 8.50 2.85 1.85 > 10
FOPI 1.90 3.05 1.15 2.88 5.98

adaptive 0.95 1.70 0.75 3.05 4.08

Table 6.3: Worst performance data, including overshoot variation (∆O) for the soft
neck.

In addition, table 6.4 shows detailed performance data gathered from Figs. 6.12,
6.13 and 6.15 in the worst case of 30 deg step located at 30 s (50 s for the adaptive
controller). The worst values are shown within all payload configurations.

Note that both iso-m and adaptive iso-m methods show similar results, but the
adaptive iso-m is able to cope with time varying plants because of the adaptation
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Min. (%) Max. (%) (∆O%) Max. (s) Max. (s)
Method Overshoot Overshoot Variation Rise time Settling time
IOPI 5.93 10.00 4.07 1.78∗ ∞
FOPI 1.87 2.77 0.90 8.85 9.60

adaptive 0.70 1.27 0.57 3.33 5.83

Table 6.4: Worst performance data, including overshoot variation (∆O) for the soft
neck.

feature, keeping the robustness results always at a very low value. The result of the
IOPI controller is not that good in terms of robustness with a variability between 5
and 10 times the adaptive method. As discussed above, the goal of the comparison
is not the performance, but its variation.

Regarding stability, both iso-m and adaptive iso-m are able to stabilize the system
even if the plant parameters change, while the stability of integer controller (IOPI)
is altered by variations in the plant gain, reaching critical values at low gains and
showing very long settling times at best, mainly due to oscillations produced by the
lower phase margins.

Note that the intention is not to compare the performance of the FOPI and IOPI
controllers, but to see their variability based on different payloads and inclinations.
Other performances can be used for integer controllers with different overshoots, but
these issues are out of scope here, and have been covered extensively in other works
such as [31], [39] [42] and [5] to name a few.

The steady state error is zero for all control strategies as expected from an integral
controller, with an additional integrator included in the plant.

In summary, a robust behavior is granted from the application of both fractional
controllers, obtaining excellent results with the iso-m and adaptive iso-m methods
in terms of robustness compared to other non-robust controllers, which validates the
new approaches proposed.

A video showing the system performance with the adaptive iso-m controller is
available at https://vimeo.com/438681435, proving the benefits of this tuning method.
More videos showing diverse robust and integer controllers are also available at
https://vimeo.com/user103290293.

https://vimeo.com/438681435
https://vimeo.com/user103290293




Chapter 7

Conclusions and future works

7.1 Contributions

This thesis proposes two new approaches to tackle the problems caused by uncertainty.

The first proposal is based on the use of robust fractional controllers, and as shown
during its description and in the experimental part, it is capable of delivering a robust
response despite system mass changes and non-linearities. The presented method is a
general solution of the robustness specification in Eq. (1.7), and is applicable to any
system and controller. The method focuses on controllers with one fractional operator
(FOPD, FOPI), but the same approach can be used in other classes of controllers,
with more operators, or different equations. Unfortunately, these developments will
have to be the subject of further works due to time constraints, and will lead to future
scientific writing.

Unlike other tuning methods found in the literature, this approach has a graphical
nature that allows the designer to visualize the effects of parameter variations in a
very simple and intuitive way. This is a very important contribution. Easy and fast
controller tuning is possible simply using graphs or tables, without the need to solve
a numerical nonlinear equation and allowing the solution of the control problem in a
very intuitive and straightforward way.

This is important in applications that require changes in controller parameters
during operation to optimize response towards a given target. In these situations, the
method offers a fast and reliable solution, as the graphs can be used to directly deter-
mine the values of the controller parameters that meet the new control requirements.
The proposed method allows not only to intuitively define the controller parameters
that satisfy the design constraints, but also to observe at a glance how the parameters
modify the loop dynamics.

The computational complexity of non-linear equation solvers used by current tun-
ing methods makes the process difficult, depending on multiple factors such as number
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of iterations, accuracy and initial conditions. For example, solving all Eqs. (1.8), (1.9)
and (1.7) numerically, besides the high computational complexity, makes the process
highly dependent on initial conditions and local minima.

In contrast, thanks to its straightforward solution, the problem of initial condi-
tions and local minima is totally avoided using the iso-m method, providing both
good performance and a reduced computing effort. The computational complexity
of a lookup table is similar to a memory access, and although exact results are not
achieved, any accuracy can be obtained by interpolation or by increasing the granu-
larity of the table.

In fact, the application of the iso-m method in a programmable logic controller
(PLC) could be easily addressed, resulting in a good opportunity for industrial
widespread of robust controllers, allowing to improve the quality of the current hard-
ware systems.

Another issue found in the current fractional tuning methods is that non-linear
equation solvers can only be used in off-line control schemes, due to the high com-
putational effort. That makes their use in adaptive control strategies impossible; in
contrast, the iso-m method can be applied in adaptive control strategies, which leads
to the second contribution of this thesis.

The second proposal is an unprecedented indirect fractional adaptive scheme that
allows robustness to be extended to a wider set of systems, including time varying
and nonlinear systems.

Control requirements for nonlinear time varying systems can be difficult to meet.
Plant parameters may change due to non-linearity or time variability, forcing the
controller to work out of the specifications. As a consequence, the resulting control
performance will change accordingly.

The proposed adaptive fractional control uses real time plant parameters obtained
through the RLS identification algorithm combined with the fast controller tuning
method proposed in the first part to join adaptability and robustness in a single
control scheme.

Thanks to the robustness of the system, performance will not change for the
operating point, and thanks to the adaptive scheme, plant changes will update the
controller tuning to obtain the same original operating point specifications.

Both iso-m and adaptive iso-m methods have proven to be a working solution to
the major problem of uncertainty in very different platforms. The experimental chap-
ters show how the resulting system is able to cope with variations in plant parameters
while maintaining short and long term performance settings.
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7.2 Results

The results obtained in all the proposed systems are excellent, as evidenced in their
corresponding chapters. The systems used for validation were:

� The Honda Accord autonomous car available for researchers in the Lawrence
Berkeley National Laboratory (US)

� The elbow of the TEO humanoid robot developed by the Robotics Lab team of
Carlos III University of Madrid

� The bio-inspired neck made of soft material proposed in [7]

In the autonomous car case, the iso-m controller shows a robust performance,
rejecting possible disturbances on the high level response due to different dynamics,
powetrains or road slopes. A hierarchical ACC control structure has been used, where
the fractional order controller is in charge of the gap distance regulation through a
reference acceleration tracked by a lower control layer. The results outperformed an
equivalent integer order PD controller used for comparison.

Likewise, the iso-m tuning method has been proposed for the control of the elbow
joint of the TEO humanoid robot. The results obtained are very competitive com-
pared to other well-known fractional order tuning methods found in the literature.
The system performs according to specifications and shows high robustness to mass
changes at the tip (robot hand), showing similar performances compared to other
tuning methods of much higher complexity.

For the bio-inspired neck, despite the non-linear and time varying properties of the
soft material, the response of the inclination feedback control was totally correct, in
accordance with specifications and showing high robustness to mass changes. Even
for very high payloads compared to the weight of the neck (895.5% heavier), the
system robustness is granted through the proposed iso-m controller. This system was
a control challenge, due to the described plant properties, highlighting the benefits
of the proposed methods in nonlinear time varying applications compared to other
control methods.

Both algorithms have been applied on different platforms, some of them showing
unusual actuator dynamics. Its effectiveness has been demonstrated in both simula-
tion environments and real scenarios.

The simulation results show that despite introducing disturbances in the plant
gains, the performance of the proposed controller is not only maintained, but also
outperforms in results to other equivalent controllers. The iso-damping potential has
been therein confirmed to ensure robustness to gain changes in the controlled plant.

The excellent results obtained in the real platforms has showed how easily it could
be applied to any type of dynamics, which is convenient to encourage the adoption



130 Chapter 7. Conclusions and future works

of fractional robust controllers in the field of automation. The robustness obtained
in the performance of the three test platforms considered, confirm the suitability of
the proposed methods for the robust control of LTV and NLTI systems.

To conclude, the robust iso-m controller tuning method can be applied to any
real system. The only information needed for its application is the plant’s frequency
response for the desired specification. This can be obtained from a plant model, from
system identification, or even within real-time adaptive control schemes.

The requirements are very low, both from the computing point of view and the
mathematical complexity, therefore its application can be easily deployed in many
industrial, embedded and low cost environments. There is no limit for its use in any
control scheme.

One possible issue for its application can be the fractional operator implemen-
tation. Although it is not in the scope of this thesis, the application of a robust
fractional controller always carries the implementation of the operators needed in the
controller equations. This field of fractional calculus is under development, and still
needs to find better ways to define the fractional operators.

Nevertheless, there are already many possible solutions to this problem, as the
integer approximations using high order transfer functions, the IIR or FIR modeling of
the operators, and a good number of libraries and toolboxes allowing a straightforward
use of the fractional order operators.

7.3 Future works

Although the experimental section has validated the method, there is still many
pending works in the proposed platforms that need attention. This works will be
addressed in the future.

In the case of TEO, future research steps will focus on the application of the
method to other joints in the robot. Given the promising results obtained, an overall
enhancement is expected from an improved joint behavior. Also, an enhanced motion
of the limbs is possible as a result of the improved joint motion.

The application of this approach on car-following in shorter time gaps will be
analyzed in future works, adding vehicle-to-vehicle communication links.

For the soft neck, a high quality camera stabilization is being developed for its
application in humanoid robots. Given the soft neck quick response properties, a
camera balance application can be performed during the humanoid gait, improving
the image capture quality while the robot is walking.

Although there is still a lot to do in these platforms, the implementation in other
systems will also follow. Soft robotics is an emergent field, with many problems to
solve. These new methods have shown a remarkable advantage in the control of this
type of systems, therefore, many new soft robots are suitable for their application.
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For example, the I-SUPPORT robot, developed at the BioRobotics Institute of
Scuola Superiore Sant’Anna, is currently involved in a collaboration paper for the
robust control of the robot. Initial results from the iso-m controller are very promising,
and thorough experimentation will follow to publish the results in a high impact
paper.

Future developments of the robust iso-m method will focus on extending its ca-
pabilities to more complex controllers. More specifically, the fractional order pro-
portional integral derivative (FOPID) will be addressed first, in order to achieve a
more general application of the method. As these controllers have a total of five
tuning parameters, the robustness constraints could be specified in a wider range of
frequencies, allowing robustness in systems with large gain changes.

Future work on the adaptive iso-m method will focus on exploring new possibilities
in terms of plant parameter estimation. Improving estimate convergence without
using persistence excitation is a very interesting line to explore. It would be also
exciting to improve the accuracy using more advanced identification techniques. In
addition, since the adaptive method is based on the robust iso-m approach, any
progress made in the first will be also applicable in the second.
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