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Metabolite biosensors for cell factory development

Yasaman Dabirian
Department of Biology and Biological Engineering
Chalmers University of Technology

Abstract
Through synergy with natural sciences and engineering disciplines, biotechnology has
become a broad, interdisciplinary, scientific field with many applications. One such
application is the sustainable production of industrially relevant products using living
systems such as microorganisms. Transforming microorganisms to cell factories is, how-
ever, a labour-intensive and cost-ineffective process, requiring many years of extensive
research. Several fields together known as systems metabolic engineering, including
synthetic biology, have greatly facilitated the process of customizing microorganisms
to benefit human interests. Among several emerging tools are metabolite biosensors,
which can be employed in high-throughput screening endeavours for identifying pro-
ductive cells and in dynamic pathway regulation for optimizing metabolic systems.
Developing and engineering metabolite biosensors to fit a certain application is, how-
ever, challenging.

This thesis focuses on different aspects of utilizing and engineering metabolite-
responsive transcription factor-based biosensors for facilitating the development of
Saccharomyces cerevisiae as a cell factory. To that end, we improved the dynamic
range of a malonyl-CoA-responsive biosensor by i) evaluating different binding site
locations of the bacterial transcription factor FapR within different yeast promoters
and by ii) using a chimeric transcription factor based on a native repressor system
from S. cerevisiae. Furthermore, we suggest the possibility of using the CRISPR (Clus-
tered Regulatory Interspaced Short Palindromic Repeats)/Cas9 system to facilitate
biosensor development by guiding binding site positioning. We also employed an acyl-
CoA-responsive biosensor based on the bacterial transcription factor FadR to screen for
genes boosting the fatty acyl-CoA levels, which are precursors for industrially relevant
compounds such as fatty alcohols. The possibility of developing fatty acid-responsive
biosensors based on other transcription factors, including the endogenous transcrip-
tion factor Mga2, has also been addressed. Finally, we looked into the potential of
developing an alkane-responsive biosensor based on a system from Yarrowia lipolytica.
Overall, this thesis provides answers, discussions and potential future directions on
using and engineering metabolite biosensors for cell factory development.

Keywords: Saccharomyces cerevisiae, synthetic biology, metabolite-responsive tran-
scription factor-based biosensors, malonyl-CoA, fatty acyl-CoA, alkanes
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PhD thesis outline and focus

As we are witnessing incredible advancements in science and technology today, we are
likewise witnessing unprecedented environmental challenges, potentially threatening our very
existence. The consequences and effects of exploiting our planet’s resources could not have
been more clear; global warming, polluted oceans, loss of habitats due to deforestations
and extreme wheathers among many other critical issues. Many of these issues are caused
by our extensive use of fossil fuels. Producing our everyday chemicals and materials from
renewable non-food biomass can help reduce our dependency on petroleum-driven production.
Using microorganisms to produce chemicals and other important products such as primary-
and secondary metabolites, biopharmaceuticals, bioplastics and biofuels through bio-based
manufacturing has shown to be of great importance [1].

Microbial biotechnology, a subfield within biotechnology, has over the last few decades
achieved tremendous advancements in engineering microorganisms to cell factories. The
development of cell factories is, however, challenging, expensive and labour-intensive. There
is, therefore, immense research being carried out to develop tools, methods and computational
models to accelerate the process of developing cell factories and make it as cost-efficient as
possible. An emerging tool that has shown great potential are metabolite biosensors, which
can be used in high-throughput screening to efficiently and quickly identify productive cells
from unproductive ones, or which can also be used in dynamic pathway regulation to optimize
the metabolism of engineered cells.

The main focus of this thesis has been in synthetic biology, specifically on developing
transcription factor-based biosensors for accelerating the development of Saccharomyces
cerevisiae as a cell factory. The thesis summary has been divided into the four following
parts:

Part one: The first part gives a brief and general background on biotechnology, which
is followed by a more thorough introduction of microbial biotechnology, specifically sys-
tems metabolic engineering, which will partly be based on our review paper "Strategies and
challenges for metabolic rewiring" (Paper I). In this section, strategies and challenges for
metabolic engineering are discussed to put the aim of this thesis in context. Chapter 1 of
this thesis ends by discussing the challenges of lacking sufficient high-throughput screening
tools, for example genetically encoded biosensors, that can match the pace the field has
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achieved in designing and building strains. Chapter 2 focuses on different types of genetically
encoded biosensors, including their potential applications for metabolic engineering. Finally,
this chapter ends by specifically addressing transcription factor-based biosensors. At this
stage of the thesis, sufficient background information should have been given to justify the
aim and work of this thesis (Figure 1).

Part two: In part two, more details regarding transcription factor-based biosensors will be
provided, specifically discussions regarding custom-made transcription factor-based biosen-
sors in order to put the work of our study "Expanding the dynamic range of a transcription
factor-based biosensor in Saccharomyces cerevisiae" (Paper II) in additional context. Fol-
lowing this, we discuss our study in Paper III "Rational gRNA design based on transcription
factor binding data". Although this paper does not have a focus on biosensors, but instead
on the expansion of how gene editing with the CRISPR (Clustered Regulatory Interspaced
Short Palindromic Repeats)/Cas9 system may be used, we suggest that some strategies here
could be used to facilitate biosensor development by guiding binding site positioning.

Part three: In part three, discussions regarding biosensor applications will be covered and
demonstrated with both unpublished and published work, including "FadR-based biosensor-
assisted screening for genes enhancing fatty acyl-CoA pools in Saccharomyces cerevisiae"
(Paper IV) and "Does co-expression of Yarrowia lipolytica genes encoding Yas1p, Yas2p and
Yas3p make a potential alkane-responsive biosensor in Saccharomyces cerevisiae?" (Paper
IV).

Part four: Finally, part four of this thesis will end by first concluding the work of this four
year PhD research followed by an outlook. Overall, the aim is to provide answers, discussions
and potential future directions on using metabolite biosensors for cell factory development.

Figure 1 Main focus of this thesis. Developing and engineering metabolite biosensors,
specifically transcription factor-based biosensors, in S. cerevisiae has been the main focus
of this thesis, which is put into context as well as in a broader relation to the biotechnology
field.

2



PART ONE

Why genetically encoded biosensors matter



1 | Background

Figure 1.1 Overview of biotechnology. Biotechnology is an interdisciplinary scientific
field based on natural sciences and engineering disciplines, and its core lies in using liv-
ing systems. All applications commonly fall within four main fields, including agricultural,
environmental, industrial and medical research.

The core of biotechnology lies in utilizing living systems to develop technologies for producing
goods or services that are of human interest and benefit. Biotechnology is an interdisciplinary
scientific field based on natural sciences and engineering disciplines such as biochemistry,
mathematics, electric engineering, analytical chemistry and computer sciences (Figure 1.1).
Although the term biotechnology was coined only a century ago by Károly Ereky [2], the
field has an ancestry stretching back thousands of years when it was predominantly used in
brewing, animal and plant domestication and the improvement of these through selective

4



Chapter 1. Background

breeding [3]. Since then, particularly in the 20th century, the field has witnessed great
expansion, exemplified by the acetone-butanol-ethanol fermentation process during World
War I and the production of penicillin during World War II, and has since the early 1970s been
brought to the forefront of science with the advent of recombinant DNA technology [1, 4, 5].

Recombinant DNA technology, also known as genetic engineering, is the creation of new,
biologically functional, DNA molecules by bringing together genetic material from different
sources [6]. Biological systems are mainly engineered by modifying certain genotypes to
obtain different phenotypes, for example, a different function or morphology of an organism.
In contrast to traditional breeding methods, genetic engineering allows directed modifica-
tions of an organism’s genome, then referred to as genetically modified organisms, and offers
more precise and faster modifications while preventing undesirable changes to be introduced.
Among the first organisms to be genetically modified was the well-characterized bacterium
Escherichia coli, which shortly after was engineered to produce human insulin [2]. The concept
of genetically modifying living systems to obtain desirable features and properties was further
translated into engineering crops such that these have enhanced nutritional value, longer shelf
life and increased resistance to environmental perturbations, for example drought, frost or in-
sect pests [7,8]. Furthermore, genetic engineering has also been instrumental in environmental
research, for example in bioremedition where microorganisms are used in contaminated areas
to degrade pollutants [9]. Biotechnology has also advanced medical research from producing
pharmaceuticals using living systems to potentially enable treatment of genetic disorders
by, for example, combining stem cell technologies with recombinant DNA technologies [10].
The mentioned examples only illustrate a few applications, and biotechnology-based applica-
tions are steadily increasing in agricultural, environmental, industrial and medical research
(Figure 1.1) [9].

1.1 Chemical production strategies in modern day biotech

In the decades following the introduction of genetic engineering, microorganisms have been
engineered to produce several different compounds ranging from commodity chemicals, for
example, biofuels, to fine chemicals and pharmaceuticals, for example, terpenoids, insulin and
vaccines [11]. Developing microorganisms, also referred to as cell factories, for such purposes
is the main objective of metabolic engineering, a subfield within industrial biotech.

There are several advantages of using microorganisms in industry [1]. For example,
microbial cell factories have the potential to reduce our dependency on petroleum-derived or
plant-extracted products and enable, for example, the production of pharmaceuticals that are
otherwise too complex to be produced using traditional chemical synthesis methods [12,13].
In fact, the importance of bio-based materials is becoming increasingly evident as, for example,
can be witnessed from new regulatory rules in Europe banning single-use plastics, such as
cutlery, plates and straws [14]. To advance further in this mission, there are, fortunately,
already several well-characterized and established biotechnological workhorses, including
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Chapter 1. Background

the well-known microbes E. coli and S. cerevisiae, which are unicellular microorganisms
commonly representing prokaryotic and eukaryotic cells, respectively [15].

Developing cell factories, however, is often labour-intensive and cost-ineffective, mainly
due to microorganisms being rewired to survive and proliferate rather than optimized for
producing a compound of human interest at a commercial level. The inherently complex
metabolic networks that make up a living system, and our limited understanding of it [16,17],
has made biological engineering one of the most challenging parts of developing microbial
factories [15]. Therefore, understanding metabolism is a prerequisite for engineering purposes,
and the deeper the understanding the more predictively can biological systems be engineered.

1.1.1 Understanding metabolism for engineering purposes

A biological system is a dynamic living system capable of functioning in a certain environment
while responding and adapting to changes in the surroundings. Naturally, such a system
must be based on complex, tightly regulated and highly interconnected networks in order to
maintain a balance between stability, flexibility and evolvability [18, 19]. The complexity of
metabolism can be understood from the bow tie structure, a biological architecture found
in all living systems, where a wide range of carbon and energy sources are converted into
12 precursor metabolites for producing all cellular building blocks, for example amino acids,
nucleotides, fatty acids and sugars (Figure 1.2A) [20]. In order to maintain a dynamic
metabolism, the activity of the metabolic pathways must be coordinated by sensitive means
of communication in which allosteric enzymes are predominant. For example, the metabolism
must be regulated by controlling the amounts of enzymes, their catalytic activities and the
accessibility of substrates. One key point for regulating the protein abundance, is gene
regulation.

Gene regulation occurs in all living systems and is necessary for producing the right
proteins in the right amount and at the right time, making the living machinery possible to
function, adapt and evolve. In higher eukaryotes, or multicellular organisms, gene regulation
allows a single cell to be differentiated into different cell types despite all cells having the
same genome, ultimately resulting in muscle cells, fat cells, blood cells and so on. Despite
the similarities in the fundamental principles of these regulatory systems in prokaryotes and
eukaryotes (Figure 1.2B), there is a significant difference in their complexity. For instance,
while transcription and translation occur in the same compartment in prokaryotes, these
processes are separated in eukaryotes due to their compartmentalized, membrane-enclosed,
organelles. Additionally, in terms of genome complexity, eukaryotes have higher DNA content,
several linear chromosomes, compared to prokaryotes, having often one circular chromosome
(Figure 1.3A) [21]. Furthermore, unlike the "naked" DNA structure in prokaryotes, eukaryotic
DNA is wrapped around nucleosomes consisting of proteins called histones, and this packaging
creates a structure referred to as the chromatin (Figure 1.3B). The chromatin structure is the
most important structural difference between prokaryotic and eukaryotic DNA, especially
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Chapter 1. Background

Figure 1.2 Fundamental biological similarities in living systems. (A) All living
systems have at least one fundamental feature in common, the bow tie structure, where
a wide range of carbon sources, such as glucose, xylose, glycerol and natural gases, are
converted, through 12 metabolite precursors, into all biological building blocks, such as fatty
acids, sugars, and amino acids. (B) The overall fundamental principles of the central dogma
of biology is also shared between all living systems.

as it results in different transcriptional ground states. For example, the default state of
transcription in prokaryotes is generally "on" whereas in eukaryotes it is considered to
be "off" [22]. Often, extensive modification of the chromatin structure is required for gene
expression to occur, adding an additional level of regulatory complexity in eukaryotic systems
[22,23].

For transcription initiation to occur, several key players have to be involved. In eukary-
otes, this includes chromatin remodeling- and modifying complexes, RNA polymerase II,
general- and specific transcription factors and their associated coregulators. In general, there
must be an interplay between several key players, and the key interface between genetic
regulatory information and RNA polymerase transcriptional machinery is believed to be
gene-specific transcription factors [24]. Gene-specific transcription factors play an important
role in mediating transcription by, for example, interacting with other regulatory proteins to
localize RNA polymerase to the promoter of the gene to be transcribed. Due to their moni-
toring and regulatory capability, transcription factors play an important role in physiological
adaptation by controlling gene expression at the transcription level. Transcription factors are
themselves regulated by several mechanisms, including protein-protein interactions, protein
modifications, phosphorylation or upon interacting with small effector molecules, affecting
either their expression levels or their activity.

In both eukaryotes and prokaryotes, the transcriptional regulatory network is hierarchial,
meaning that there are, for example, global regulators, master regulators and local regulators,
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Chapter 1. Background

Figure 1.3 Biological differences between prokaryotes and eukaryotes. (A)
Prokaryotes often have one, circular, chromosome, whereas eukaryotes have several linear
ones, resulting in a more complex genome. (B) Eukaryotic DNA is wrapped around nucle-
osomes consisting of proteins called histones, creating a chromatin structure that does not
exist in prokaryotes. (C) The regulatory network is more flat in eukaryotes due to increased
cross-regulation and overlapping functions.

that have different levels of regulatory effect [25]. In prokaryotes the hierarchy is, however,
more evident compared to eukaryotes where the transcriptional reguatory network is more flat,
having higher degree of cross-regulation and overlapping functions (Figure 1.3C). Obviously,
depending on the host strain, rewiring metabolism can have different degrees of challenges,
influenced by the abovementioned factors.

In general, the better metabolism and regulatory interactions are understood, the more
efficiently can strains be engineered for a desired purpose [26]. In fact, tweaking the regulatory
mechanisms is an important approach to ensure that the microorganisms behave according
to the production purpose. Necessary insights into cellular metabolism and physiology can
be achieved through, for example, transcriptomic, proteomic and metabolomic measurements
combined with integrative analysis. It is, therefore, of importance that tools, methods and
computational strategies developed from different fields, such as synthetic biology and sys-
tems biology, work in synergy to elucidate the complexity of metabolism. As working on
an increased systematic and global level is also necessary for efficient cell factory develop-
ment, metabolic engineering has, together with other emerging fields, advanced into systems
metabolic engineering [27–29].
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Chapter 1. Background

1.1.2 Cell factory development

Systems metabolic engineering has grown to become a new area of study due to the interde-
pendent need of systems biology, synthetic biology, metabolic engineering and evolutionary
engineering to develop industrially relevant cell factories [9] (Paper I). Systems biology
takes a holistic approach to studying biological systems, using mathematical modelling and
data-driven technologies such as multi-omics analysis with the aim of eventually being able
to predict cell metabolism in silico [20, 29]. In metabolic engineering, rational engineering
is employed on a genome-scale level due to the highly interconnected nature of metabolism,
making it often necessary to target several pathways before being able to re-direct metabolic
fluxes towards a desirable outcome [30]. To engineer on a genome-scale level, a detailed
understanding of metabolism is beneficial in order to efficiently target the right pathways.
Furthermore, it is particularly important that modified and heterologous pathways are dy-
namically regulated such that these are well-integrated into the native metabolism. This is
important in order to use cellular resources efficiently and balance metabolism such that, for
example, accumulation of toxic intermediates and production of unnecessary proteins does
not occur [31,32]. As the complexity of biological systems often reveals itself when rewiring
cellular metabolism for developing cell factories, methods and tools developed in systems
biology can help to make metabolic rewiring more predictive [26]. However, until biological
engineering becomes truly predictive, cell factory development will require several rounds of
engineering and analysis until a proof-of-concept strain is developed (Figure 1.4) [15,33,34].

The approaches taken for engineering strains are determined by the product one aims to
produce, making product selection the first step to consider in chemical production strategies
(Figure 1.4). The choice of product also influences the choice of host organisms [1], as some
microbes, such as E. coli and S. cerevisiae, are more suitable to use for producing fuels
and chemicals whereas other microorganisms, such as Aspergillus niger and Bacillus subtilis,
are more appropriate to use for producing industrial enzymes due to their efficient protein
secretion machinery [15]. Although the portfolio of host strains is expanding beyond the
commonly used microorganisms, the choice of a producer strain is still restricted as only a
few microorganisms have i) a well-characterized system, ii) databases with information on
their genome and different omics data as well as iii) tools and methods to develop these into
cell factories [9, 26]. Therefore, production of a desired compound is commonly performed
using well-known microorganisms, which requires that these are engineered to include the
necessary pathways and optimized to achieve high titer, rate and yield while ensuring a
viable production host.

The performance metrics, titer, rate and yield, are important to consider for achieving
an economically feasible bioprocess. Economic feasibility can be heavily dependent on the
value of the final product. For example, in industrial settings, the titer is important in order
to reduce costs in downstream separation, specifically for high-value products with small
quantities, whereas the yield is particularly important when the cost of feedstock in the
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process is the dominant cost, for example in low-value commodity chemicals such as biofuels.
Furthermore, the rate is important to reduce capital investments and operating costs [9].
These parameters need to be optimized after a proof-of-concept strain has been developed,
requiring additional rounds of engineering and analysis [15,34] (Figure 1.4).

Figure 1.4 Cell factory development. Cell factory development can be divided into
three sections; (I) product selection is the first step to consider as it will determine the choice
of host and engineering approaches taken, (II) strain development requires several cycles of
engineering and analysis in order to develop a proof-of-concept strain and (III) optimization
is often needed to ensure high titer, rate and yield while scaling-up. If scale-up is economically
feasible, the system can be set up for industrial applications.

There are several ways to engineer strains to meet a predefined outcome, and gene regu-
lation is often a key parameter in engineering endeavours [35]. Traditionally, and commonly,
basic DNA elements such as promoters and gene copy number are engineered as these are
the foundational elements even when employing more advanced methods and tools to op-
timize gene- and pathway expression levels [36]. Synthetic biology has greatly advanced
such engineering approaches by providing methods and tools to assemble DNA into complex
pathways [9,37,38] and integrating these efficiently into the genome [39] such that these are
optimally expressed. For example, dynamic pathway regulation has enabled carbon fluxes to
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be rechanneled from redundant pathways to the one(s) of interest while ensuring a proper
balance between biomass and product formation [40]. Despite these advancements, biological
engineering is mainly challenging due to the uncertainty of not knowing which pathways
to target or the challenge of targeting these efficiently such that expression levels are opti-
mized [41,42]. Using only rational engineering will often be inefficient and insufficient, and
therefore high-throughput engineering approaches are becoming increasingly common.

High-throughput engineering, including random mutagenesis and large-scale library con-
struction methods, are important for identifying key engineering targets not intuitively rec-
ognized as promising for reaching an outcome of interest [43]. Another important approach
is evolutionary engineering, which follows the principle of natural selection where cells with
beneficial mutations survive under selection pressure. This approach is often combined with
omics analysis, predominantly genome sequencing, to identify the underlying mutations giv-
ing rise to the observed phenotypes [44,45]. Mutations can either naturally evolve through
the cultivation process, or be imposed artificially by the researcher prior to the cultivation
through directed evolution methods. Directed evolution is a method generating mutations
through mutagenic amplification of a desired gene using polymerase chain reaction [46].
However, the challenge here is that the production of many compounds of interest are not
growth-coupled, making it necessary to develop a system that specifically couples produc-
tion to improved growth. In fact, a common challenge when employing high-throughput
engineering is to distinguish promising cells from millions of unproductive ones.

Commonly, strains that have been engineered to produce a certain compound are vali-
dated by analyzing their production capability using conventional analytical methods, such
as chromatography or mass spectrometry. Although these methods are accurate and offer
quantitative as well as qualitative measurements, the issue is that such measurements are
often expensive, time-consuming and laborious [47]. Furthermore, the low-throughput nature
of these methods becomes a challenge when analyzing large-scale libraries consisting of up to
several millions of different variants. In a few, naturally occurring cases, quantitative analysis
of non-promising strains might be avoided if the desired phenotype translates into something
conspicuous, such as a chromophore or improved survival fitness under selection. There are
also cases where the desired compound can be stained [48, 49], allowing for high-throughput
screening using flow cytometry. The limitations here include staining efficiency and potential
dye diffusion. However, since the outcome of most frequent engineering targets does not result
into phenotypes that are translated or modified into something that can be easily screened
for, there is a need for quantitative methods that can convert any kind of phenotype into a
readable output signal [47].

The lack of high-throughput screening tools have resulted in an imbalance in the engineer-
ing and analysis cycle [33,47] (Figure 1.4). This imbalance can, however, be mitigated in part
by developing tools such as genetically-encoded biosensors, including metabolite biosensors.
Metabolite biosensors, which fall within the realm of synthetic biology, have shown great
potential in facilitating high-throughput screening endeavours [50].
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A biosensor can broadly be defined as “any molecular device or structure that can sense a
molecule of interest and output a detectable signal in response” [51,52] (Figure 2.1). Living
systems are rich in intrinsic sensors as these play important roles in maintaining a highly
dynamic, yet tightly regulated, metabolism. For example, signaling and regulatory systems
responsive to environmental signals, extracellular chemicals and intracellular metabolites
are an inspiring source for developing genetically encoded biosensors for metabolic engineer-
ing applications, specifically for high-throughput screening and for dynamically regulating
metabolic pathways [50,53].

Figure 2.1 Standardizing phenotypes and regulating genotypes using biosensors.
Ideally, using metabolite biosensors would enable any compound of interest to be translated
into easily visible phenotypes, such as fluorescence or improved growth fitness. Furthermore,
biosensors are also the basis for dynamic pathway regulation, which is desirable to have to
optimize production levels of a specific compound.
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2.1 Standardizing phenotypes and regulating genotypes

Using metabolite biosensors in high-throughput screening or selection would, ideally, enable a
wide range of compounds to be translated into a few easily analysed phenotypes, for example,
a fluorescence signal or improved growth fitness under selection pressure (Figure 2.1). This
would enable phenotypes to be standardized such that more sample can be semi-quantitatively
analysed in less time and using less resources than traditional methods [54]. Similarly for
dynamic pathway regulation, it is desirable to regulate any specific pathway based on any
compound of interest (Figure 2.1).

2.1.1 Dynamic pathway regulation

One of the first applications of metabolite biosensors for metabolic engineering purposes was
in dynamic pathway regulation [55]. In this study, the concentration of acetyl phosphate was
used as an intracellular indicator of excess glucose levels in E. coli [55]. The expression of
a lycopene biosynthetic pathway was linked, through a modified version of the endogenous
Ntr regulon, to elevated acetyl phosphate levels, thus increasing lycopene production. This
study illustrates that expression of a heterologous pathway should not only be regulated
by the concentration of pathway precursors, intermediates or end products but also by
signals representing the general metabolic state of the cells and/or the growth state of
the culture. In other cases, the aim is to decouple the growth phase, during which the
cells produce primarily biomass, from the production phase, during which the metabolite
of interest accumulates (Figure 2.2A). This is considered beneficial as implementation of
heterologous pathways or modification of endogenous ones often results in static regulation,
which can result in imbalanced biomass- and product formation, metabolic burden and a
potential toxic state [56]. Although implementation of dynamic pathway regulation has been
successful in several studies, for example improving fatty acid levels [57], 3-Hydroxypropionic
acid [58] and glucaric acid [59], its application has generally been limited, which is mainly
due to lack of biosensors or lack of sufficient understanding of cell metabolism to efficiently
integrate pathways for dynamic regulation.

2.1.2 High-throughput screening

Biosensors are also instrumental for screening large-scale libraries [60] (Figure 2.2B), such as
libraries generated using random mutagenesis approaches or overexpression libraries, which
have, for example, enabled the identification of genes previously not known to improve the
production of malonyl-CoA [61] and fatty acyl-CoA (Paper IV). Furthermore, although
evolutionary engineering has been key in evolving strains with beneficial characteristics,
the majority of such methods are growth-coupled, meaning that the production of a desired
compound or tolerance to a certain chemical is translated into improved fitness under selection
pressure. However, in cases where increased amounts of a certain compound is growth-
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Figure 2.2 Applications of biosensors. In systems metabolic engineering, biosensors
have two main applications, dynamic pathway regulation and high-throughput screening.
(A) Dynamic pathway regulation enables an optimal balance between biomass and product
formation. (B) Library screening and evolutionary engineering approaches combined with
fluorescence-activated cell sorting or improved growth fitness under selection pressure can
help identifying promising strains and, thus, reduce the number of samples that can be
feasibly analysed using more accurate, traditional, methods such as mass spectrometry.

decoupled, biosensor-driven evolutionary engineering [51] has been able to couple the desired
compound to increased fluorescence signal [62, 63] or to improved growth fitness under
selection pressure [64].

It is, therefore, important that biosensors are well-integrated into approaches facilitating
strain development as previously mentioned, for example, efficiently balancing biomass and
product formation (Figure 2.2A) and finding the most promising strains in library screening
and evolutionary engineering approaches (Figure 2.2B). In order for a biosensor to be useful
in any of the aforementioned applications, it needs to exhibit certain features [65–67].
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2.2 Features of biosensors

The performance of a biosensor is determined by several features, which are critical to consider
when developing biosensors for metabolic engineering applications. Although a digital-like
behaviour could be useful for dynamic pathway regulation, it is commonly not desirable to
have for high-throughput screening. The aim in high-throughput screening is to distinguish
high producer cells from low producer ones, and in order to distinguish between these it
is important to have a graded output signal in response to increased concentrations of the
desired compound. Therefore, an analog-like response with graded output signal in response
to an input signal is sought for. This is often referred to as a response curve, which is used
to validate the performance of a biosensor [68].

2.2.1 Biosensor specificity and response curve

An important feature of biosensors is the specificity, which is needed in order to ensure
recognition of a desired compound. However, in cases where the compound of interest does
not share any similarities with other compounds in the host, the specificity might not be
the most determining factor for its applicability [66]. Other important features includes
the dynamic- and operational, range, which can determine the shape of the response curve
(Figure 2.3A). The dynamic range is commonly defined as the signal-to-noise ratio, and is
influenced by the leakiness and the inducibility of a biosensor [69]. The operational range is
the range of concentrations resulting in gradual changed output signal. These features are to
some extent related as a low dynamic range will prevent signals from producer strains to be
distinguished from any potential background noise and thereby also preventing incremental
improvements of a broad range of concentrations to be distinguished (Figure 2.3B). However,
a high dynamic range does not necessarily result in a broad operational range, and this is
mainly determined by the sensitivity of the biosensor. The sensitivity of a biosensor is defined
by the slope of the response curve, and a highly sensitive biosensor will result in a steep
curve, thereby reducing the operational range. There is therefore a trade-off between these
two. Furthermore, the orthogonality is also important to consider, such that the biosensor
does not crosstalk or interfere with other regulatory proteins or elements in the host cell [70].
Low orthogonality prevents robust and predictive signal output, which will make biosensors
useless for their purpose.

As these features are necessary to consider, naturally existing sensory molecules, or
synthetically created ones, have to be engineered and custom-made if relevant features are
not fulfilled. Therefore, when developing biosensors, the ease of improving these features
is often considered, which also influences the type of biosensor one decides to apply for a
certain application.
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Figure 2.3 Biosensor response curve. (A) The response curve is commonly used to
evaluate the performance of a biosensor, and is based on parameters such as the sensitivity
and the dynamic- and operational range. (B) A biosensor with high sensitivity can reduce
the operational range, resulting in an ON and OFF shaped response curve whereas a low
dynamic range often prevents a broad operational range.

2.3 Different types of biosensors

There are different types of genetically encoded biosensors responsive to environmental signals
and extra- and intracellular metabolites, and some of these have been simplified and schemati-
cally illustrated in Figure 2.4. These biosensors can all be of interest for metabolic engineering
applications. For example, although biosensors responsive to environmental signals and ex-
tracellular metabolites are of importance, particularly from a bioprocess perspective [71],
biosensors responsive to intracellular metabolites have other advantages. For instance, al-
though the final aim in most metabolic engineering endeavours is to secrete the compound
or product of interest, secretion often requires additional engineering, for example, finding
suitable transporters, which in fact has been shown to be facilitated by using a intracellular
metabolite-responsive biosensor [72]. Nonetheless, before dedicating effort for improving the
secretion pathway, a proof-of-concept strain must first be developed, which again could be
facilitated using biosensors sensing intracellular metabolites. Furthermore, some intracellular
metabolites, such as acetyl-CoA and acyl-CoA, are important precursors for producing a
wide range of industrially interesting compounds. There is, therefore, also an interest in de-
veloping platform strains overproducing these precursor metabolites. Intracellular metabolite
biosensors can also be used to sense extracellular metabolites when sensor cells and producer
cells are encapsulated in droplets or co-cultivated [73,74]. Finally, intracellular metabolites
are also often the target for balancing metabolism using dynamic pathway regulation.

In this thesis, the focus has been on intracellular metabolite-responsive biosensors based
on transcription factors, and before addressing these specifically at the end of this chapter,
a brief overview of other relevant biosensors will first be given.
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Figure 2.4 Examples of biosensors. (A) Two-component system-based biosensors are
mainly composed of a membrane-bound histidine kinase which upon interaction with environ-
mental signals or extracellular metabolites autophosphorylates and in turn phosphorylates
a response regulator, which can be a transcription factor regulating gene expression. (B)
RNA-based biosensors are mainly based on riboswitches or ribozymes, which are composed
of an aptamer domain and an expression platform. RNA-based biosensors can be developed
based on the (I) transcription termination, (II) translation initiation level and (III) on self-
cleaving ribozymes. (C) FRET-based biosensors can be developed by combining perplasmic
binding proteins with fluorescent proteins to achieve fluorescence resonance energy transfer
upon ligand binding. (D) Transcription factor (TF)-based biosensors are commonly based
on a metabolite-responsive transcription factor and a corresponding promoter to which it
can bind and regulate gene expression, either through (I) activation or (II) repression, upon
interacting with the metabolite.
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2.3.1 Two-component system-based biosensors

Biosensors responsive to environmental signals, for example light, temperature and pH, are
commonly based on two-component systems, which are abundant in prokaryotes [53,71]. Two-
component systems typically consist of a membrane-bound sensor kinase, a sensor domain
connected to an intracellular histidine kinase, and an intracellular response regulator, which
often is a transcription factor regulating gene expression. Upon sensing a signal through
the sensor domain, the histidine kinase autophosphorylates and in turn phosphorylates the
corresponding respone regulator, which either activates or represses gene expression [75]
(Figure 2.4A).

The challenge of having a functional two-component-based biosensor is to ensure specific
phosphotransfer between the two domains such that off-targeting does not occur [76]. Two-
component systems are less present in eukaryotes, which could be due to the more complex
systems found in eukaryotes, requiring longer and more stable signaling outputs than can be
provided from two-component systems [76, 77]. In eukaryotes, G protein-coupled receptors
are one of the most important signaling proteins, which can be used to develop biosensors
to respond to extracellular signals and chemicals [78].

For sensing intracellular metabolites, metabolite biosensors are commonly based on pro-
teins, such as metabolite-responsive transcription factors, and regulatory and catalytic RNAs,
such as riboswitches and ribozymes.

2.3.2 RNA-based biosensors

A class of metabolite biosensors are RNA-based biosensors, which can be developed from
riboswitches. Riboswitches, composed of an aptamer and an expression platform [79], are
regulatory elements embedded within an mRNA that can control gene expression at both
the transcriptional and translational level by changing its own conformation upon binding
to a metabolite [80, 81]. At the transcriptional level, RNA-based biosensors can be used
to either disrupt or facilitate the formation of a terminator, resulting in transcriptional
activation or repression, respectively (Figure 2.4B). A theophylline responsive sensor was
successfully developed using the well-characterized theophylline aptamer, which upon binding
to theophylline prevented the formation of an intrinsic terminator, thereby resulting in
gene expression [82]. At the translational level, riboswitches can modulate their structure
such that the ribosome binding site is sequestered from the ribosome, thus attenuating
translation (Figure 2.4B) [83]. Another example of RNA-based biosensors are based on
self-cleaving ribozymes, which can be designed to self-cleave in the absence of a metabolite
(Figure 2.4B) [84].

What makes aptamers beneficial to use is that, despite their simple structure, they are
in many ways protein-like as they can, for example, bind a metabolite of interest with high
specificity. There can, however, also be challenges regarding the specificity. As aptamers are
chemically less diverse than proteins due to, for example, lack of functional groups, their
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metabolite sensing capabilities are less broad. Although existing technologies, such as in vitro
systematic evolution of ligands by exponential enrichment, can help to increase the functional
space of aptamers [85], the challenge lies in identifying aptamers that bind to the target
of interest with high specificity and functions in vivo. Furthermore, another challenge is to
develop functional switches, such that the conformational change caused by a metabolite
binding to the aptamer is propagated to the expression platform, generating a readable
output. To find a functional switch requires a large number of sequences to be evaluated,
and although this can be done in vitro, the riboswitches may not be functional in the more
complex in vivo environment. Using in vivo, high-throughput, methods have shown to be
promising, but there is still a need to evaluate samples up to 1014, which cannot be easily
matched with the currently available high-throughput methods [86]. As aptamers regulate
gene expression at transcriptional and translational initiation level, their advantage over
protein-based systems is that their regulatory mechanism consumes less energy and cellular
resources. Furthermore, riboswitches are not dependent on other proteins and are often
encoded on the same transcript as the gene of interest, which can reduce off-targeting [86].
Another type of biosensor with high orthogonality are biosensors based on fluorescence
resonance energy transfer (FRET).

2.3.3 FRET-based biosensors

Biosensors based on proteins, for example, periplasmic binding proteins, are another class
of biosensors that can be used in metabolic engineering applications. Periplasmic binding
proteins are predominantly used in bacteria to sense extracellular molecules, such as carbohy-
drates, amino acids and ions, and transport them into the cytoplasm [87]. Periplasmic binding
proteins consist of two domains connected by a hinge region and exists in an open form
and, in the presence of a bound metabolite to the interface of the two domains, in a closed
form, bringing the domains closer to each other. By fusing compatible fluorescent proteins,
such as cyan fluorescent protein to the N terminus and yellow fluorescent protein to the C
terminus of periplasmic binding proteins, fluorescent resonance energy transfer can occur
between these two flurophores in the presence of a metabolite (Figure 2.4C) [88]. When the
two fluorescent proteins are in close proximity, the energy emitted from the cyan fluorescent
protein is taken up by the yellow fluorescent protein, and the energy-transfer efficiency is
mesured as a ratio of fluorescence. Other proteins, such as transcriptional repressors, have
also been employed to develop sensors based on fluorescence resonance energy transfer, such
that upon binding to the metabolite conformational change through the repressor brings the
fluorescent proteins closer to allow resonance energy transfer [89].

Biosensors based on fluorescence resonance energy transfer have high orthogonality due
to reduced interaction with other host cell components. Despite this, and their ease of
construction, their use in metabolic engineering has been limited. This is mainly because
of their low dynamic range due to small changes in fluorescence signal. Consequently, they
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are not suitable for high-throughput screening, and such sensors can also not be used for
dynamic pathway regulation. In contrast, transcription factor-based biosensors are suitable
for both dynamic pathway regulation and in high-throughput screening.

2.3.4 Transcription factor-based biosensors

Transcription factors are defined by their ability to regulate gene expression, either positively
or negatively, upon binding to a specific DNA sequence, called operator sequence or binding
site, on a promoter. Consequently, transcription factor-based biosensors are mainly developed
by inserting the binding site of a specific transcription factor into a corresponding promoter,
together regulating the expression of a desired gene (Figure 2.4D) [66]. During the last decade,
there has been a steady increase in the development and application of transcription factor-
based biosensors (Figure 2.5), which have been successfully employed to sense precursor
metabolites and compounds of industrial value, such as acyl-CoA [57], malonyl-CoA [58,90]
and muconic acid [91]. It should be noted that during the literature study for Figure 2.5 (see
Appendix for listed studies), some relevant papers might have been unintentionally omitted,
for which I apologize. This is especially relevant for the year 2000-2010, where great focus
was dedicated to the fundamental understanding of synthetic regulatory circuits that were
not necessarily developed for metabolic engineering applications. Nonetheless, the trend
illustrated here should remain valid, especially the increase after year 2010 [92].

Transcription factor-based biosensors are commonly developed for sensing intracellular
metabolites, and this has also been the main focus of this thesis. The coming chapters will
focus on these, specifically for metabolic engineering applications in S. cerevisiae.

Figure 2.5 Approximate trend of published transcription factor-based biosen-
sor papers. The interest of developing transcription factor-based biosensors for metabolic
engineering applications seems to be steadily increasing.
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3 | Transcription factor-based biosensors

Transcription factor-based biosensors, here focused on metabolite-responsive transcription
factors, are generally divided into two main parts consisting of a sensor and an actuator
(Figure 3.1). Overall, there are three components that are of importance, including the
metabolite-responsive transcription factor, whose interaction with a corresponding reporter
promoter is influenced based on its binding to a specific metabolite. This interaction affects
the activity of the promoter, accordingly changing the expression of the reporter gene, for
example a gene encoding green fluorescent protein. Ideally, the reporter output should be
reflecting the availability of the metabolite by resulting in a corresponding, proportional,
output signal (Figure 3.1). In order to suceessfully develop a transcription factor-based
biosensor, its main components must be available and match with each other.

Figure 3.1 Illustration of metabolite-responsive transcription factor-based
biosensors. A functional transcription factor-based biosensor is composed of two parts;
the sensor part and the actuator part. The sensor part is commonly based on a metabolite-
responsive transcription factor and a corresponding promoter with which the transcription
factors interact with upon interacting with the metabolites. The actuator part can be defined
as a reporter gene encoding a visible phenotype, for example, a green fluorescent protein.
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3.1 Transcription factors

Transcription factors are commonly defined as regulatory proteins that are capable of regu-
lating gene expression upon binding to DNA in a sequence-specific manner. Therefore, other
proteins essential for gene regulation, for example chromatin remodelers, are not defined as
transcription factors due to lack of a DNA-binding domain, making the DNA-binding domain
characteristic of transcription factors. There are, however, regulatory proteins classified as
transcription factors without having a DNA-binding domain, for example Mga2, a protein
involved in regulation of OLE1 transcription, which will be discussed more in Chapter 5. For
metabolite-responsive transcription factors, another characteristic domain is an effector bind-
ing domain, which can interact with metabolites [93]. While the effector binding domain is
structurally more diverse, the DNA-binding domain is often more conserved among different
transcription factors. In fact, based on the DNA-binding domain, transcription factors are
classified into different structural groups such as the helix-turn-helix type, the most common
DNA-binding domain in bacteria [94].

The majority of metabolite-responsive transcription factor-based biosensors are based
on prokaryotic transcription factors (Table 3.1). One reason is that in prokaryotes signal
transduction occurs via one-component regulatory mechanisms based on a wide range of
allosteric transcription factors, which upon binding to a metabolite results in a conformational
change that alters their affinity for their binding sites, thereby regulating gene expression
accordingly [77,95]. Furthermore, prokaryotic transcription factors are advantageous to use
in eukaryotes as prokaryotes have a less complex regulatory network, enabling transcription
factors, predominantly repressors, to be fairly easily implemented in eukaryotic hosts [96,97].
Other advantages include their high orthogonality, reducing the risk of interacting with
regulatory elements in eukaryotic hosts, and their modularity, allowing the construction of
chimeric transcription factors with user-specific functions.

In order to develop a functional and responsive biosensor, it is important that a well-
characterized transcription factor is available, and since it is not always straightforward to find
a suitable transcription factor, it is common to ’re-use’ or ’re-engineer’ an already promising
transcription factor for a number of purposes or applications (Table 3.1). From the literature
study (Appendix) performed for Table 3.1, it was clear that the majority of studies focused
on either demonstrating the potential of transcription-factor based biosensors for metabolic
engineering applications or actually implementing well-characterized biosensors for high-
throughut screening applications. Although dynamic pathway regulation is another important
application, only a few studies focused on dynamic regulation, which is probably due to the
complexity of controlling and regulating metabolism on a higher level. Nonetheless, although
naturally ocurring sensor systems exist for certain compounds does not necessarily make them
"ready-to-use". Commonly, natural sensors need to be custom-made to exhibit, for example,
improved dynamic- and operational range [136]. Achieving this can be a straightforward or
a tedious process, usually requiring the need to at least engineer reporter promoters.
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Table 3.1: Examples of metabolite-responsive transcription factors (TFs) used for
developing metabolite biosensors.

TFs Organisma Metabolitea References

AcuR Rhodobacter sphaeroides acrylate [98, 99]

AraC E. coli arabinose [63,99–105]

BenM Acinetobacter baylyi cis,cis-muconic acid [72,91,106–109]

FadR E. coli fatty acyl-CoA [57,110–113]

FapR B. subtilis malonyl-CoA [58,61,90,114–121]

FdeR Herbaspirillum seropedicae naringenin [91,122–124]

Lrp Corynebacterium glutamicum l-valine [62,125,126]

LysG C. glutamicum l-lysine [127–129]

PcaQ Sinorhizobium meliloti protocatechuic acid [91,107,130]

VanR Caulobacter crescentus vanillic acid [107,130,131]

XylRb - xylose [112,132–135]

aOrigin, bOrigin of organism; several

3.2 Reporter promoters

Promoters are DNA sequences containing regulatory elements to which proteins, including
transcription factors, bind to initiate transcription of its downstream gene. Promoter ar-
chitechtures, especially in eukarytotes, are often complex and can be influenced by several
factors, for example by the DNA sequence itself, including the poly(dA:dT) content, the
presence of binding sites and other regulatory elements, by chromatin remodeling- and mod-
ifying complexes and by the presence of nucleosomes, which are present in varying levels
depending on the genes [23,137].

In eukaryotes, promoters are generally divided into two main parts, the core promoter
and the proximal promoter, or the upstream region [138,139]. The core promoter is the region
from which transcription is initiated, meaning the region to which the transcription preinitia-
tion complex, including RNA polymerase II and general transcription factors, bind and start
transcription. Two features characteristic to the core promoter are the TATA/TATA-like se-
quences, to which the preinitiation complex is recruited, and the transcription start site, which
defines the start of the transcription. Upstream activating sequences or upstream repressing
sequences are features found in the proximal region, to which gene-specific transcription
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factors bind and regulate gene expression [140] (Paper III).
When developing transcription factor-based biosensors in yeast, it is common to use

prokaryotic transcription factors in combination with the host’s own native promoter. There-
fore, to match these two it is necessary to systematically evaluate binding site positions
suitable for the cognate transcription factor. In S. cerevisiae, not many promoters have been
well-characterized, for example as PCYC1 and PTEF1 , and even less have been evaluated for
use as reporter promoters in biosensor development. Therefore, in Paper II we look a bit
further into this.

3.3 Reporter genes

The reporter genes are the actuators of biosensors, without which it would not have been
possible to monitor any changes taking place in the cell. Commonly, the reporter gene
encodes a visible and easily measurable phenotype, including a fluorescent protein or growth-
coupled protein that complement an auxotrophic strain or confer resistance to, for example,
an antibiotic, allowing the producer cell to be distinguished through improved growth.

Screening based on fluorescence as an output usually requires expensive instruments,
whereas selection can be a cheaper alternative and be more useful when screening very large
libraries. On the other hand, screens can offer higher resolution, enable less complicated
negative/positive selection schemes and may be more suitable for identifying cells producing
toxic compounds [50,141]. In this thesis, the gene encoding green fluorescent protein has been
the reporter of choice, enabling screening, real-time monitoring and microscopic evaluations.

3.4 Transcription factor-based biosensors for S. cerevisiae

S. cerevisiae is widely used in research and industry for several purposes, including as a
model organism for studying higher eukaryotes and as a cell factory for producing drugs and
chemicals. This is attributed to its well-studied genetics, its ease of engineering, and more
specifically for industrial applications, its resistance to phage contamination and the fact
that it is generally regarded as safe [142]. Although tools for strain engineering are advancing,
development of high-throughput screening tools are lagging behind [33]. Currently, there are
only a few well-characterized biosensors available for S. cerevisiae, and there is therefore an
interest to develop new biosensors or expand on already existing ones, which is the focus of
the coming chapters.
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biosensors

When initiating the process of customizing a biosensor, it is often assumed that a well-
characterized transcription factor is available. As candidate transcription factors often are
heterologous, their regulatory function in a chosen host needs to be evaluated together
with a modified, endogenous, promoter. Therefore, the first step is to create a transcription
factor/promoter pair, which in a subsequent step has to be evaluated for its responsiveness
to a desired compound. Finally, the functional and responsive biosensor often needs to be
optimized to fit a certain application, for example by improving its dynamic- and operational
range.

4.1 Biosensor construction strategies

To create the transcription factor-promoter pair, different binding site positions and their
influence on promoter activity must be evaluated. This is mainly because promoters are
complex, knowledge of their detailed structure is still lacking and the presence of other
important elements are yet to be elucidated [143]. Furthermore, sequence variations as short
as 2 bp, especially in the core promoter, can influence promoter activity, and sequences
immediately upstream of the translation start site can affect translation efficiency [144].
As transcription factor-based biosensors developed for S. cerevisiae are commonly based
on prokaryotic transcription factors, mainly repressors, the binding sites are located in the
core promoter in order to achieve repression through steric hindrance of RNA polymerase
progression or binding of the preinitiation complex [66]. One approach is to place the binding
sites either close to the TATA box or the transcription start site, which have shown to
work well previously by allowing for repression and/or activation depending on the sensor-
type [58, 61, 91]. Although this is a convenient approach, the drawback is often reduced
promoter activity, which could, for example, be due to sequence variations caused by the
inserted binding sites [144]. This reduced promoter activity is not desirable, particularly
when using repressors, as the maximal dynamic range is reduced. To find locations that have
minimal influence on promoter strength, one usually has to evaluate several locations.

The next step is to ensure responsiveness to the compound of interest. This is usually
performed by feeding or inducing the production of the desired compound and evaluate
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changes in the output signal. Here, one will obtain better understanding of the operational
range, and ideally there should be incremental changes in output signal as a response to a
broad range of concentrations that are of relevance to the application. The response to a
compound is also dependent on the expression level of the transcription factors, which can
be modified using inducible promoters or promoters of different strengths.

We were interested in obtaining a better understanding for how to facilitate the construc-
tion and development of transcription factor-based biosensors. We sought to improve the
dynamic range of a previously characterized malonyl-CoA responsive biosensor (Paper II).
We also discuss the possibility of using the CRISPR/Cas9 system for better understanding
of promoter architecture and guiding binding site positioning (Paper III).

4.1.1 Malonyl-CoA-responsive biosensor - an example case

Malonyl-CoA is an important signaling molecule in living cells and the precursor for produc-
ing many essential compounds such as fatty acids and flavonoids as well as the industrially
interesting chemical 3-Hydroxypropionic acid. There is therefore an interest in further de-
veloping and optimizing a previously developed malony-CoA-responsive biosensor, which is
based on the bacterial transcription factor FapR (fatty acid and phospholipid biosynthesis
regulator). FapR is a malonyl-CoA-responsive transcriptional repressor derived from Bacillus
subtilis, where it negatively regulates its own expression and the biosynthesis of fatty acids
and phospholipids when malonyl-CoA levels are low [145, 146]. To date, a malonyl-CoA-
responsive biosensor based on FapR has been employed in several different organisms [67],
including in bacteria [120], yeast [58,61] and mammalian cells [118].

As a first step to improving the maximal dynamic range of the malony-CoA sensor, we
were interested in evaluating the importance of binding site locations in different promoters.
Only a few promoters such as PCYC1 [91], PTEF1 [58], PGPD1 [61], PGPM1 [134] and hybrid
promoters based on PGAL1 [110,113,117,135,147] have been characterized and employed for
constructing biosensors in S. cerevisiae. Therefore, in Paper II we characterized additional
promoters that might be suitable for constructing biosensor that can be employed in both
high-throughput screening applications and dynamic pathway regulations. For instance,
for high-throughput screening, a dynamic range as high as possible might be required to
distinguish strains with different performances whereas for dynamic pathway regulation a
suitable range is determined by the optimal expression level of the involved genes. Our first
immediate finding corroborates the generally accepted fact that promoter architectures are
complex and that there is still much we do not know about important elements embedded
within these [148]. This could be observed in the different outputs we achieved despite placing
the same binding site in areas of, more or less, equal importance, for example, close to the
TATA box, the transcription start site and between these two (Paper II).

For example, what we found interesting was that insertion of binding sites placed in
different locations in PMDH2 were all mainly unresponsive to FapR. Of these, two inserted
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binding sites resulted in very low fluorescence signals, suggesting that these regions play a
role in promoter activation (Figure 4.1A). On the other hand, all binding sites located in
PCCW12 seemed to be responsive to FapR, although binding site 2, which did not influence
the promoter activity, gave a strong repression in presence of FapR, reducing the leakiness
and resulting in a high maximal dynamic range (Figure 4.1B). It is also interesting that
binding site 1 in PCCW12 is 6 bp upstream of the TATA box, whereas binding site 2 is 4
bp downstream of it, and yet a clear difference in promoter activity and repression can be
observed. Furthermore, for PCCW12 we also observed that the basal activity in the OFF state,
that is in the presence of the transcription factor, increased the further away from TATA box
and closer to the transcription start site the binding site is. Perhaps steric hindrance is more
prominent when the presence of transcription factors prevents the binding of the preinitiation
complex, that is when they bind in close proximity to the TATA/TATA-like elements, and
have less influence in hindering RNA polymerase II from initiating transcription. Most yeast
promoters contain several transcription start sites with one site usually being the more
dominant one. If this particular site would be masked, RNA polymerase could potentially
scan for other transcription start sites, and thereby proceeding with the transcription.

Figure 4.1 Evaluating fapO binding site positions in PMDH2 and PCCW12 . FapO
binding sites were placed in the proximity of the TATA box and the transcription start site
(TSS) in the core promoter of (A) PMDH2 and (B) PCCW12 . The reporter promoters were
placed upstream of GFP and the fluorescence was measured 8 h and 24 h after inoculation
for PCCW12 and PMDH2 , respectively, using flow cytometry. The blue boxes indicate TATA
box and the red line represents the TSS. n = 3, error bar = ± SD. Adapted from [115].
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The other promoters we studied, PTDH3 , PTPI1 and PADH2 (Paper II), overall showed
the same pattern, suggesting that the area where the TATA or TATA-like element is located is
a hotspot for achieving desirable, conditional, expression. This pattern could also be observed
in other studies [107,148]. In a recent study, binding site positions of the transcription factor
VanR was thoroughly evaluated in the area between the TATA box and TSS in PTEF1 ,
showing that the basal activity in the OFF state increases the further downstream from
the TATA box the inserted binding site positions are, thereby resulting in increased leaky
expression. Despite these agreeing patterns, a universal rule cannot be claimed. This is not
only due to the complex nature of promoters but also because the binding site length and
the transcription factor type can influence the expression level by, for example, altering
the sequence composition and sterically hindering binding of other regulatory proteins to
different degrees based on the shape and size of the transcription factor. These suggestions
can, however, be used as guidelines and as starting points for finding promising locations
that results in a desirable dynamic range.

Another type of reporter promoters that are not commonly used are inducible promoters.
In our study (Paper II), we also included a glucose-inducible promoter, namely PADH2 ,
which is strongly induced when glucose is depleted [149]. Using PADH2 in dynamic control
can enable the separation of growth phase from production phase, and adds two layers of
regulation; the absence of glucose and the presence of accumulated malonyl-CoA levels to
derepress gene expression. This design can, for example, reduce potential leaky expression
and provide more controlled regulation [113,150].

In order to improve the maximal dynamic range for repressor-based biosensors, the
influence of the binding sites on promoter activity should ideally be minimal and the basal
activity in the OFF state should be as low as possible. As finding promising binding site
locations and preventing the promoter activity from decreasing upon binding site insertion
can be challenging, we sought to evaluate whether we could re-arrange the positions and yet
achieve a functional sensor. We decided to use PTEF1 , a commonly used reporter promoter
for repressor-type biosensors, and placed the binding sites in the upstream region, outside of
the core promoter (Figure 4.2A). Here we observed that the closer the binding sites (binding
sites 5 and 6) were to the core promoter and the TATA-like element, the more the promoter
activity was reduced. On the other hand, binding sites placed further upstream had neglible
effect as the promoter activity was not compromised (Paper II).

As the majority of bacterial repressor function in yeast through steric hindrance, we
assumed that expression of FapR alone, when bound to the binding sites in the upstream
region, would not result in repression. Therefore, we fused FapR to the endogenous repressor
Mig1, creating a chimeric transcription factor (Figure 4.2A). Mig1 is a zinc finger protein
known to play a key role in glucose repression, repressing a number of genes in the presence of
glucose [151]. Like a number of other repressors in yeast, including Rox1, Mig1 is thought to
function by recruiting the Tup1-Ssn6(Cyc8) corepressor complex [93,152]. When evaluating
both Mig1 and Rox1, we found that Mig1 exhibits stronger repression (Paper II), and
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Figure 4.2 Chimeric transcription factor improves dynamic range. (A) Design of
inserted fapO binding sites in both the upstream region (1, 3 and 4) and the downstream
region (A, B and C) in PTEF1 , which were evaluated with FapR as well as with FapR-Mig1.
(B) Histograms showing the influence of binding sites inserted in the upstream- and in the
downstream region and the achieved repression using FapR and FapR-Mig1. Fluorescence
was measured 8 h after inoculation using flow cytometry. n = 3, error bar = ± SD. Adapted
from [115].

decided therefore to continue with it. The responsiveness of FapR to malonyl-CoA was
maintained in the chimeric transcription factor, indicating that fusion with Mig1 did not
negatively influence its responsitivity (Paper II).

Combining the binding sites in the upstream region did not alter promoter activity,
whereas binding sites combined in the downstream region resulted in decreased promoter
activity (Figure 4.2B). This data suggest that he maximal dynamic range can be improved
by re-positioning the binding sites to the upstream region and using a chimeric transcription
factor. Furthermore, the chimeric repressor was shown to be promising to reduce leaky
expression when combined with the downstream binding sites (Figure 4.2B). Although using
Mig1 appears to be a good choice for such purposes, it is important to keep in mind that
it is a ubiquitous protein and might interfere with other processes in the cell, which might
not be ideal for cell factory development. Similar challenges could occur using other yeast
repressors, such as Ssn6 [133], due to the highly interconnected nature of yeast transcription
factors.
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In order to more efficiently find promising areas within reporter promoters for biosen-
sor construction, it is necessary to find other means to evaluate promoters in contrast to
the systematic analysis of binding site positions. Using CRISPR-mediated gene expression
activation (CRISPRa) could potentially be used to ’pre-screen’ promising areas in promoters.

4.1.2 Using CRISPR to facilitate biosensor development

The CRISPR/Cas system is a defense mechanism involved in phage immunity in many
bacteria [153], and has received considerable attention for its application in genome engi-
neering [154, 155]. In fact, its discovery has been of such importance that it was awarded
the Nobel Prize in Chemistry in 2020. There are different types of CRISPR systems [156],
and the one being mainly employed for genome editing and gene regulation is based on the
type II system from Streptococcus pyogenes, which uses a single Cas protein, Cas9, together
with a single guide RNA (gRNA) [39, 157]. A catalytically inactive Cas9, often referred to
as dCas9 (endonuclease-deficient Cas9) [158,159] has been widely used as a programmable
tool for gene regulation in CRISPRi/a applications [160,161].

In Paper III, we evaluate the interplay between dCas9, fused to the tripartite VPR
composed of the three transcriptional activators VP64, p65 and Rta, and transcription factor
binding sites of Gcr1, Gcr2 and Tye7 in 10 different glycolytic promoters. Gcr1, Gcr2, Tye7 are
all extensively studied transcriptional activators in yeast. Gcr1 and Gcr2 act as heterodimers
with Gcr1 carrying the DNA binding domain and Gcr2 the activating domain. The Gcr1/Gcr2
heterodimer binds to the consensus motif GGAWGC, and has most of its targets identified
in the glycolytic pathway [162,163]. Tye7 is a basic helix-loop-helix transcriptional activator
with the consensus binding motif (CAT)CACGTG, and most of its targets are also identified
in the glycolytic pathway [164]. The promoters used in our study (Paper III) have known
binding sites for Gcr1/Gcr2 and Tye7. In order to study the interplay, or potential competition,
between dCas9-VPR and the transcription factors Gcr1/Gcr2 and Tye7, the promoters were
coupled to the gene encoding green fluorescent protein and integrated into the genome of S.
cerevisiae. To study the effect of dCas9-VPR binding, gRNAs were designed to either bind
on top or outside of a known motif. For controls, we designed gRNAs to bind somewhere
’random’ in the core promoter or in the proximity of it. When evaluating the gRNAs designed
to bind on top of a motif, we found that the fluorescence signal either decreased or remained
unchanged compared to the control (Figure 4.3). On the other hand, placing the gRNA
outside of a motif resulted in increased GFP signal, indicating that there is a synergistic
effect when the dCas9-VPR is not bound to a motif whereas a competitive effect is possible
when dCas9-VPR binds on top of a motif.

While these results could be of fundamental interest, it is also worth noting that such data
can be used to direct the design of gRNAs for CRISPRi/a. In addition, it could also provide
information on the importance of specific transcription factor binding sites for gene regulation.
However, the hypothesis derived from our study that dCas9 most likely competes with the
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Figure 4.3 Targeting dCas9-VPR to a transcription factor motif or non-motif
position. gRNAs were designed to target motif or non-motif positions bound by either
Gcr1, Gcr2 or Tye7 within 10 glycolytic promoters, which were placed upstream of GFP.
Fluorescence measurements were done using Biolector. n = 3, error bar = ± SD. *p-value
<0.05, **p-value <0.01 (Student’s t test).

endogenous transcription factor when bound on top of a motif could potentially have been
confirmed through further studies and additional control experiments. For example, the same
set up could have been run with only dCas9 without the activator VPR. Or, the binding sites
for the transcription factors Gcr1, Gcr2 and Tye7 could have been mutated/deleted to allow
for comparison between conditions in the presence and absence of the transcription factor
binding. Another option would be to perform chromatin immunoprecipitation experiments
to demonstrate transcription factor occupancy.

This paper is not directly related to biosensors, but there are some aspects of it that
could be interesting for biosensor development. For example, when evaluating the effect of
the control gRNAs designed to bind to unspecific positions within the promoter, which to our
knowledge does not contain any known binding sites, we observed different output signals.
This indicates that there might be important elements in these areas that are yet to be
elucidated. For biosensor development, such strategy might facilitate developing synthetic
promoters and help guiding binding site positioning. For example, if there are areas within
the promoter that result in a clear negative or positive fold change upon expression of dCas9-
VPR, then perhaps this area is interesting to look further into. Such areas could indicate the
presence of important regulatory factors, which could be a useful area for placing a repressor-
type transcription factor as there is a possibility of temporarily interaction with a regulatory
element. Using dCas9-mediated gene regulation might not necessarily be comparable with the
results obtained when evaluating binding site positions with a corresponding transcription
factor, but it could provide a better understanding of promoter architechture. This is especially
relevant as the benefit of using dCas9 as a pre-screening tool is not dependent on any specific
binding sites, the length of these and their interaction with transcription factors, and might
thereby give a more general overview.
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Sensing fatty molecules



5 | Fatty acid-responsive biosensors

Fatty acids are involved in several important processes in living cells, including as signaling
molecules, as energy storage, in cell membrane formation and in protein modification processes
(Figure 5.1) [165,166]. Although fatty acids are essential molecues in living systems, the acids
are usually not found in a free state and serve several important roles when in combination
with other molecules. One important function is storing energy in the form of triacylglycerols
or steryl esters. Another function is as building blocks of phospholipids and glycolipids,
which are important components of biological membranes. Furthermore, fatty acids also
serve as hormones and intracellular messengers and play a role in localizing certain proteins
to the membranes. In addition to their physiological roles, fatty acids and fatty acid-derived
compounds, including fatty alcohols and alkanes, are also of great interest for industrial
applications [167]. These can be used to produce biofuels and several valuable chemicals and
pharmaceuticals, reducing the need of petroleum-driven production (Figure 5.1) .

Figure 5.1 Functions and applications of fatty acids. Fatty acids have several impor-
tant cellular functions as well as also being of industrial interest.
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5.1 Fatty acids as industrially relevant compounds

Fatty acids and fatty acid-derived products have a wide range of applications, making them
industrially attractive to produce at commercial levels [168]. For example, oils and fats
derived from plants and animals are referred to as oleochemicals and include fatty acids,
fatty alcohols, fatty acid methyl esters and fatty amines, which can be used in products such
as soaps and detergents, biofuels, cosmetics, lubricants and nutraceuticals [167]. The most
common source for production of today’s oleochemicals comes from plant oils, including palm
and soybean. There are, however, numerous challenges of such production. First, desired
oleochemicals with certain properties [169,170], including chain length and saturation, may
not be abundant in such plants, and in order to obtain oleochemicals with desired composition
requires rarer plants [171]. The challenges of using rare plants includes low productivity and
the need to cultivate these in a specific climate and soil condition, making it unreliable in
terms of flexibility and stability and economically infeasible. The need for a certain climate
is also true for cultivating palm and soy, which has resulted in environmental and ethical
problems due to increased deforestation and destruction of important habitats.

Therefore, it has become increasingly important to find alternative ways to produce
oleochemicals to replace petrochemicals, and one potential way is through microbial cell
factories. Some microorganisms referred to oleaginous yeast, including species of the genera
Rhodosporidium and Yarrowia, are natural producers of high levels of lipids [172]. However,
since these microorganisms do not have the same advantage as S. cerevisiae in terms of engi-
neering tools, knowledge and databases, they are not as well-established. Therefore, despite
the fact that S. cerevisiae is a naturally low producer of lipids, in fact only 2-3% of its cell dry
weight is composed of lipids, its metabolism has been successfully engineered to produce a
wide variety of fatty acids and derived products, although still not at a commercially relevant
level. To be able to engineer the metabolism for fatty acid production, it is important to have
an understanding of the metabolism, particularly the fatty acid metabolism. Since this topic
is beyond the scope of this thesis, a brief overview of S. cerevisiae fatty acid metabolism will
be provided and following this different engineering strategies will be discussed to exemplify
the challenges of engineering strategies.

5.2 Fatty acid metabolism in S. cerevisiae - a brief overview

As fatty acids are involved in several different processes, it is essential to maintain homeostasis.
De novo synthesis of fatty acids are carried out by the fatty acid synthase (FAS) complex.
There are two types, type I FAS and type II FAS, which are independent from each other
and function in the cytoplasm and mitochondria, respectively [173, 174]. The mechanisms
between these types are quite different as the type II FAS, which is commonly found in
prokaryotes, is composed of individual and separate enzymes whereas type I FAS consist
of highly integrated enzymes functioning within a multi-enzyme complex, encoded by the
genes FAS1 and FAS2. The precursor for all fatty acids is acetyl-coenzyme A (acetyl-CoA),

35



Chapter 5. Fatty acid-responsive biosensors

which is carboxylated to malonyl-CoA through acetyl-CoA carboxylase, encoded by ACC1
(Figure 5.2). This reaction is irreversible and thus the commited step for fatty acid synthesis.

The FAS complex catalyzes the condensation of acetyl-CoA and malonyl-CoA to acyl-
CoA, which is the main effector molecule regulating expression of genes involved in the
fatty acid metabolism [175]. The fatty acid spectrum consists of C12-C26 fatty acids, where
the majority consists of long-chain fatty acids, C16 and C18. These serve as precursors for
production of very long-chain fatty acids, C20-C26 fatty acids, carried out by the elongases
Elo2 and Elo3 on the endoplasmic reticulum (ER) surface. Fatty acids can be unsaturated
through the single enzyme system Ole1, a ∆9-fatty acid desaturase [176, 177]. In fact, the
majority of fatty acids in S. cerevisiae are unsaturated, C16:1 and C18:1 [177]. Since fatty
acids are of fundamental, medical and industrial interest, there has been great amount of
research aiming to understand its metabolism, for example, for producing fatty acid and
fatty acid-derived products.

5.2.1 Engineering fatty acid metabolism

As mentioned in previous chapters, engineering microorganisms to produce industrially rele-
vant compounds, including fatty acids, often requires major re-programming of metabolism.
Commonly, the metabolism has to be rewired on several different levels in parallel in order
to find an optimal route [168]. For example, the central carbon metabolism needs to be
engineered to enhance the precursor supply (Figure 5.2). Since acetyl-CoA is an essential
building block for producing a number of different compounds and the major substrate for
the fatty acid synthetase, it is of great interest to increase the carbon flux towards acetyl-
CoA [178]. Although acetyl-CoA is synthesized in four different compartments, including
the mitochondrion, peroxisome, nucleus and the cytosol, it cannot be transported across
membranes unless certain shuttle mechanisms are in place. There is, however, an interest
to transport acetyl-CoAs from other compartments to the cytosol to circumvent acetyl-CoA
from being generated from pyruvate via the cytosolic reactions (Figure 5.2). This is due to
the Crabtree effect, which is that S. cerevisiae has evolved to use fermentative metabolism
despite the presence of oxygen when glucose is in excess [179]. Briefly, this results in less ATP
production and increased ethanol fermentation. In a recent study to reprogram S. cerevisiae
into a fatty acid-producing yeast, several approaches, including rational engineering and
directed evolution, were taken to balance pathway intermediates, meet the NADPH demand
and ensure viability despite abolishing ethanol fermentation, the preferred route to produce
energy molecules in presence of glucose [45]. Other approaches includes overexpressing the
ACC1 activity [180], deleting the beta-oxidation pathway [181], and various other strategies
such as engineering the FAS complex to increase production of short- and medium chain fatty
acids [182] and to improve the production of very long chain fatty acids using a heterologous
FAS I system and rewiring the native fatty acid elongation system [183]. These approaches
usually require laborious and time-consuming genome-scale engineering strategies.
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Figure 5.2 Simplified overview of some key pathways in the metabolic network.
Due to the highly interconnected and dynamic nature of metabolism, genome-scale engineer-
ing is often required to improve the carbon flux through a certain pathway, for example to
improve fatty acid production.

An alternative or complementary approach to genome-scale engineering would be the use
of fatty acid-responsive biosensors as these have proven to be useful in improving production
of fatty acid-derived products through dynamic pathway regulation [57] and in finding genes
not previously known to enhance the levels of fatty acids and derived products (Paper IV).

37



Chapter 5. Fatty acid-responsive biosensors

5.3 Fatty acid-responsive biosensors and their applications

As is the case of constructing any kind of transcription factor-based biosensor, it is necessary
to have a well-characterized transcription factor responsive to your compound of interest as a
starting point. There are several naturally existing transcription factors that are responsive
to certain fatty acids, which potentially can be employed to develop fatty acid-responsive
biosensors. Here, the interest has been on developing biosensors responsive to long-chain fatty
acyl-CoAs, C16 and C18, as these are the main fatty acid components, using transcription
factors mainly derived from prokaryotes.

5.3.1 Screening for genes enhancing fatty acyl-CoA levels

A well-characterized transcription factor responsive to long-chain acyl-CoAs is FadR (Fatty
acid degradation repressor) from E. coli [184, 185]. FadR has been reported to have a
dual function as it can act as a positive regulator of genes involved in the biosynthesis of
unsaturated fatty acids and as a negative regulator of genes involved in fatty acid transport
and degradation through beta-oxidation [184]. FadR is released from its binding sites in
the presence of fatty acyl-CoAs as binding to these results in a changed conformation,
weakening its binding to DNA. A biosensor based on FadR has previously been developed
and employed to improve fatty acid-derived products in E. coli [57], demonstrated to work
in S. cerevisiae [110] and applied in our study in high-throughput screening to identify genes
boosting fatty acyl-CoA levels (Figure 5.3) (Paper IV).

Figure 5.3 Overview of the FadR-based screening strategy. FadR-based sensor
was co-transformed with the MoBY-ORF library, and cells exhibiting increased GFP signal
were sorted through two enrichment steps using fluorescence-activated cell sorting (FACS).
Adapted from [111].
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As the fatty acid metabolism is highly dynamic, we assumed that there must be genes not
previously known to influence the fatty acid metabolism, and we were interested to evaluate
whether such candidate genes could be identified with the FadR-based sensor. Therefore,
we combined the sensor system with the MoBY-ORF library, a gene overexpression library
containing 4956 uniquely barcoded open reading frames of S. cerevisiae [186], to screen for
genes enhancing the fatty acyl-CoA pool. One immediate challenge with such an approach
is that the target metabolite, fatty acyl-CoA, is an endogenous compound that is highly,
and tightly, regulated. Such regulation can therefore prevent accumulation of fatty acyl-
CoAs, thereby making the screening challenging. Despite this, the screening was carried
out employing fluorescence-activated cell sorting, and the populations resulting in increased
fluorescence signal were analyzed by sequencing the gene-specific barcodes in order to identify
the genes responsible for an increased output. For the enriched cells, we did not have any
strict cut-off, and decided to instead analyse single genes that were either found to be highly
enriched, enriched in both sorting steps or enriched only in the first sorting (Figure 5.4).

We decided to evaluate the 16 genes marked in Figure 5.4 by measuring both the fatty
acid levels and the fatty alcohols when the genes were overexpressed in a strain expressing an
acyl-CoA reductase. From these measurements, we found three candidate genes of interest,
including GGA2, LPP1 and RTC3 as these led to increased fatty alcohol levels (Figure 5.5)
(Paper IV). The gene RTC3 was particularly interesting as its overexpression resulted in not
only increased fatty alcohol levels but also changed composition with significantly increased
levels of C18. The results observed from overexpressing RTC3 are, however, unclear, especially
as there has not been much research on this protein and the fact that it has been reported to
be involved in a number of different mechanisms [187,188]. The gene encoding Gga2, which
seems to have a better understood mechanisms than Rtc3, was also promising as it resulted in
increased levels of both fatty acids and fatty alcohols (Figure 5.5). However, it is still unclear
how overexpression of GGA2 resulted in increased fatty acid and fatty alcohol levels, but one
hypothesis is that it through direct or indirect interaction with lipid components, including
phosphoinositides and inositol, results in increased gene expression of fatty acid biosynthetic
genes [189–192]. On the other hand, Lpp1 seems to be the one that has the strongest
connection to the lipid metabolism since it is involved in regulating phospholipid metabolism
through dephosphorylation of diacylglycerol, which can be converted to triacylglycerol and
through subsequent steps be activated to acyl-CoAs (Figure 5.2) [193].

The overall screening could have been more accurately analysed by including an ad-
ditional, constitutively expressed, fluorescent protein such as mCherry to be used for nor-
malization [194]. A constitutively expressed fluorescent protein would reflect a cell’s overall
transcriptional capacity and thereby enable a more accurate representation of all metabolite-
responding cells including cells with low GFP fluorescence caused, for example, by growth
defects or other intracellular interferences as a consequence of overexpressing certain genes.
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Figure 5.4 Library analysis. From the MoBY-ORF library, which contains 4956 uniquely
barcoded open reading frames of S. cerevisiae, two subsequent enrichment steps of strains
with increased fluorescence were performed using a fatty acyl-CoA responsive biosensor and
fluorescence-activated cell sorting. Candidate genes (red) were choosen from both the first-
and second enrichment step for further evaluating their fatty acid and fatty alcohol producing
capability. For each gene, the reads were normalized to the total number of reads in the
library (in ppm). Adapted from [111].

5.3.2 Saturated fatty acid-responsive biosensors

Another transcription factor responsive to long-chain fatty acyl-CoAs is FabR (Fatty acid
biosynthesis repressor), also derived from E.coli [195,196]. The difference between FabR and
FadR is that FabR is mainly responsive to the saturated/unsaturated ratio and does not have
a dual function as FadR. A transcription factor with similar properties to FabR is DesT from
Pseudomonas aeruginosa [197–199]. We were interested in developing a dual-biosensor based
on a combination of either FadR with FabR or with DesT, depending on the one performing
the best. We were also interested in evaluating another variant of FadR derived from Vibrio
cholerae as this has been reported to have higher affinity for long-chain fatty acyl-CoAs [200].
The idea was to ultimately have a method enabling a more specific sensing of the saturated
or unsaturated levels. There has not been much research on these transcription factors, and
neither have these previously been employed for biosensor development. Therefore, the first
step was to evaluate their potential as metabolite biosensors.

While evaluating the bacterial transcription factors, we were also interested in develop-
ing an endogenous saturated fatty acid-responsive biosensor based on the promoter POLE1 ,
which we placed upstream of GFP (Figure 5.6). The idea was to used this as a control for
real-time measurements of the changes in the saturated/unsaturated fatty acid ratio through-
out the different growth phases, and thereby using it when evaluating the responsiveness of
the biosensors based on the heterologous transcription factors FabR and DesT. To evaluate
this sensor system, we expressed it from a centromeric plasmid in both the wild type-strain
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Figure 5.5 Fatty alcohol production analysis. (A) The total fatty alcohol production
and (B) the fatty alcohol composition was analysed for strains overexpressing the respec-
tive candidate genes and containing a fatty acyl-CoA reductase. The control strain is the
background strain IMX581, in which candidate genes and the fatty acyl-CoA reductase were
overexpressed. Samples were harvested 72 h after inoculation. n = 3, error bar = ± SD.
*p-value <0.05, **p-value <0.01 (Student’s t test). Adapted from [111].

CEN.PK113-11C and a modified strain (David Bergenholm, unpublished) where the native
POLE1 had been replaced with a glucose-regulated promoter, PHXT1 , which is reported to be
down-regulated after glucose consumption [201]. Analysis of the fatty acid content of these
strains shows that the modified strain produces much less unsaturated fatty acids (measure-
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Figure 5.6 Saturated fatty acid-responsive biosensor. Saturated fatty acid-responsive
sensor based on POLE1 placed upstream of GFP on a centromeric plasmid. This sensor was
expressed in both the wild-type strains and the strain having the endogenous POLE1 replaced
with PHXT1 , which has been shown to produce less unsaturated fatty acids. Sensor strains
were analysed 24 h after inoculation using flow cytometry. The fatty acid levels were analysed
from strains harvested 72 h after inoculation. n = 3, error bar = ± SD.

ments taken 72 h after inoculation). This change can also be observed using the sensor based
on POLE1 , which produces more fluorescence signal compared to the wild type-strain. POLE1

is highly regulated by several factors [177], including changes in saturated/unsaturated fatty
acid ratio where reduced levels of unsaturated fatty acids increases its activation (Figure 5.6).

As we and others have observed in previous studies, FadR works well as a biosensor in
S. cerevisiae. However, expression of FabR resulted in a growth defect and gave inconclusive
results when measuring the fluorescence signal. Generally, it is not desirable to have a sensor
causing growth defect, especially if it is intended to be used for developing cell factories.
In other words, a biosensor should ideally not compromise cell factory development [106].
Furthermore, expression of VcFadR and DesT did not result in reduced fluorescence, indicating
that these are either strongly responsive to the fatty acid levels in the strain or that these do
not function as repressors in S. cerevisiae (Figure 5.7). For V. cholerae FadR, the insufficient
repression could be due to its higher affinity for fatty acids, as it has approximately 2.5-fold
higher affinity towards oleoyl-CoA than E. coli FadR [200], which increases its sensitivity
and thereby reduces its repression efficiency [110].

As FabR and DesT did not result in clear repression, we decided to evaluate how these
transcription factors are being expressed in yeast. Therefore, we fused them to GFP using a
flexible linker [202]. We observed that FabR did not seem to be well-expressed as indicated by
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Figure 5.7 Long chain fatty acyl-CoA-responsive transcription factors. (A) Eval-
uation of different long-chain fatty acyl-CoA-responsive transcription factors; FadR (E.coli),
FabR(E. coli), VcFadR (V. cholerae) and DesT (P. aeruginosa). The general setup was
based on centromeric plasmids where 3 binding sites (blue strips) of each transcription factor
were implemented in PTEF1 , which was placed upstream of the gene encoding GFP. The
reporter promoters were expressed either without (w/o) or with (w) the transcription factors
by placing the gene encoding each transcription factor downstream of PPGK1 . Samples were
measured 8 h after inoculation using flow cytometry. n = 3, error bar = ± SD.

the small foci (Figure 5.8A) whereas DesT seemed to be well expressed and localized to the
nucles (Figure 5.8B), although this was not confirmed through nucleus staining. In an earlier
study [203], it was reported thar overexpression of FabR in its native host results in insoluble
protein aggregates. Therefore, we placed FabR under promoters with weaker strength, such
as PCYC1 instead of PPGK1 , but the growth was not improved (data not included). If what we
observe in Figure 5.8A are aggregates, then one could potentially perform western blotting
on the supernatant to more accurately analyse whether it is soluble or not. Recently, a
more straightforward method was published [204] where a reporter system can be used to
more readily evaluate protein aggregations in yeast, which could also be a useful approach
to analyse expression of FabR. Another possibility is that what is seen in Figure 5.8A are
protein degradations in endosomes [205]. Nonetheless, we decided to not continue further
with these transcription factors, and looked instead inside (of S. cerevisiae) for another way
to sense saturated fatty acids.

Expression of Ole1 has been reported to be tightly regulated by two transcription factors
responsive to saturated fatty acids, namely Spt23 and Mga2 [206]. Although these are by
definition not regarded as transcription factors (due to lack of DNA-binding domain), they
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Figure 5.8 Microscopic evaluation of FabR and DesT fused with GFP. The
genes encoding (A) FabR and (B) DesT were fused with GFP and placed downstream of
PPGK1 . Microscopic evaluation of FabR-GFP fusion showed small foci, indicating that FabR
potentially forms inclusion bodies whereas evaluation of DesT-GFP seemed to have a more
expected GFP pattern. Samples were evaluated 6 h after inoculation.

have been reported to regulate transcription by modifying the chromatin structure, making
it more accessible [207]. Although Mga2 and Spt23 have diverse regulatory functions, their
main target is reported to be regulation of OLE1 [207], in which Mga2 has a more dominant
role [177, 208, 209]. These transcription factors are tethered to the ER membrane as 120-
kDa, and processed to their 90-kDa activated form through a ubiquitin-mediated proteolysis
system (Figure 5.9A). Upon increased saturated fatty acid levels, the 90 kDa domain is
released and localized to the nucleus where it regulates OLE1 expression [210].

We were interested in developing a saturated fatty acid-responsive biosensor based on
Mga2 by employing a split GFP approach (Figure 5.9B) [211, 212]. By fusing one part of
the GFP, GFP11, to Mga2 and the second part, GFP1-10, to an NLS tag, we expected to
observed a GFP signal only when Mga2 is transported to the nucleus as the two GFP parts
would theoretically re-assemble and thereby result in a functional protein. The intact version
of GFP gave a strong fluorescent signal, even stronger than the signal observed from our
standard GFP we use in the lab (Figure 5.10). Furthermore, expressing each part separately
in a split-mode did also not result in a signal, which was a control to ensure that the parts
do not give rise to fluorescence. However, when expressing the two parts together localized
to the nucleus, we could not observe any GFP signal and neither could we observe a signal
when expressing GFP11-Mga2 together with GFP1-10 (Figure 5.10).

In hindsight, the control we used, expressing GFP11 and GFP1-10 together, to evaluate
the function of the split-GFP might not have been very reliable. The reason is that GFP11
consists of only 16 amino acid, and expressing it by itself might not have been very stable.
Therefore, it might have been more reliable to evaluate the split system by tagging GFP11
to a protein we know is localized to the nucleus, for example FadR. Due to limited time, we
decided here as well to set this project aside.
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Figure 5.9 Design of a Mga2-based biosensor. (A) Mga2 has been reported to be an
ER membrane-bound protein responsive to saturated fatty acids. In the presence of saturated
fatty acids, Mga2 is ubiquitinilated to its smaller, active, form p90, which is transferred to
the nucleus where it regulates OLE1 expression. Figure adapted from [210]. (B) Design of a
Mga2-based biosensor in S. cerevisiae using a split GFP approach.

Figure 5.10 Evaluation of the Mga2-based biosensor. Different strains were evalu-
ated by measuring fluorescence to determine the functionality of the Mga2-based biosensor.
Samples were measured 8 h after inoculation using flow cytometry. n = 3, error bar = ± SD.

45



6 | Alkane-responsive biosensor

Alkanes, an important class of hydrocarbons, are additional industrially relevant compounds
with the potential to be used for production of biofuels, specifically aviation fuels, with
desirable properties such as high-energy density and low freezing points [213,214]. There are
microorganisms naturally producing alkanes [215], but the production levels and structure of
the compounds are not ideal for commercial applications. Therefore, there has been a large
body of research dedicated to engineer microorganisms including, E. coli and S. cerevisiae,
to produce alkanes with improved, yet still low, titers [213].

There are several challenges for why it is difficult to produce commercially satisfying levels
of alkanes [213]. One bottleneck is the low enzyme activity of an aldehyde-deformylating
oxygenase, which converts aldehydes to alkanes (Figure 6.1). Therefore, one solution to
improve alkane production is, for example, to employ directed evolution on this enzyme and
sceen for strains having improved alkane production. To achieve this, an alkane-responsive
biosensor would greatly facilitate such screening. In fact, an alkane-responsive biosensor
based on prokaryotic activators has previously been developed in E. coli for screening of
microbial cell factories [216]. However, since this is based on prokaryotic activators, and it is
generally more complicated to implement prokaryotic activators successfully in eukaryotes
due to the differences in the transcriptional machinery, we sought elsewhere for inspiration
to develop an alkane-responsive biosensor in S. cerevisiae.

Figure 6.1 Heterologous alkane biosynthesis in S. cerevisiae . A potential route for
alkane synthesis is through fatty aldehydes using the heterologous carboxylic acid reductase
(CAR) enzyme and the aldehyde-deformylating oxygenase (ADO) enzyme to convert fatty
aldehdyes to alka(e)nes.
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Figure 6.2 Putative alkane-sensing system in Yarrowia lipolytica . A) Yas1 and
Yas2 have been reported to function as an activator complex, activating expression of the
ALK1 gene encoding a cytochrome P450 enzyme that is involved in catalyzing the first step
in alkane degradation whereas Yas3 acts as a repressor upon binding to Yas2. This repression
occurs in the absence of alkanes. B) On the other hand, activation occurs in the presence
of alkanes, which results in re-localization of Yas3 to the endoplasmic reticulum. Adapted
from [223].

6.1 Alkane-sensing system in Yarrowia lipolytica

Yarrowia lipolytica is an alkane-assimilating yeast, which lives in hydrophobic habitants
and is able to utilize hydrophobic compounds, including alkanes [217]. There are several
genes in Y. lipolytica encoding cytochrome P450ALKs, with ALK1 being the most inducible
in presence of alkanes [218]. It has been reported that Alk1, in the absence of alkanes, is
negatively regulated by Yas3 binding to the heterodimeric activator complex Yas1 and Yas2
(Figure 6.2A) [219–221]. In the presence of alkanes, Yas3 has been reported to be re-localized
to the endoplasmic reticulum, resulting in ALK1 expression by Yas1-Yas2 (Figure 6.2B) [221].
In fact, Yas3 has been reported to be involved in regulating other genes, including a subset of
other ALK genes in Y. lipolytica. However, an immediate challenge with this system is that
there are many unknown mechanism that are yet to be elucidated [221, 222]. For example,
the mechanism of how Yas3 is re-localized to the endoplasmic reticulum is still not fully
understood.

6.2 Alkane-responsive biosensor

Despite the challenge of not having the alkane-sensing system fully elucidated, we still sought
to develop an alkane-responsive biosensor based on the putative system in Yarrowia lipolytica
(Paper V). As discussed previously, the common approach to develop transcription factor-
based biosensors is to implement the corresponding binding sites into a well-characterized
native yeast promoter. Here, we decided to implement the ARE1 binding site, to which
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Yas1-Yas2 binds, in PCYC1 according to modifications done in a previous study [91] where
the CYC1 promoter was use for developing transcription factor-based biosensors based on
prokaryotic activators in S. cerevisiae. We reasoned, therefore, that this set up would be
suitable to use for observing activation upon expression of Yas1 and Yas2, and repression
when expressing these together with Yas3. Since Y. lipolytica is also a yeast species, we
decided to test whether its endogenous promoter PALK1 would be functional in S. cerevisiae.
Therefore, we decided to evaluate the alkane-sensing system consisting of Yas1, Yas2 and Yas3
using both the PALK1 and PCYC1 promoters, from now on referred to as the PALK1 -based
system and PCYC1 -based system, respectively.

6.2.1 The PALK1 - and PCYC1 -based systems

From the PALK1 -based system, we observed several interesting results, including the increased
GFP signal when expressing all three genes encoding the transcription factors Yas1, Yas2
and Yas3 together with PALK1 , and a growth defect when expressing either Yas3 alone or
together with Yas1 and Yas2 (Figure 6.3). To rule out the possibility that the observed GFP
signal was due to autofluorescence from dead cells, we expressed all three genes encoding
the transcription factors in another strain without the GFP protein. This did not result in
any GFP signal, and together with the results observed from the propidium iodide staining
(Figure 6.4), we could rule out the presence of GFP signal as a result of autofluorescence.
It is, however, not clear why we observed increased GFP signal when combining all three
transcription factors as this was expected to repress the system. Furthermore, when only
expressing the genes encoding Yas1 and Yas2, activation could be observed when using flow
cytometry, although this could not be observed during microscopic evaluation (Paper V).

In parallel to the PALK1 -based system, we also evaluated the system based on PCYC1

(Figure 6.5). When expressing all three transcription factors together with modified versions
of PCYC1 , we obtained inconclusive results due to high error bars. However, with the activator
complex Yas1-Yas2, we observed an activation pattern, which surprisingly, was also observed
for the unmodified CYC1 promoter (Figure 6.5). After closer examination of the CYC1
promoter, it turned out that a part of the motif, CTTGTGNXCATGTG, to which Yas1-
Yas2 have been reported to bind to, also exists in the native CYC1 promoter. Therefore, there
is a possibility that Yas1-Yas2 activated the unmodified CYC1 promoter due to similarities
in binding site sequences [70]. In another study in E. coli, the repressor FapR was shown to
have activating function upon interacting with a native E. coli promoter despite absence of
fapO binding sites [90].

To understand better how these transcription factors are expressed, we fused each with
GFP (Figure 6.5). Of all three transcription factors, Yas1 seemed to be the one properly
expressed with an indicative expression in the nucleus (Figure 6.6B). However, no clear
signal could be observed from Yas2 whereas a strong, but scattered, GFP signal was observed
for Yas3 (Figure 6.6C-D). The scattered GFP signal observed for Yas3 might not be too
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Figure 6.3 PALK1 -based system. Fluorescence and OD600 measurements of strains
carrying PALK1 -GFP in combinations with the transcription factors Yas1, Yas2 and Yas3.
The genes encoding the transcription factors were placed under the promoters PPGK1 (YAS1
and YAS2 ) and PTEF1 (YAS3 ). Fluorescence and OD measurements were measured 6 h
after inoculation using flow cytometry. n = 3, error bar = ± SD. *p-value <0.05, **p-value
<0.01 (Student’s t test). Adapted from [223].

unexpected considering the growth defect it causes. Regarding Yas2, it has been reported
that proteins functioning in complex with another transcription factor might be unstable
without its counterpart [93,224], potentially explaining the observed, weakened, GFP signal
or the absence of it. However, there are several challenges observed when working with this
system in S. cerevisiae, preventing its maturation into an alkane-responsive biosensor in its
current form.
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Figure 6.4 Microscopic evaluation of the PALK1 -based system. A) Microscopic and
fluorescence evaluation of strains carrying PALK1 together with all three transcription factors
Yas1, Yas2 and Yas3. B) Propidium iodide staining (PI) was used to evaluate whether the
observed GFP signal was due to autofluorescence from dead cells. Samples were evaluated
28 h after inoculation. Adapted from [223].

6.2.2 Potential challenges of the Y. lipolytica alkane-sensing
system

A system in S. cerevisiae resembling the Yas1-Yas2 and Yas3 system, is the heterodimeric
Ino2-Ino4 activator and the transcription factor Opi1, which are global regulators regulating
genes in the lipid biosynthesis but also genes unrelated to phospholipid metabolism [225].
Similar to Yas1-Yas2, Ino2-Ino4 contain a basic helix-loop-helix structure and Ino2 like Yas2
contains a trans-activating domain. An important motif (5’-CATGTGAAAT-3’) bound by
the Ino2-Ino4 complex is the inositol-responsive upstream activating sequence UASINO. Part
of the motif in the ARE binding site, CTTGTGNXCATGTG, is found in the UASINO. In
fact, the CANNTG motif is known to bind transcription factors, specifically heterodimers,
with the basic helix-loop-helix motif [226]. This raises the potential that the activation
observed for the unmodified CYC1 promoter in the presence of Yas1-Yas2 may be due to
similarities in the motifs, resulting in activation by Yas1-Yas2 irrespective of any ARE1
binding site in CYC1. In fact, Ino2-Ino4 has been shown to bind to PCYC1 . As it is beyond
the scope of this thesis to go into the complex details of the Ino2-Ino4 and Opi1 system, I
will here give a brief and simplified glimpse of a part of the system with the aim to relate
this to the system in Y. lipolytica.

The UASINO element is found on promoter regions of many genes involved in phospholipid-
and fatty acid biosynthesis. UASINO-containing genes are regulated in response to the avail-
ability of phospholipid precursors, inositol and choline [227]. Since inositol and choline enter
the pathway for phospholipid synthesis by different routes, they influence lipid metabolism
regulation in distinctly different ways. For example, when inositol levels are scarce, Opi1 is
retained in the ER, partly through interaction with phosphatidic acid, which is a precursor
to phosphatidylinositol and other phospholipids. Therefore, in the absence of inositol, phos-
phatidic acid levels are elevated due to reduced phosphatidylinositol synthesis, which retains
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Figure 6.5 PCYC1 -based system. Fluorescence and OD600 measurements of strains
carrying PCYC1 -GFP in combinations with the transcription factors Yas1 and Yas2. The
genes encoding Yas1 and Yas2 were placed under the promoter PPGK1 . Fluorescence and
OD600 were measured 6 h after inoculation using flow cytometry. n = 3, error bar = ± SD.
*p-value <0.05, **p-value <0.01 (Student’s t test). Adapted from [223].

Opi1 in the endoplasmic reticulum, resulting in activation of INO1, encoding myo-inositol-3-
phosphate synthase, and other UASINO-containing genes by Ino2-Ino4. On the other hand,
in presence of inositol, phosphatidic acid reduces, resulting in the re-localization of Opi1 to
the nucleus where it interacts with Ino2 and represses the activating function. Although the
system in Y. lipolytica has not been shown to respond to inositol [221], there are striking
similarities in the structure of Yas3 and Opi1 and their differential localization, indicating
that the system found in Y. lipolytica may be as complex as the system in S. cerevisiae. Due
to many mechanism potentially yet to be elucidated, it is challenging to figure out the reasons
for the observed behaviours of the Yas1-Yas2 and Yas3 in Paper V. For example, there is a
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Figure 6.6 Evaluation of transcription factor-GFP fusion proteins. A) PTEF1 -GFP
was used as a control, B) Yas1 fused to GFP under the control of PPGK1 , C) Yas2 fused to
GFP under the control of PPGK1 and D) Yas3 fused to GFP under the control of PTEF1 .
Samples were evaluated 6 h after inoculation. Taken from [223].

possibility that Yas3 interacts with several other components in S. cerevisiae, and to obtain
a better understanding of such potential interactions one could perform a transcriptome
analysis and evaluate whether certain genes are up- or downregulated in the presence of Yas3.
Furthermore, a more precise analysis of the expression of the genes encoding the transcription
factors would be through qRT-PCR and their production through western blotting.

When expressing the genes we used medium to strong promoters, including PPGK1 and
PTEF1 . We did evaluate the system using the weaker promoter PREV1 for expressing YAS3,
and although we observed reduced growth defect we still did not obtain clear results (data
not shown) and decided therefore to not evaluate this further. In general, when developing
a biosensor it is crucial that its components are well-characterized, especially if the aim is
to engineer this further to make it more user-specific. However, this study is a clear demon-
stration of the challenge of developing a biosensor, especially based on a multi-component
system, without sufficient knowledge about the mechanism of the transcription factors.
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7 | Conclusions and Outlook

The complexity of biological systems, their inherently robust and flexible networks and their
ability to adapt to changing surroundings combined with our limited understanding, has
made biological engineering one of the most challenging engineering disciplines. Despite
this, biotechnology and many of its subfields are witnessing great expansions driven by
its great potential to, for example, advance healthcare related endeavours and divert from
petroleum-based production to more environmentally friendly alternatives.

Utilizing living systems, or cell factories, to produce many of our commodity chemicals and
pharmaceuticals has proven successful in several cases. To increase the success rate, however,
and move from laboratory-scale to industrial-scale fermentations, more sophisticated tools
are necessary. It is generally agreed that one such tool are metabolite biosensors, allowing
productive strains to be more readily and quickly identified as well as making production
strains more robust through dynamic pathway regulation. Furthermore, a much greater
diversity of cells can be evaluated, increasing the possibilty of finding a unique combination.
Finally, the learning step would also accelerate as identifiying and analyzing unproductive
strains can offer a great learning opportunity, allowing smarter designs and smarter libraries
to be developed.

Conclusions: The work in this thesis has been focused on developing metabolite biosensors
for accelerating cell factory development. In the early days of my PhD studies, it was clear
that our main focus would specifically be on developing transcription factor-based biosensors,
preferably for fatty acids. With the limited knowledge that I had, it all seemed very straight-
forward and clear. How difficult could it actually be? We put the parts together and look for
the signal we desire. However, as it has probably been evident through this thesis, things
were not always running smoothly. Sometimes we got what we expected just to realize after
repeated measurements that we could not have been further away from the desired results,
but definitely closer to the harsh reality reminding us that biology has its own way of being.
Now, looking back on the work performed during the last 4 years, a valid question would
be "So what?". Although some of the projects in this thesis did not result into papers, and
although we lacked the time to dig deeper and properly investigate the causes, we do believe
that these unfinished projects have scientific merit that might be worth looking into in the
future. However, the main contribution of this thesis to the scientific community is probably
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through the published papers.
In our review, Paper I, we provide a recent overview of the strategies and challenges

for rewiring metabolism. In Paper II, we used the well-characterized bacterial transcription
factor FapR to demonstrate the important role of operator site positioning and how the max-
imal dynamic range can be improved. Evaluating different reporter promoters not commonly
used for biosensor development can increase the biosensor toolbox and contribute with better
understanding of operator positioning. In Paper III, we used dCas9-VPR and transcription
factor binding data of Gcr1, Gcr2 and Tye7 to investigate the effect of dCas9-VPR binding on
top of identified motifs or outside of these in 10 glycolytic promoters. We observed a pattern
suggesting that there is either a synergistic activation when dCas9-VPR is bound outside of
identified motifs or a competition with respective transcription factor when dCas9-VPR is
bound on top of the motifs. We further suggest that using this approach might help improve
our understanding of promoter architechture and thereby facilitate biosensor development.
In Paper IV, we employed a fatty acyl-CoA-reponsive biosensor based on the bacterial tran-
scription factor FadR to screen for genes increasing the fatty acyl-CoA pool. This approach
could be used to find promising gene candidates relevant for metabolic engineering. Finally,
in Paper V, we sought to develop an alkane-based biosensor but encountered a number of
challenges, suggesting that the system in its current form is not mature to be translated into
an alkane-responsive biosensor. However, the possibility of developing an alkane-responsive
biosensor based on this system has yet not been ruled out. In summary, this thesis has
focused on metabolite-responsive transcription factor-based biosensors that are of scientific
interest and industrial importance.

Outlook: Metabolite biosensors are attractive synthetic biology tools with applications in
several engineering endeavours. Their development, however, is slow and often limited to a
few well-characterized sensors. A challenge here is the need of more standardized parts and
their fundamental understanding and applicability in a wide range of hosts and conditions.
Without sufficient fundamental research, applied research can be incredibly time-consuming.

For transcription factor-based biosensors, the majority of transcription factors are derived
from prokaryotes, and in addition to the challenge of finding suitable transcription factors,
is the process of onboarding these into yeast. Since promoters are an integral part of tran-
scription factor-based biosensors, their efficient integration is key. With detailed knowledge
of promoter architechture and predictable gene expression outcomes, some of the challenges
we encounter today would have been minimal or non-existent. Therefore, with better un-
derstanding of promoters, the importance and influence of sequences and the identification
of regulatory elements and their interaction with transcription factors and other regulatory
proteins could greatly facilitate promoter engineering endeavours. For example, employing
machine learning approaches to study gene expression has allowed researchers to obtain a
better understanding of the role DNA sequences play in such regulation [228]. Employing
similar strategies in the future will definitely increase our understanding of factors influencing
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gene regulation and thereby assisting in analysing and extracting biological information for
biosensor development. Although engineering the reporter promoter can influence the re-
sponse curve, including the dynamic- and operational range, there are other ways to facilitate
biosensor development, such as engineering the transcription factor itself. For example, the
specificity of transcription factors, which has not been discussed much in this thesis, is an
important parameter that can render a transcription factor useful or useless for its purpose.

The specificity and other features of a biosensor can be modified or improved through
various engineering strategies, for example through random mutagenesis or constructing
large-scale libraries [66,136]. However, this process would have been more efficient the better
understanding we have of the sequence to function relationship. Therefore, we envision that
collecting large-scale data-sets to support the development of machine-learning algorithms
can immensely improve the predictiveness of future engineering and in general increasing our
understanding of biosensor function [229]. Ultimately, this might result in more standardized
biosensor engineering principles, which are currently lacking.

Ideally, biosensor engineering guidelines should be extended beyond a specific parameter
and additionally include a model to predict or simulate the biosensor behaviour such as its
dynamic- and operational range. This dedication is especially relevant for biosensors that
have found application in a wide range of studies, such as FapR-based biosensor [67]. Since
biosensors usually have to be engineered to fit a specific application, it would be great to be
able to evaluate certain parameters in silico instead of the more laborious work in vivo.

Although high-throughput screening tools such as metabolite biosensors are promising for
accelerating cell factory development, further improvements in standardization of biological
parts and their characterization as components of integrated, complex systems is necessary
in order to improve predictability with increased combinations. Furthermore, development
of more predictive models through combination of big data and integrative analysis and the
use of aritifical intelligence and machine learning will be needed to decrease the costs and
increase the speed of the design-build-test-learn cycle. In addition, other persisting challenges
exists that might hinder an efficient establishment of cell factories in our society, for which
it is ultimately developed for. For example, the key driver for chemical industries should,
ideally, not be to produce biologically derived chemicals only if these have better properties
than traditional chemicals or chemicals that can find novel applications. The environmental
aspect should play an important part, and the desire to reduce petroleum-driven chemicals
should not only be encouraged by governments but should be highly prioritized. To move
towards a circular economy, the society at large needs to be well-informed through joint
forces and transparent communication between governments, industries, researchers and the
public. Finally, although some countries have witnessed significant advancements towards
a circular economy, there are still many countries living according to the ’take-make-waste’
linear model, which prevents sustainability to be achieved on a global level. Despite the
challenges, we must also acknowledge the incredible advancements achieved so far in the 21st
century, where biotechnology has played a visible and significant role.
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Appendix

In the following tables are listed transcription factor-based biosensor papers for (poten-
tial) metabolic engineering applications. It should be noted that these lists might not be
complete and other relevant papers might have been missed out. Furthermore, the studies
have been divided into three sections, including high-throughput screening/selection (HTS),
dynamic pathway regulation (DPR) and demonstration (DEM), based on the focus of the
study. Demonstrations, including proof-of-concept studies, is a broad section including papers
based on biosensor development, real-time monitoring, modelling and biosensor engineering,
including engineering the specificity and the response curve.

Table 7.1: Transcription factor-based biosensor papers published year 2020.

References Host Use

Wang et al. (https://doi.org/10.1021/acssynbio.9b00477) S. cerevisiae HTS

Ambri et al. (https://doi.org/10.1021/acssynbio.9b00333) S. cerevisiae DEM

Qiu et al. (https://doi.org/10.1186/s12934-020-01405-1) S. cerevisiae DEM

Wei et al. (https://doi.org/10.1021/acssynbio.0c00122) Y. lipolytica DEM

Wen et al. (https://doi.org/10.1021/acssynbio.9b00378) K. phaffii DPR

Qiu et al. (https://doi.org/10.1016/j.ymben.2020.03.006) E. coli HTS

D’Ambrosio et al. (https://doi.org/10.1016/j.biotno.2020.01.002) S. cerevisiae DEM

Snoek, T., et al. (https://doi.org/10.1093/nar/gkz954) S. cerevisiae DEM

Berepiki, A., et al. (https://doi.org/10.1021/acssynbio.9b00448) E. coli DEM

Corte, D., et al. (https://doi.org/10.1038/s41467-020-18400-0) C. glutamicum DEM

Zhang, J., et al. (https://doi.org/10.1038/s41467-020-17910-1) S. cerevisiae DEM

D’Ambrosio et al. (https://doi.org/10.1016/j.ymben.2020.07.006) S. cerevisiae DPR

Hanko, E., et al. (https://doi.org/10.1038/s41467-020-14941-6) C. necator DEM

Ding, N., et al. (https://doi.org/10.1093/nar/gkaa786) E. coli DEM
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Table 7.2: Transcription factor-based biosensor papers published year 2019.

References Host Use

Yu et al. (https://doi.org/10.1186/s12934-019-1084-2) E. coli HTS

Dabirian et al. (https://doi.org/10.1021/acssynbio.9b00118) S. cerevisiae HTS

Dabirian et al. (https://doi.org/10.1021/acssynbio.9b00144) S. cerevisiae DEM

Nguyen et al. (https://doi.org/10.1007/s12257-018-0380-8) P. denitrificans DEM

Kortmann, M., et al. (https://doi.org/10.1021/acssynbio.8b00510) C. glutamicum DEM

Thompson, M., et al. (https://doi.org/10.1021/acssynbio.9b00255) P. putida DEM

Machado, L., et al. (https://doi.org/10.1186/s13036-019-0214-z) E. coli DEM

Flachbart, L., et al. (https://doi.org/10.1021/acssynbio.9b00149) E. coli HTS

Monteiro, F., et al. (https://doi.org/10.15252/msb.20199071) S. cerevisiae DEM

Table 7.3: Transcription factor-based biosensor papers published year 2018.

References Host Use

Zhao, E., et al. (https://doi.org/10.1038/nature26141) S. cerevisiae DPR

Liu, C., et al. (https://doi.org/10.1021/acssynbio.7b00339) C. glutamicum DEM

Kim, S., et al. (https://doi.org/10.1021/acssynbio.8b00164) E. coli DEM

Seok, J., et al. (https://doi.org/10.1016/j.ymben.2018.03.009) E. coli HTS

Zheng, S., et al. (https://doi.org/10.1016/j.ymben.2018.08.005) E. coli HTS

Rebets, Y., et al. (https://doi.org/10.1016/j.ymben.2018.03.019) S. alboniger DEM

Woolston, B., et al. (https://doi.org/10.1002/bit.26455) E. coli DEM

Hanko, E., et al. (https://doi.org/10.1021/acssynbio.8b00057) E. coli DEM

Frazao, C., et al. (https://doi.org/10.3389/fbioe.2018.00118) E. coli DEM

Chen, X., et al. (https://doi.org/10.3389/fmicb.2018.00047) S. cerevisiae DEM

Baumann, L., et al. (https://doi.org/10.1021/acssynbio.8b00309) S. cerevisiae DEM

Doong, S., et al. (https://doi.org/10.1073/pnas.1716920115) E. coli DPR

Snoek, T., et al. (https://doi.org/10.1021/acssynbio.7b00439) S. cerevisiae HTS

De Paepe, B., et al. (https://doi.org/10.1021/acssynbio.7b00419) E coli DEM

Juarez, J., et al. (https://doi.org/10.1038/s41467-018-05525-6) E coli DEM

Trabelsi, H., et al. (https://doi.org/10.1002/bit.26726) E coli POC

Peters, G., et al. (https://doi.org/10.1002/bit.26586) E coli DEM

Jester, B., et al. (https://doi.org/10.1021/acssynbio.8b00242) S. cerevisiae DEM

Younger, A., et al. (https://doi.org/10.1093/protein/gzy001) E. coli DEM
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Table 7.4: Transcription factor-based biosensor papers published year 2017.

References Host Use

Hector, R., and Mertens, J. (https://doi.org/10.1007/s12033-016-9991-5) S. cerevisiae DEM

Xiong, D., et al. (https://doi.org/10.1016/j.ymben.2017.01.006) E. coli HTS

Chen, X-F., et al. (https://doi.org/10.1002/bit.26521) E. coli DEM

Leavitt, J., et al. (https://doi.org/10.1002/biot.201600687) S. cerevisiae HTS

Liu, Y., et al. (https://doi.org/10.1021/acssynbio.6b00328) E. coli HTS

Li, H., et al. (https://doi.org/10.1016/j.bios.2017.07.022) E. coli HTS

Kasey, C., et al. (https://doi.org/10.1021/acssynbio.7b00287) E. coli HTS

Siedler, S., et al. (https://doi.org/10.1021/acssynbio.7b00009) E. coli HTS

Williams, T., et al. (https://doi.org/10.1093/synbio/ysw002) S. cerevisiae HTS

Mannan, A., et al. (https://doi.org/10.1021/acssynbio.7b00172) E. coli DEM

Wu, J., et al. (https://doi.org/10.1038/srep45994) E. coli HTS

Li, H., et al. (https://doi.org/10.1186/s12934-017-0794-6) E. coli HTS

Liang, W-F., et al. (https://doi.org/10.1016/j.ymben.2016.11.010) M. extorquens HTS

Hanko, E., et al. (https://doi.org/10.1038/s41598-017-01850-w) C. necator DEM

Table 7.5: Transcription factor-based biosensor papers published year 2016.

References Host Use

David, F., et al. (https://doi.org/10.1021/acssynbio.5b00161) S. cerevisiae DPR

Leavitt, J., et al. (https://doi.org/10.1002/biot.201600029) S. cerevisiae DEM

Taylor, N., et al. (https://doi.org/10.1038/nmeth.3696) E. coli DEM

Rogers, J., and Church, G. (https://doi.org/10.1073/pnas.1600375113) E. coli DEM

Skjoedt, M., et al. (https://doi.org/10.1038/nchembio.2177) S. cerevisiae DEM

Zhang, J., et al. (https://doi.org/10.1021/acssynbio.6b00135) S. cerevisiae DEM

Machado, L., et al. (https://doi.org/10.1039/C6CC04559f) E. coli DEM

Libis, V., et al. (https://doi.org/10.1021/acssynbio.5b00225) E. coli DEM

Younger, A., et al. (https://doi.org/10.1021/acssynbio.6b00184) E. coli DEM

Xiao, Y., et al. (https://doi.org/10.1038/nchembio.2046) E. coli DEM
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Table 7.6: Transcription factor-based biosensor papers published year 2015.

References Host Use

Li, S., et al. (https://doi.org/10.1021/acssynbio.5b00069) S. cerevisiae HTS

Wang, M., et al. (https://doi.org/10.1002/bit.25676) S. cerevisiae HTS

Feng, J., et al. (https://doi.org/10.7554/eLife.10606.001) S. cerevisiae DEM

Teo, W., and Chang, M. (https://doi.org/10.1002/biot.201400159) S. cerevisiae DEM

Chen, W., et al. (https://doi.org/10.1016/j.ymben.2015.05.004) E. coli HTS

Mahr, R., et al. (https://doi.org/10.1016/j.ymben.2015.09.017) C. glutamicum HTS

de los Santos, E., et al. (https://doi.org/10.1021/acssynbio.5b00090) E. coli DEM

Rogers, J., et al. (https://doi.org/10.1093/nar/gkv616) E. coli DEM

Wu, W., et al. (https://doi.org/10.1038/srep10907) E. coli DEM

Feher, T., et al. (https://doi.org/10.3389/fbioe.2015.00046) E. coli DEM

Urgel-Espinosa, M., et al. (https://doi.org/10.1007/s12033-015-9849-2) P. putida DEM

Table 7.7: Transcription factor-based biosensor papers published year 2014.

References Host Use

Xu, P., et al. (https://doi.org/10.1073/pnas.1406401111) E. coli DPR

Teo, W., and Chang, M. (https://doi.org/10.1002/bit.25001) S. cerevisiae DEM

Xu, P., et al. (https://doi.org/10.1021/cb400623m) E. coli DPR

Xue, H., et al. (https://doi.org/10.1021/sb500023f) E. coli DEM

Siedler, S., et al. (https://doi.org/10.1021/sb400110j) E. coli DEM

Siedler, S., et al. (https://doi.org/10.1016/j.ymben.2013.10.011) E. coli HTS

Mustafi, N., et al. (https://doi.org/10.1371/journal.pone.0085731) C. glutamicum DEM

Jha, R., et al. (https://doi.org/10.1093/nar/gku444) E. coli HTS

Schendzielorz, G., et al. (https://doi.org/10.1021/sb400059y) C. glutamicum HTS

Raman, S., et al. (https://doi.org/10.1073/pnas.1409523111) E. coli HTS
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Table 7.8: Transcription factor-based biosensor papers published year 2013.

References Host Use

Teo, W., et al. (https://doi.org/10.1002/elsc.201200113) S. cerevisiae DEM

Liu, D., et al. (https://doi.org/10.1021/sb400158w) E. coli DPR

Dietrich, J., et al. (https://doi.org/10.1021/sb300091d) E. coli HTS

Tang, S-Y., et al. (https://doi.org/10.1021/ja402654z) E. coli HTS

Choi, H., and Keasling, J. (https://doi.org/10.1038/ncomms3595) E. coli HTS

Umeyama, T., et al. (https://doi.org/10.1021/sb300115n) S. cerevisiae HTS

Choi, S-L., et al. (https://doi.org/10.1021/sb400112u) E. coli HTS

Table 7.9: Transcription factor-based biosensor papers published year 2012.

References Host Use

Reed, B., et al. (https://doi.org/10.1016/j.jbiotec.2012.01.028) E. coli HTS

Binder. S., et al. (https://doi.org/10.1186/gb-2012-13-5-r40) C. glutamicum HTS

Mustafi, N., et al. (https://doi.org/10.1016/j.ymben.2012.02.002) C. glutamicum HTS

Zhang, F., et al. (https://doi.org/10.1038/nbt.2149) E. coli DPR

Table 7.10: Transcription factor-based biosensor papers published year 2000-2011.

References Host Use

Tang, S-Y., and Cirino, P. (https://doi.org/10.1002/anie.201006083) E. coli HTS

Uchiyama, T., and Miyazaki, K. (https://doi.org/10.1128/AEM.00464-10) E. coli HTS

Tang, S-Y., et al. (https://doi.org/10.1021/ja7109053) E. coli HTS

van Sint Fiet, S., et al. (https://doi.org/10.1073/pnas.0504733102) E. coli HTS

Lee, S., and Keasling, J. (https://doi.org/10.1002/bit.20784) E. coli DEM

Baker, K., et al. (https://doi.org/10.1073/pnas.262420099) S. cerevisiae HTS

Farmer, W.R., and Liao, J.C. (https://doi.org/10.1038/75398) E. coli DPR
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