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Abstract

An object’s translational and rotational motion is associated with linear and
angular momenta. When multiple objects interact the exchange of momentum
dictates the new system’s motion. Since light, despite being massless, carries both
linear and angular momentum it too can partake in this momentum exchange and
mechanically affect matter in tangible ways. Due to conservation of momentum,
any such exchange must be reciprocal, and the light therefore acquires an opposing
momentum component. Hence, light and matter are inextricably connected and
one can be manipulated to induce interesting effects to the other. Naturally, any
such effect is facilitated by having strongly enhanced light-matter interaction,
which for visible light is something that is obtained when nanostructured matter
supports optical resonances. This thesis explores this reciprocal relationship and
how nanostructured matter can be utilised to augment these phenomena.

Once focused by a strong lens, light can form optical tweezers which through
optical forces and torques can confine and manipulate small particles in space.
Metallic nanorods trapped in two dimensions against a cover glass can receive
enough angular momentum from circularly polarised light to rotate with
frequencies of several tens of kilohertz. In the first paper of this thesis, the
photothermal effects associated with such optical rotations are studied to observe
elevated thermal environments and morphological changes to the nanorod.
Moreover, to elucidate upon the interactions between the trapped particle and the
nearby glass surface, in the thesis” second paper a study is conducted to quantify
the separation distance between the two under different trapping conditions. The
particle is found to be confined ~30-90 nm away from the surface.

The momentum exchange from a single nanoparticle to a light beam is
negligible. However, by tailoring the response of an array of nanoparticles,
phase-gradient metasurfaces can be constructed that collectively and controllably
alter the incoming light’'s momentum in a macroscopically significant way,
potentially enabling a paradigm shift to flat optical components. In the thesis’ third
paper, a novel fabrication technique to build such metasurfaces in a patternable
polymer resist is investigated. The technique is shown to produce efficient,
large-scale, potentially flexible, substrate-independent flat optical devices with
reduced fabricational complexity, required time, and cost.

At present, optical metasurfaces are commonly viewed as stationary objects that
manipulate light just like common optical components, but do not themselves react
to the light’s changed momentum. In the last paper of this thesis, it is realised that
this is an overlooked potential source of optical force and torque. By incorporating
a beam-steering metasurface into a microparticle, a new type of nanoscopic robot
— a metavehicle — is invented. Its propulsion and steering are based on metasurface-
induced optical momentum transfer and the metavehicle is shown to be driven in
complex shapes even while transporting microscopic cargo.

KEYWORDS: nano-optics, optical force and torque, phase-gradient metasurface,
rotary nanomotor, optical tweezers, metavehicle, momentum exchange.
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Chapter 1

Introduction

Light is everywhere. Yet it will travel unimpeded from the furthest outskirts of the
universe unless it encounters matter. Hence, all our experiences of light arise from
its interaction with matter, making the two inextricably connected. For instance,
when a light-beam strikes an object, it in turn reradiates in the form of diffusely
and specularly scattered light, encoding the shape and characteristic of the object.
The scattered light eventually is absorbed by our eye’s light-sensitive chromophore
retinal, or a photosensitive detector, enabling us to see the object.

The electromagnetic spectrum encompasses all radiation from gamma rays to
radio signals. What is colloquially referred to as (visible) light is the narrow part of
this spectrum (400-750 nm), which can be visually perceived by humans.
Nevertheless, in many cases, scientists are a bit lenient with the term and let
“light” encompass also near-infrared (NIR, A < 1100 nm), and less frequently also
near-ultraviolet (near-UV) wavelengths. Regardless, since being an
electromagnetic field it is fundamentally governed by Maxwell’s equations and its
propagation by the electromagnetic wave equation. Moreover, light often has a
specific polarisation associated with it, which in this thesis will be central [1].

Apart from carrying energy, light also possesses linear and angular momentum.
The linear momentum component was first suggested by Kepler in 1619 when
observing comet tails pointing away from the sun and subsequently predicted
analytically by Maxwell in 1873. The net directional energy flux of the wave (as
described by the Poynting vector) is found to result in a radiation pressure in the
direction of propagation. Furthermore, the angular momentum component can
itself be decomposed into spin and orbital angular momentum. The spin angular
momentum is associated with the degree of circular polarisation of light, whereas
the orbital component arises from its spatial distribution. The interaction between
light and matter can in a variety of ways lead to the exchange of momentum,
enabling both tangible mechanical effects and the tailoring of light beams by
engineering the structure and optical properties of matter. In essence, the
multifaceted momentum exchange between light and matter is the heart of this
thesis, and augmented and potentially new functions are explored by
nanostructuring matter so that it acts as optical antennas.

An antenna’s constituent material, size and shape are chosen for it to be resonantly
excited by the electromagnetic wave within its particular information-carrying
frequency band. Generally, such resonant interaction occurs when the wavelength
of radiation and the antenna element’s characteristic dimension are comparable.
Hence, radio-wave antennas have constituent elements of just below a metre
(Figure 1.1a). If the antenna size is reduced, concomitantly the optimal wavelength
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of operation is too. A beautiful demonstration of this can be seen from a simple
experiment at home. By putting two nearly-touching grapes in a microwave oven,
the refractive index and wavelength of radiation matches to such a degree that the
antenna concentrates enough energy to form plasma in the gap between the grapes
(Figure 1.1b) [2]. Consequently, by continued reduction of the antenna’s size, it
should be possible to construct optical antennas that efficiently react to and
manipulate visible light [3]. Indeed, by choosing materials with appropriate bulk
optical properties and subsequently structuring them to have characteristic
dimensions on the order of 10-1000 nm, resonantly enhanced light-matter
interactions are attainable (Figure 1.1c).

>
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FIGURE 1.1: Ilustration of shape-dependent enhanced interaction between electromagnetic
radiation and matter at different wavelengths (not to scale). (a) A radio-antenna is constructed
to receive and transmit electromagnetic signals with a wavelength on the order of metres. (b)
The size and refractive index of grapes (or any other small water-based round object) is such that
when placed in a microwave, they act as an antenna for microwave radiation. This concentrates a
sufficient amount of energy in the gap for plasma to form. Figure from [2] under CC BY-NC-ND
4.0. (c) Examples of nanostructured objects investigated in this thesis, functioning as antennas at
optical wavelengths.

These optical resonance effects are studied in the field of nano-optics, and
single-particle resonances are introduced in Chapter 2. The material category of
choice for several decades has been noble metals, which when nanostructured
support plasmonic resonances and produce vivid colours of both colloidal
solutions and surfaces [4, 5]. Depending on the exact size, dimension, and
environment of the nanoparticle, its optical response can be varied widely. In
plasmonics these strongly enhanced interactions have been the focus of research
efforts related to e.g. bio-sensing [6], medicine [7, 8], data storage [9], solar cells
[10], and photocatalysis [11]. For long, nano-optics was more or less synonymous
with plasmonics; however, in recent years a new candidate has entered the race.
Many of the advantageous nano-optical resonance effects can be attained also with
low-loss, high-index dielectric nanoparticles [12], while avoiding potentially
detrimental aspects of plasmonic nanoparticles such as strong Ohmic heating, lack
of magnetic response, and CMOS incompatibility.

A sufficiently small single nanoparticle interacts with incoming radiation much
like an induced point dipole. This gives rise to scattering and absorption, which
can be understood from simplified phenomenological models. However, by
combining a multitude of nanoparticles, their optical response will combine and
present previously unexpected collective effects. One can then obtain an optical
metamaterial that have unusual properties not found in natural materials. For
instance, metamaterials have been suggested to present negative refractive indices
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[13], perfect lensing [14], and cloaking [15]. At long (microwave and longer)
wavelengths there are few complications to make three-dimensional periodic
structures, but when the wavelength of operation shrinks towards NIR and visible
wavelengths the challenges compound. Instead, scientists have adopted an
approach where a single surface is decorated with engineered nanostructures,
forming a metasurface [16]. In particular, metasurfaces that modify the phase of the
transmitted light have attracted appreciable attention in the last decade since they
enable the creation of flat optical components capable of modifying the direction
and polarisation of light [17]. In Chapter 3 the conception and execution of such
phase-gradient metasurfaces are introduced. In the context of this thesis, the changed
propagation direction or polarisation of light in such metasurfaces is unavoidably
associated with momentum exchange between the incoming light and the
nanostructured matter.

Experimental verification of the transfer of linear momentum from light to matter
was done early last century [18]. However, since the resulting optical forces are
vanishingly small by our macroscopic world’s standards it was long thought that it
was a parenthetical effect (e.g. the radiation pressure produced by the sun on a
square meter of the Earth is on the order of a few uN, which is less than a single
grain of sand distributed over this area). That is until Arthur Ashkin performed his
iconic work in the 1970-80s. He found that by focusing laser light through a strong
lens, pm-sized latex beads could be affected by an appreciable force [19].
Subsequent experiments led to the development of the ”single-beam gradient
optical trap” [20-22], where small particles could be confined in three dimensions,
due to a gradient force that directs a particle towards the high-intensity region of a
focused beam. These so-called optical tweezers have since their conception
produced ripples through both the academic as well as industrial landscape, with
proven usefulness in as diverse fields as molecular biology for studying forces
[23-25], and for cooling single atoms in atomic physics [26, 27]. Its usefulness is
well illustrated by the fact that half of the 2018 Nobel prize in Physics was
awarded to Ashkin for the conception of optical tweezers.

The enhanced optical interaction of resonant nanoparticles could potentially be
beneficial to strengthen the confinement in optical tweezers. Plasmonic particles
were initially challenging to trap in 3D until it was realised that an off-resonance
laser could confine small metallic nanospheres even more effectively than their
dielectric counterparts [28]. Since then, three-dimensional optical trapping of
metallic nanoparticles have been investigated from a fundamental perspective
[29-33], as well as for applications: e.g. within thermal generation and
thermodynamics [34-37], novel nanofabrication techniques [38], the study of
biological systems [39, 40], and enhanced chemical reactions [41].

Furthermore, angular momentum transfer to matter was first experimentally
demonstrated a few decades after its linear counterpart [42]. As with optical forces,
the torque associated with light’s angular momentum is negligible on macroscopic
scales. Yet, in optical tweezers, the light intensity becomes sufficient for also the
optical torque to become noticeable. Initially, optical torque was applied to rotate
dielectric microparticles [43-45], but soon it was realised that the enhanced optical
response of resonant nanoparticles could amplify optical torques as well [46, 47].
In Chapter 4, the momentum transfer from light to matter producing significant
optical forces and torques are further discussed.
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Unfortunately, the nanoparticles with the strongest optical interactions are the least
optimal for 3D trapping. Their large absorption and scattering prevent them from
being confined in three dimensions by a single laser beam since they are pushed
from the stable trapping location by non-conservative radiation pressure. Instead,
a geometry where a particle is trapped in two dimensions against a cover-glass is
often employed. The surface is made to have the same charge polarity as the
nanoparticle and hence the destabilising scattering force is counteracted by
Coulomb repulsion from the surface. In this trapping geometry the benefits of
nanoparticle resonances can be fully exploited, enabling exotic optomechanical
systems such as optical vortex traps [48], optical binding [49], ring traps [50], and
optical printing lithography [51]. Another system enabled in such a 2D optical
trapping environment is a high-speed rotary nanomotor [52]. Due to efficient
transfer of angular momentum when the laser light is circularly polarised, a
metallic nanorod can reach rotation frequencies of more than 40 kHz in water [53].
In Paper I, we studied such rotary nanomotors and in particular the unavoidable
photothermal effects present when confining resonant particles in high-intensity
near-resonant optical fields. By combining Brownian motion analysis and
dark-field spectroscopy, both optically induced morphological changes of the
nanorods and superheated water around the nanomotor were observed.

Throughout previous studies in 2D optical tweezers, the separation distance
between the confined resonant nanoparticle and the repulsive surface has
remained unknown. Often a particle is even viewed as residing in a homogenous
aqueous environment. However, particle-surface interactions are known to give
rise to alterations in hydrodynamic properties, Brownian motion, optical, and
thermal properties of the trapped object. Hence, knowledge of the separation
distance is critical for making confident claims in any system utilising 2D optical
tweezers geometries. Therefore, in Paper II, analysis and measurements were
performed to characterise nanoparticle/surface interaction and separation
distance. Through separation distance-sensitive scattering from frustrated total
internal reflection combined with numerical simulations of Brownian dynamics,
the separation distance for an archetypal nanoparticle, a gold nanosphere with a
diameter of 100 nm, was determined to be below one particle diameter.

The impressive range of light-manipulation attainable with phase-gradient
metasurfaces alludes to the possibility of using them for optomechanical
manipulation as well. The most intuitive and intriguing such application is maybe
to replace the complex, bulky, and expensive objective lens with a flat counterpart
— to construct optical tweezers with reduced form-factor. The idea has recently
been realised [54] and even demonstrate some additional functionalities such as
polarisation-dependent [55], and vortex-beam trapping [56, 57]. Regardless of the
intended use of a phase-gradient metasurface, it is of the essence to enable
efficient, safe, and economical fabrication schemes. In an exploratory study aimed
at constructing phase-gradient metasurfaces for optical tweezers, we realised a
new fabrication technique that has the potential to fulfil all these requirements.
This method is presented in Paper III and enables the construction of
high-efficiency phase-gradient metasurfaces directly in a patterned negative resist,
instead of using this as an intermediate step in a more complex fabrication process.
We demonstrate metalenses with focusing efficiencies of above 50%, the ability to
fabricate macroscopic flat optics, and flexible and substrate-independent
metasurfaces.
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The manipulation of propagation direction and polarisation of light in
phase-gradient metasurfaces implies momentum exchange between the incoming
light and the metasurface. In optical tweezers, linear and angular momentum
exchange and the conservation thereof is the origin of optical forces and torques
acting on matter. However, in the metasurface community, momentum exchange is
always discussed from the perspective of the momentum gained by light, while
the concomitant opposite momentum experienced by the metasurface is
overlooked. In Paper IV we realise that, by properly designing a phase-gradient
metasurface and subsequently embedding it in a microparticle, the reaction forces
and torques arising due to light-matter momentum exchange can be made useful.
Even in extended semi-plane-wave illumination so-called metavehicles can be
propelled by redirecting normally incident light and steered in complex patterns
by the control of light’s polarisation.

Generally, performing research within nano-optics requires a wide range of
specialised competencies within theoretical electrodynamics, numerical
simulations, nanofabrication, and experimental optical characterisation. In
summary, when a novel idea is conceived, a nanostructure is designed to interact
well with chosen light, oftentimes using numerical simulations. Thereafter, the
optimised structure needs to be experimentally realised, which can either be done
with top-down or bottom-up nanofabrication. Subsequently, optical
characterisation needs to be performed to verify that the expected behaviour is
indeed observed. The most critical methods are discussed in the appended papers;
however, the scope of journal publications does not allow a detailed examination
of all the techniques. Therefore, Chapter 5 attempts to bridge the gap between
what is conferred in the articles and the full understanding needed to reproduce
the research presented in the appended papers.

Lastly, performing research allows us to expand the sphere of human knowledge,
if only ever so slightly. When doing so one needs to pay attention to the most
minute details and run the risk of losing track of the bigger picture. Therefore, to
conclude this thesis, Chapter 6 seeks to reflect on the appended papers in a wider
context, acknowledge some still unresolved questions, as well as outline possible
future implications of the attained results. However, before getting to the point
where all that can be appreciated we need to dive into the specific topics
introduced above. Let’s get started!






Chapter 2

Resonant light-matter interactions

Resonance is a ubiquitous phenomenon in physics. It occurs when an object with a
certain natural frequency becomes subject to a perturbation with a frequency that
matches its natural frequency. When this resonance condition is fulfilled the
amplitude of the object’s response to the perturbation becomes increasingly large.
Resonances can be seen on all size scales from atomic to stellar and for systems
affected by any type of force, be it mechanical, electrical, optical, or other.

The simplest case of a resonance is that of the driven harmonic oscillator, which
can be illustrated by the everyday experience of pushing a child on a swing. From
this system, we already have an intuitive understanding of the amplitude and
phase response of a resonance. To maximise the swing’s amplitude we push the
swing with a certain frequency at its highest point, corresponding to 90° out of
phase with the swing. If we push faster or slower the swing’s amplitude
diminishes quickly. Figure 2.1 illustrates these three cases and graphs the

()

Amplitude [a.u.]
Phase [°]

o

Frequency - w/w,

FIGURE 2.1: The amplitude and phase relation for a driven harmonic resonator graphed against
frequency normalised by the resonance frequency. The response at three different frequency
domains is illustrated with the intuitive example of a child on a swing. For any driven harmonic
resonator the amplitude displays a Lorentzian curve shape with the maximum at the system’s
resonance frequency. The width of the curve is dictated by the system damping. At frequencies
far below the resonator’s natural frequency, the displacement follows (is in phase with) the
driving force. Increasing the frequency to fulfil the resonance condition the driving force and
the displacement are 90° out of phase. Further increasing the frequency above the resonance, the
amplitude drops to zero and the driving force and object’s response are completely out of phase.
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amplitude and phase in relation to the resonance frequency for a general driven
harmonic oscillator. In fact, this simple model can be generalised to encompass the
qualitative behaviour of most resonances and is helpful to keep in mind when
discussing the physics in this thesis.

As it turns out, visible light is optimally suited to excite resonances in
nanostructured matter with at least one size scale being ~100-1000 nanometers.
This is something that Nature figured out long before scientists did and vivid
structural colours of animals and plants are the result of diffractive and
interference resonance effects [58-60]. In research, these occurrences are studied in
the field of nano-optics where strongly enhanced light-matter interactions in
nanoparticles have gained ample attention [5]. In this chapter, some such
resonances relevant to the work performed in this thesis will be introduced in
further detail, but before that a brief introduction to basic light-matter interaction
is appropriate. For more extended treatments of subject matter, see [1, 4, 61].

2.1 Optical properties of matter

A single atom has orbitals that are separated into discrete energy levels. As
multiple atoms join into a bulk solid, these energy levels merge to form continuous
bands of allowed energy states for electrons. The band structure and the location of
its valence and conduction bands determines the optical properties of a material
and whether is is a metal, semiconductor, or insulator. As a photon of light
carrying an energy of ¥ = hw impinges on a material, it can deposit its energy to
an electron in the valence band, which reaches the conduction band and forms an
electron-hole pair. The sum of all allowed such transitions will then result in the
absorption spectrum of the particular material, from which the optical properties
of the material can be understood. Compared to the momentum of electrons, the
momentum carried by visible light (k = 27“) is negligible. Therefore, in an isotropic
medium only the photon’s energy is relevant and the resulting transitions
associated with optical processes are nearly vertical along £ in the
energy-momentum diagram. While playing a negligible role for a material’s
optical properties, the photon’s momentum is nevertheless non-zero, which leads
to substantial mechanical effects attributed to momentum exchange between light
and matter as discussed in coming chapters of the thesis.

The quantum mechanical interpretation of materials and their interaction with
light is, despite being a more complete model, not necessary within the context of
this thesis. Rather, classical electrodynamics suffices to explain the phenomena
studied. Thus, we now set out to understand the optical properties of matter from
a classical starting point: When an electric field E interacts with matter it will
displace the charged particles in this material, effectively distorting the material
and also the electric field itself. The resulting field can be described by the
auxiliary displacement field

D = ¢oE + P. (2.1)

Here, P is the macroscopic polarisation density, which for a linear, homogenous,
isotropic and non-magnetic material can be expressed proportionally to the
electrical susceptibility x as

P=¢yxE = D=c¢E (2.2)
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The implication is reached by introducing a permittivity ¢ = .69 = ¢(x + 1), where
er is the relative permittivity or the dielectric constant of the material, effectively
describing how a material responds to an electric field. Straightforwardly, the larger
¢r becomes the more the material interacts with light, and the dielectric constant
becomes central in understanding a material’s optical response.

The expressions above are for a single wavelength, which is why it is sensible to
talk about a dielectric constant. However, all materials exhibit dispersion, meaning
that their optical response is frequency-dependent. Hence, for broadband
illumination one has to introduce a dielectric function e(w), which is a
complex-valued and frequency-dependent property. Dielectric materials with an
approximately negligible absorption have real dielectric functions that tend to be
nearly constant at optical frequencies, whereas metals have strongly
frequency-dependent dielectric functions with negative real and non-zero
imaginary components.

The dielectric function of a material is a quantity that can be indirectly measured
experimentally. However, it turns out that we can gain plenty of insight into the
optical properties of a material from analysing an analytic, one-dimensional,
classical atom model. If the atom is modelled as a positively charged nucleus with
an electron around it, an equation of motion for the electron can be written as a
driven, damped harmonic oscillator as

. . (&
E(t) + Ci(t) + wiz(t) = ——B(x,1), (2.3)
e
Here, m, is the electron mass, and e its charge. ( is the characteristic damping
frequency, and wy is the resonant frequency of the system. By performing a Fourier
transform in terms of angular frequency w, one can after some reorganisation reach
an expression for the dipolar polarisation density as

Ne? /me

wd — w? —iCw

P(w) = E(w), (2.4)

with IV being the electron density. Assuming a homogeneous and isotropic material
as in Equation (2.2), an expression for the dielectric function can be written as

w?

Er(W) =1+ wg—w—zp—lfuj s (25)

where w, = \/Ne?/meeg is the plasma frequency. What we have arrived at is the
Lorentz model for the relative permittivity of a dielectric material. The first term in
Equation (2.5) is the free space response and the second term the material response.
To correct for the contribution of positive ion cores to the electric field displacement,
this term can be replaced by a correction term, e, [62].

In the case of a conducting metal, the restoring force term in Equation (2.3) vanishes
since the conduction electrons are not bound to the nuclei (wg = 0). Hence, the
derivation above can be repeated, resulting in

w2

_ P
er(W) = €00 T’ (2.6)
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FIGURE 2.2: Real (a) and imaginary (b) parts of the dielectric function for gold from the Drude

model, calculated for an electron density of 5.9 - 10%28m ™3, eoo = 9, and carrier relaxation time

of 7 = 27.3 fs [63], compared to the one experimentally measured by Johnson and Christy [64].

In particular, note the good agreement in the visible red and NIR spectrum, and the discrepancy

that becomes apparent at shorter wavelengths, especially for Im{e} due to interband transitions
in the metal.

which is the Drude model of relative permittivity for metals. In this case, IV is rather
the density of free electrons, and the damping rate can be written as ( = 1 where
7 is the mean carrier relaxation time. Due to its high conductivity as well as its
chemical inertness, gold holds a special place in nano-optics, as we will see later. By
using the Drude model of Equation 2.6, the overall shape of the dielectric function of
gold, and hence its optical response, is well captured by this simple approximation,
as seen in Figure 2.2. Unfortunately, this simple model does not predict the optically
induced transitions between the valence and conduction band often referred to as
interband or d-band transitions, which enhance absorption below a wavelength of
600 nm. The discrepancy is seen most clearly for Im{c} in Figure 2.2b.

We have now arrived at the complex-valued dielectric function for dielectric and
metallic materials, which for Maxwell’s equations is an important property.
However, a physically more intuitive parameter to describe the optical properties
of, especially dielectric, materials is the refractive index. The complex refractive
index is related to the dielectric function as

Ver =n=n+ik, (2.7)

again under the assumption that no magnetic response is present. Here, n is the
ordinary refractive index that compared to free space scales e.g. the phase velocity
(c = ) and wavelength (A = )‘—no) of a wave as it propagates through a medium. « is
the attenuation coefficient, describing the amount of loss that the wave experiences
upon propagation. If the attenuation has no position-dependence, the intensity of
a wave as it propagates through a medium decays according to the Beer-Lambert
law as I(z) = Ipe~2For% = [oe=#*, where ko = ?\—g is the free space wavenumber and
i = —2kok is the absorption coefficient.

Silicon is among the most prevalent dielectric materials in science and engineering.
Below, it will be discussed in the context of nano-optics. Its complex refractive index
is well described by a single Lorentz oscillator model in the visible to near-infrared
(NIR) wavelength regime (Figure 2.3). Outside of this spectral band, the single-
termed model departs from reality. In fact, real materials have multiple resonance
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FIGURE 2.3: Refractive index (a) and extinction coefficient (b) for silicon, calculated from

the Lorentz model, compared to experimentally measured ones [66]. For the model a plasma

frequency of 1979 THz (A = 152 nm), a resonance frequency of 835 THz (A = 359 nm), a

characteristic damping ratio of 0.02, and .. = 6.7 was used. A single Lorentz oscillator model

predicts the optical properties well in the visible to NIR wavelengths — the spectral range relevant

for the work performed in this thesis. For a model to agree over a wider wavelength band one
can use a sum of Lorentz oscillators.

modes, all of which are more complex than a dipolar electron oscillator and all add
to the material’s optical response. Yet, all of these resonances can be approximated
by a Lorentzian model, and a more accurate refractive index can be obtained by
summing multiple Lorentz oscillators [65].

Finally, a few observations that can be drawn from the general shape of the Lorentz
oscillator model for dielectric function and refractive index:

¢ Near resonance, strongly enhanced optical interactions occur and the index
of refraction (Figure 2.3a) is high. However, the absorption (Figure 2.3b) in
a resonantly excited material concomitantly becomes high, whereas far from
resonance absorption is usually negligible.

* As the wavelength increases (frequency decreases), n and Re{e;} are for the
most part decreasing. This is referred to as normal dispersion and gives rise
to e.g. the well-known tendency of prisms to refract blue light more than red.
However, around the resonance wavelength dispersion is reversed
(anomalous) and a prism would instead bend long wavelength more than
short ones.

e The refractive index and attenuation coefficient (as well as the real and
imaginary part of the dielectric constant) are intimately connected and the
equations impose constraints on physically realisable combinations of the
two. The formal way of describing this is by saying that the two properties
are Kramers-Kronig related.

2.2 Light-matter interactions of subwavelength particles

To understand light-matter interactions, above we worked our way from the
fundamental electric displacement field, via the dielectric function, to the more
physically intuitive refractive index and attenuation coefficient of a material. On
the macroscopic scale, these are sufficient to describe the propagation of light in
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and between media, as these are the properties used in the Fresnel equations to
describe reflection and refraction, as well as in the Beer-Lamberts law to describe
attenuation upon propagation [1]. This is also the domain of our everyday
experiences of optics — reflection from a lake, a colour spectrum in a rainbow, or
the shiny appearance of a metal. However, both these equations and our intuition
become inadequate as the size of matter shrinks towards the nanoscale and
become comparable to the wavelength of light. Much like the treatment of atoms
and molecules, it here rather becomes relevant to describe light-matter interactions
in terms of scattering and absorption [61].

From a fundamental standpoint, any electromagnetic radiation arises from
oscillatory electric charges. As an incident electromagnetic wave interacts with
matter it displaces charge within that material. Such charge displacements will in
turn give rise to secondary electromagnetic radiation, which becomes the scattered
light. The shape and size of the particle, its material properties, and the medium in
which it resides, together with the angular, intensity, and polarisation
characteristics of the incident light all contribute to the resulting scattering and
absorption. For the general case, this is undeniably a daunting problem.

For arbitrary particles with complex shapes and without clear symmetry, no
analytical solutions to describe the scattering and absorption are possible and the
community instead relies on numerical simulations to estimate their optical
response. Such numerical methods are plentiful, and grid-based approaches like
finite difference time domain (FDTD), discrete dipole approximation (DDA), finite
element methods (FEM), and boundary element methods (BEM) allow for
simulation of any arbitrary geometry. These rely on being able to divide a
nanoparticle into small domains and solving Maxwell’s equations numerically in
the time or frequency domain [67].

Nevertheless, for homogenous spherical particles there exists an analytical solution
to the scattering problem. By solving Maxwell’s equations in spherical coordinates
one can obtain converging infinite series of vector spherical harmonics that
describe the electromagnetic field at any point. This was found by Gustav Mie in
1908 [68] and is now referred to as Mie theory [61]. At the time of G. Mie, using
these solutions must have been cumbersome, since several multipoles need to be
summed to reach sufficient accuracy. Today though, as computational capacity has
exponentially increased, Mie theory has become a valuable tool for nano-optics
research.

While being a powerful computational method, it remains challenging to gain
intuitive physical insights about the sphere’s optical properties and interactions
from the Mie multipole sums. Hence, to reach some physically intuitive insights
about the light-matter interactions of subwavelength particles we will yet again
turn to a simplified model system.

2.21 Quasi-static approximation

If a particle is sufficiently small, i.e. much smaller than the wavelength of light, the
charge displacement and consequently the scattered field will follow that of an
electric dipole. Hence, the optical interaction can be adequately described solely by
the particle’s induced electric dipole moment and any spatial variations of the field
within the particle can be neglected [61]. For visible wavelengths, such
approximations can be regarded as accurate for objects with dimensions below 30
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nm. It is possible to expand the model to include slightly larger particles (<100 nm)
if retardation effects from radiative damping as the particle’s size increases and
size-induced depolarisation from emission at different points in the particle is
taken into account. These retardation effects are captured in the modified
long-wavelength approximation (MLWA) [69, 70].

Spherical case

The simplest case to consider is a small isotropic homogeneous sphere of radius rg
with the dielectric function ¢;(w) that is located in an isotropic and non-absorbing
medium with the dielectric constant . By solving the Laplace equation for the
electrostatic case and applying appropriate boundary conditions (details outlined
in [4]) the induced dipole moment by a driving electric field E for the sphere is
found to be

3 er(w) —em

—————E = E 2.

P = 4mepeEmr
where a = 47rr8’;r((f)% is defined as the electric dipole polarisability of the sphere.
From the functional form of a(w) one realises that a resonant enhancement occurs
as er(w) — —2ey, for a certain w, i.e. where the real part of the dielectric function of
the particle’s material equals —2 times the dielectric constant of the environment.

Spheroidal case

Apart from spherical particles, the two most common shapes used within
nano-optic research are rod- and disk-shaped objects. Within the quasi-static
approximation, these shapes can be approximated with prolate and oblate
spheroids (cigar and disk shapes), respectively. Since these rotationally symmetric
objects have three principal axis aj, a2, and a3, where two are of equal size
(a1 > ag = a3 for prolate and a; = as < a3 for oblate spheroids) , they support two
unique dipolar resonance modes that depending on the size and material
parameters of the object will appear at two different wavelengths. Expressions for
polarisabilities along each separate axis (: = 1,2, 3) of the spheroids, representing
the separate dipolar modes are then expressed as [61]

ai(w) = 4draiazas er(w) —em
e 3  em+Diler(w) —em)

, (2.9)

where D; are geometrical factors for each principal directions of the ellipsoid. These
are obtained by

Di = CL16L22613/ 1 dq (210)
0 (a2+q) <n ag+q)

For any ellipsoid the geometrical factors for the three axis must sum to 1

(D1 + D3 + D3 = 1). Furthermore, a sphere has three equal axis and hence

Dip3 = %, resulting in Equation (2.9) reducing to the spherical case of (2.8). In the

extreme case of a flat disk or a thin needle, D; approaches 0 monotonically. The

resonance condition when the denominator of Equation (2.9) approaches 0 occurs

(1-Dy)
D

when &r(w) = —*5-"em. This implies that for a material with normal dispersion,
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as the long axis of the ellipsoid grows, the resonance excitation along this axis will
shift towards longer wavelengths.

For anisotropic particles, it is useful to construct a three-dimensional tensor
containing the polarisabilities of the three separate axes. As the axes of the
spheroid are aligned with the Cartesian coordinate axes, the polarisability tensor
will be diagonal. The polarisability tensor can further be decomposed into a real
and imaginary part according toa = o’ +1i- a”.

2.2.2 Scattering and absorption

After this discussion, we are ready to approach the core of light-matter interactions
with subwavelength particles, namely how they scatter and absorb light. Let us
consider a thought experiment (Figure 2.4) where a beam of light travels unimpeded
from a source to a detector that registers an electromagnetic energy of Uy. When
placing a subwavelength particle in the light beam the detector would register an
energy U < Uy, where some energy has been extinguished by the particle. Some of
the energy will have been scattered by the particle in directions not collectable by
the detector. Under the assumption that the experiment is taking place in a non-
absorptive medium, the rest of the lost energy can be accounted for by absorption in
the particle.

Hence, the nanoparticle will distort the oscillating electromagnetic field
surrounding it. By placing the nanoparticle within a closed surface S one can find
the net rate at which electromagnetic energy W crosses the boundary according to

W:/S~ﬁd8. (2.11)
S
At any point on the surface, ii denotes the vector normal to S, whereas S = E x H

is the Poynting vector, describing the directional energy flux in terms of the electric
and magnetic fields. The fields can be decomposed into an incident, a scattering,
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FIGURE 2.4: Extinction of an arbitrary subwavelength particle. The collected energy is less

than the incident one, which is accounted for by scattering and absorption from the particle.

By enclosing the particle (S, dashed circle) and analysing the fields on this closed surface, the
scattered and absorbed fields can be extracted.
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and an absorbed component, and hence the total energy flow can be written as a
sum of said components, whereas the extinguished energy is obtained as the sum
of the scattering and absorbed energies.

By then taking the ratio between the energy for scattering, absorption, or extinction
and the incident power density, a measure for the efficiency of this mode of light-
matter interaction is obtained. Such a ratio, i.e. Tgcatt = %, has the dimension
of area and is therefore referred to as a cross section. This is a useful value since it
can be compared to experimentally measurable properties such as a nanoparticle’s
dark-field scattering spectrum, the transmission through an array of nanoparticles,
or the absorption leading to photothermal heating, all of which play central parts
in this thesis. Interestingly, when a particle is resonantly excited its optical cross
section can vastly exceed its geometric counterpart.

Thus, our daunting problem boils down to expressing the full electromagnetic
fields in and around the particle as it interacts with incoming light. For arbitrarily
complex particles and geometries, the numerical methods mentioned above
(FDTD, FEM, DDA, etc.) are routinely used. For spherically symmetric objects the
analytical Mie theory provides solutions, and under the quasi-static approximation
the cross sections can be derived as

k‘4

Oscat = &~ ()], (2.12) Text = kIm{a(w)}, (2.13)

by integrating the time-averaged field from a point dipole as it is excited by an
oscillating plane wave. Here k = 27;\’(:“‘ , and np, is the refractive index of the medium

[61]. From these two equations, one can also calculate the absorption cross section

as Ogbs = Oext — Oscat-

Finally, to experimentally measure the optical cross sections and properties of
individual subwavelength particles can be challenging. A technique called
quadriwave lateral shearing interferometry (QLSI) which has previously been
used for phase imaging microscopy in nano-photonics [71-73] was in Paper S.XII
proposed as a convenient and reliable approach. With this technique, the
generalised polarisability of an arbitrary nanoparticle can be measured and used to
extract all the optical cross sections. To exemplify this, Figure 2.5 demonstrates the
polarisability of individual anisotropic gold nanorods measured by the technique,
however also nanospheres of gold and polystyrene were studied.

2.3 Resonances in metal nanoparticles

It turns out that the optical properties of noble metals are well suited for distinct
light-matter interactions, mediated by so-called plasmons. In general, a plasmon is
the collective oscillation of conduction electrons in a material, excited by an
electromagnetic field. The oscillation will be resonantly driven when the frequency
of the incoming light matches a condition set by the material’s properties, its
shape, and surroundings. The plasmon family has three members, where the first
is the bulk plasmon. This is the collective electron oscillation in the bulk of a
material, as seen in the free electron model above. The second type, the surface
plasmon polariton resonance, exists on interfaces between a plasmonic material
and a dielectric. Albeit the most studied and commercialised type of plasmonic
effect [4, 75, 76], it will not be further discussed in this thesis. Rather, we are
interested in the last member of the plasmon family; the localised surface plasmon
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FIGURE 2.5: The QLSI technique applied for full optical characterisation of nanoparticles. Left:

An SEM image of fabricated gold nanorods. Right: Experimentally measured polarisabilities for

the two principal axis (longitudinal - orange, and transverse - blue) of the nanorod, compared

to a DDA simulation of the nominal nanorod. Insets to the right show the intensity and phase

images used to extract the polarisability values. The right subfigure is adapted with permission
from [74] ©2020 The Optical Society.

(LSP) resonance. This arises when all three dimensions of a noble metal structure
are reduced to the nanoscale. As this resonance occurs, which for gold and silver
nanoparticles typically happen in the visible part of the electromagnetic spectrum,
scattering and absorption are significantly enhanced. Throughout the last decades
these strengthened optical interaction has lead to a wealth of valuable and useful
findings [77-80], with plenty of promising areas left to explore further [81, 82].

Quantum mechanically, a plasmon is the quantisation of the collective electron
oscillation in the form of a quasiparticle. How the plasmon quasiparticle interacts
with its surrounding and other quasiparticles (photons, excitons, phonons, etc.)
determines the resulting optical interaction. As plasmons in a nanoparticle are
excited they immediately face a multitude of possible decay channels that can be
both radiative and non-radiative [80, 83]. The time-line for this decay of the
plasmon is summarised in Figure 2.6. Radiative damping inevitably occurs from
t = 0 as re-emission of photons due to the accelerated charge within the particle.
During the first ~100 fs some plasmons will non-radiatively decay via Landau

- XXX )

T AV T
Plasmon excitation Landau damping Carrier thermalise e-ph scattering Thermal dissipation
Os 1-100 fs 0.1-1 ps ~10 ps <10 ns

FIGURE 2.6: The fate of the plasmon from excitation to decay. A plasmon is excited at ¢t = 0.

Immediately decay ensues, via radiative decay due to oscillating charges and Landau damping

where hot electron-hole pairs form. These hot carriers thermalise with the carrier bath via

electron-electron scattering and subsequently electron-phonon scattering extends the thermal

increase to the lattice. Lastly, heat transfer from the nanoparticle to the surrounding complete
the non-radiative decay chain.
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damping into energetic electron-hole pairs. Some of these excitons will decay
radiatively and reemit photons in the form of luminescence, while the so-called hot
carriers will during the subsequent picosecond or so thermalise with the normal
carriers to form a quasi-equilibrium carrier distribution, with an effective
temperature well above the lattice temperature. In the picoseconds to come,
electron-phonon scattering equilibrates this elevated carrier temperature by heat
transfer into the lattice. Lastly, on timescales up to nanoseconds, phonon-phonon
interaction allows the increased temperature to dissipate into the surrounding
media. For the research performed for this thesis the quantum picture of the
plasmon and its decay is for the most part redundant and is not discussed further.
However, it should be noted that it is a central topic in plasmonics that has enabled
e.g. enhanced photocatalysis, photodetectors, and energy harvesting in solar cells
[83].

Phenomenologically, the LSP resonance can be understood even from the Lorentz
oscillator and quasi-static models discussed above (Section 2.1 and 2.2.1) since the
dielectric functions of noble metals are such that they fulfil the resonance condition
in Equations (2.8) and (2.9) at visible wavelengths. Furthermore, since noble metals
present strong dispersion in the visible spectrum, the LSP resonance positions
become very sensitive to the surrounding dielectric environment. Since Re{e(w)}
is a decreasing function with increasing A, the LSP resonance redshifts as the
refractive index of the surrounding medium increases. This is illustrated in Figure
2.2a by the lines where the gold dielectric constant fulfils the resonance condition
for a spherical nanoparticle residing in air and water. In fact, to use the highly
refractive index sensitive LSPR position as a sensor is one of the most investigated
applications of LSP resonant particles [78].

Moreover, the localised surface plasmon resonance behaviour is strongly
dependent on the shape of the resonant particle. For a small nanosphere that can
accurately be represented by a point dipole, only a dipolar resonance is excited as
predicted by the quasi-static model above (Figure 2.7a), whereas larger
nanospheres can support higher-order modes, e.g. quadrupolar as in the one seen
in Figure 2.7b!. For anisotropic nanoparticles such as nanorods, the single
spherical resonance is split into separate resonance modes. These modes are
corresponding to resonant excitations of the free electrons in the longitudinal or
transverse direction of the rod (Figure 2.7¢,d).

A nanoparticle’s optical cross sections can at this point be calculated to spectrally
resolve the resonant effects. Using an experimentally measured dielectric function
for gold [64], the extinction cross section in the quasi-static approximation for gold
spheres of increasing diameter (Figure 2.8a) and gold rods of fixed diameter and
increasing length (Figure 2.8b) are calculated using Equations (2.12) and (2.13). For
the spherical case, the LSP resonance position is seen to redshift and broaden with
particle size. For the nanorod, two separate plasmon modes are observed. One at
around 525 nm corresponding to the transverse resonance and one that is
red-shifted and depends on the particle’s aspect ratio, which corresponds to the
longitudinal oscillation. The red-shift arises due to the increased separation
between the surface charges on either end of the rod, which reduces the restoring
force and hence the energy of the resonance.

'The asymmetry in the electric field distribution stems from retardation effects, which are not
captured in the quasi-static approximation discussed in Section 2.2.1.
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FIGURE 2.7: Electric field intensities from FEM simulations of gold nanoparticles placed in
vacuum and excited by plane waves. The electric field intensities are normalised to their
maximum values. Arrows indicate the direction of propagation (green), and polarisation
(yellow) of light. When the frequency of the field matches the LSP resonance frequency, a
collective electron oscillation is induced. (a) A spherical particle of r = 25 nm excited at A = 525
nm, where the dipolar mode dominates. (b) A spherical particle of 7 = 100 nm excited at A = 560
nm, where the quadrupolar mode is dominant. (c), (d) A nanorod of dimensions 40x80 nm
excited with light polarised along the longitudinal (c, A = 612 nm) and transverse (d, A = 525
nm) direction.
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FIGURE 2.8: Extinction cross section spectra of gold nanoparticles when placed in vacuum

and illuminated by an unpolarised plane wave. The calculations are performed using the quasi-

static approximation with applied MLWA corrections for (a) spherical particles as their diameter
increase, and (b) spheroidal nanorods with a fixed width (40 nm) and increasing length.

For all spectra in Figure 2.8, a slight plateau in the extinction is present at shorter
wavelengths. At energies above 2.5 eV (~500 nm) photon energies are sufficient to
excite electrons from the d-bands below the Fermi surface to bands above it. These
interband transitions lead to increased damping and absorption at blue
wavelengths, and often are seen as detrimental. By choosing another plasmonic
material one can avoid interband transitions in the visible regime. For example, the
band edge wavelength for silver, where interband transitions become allowed, is
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located in the UV spectral region [80]. Nevertheless, since they enhance hot
electron generation due to Landau damping, some researcher view them as
beneficial [83].

2.4 Resonances in dielectric nanoparticles

Although research and development focused on plasmonic nanoparticles have
resulted in a plethora of innovations in the last decades, it is not without its
drawbacks, e.g. strong Ohmic heating, lack of magnetic response, and CMOS
incompatibility. Therefore, partly to complement and partly to supplant plasmonic
nanoparticles, the library of resonant nanostructures has been expanded in recent
years. The most promising new candidate is that of high-index dielectric (HID)
nanoparticles [12, 84].

As compared to the plasmonic resonances that arise from restoring forces on the
metal’s free surface charges, dielectric nanoparticles present resonances that occur
within the nanoparticle and can be classified as geometric. Much like a Fabry-Peré6t
resonator where enhancement occurs when the optical path length is a multiple of
the cavity length, the lowest energy geometric resonance in an HID nanoparticle
occurs when the wavelength of light in the nanoparticle is approximately equal to

the particle’s diameter (279 ~ n;?o) [12].

The most common choice of material for HID nanostructures is silicon, yet also
gallium arsenide, germanium, titanium dioxide and others have been explored
[85]. These materials have refractive indices for visible wavelengths in the range
~2-5. Hence, the sizes of resonant HID nanoparticles usually becomes larger than
150 nm. Here, the quasi-static approximation is no longer useful, but Mie solutions
to Maxwell’s equations become perfectly suited [86]. The Mie solutions allow the
internal and scattered fields to be expressed as infinite series of electric and
magnetic multipoles where each multipole corresponds to a certain resonance
mode [61]. For HID nanoparticles the electric and magnetic multipoles can have
comparable strength, as opposed to plasmonic particles where the magnetic
contribution to the Mie series is negligible. This endows HID nanoparticles with
the potential for optical magnetism, where a material acts magnetic at optical
frequencies despite having a vanishingly small permeability?, as well as a whole
new set of resonances that can be explored and exploited [89].

Since the permittivity is positive for dielectrics, the electric fields within HID
nanoparticles are not expelled. This results in both linear and circulating electric
charge displacements within the nanoparticle, which constitute Mie resonances of
both electric and magnetic character [90]. The effect is illustrated in Figure 2.9,
where the electric field intensity distributions is displayed for a silicon nanosphere
when placed in vacuum and illuminated by a plane wave. At a wavelength of 785
nm, an annulus of high intensity forms within the particle. This corresponds to a
circulating current, which from basic electromagnetism we know forms a magnetic
dipole. At a wavelength of 585 nm, an electric dipole appears, which is orthogonal
to the magnetic one.

*This is something that has been sought after with plasmonic nanostructures as well, but due to
the limited magnetic contribution for simple shapes, more complex ones such as split-ring resonators
[87] and vertical dimer structures [88] have become prevalent since they support circulating electrical
currents.
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FIGURE 2.9: Electric field intensities from FDTD simulations of a 200 nm diameter crystalline

silicon nanosphere placed in vacuum and excited by a plane wave. The electric field intensities

are normalised to their maximum values. Arrows indicate the direction of propagation (green),

and polarisation (yellow) of light. (a) Intensity distribution at the wavelength of A = 785 nm,

where the magnetic dipole mode is excited by a circulating current loop. (b) Intensity distribution

at the wavelength of A = 585 nm, where the electric dipole mode is excited. To the left/right are
insets illustrating the characteristic electric field lines for such resonances [89].
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FIGURE 2.10: Extinction spectra of silicon nanospheres when placed in vacuum and
illuminated by an unpolarised plane wave. (a) Extinction cross section for a nanosphere with
a diameter of 200 nm, calculated by a Mie model [91]. The low-order resonance modes; magnetic
and electric dipoles (MD and ED), and quadrupoles (MQ and EQ) all show up as distinct
peaks in the spectrum, with the MD mode having the lowest energy. (b) Extinction efficiency
for nanospheres with increasing diameter. When increasing sphere size, all modes red-shift
proportionally until eventually only higher order modes remain in the visible range.

It is interesting to understand how the complete spectral response of HID
nanoparticles behaves. To this end, the extinction spectrum for a 200 nm sphere is
calculated using Mie theory (Figure 2.10a). Several resonance peaks appear, where
the one with lowest energy is attributed to the magnetic dipolar mode. Then for
increasing energy, the electric dipole is followed by magnetic and electric
quadrupoles. Further increasing the energy, even higher order resonances form at
wavelengths fulfilling the geometrical constraints set by the nanoparticle, as long
as they are not extinguished by the increased absorption at shorter wavelengths.
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The spectral position of these resonances is linearly dependent on the particle’s
size, which is obvious when the extinction efficiency spectrum (the ratio between
extinction and physical cross sections (%X%‘) is graphed for a range of different
particle sizes (Figure 2.10b). All the modes red-shift as the particle size increases. If
the nanoparticle is made sufficiently large, the low-order resonances shift to
infrared wavelengths, and the resonances that remain in the visible wavelength

band are only higher order modes.

That HID nanoparticles support both types of multipoles make their optical
response even richer with potential than their plasmonic counterparts. A magnetic
excitation that interacts with an electric one can lead to highly directional
scattering patterns when they fulfil the so-called Kerker condition [92, 93].
Furthermore, depending on the shape of the nanoparticle, various modes can be
shifted independently [94, 95]. This is strongly contributing to the allure of
dielectric nanophotonics since many exotic effects can be realised by controlling
and overlapping multiple resonances. Apart from directional scattering from
particles meeting Kerker’s conditions, interesting effects such as nonradiative
anapole modes, unconventional beam steering and nonlinear effects have also
been demonstrated [12]. A specific field where dielectric nanophotonics has gained
traction in recent years is within the field of optical metasurfaces, which is the topic
of the next chapter in this thesis.

2.5 Photothermal effects

As with any resonance, the favourable properties of resonant nanoparticles, come
at the price of significant absorption. Due to electron-phonon relaxation, this will
lead to enhanced heating and subsequent heat transfer to the environment. Such
elevated thermal environments can be problematic in applications, e.g. in
biological processes and other temperature-sensitive experiments. For plasmonic
nanoparticles this is particularly problematic, because of the high attenuation
coefficient of noble metals at visible wavelengths. Therefore, the following
discussion will mostly concern them. In recent years turning to resonant
high-index dielectric nanoparticles to replace plasmonic ones has been suggested
to mitigate these detrimental effects [89]. Nevertheless, in the field of
thermoplasmonics they are instead exploited seeing that the plasmonic particle can
also be used as a nanoscopic source of heat [96-98]. Below, we introduce the two
photothermal effects that stand out as the most important for this thesis, namely
the primary effect of heating, and the secondary effect of nanoparticle reshaping.

Moreover, when resonant nanoparticles are submerged in water the heating can be
sufficient to nucleate a bubble around them [96]. This occurs after the water has
been superheated to temperatures above 200°C and has been seen for both
ensembles [99, 100] and individual particles [101, 102]. These systems are
interesting from a fundamental perspective, but could also result in some niche
applications. For example, in Papers S.X and S.XIII surface-bound photo-induced
nanobubbles were modulated at high speeds and seen to generate flows in the
surrounding water with speeds surpassing 4 mm/s. This could potentially be of
use to concentrate analytes to sensors or as microfluidic actuators. My colleague
Dr. Steven Jones has done an excellent job of summarising this research direction
in his recent thesis [103] and hence it is not discussed further here.
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2,51 Heating

The heat power density generated at a given point in a nanoparticle is determined
through Ohmic heating via the electric field intensity at that point. In the case of
gold, owing to the considerably high thermal conductivity, the temperature
distribution within the nanoparticle can be considered uniform. If such a particle is
placed in water, the thermal distribution around it is predominately determined by
conductive heat transfer and the thermal conductivity of the water around it. For a
sphere in a homogeneous medium under constant illumination, the temperature
distribution as a function of radial distance r to the sphere’s center can be obtained
by solving the steady-state heat equation in spherical coordinates as [96]

T(r) = °AT + Tymp. (2.14)

r
Here, r¢ is the radius of the sphere, and AT = 4;5}'§£0. I is the intensity of the
incoming light and K is the thermal conductivity of the environment. If the
particle of interest has a more intricate shape, or if the geometry is not as easily
parameterised (e.g. at an interface), more rigorous analysis or even numerical

simulations are needed. However, for a range of cases (low aspect ratio nanorods,
nanodisks on substrates, etc.) Equation (2.14) provides a valid approximation.

Optical heating of metallic nanoparticles is the most ubiquitous photothermally
induced phenomenon in thermoplasmonics. Depending on the overlap between
the LSP resonance and the excitation laser, temperature increases of more than
100°C can result (Figure 2.11 from Paper S.III). A range of high impact
applications based on the effect has been suggested and are currently being
studied, including photothermal imaging [104], plasmonic photothermal therapy
(PPTT) [105], and heat-assisted magnetic recording [106]. Moreover, studies based
on optically confined particles are paving the way for applications using heating
effects to enhance chemical reactions [41], in drug delivery applications [107], and
molecular transition studies [108], as well as others [35-39].
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FIGURE 2.11: (a) SEM images of differently sized gold nanoantennas. (b) The simulated and

experimentally measured scattering spectra of the nanoantennas, presenting varied interaction

with a 1064 nm heating laser. (c) Heat source density for the 180 nm antenna when excited with

1064 nm light. (d) Measured temperature increase during heating laser power build-up, together

with linear fits to the data. The temperature increase is seen to scale with spectral overlap at 1064

nm illumination. The figure is adapted with permission from [109] ©2018 American Chemical
Society.
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2.5.2 Reshaping

Despite being thermally stable up to their melting point in bulk form, the surface
atoms of nanoparticles are known to be substantially more mobile than their bulk
counterparts [110]. This mobility is further accelerated in a heated environment.
Especially for metallic nanostructures, this property leads to continuous
reorganisation of the surface atoms. For nanorods, the reorganisation is found to
be driven by a curvature induced diffusion process where adatoms migrate from
high to low curvature areas [111], resulting in a rod becoming shorter and wider,
eventually forming the thermodynamically stable sphere. This is associated with a
spectral blueshift since the restoring dipolar force increases when the opposite
ends of the rod approach each other.

Rigorous studies of the reshaping of immobilised gold nanorods have been
conducted, especially with pulsed laser illumination [112-115]. A few particularly
noteworthy examples of applications of pulsed laser reshaping are dense data
storage [9], production of ultra-narrow dispersions in colloidal ensembles of
nanorods [116], controlled termination of heating during PPTT to prevent harming
healthy cells [117], and ultra-flat plasmonic absorbers [118]. Nanoparticles tend to
be even more prone to reshaping under continuous wave (CW) illumination where
nanorods have been seen to reshape at as low temperatures as 150°C [119]. Just
like other forms of thermal reshaping [120, 121], the CW-induced reshaping is a
gradual process that can take anywhere from minutes to hours depending on the
thermal environment since it is based on adatom diffusion.

During recent years, more unusual nanoparticle reshaping in focused laser beams
has been demonstrated [122]. For example, ordinary colloidal nanorods have been
seen to bend when illuminated with a diffraction-limited beam [123] and
nanospheres have been shown to exhibit polarisation directed growth to nanorods
[124]. While performing the experiments presented in Paper I, I observed some
such counterintuitive reshaping effects (Figure 2.12). When single-crystalline gold
nanorods with an average longitudinal LSP resonance at around 750 nm in water
were illuminated with a focused 660 nm CW laser (intensity as low as 5 mW/um?),
atypical spectral characteristics were observed. Some nanorods’ spectral peak
remained more or less stationary for long periods of time (>5 min), after which it
experienced some irreversible change that blueshifted the spectral peak more than
100 nm (Figure 2.12a). By performing correlative SEM imaging before and after the
optical experiment, the spectral shift could be attributed to a rapid reshaping
event. Other nanorods in the same batch instead presented a gradual redshift of its
LSP resonance (Figure 2.12b). Post-experiment SEM investigations then rather
reveal a deformed nanorod with a rugged surface.

These reshaping observations would require more investigation to be fully
understood, but regardless they allude to the complex and fascinating physics at
work with these systems. Exotic reshaping which in some ways resemble the
observed results have been seen from optical force-mediated stretching of
nanoparticles [125]. Albeit not exactly equivalent, optical forces could play a role
in our observations as well, due to our highly focused beam. Furthermore, bubble
formation around a nanoparticle drastically reduces the thermal conductivity of
the surrounding, which could enable the nanorod to both rapidly reshape into a
nanosphere or undergo surface evaporation to gradually deform the surface [126],
and could hence be another component in the full explanation.
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FIGURE 2.12: Abnormal reshaping of single-crystalline gold nanorods, caused by illumination
with a focused 660 nm CW laser. (a) Explosive reshaping that transforms a nanorod to a more
spherical particle. The particle is stable for several minutes, after which it abruptly changes
its morphology to drastically blue-shift the spectral peak. The top-left figure displays time-
resolved spectra where the black line marks the peak position. The white numbers (1)-(4) denote
times when the spectra to the right are recorded. Before and after the optical experiments,
SEM images of individual nanorods are recorded. The spectral shift seems to be explained by
a rapid reshaping event. (b) Other particles under the same illumination conditions display slow
red-shifts of their LSP resonance peak. This is inconsistent with the expected continuous blue-
shift accompanied by photo-induced reshaping towards a sphere. SEM imaging after optical
experiments indicates that the rods develop a rough surface.
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Chapter 3

Phase-gradient metasurfaces

In the previous chapter interactions between light and matter within nano-optics
were introduced. The treatment was then concerned with individual
nanostructures that due to resonances in the visible wavelength band presented
enhanced optical interaction. However, when many such particles are brought
together their interactions and resonances can couple to each other and form
further modified effects [127].  Such collective effects, unseen for ordinary
materials, are studied within the field of optical metamaterials.

In general, a metamaterial is a man-made material that has been engineered to
have some property; optical, acoustic, structural, or other, which cannot be found
in naturally occurring materials [128]. The metamaterial that has garnered the
most attention from researchers and the general public alike is that of
electromagnetic negative-index metamaterials, which allows materials to present a
negative refractive index in some wavelength regime and can therefore bend light
in the opposite direction compared to ordinary materials [13, 129, 130]. With such
negative refraction one could design systems for diffraction-less lenses [14],
cloaking [15], and perfect absorbers [131] to mention a few possible applications.
Metamaterials are generally constructed by metallic or dielectric elements, often in
the form of rings, rods, or split rings, which are arranged in a subwavelength
periodic grid in 3D space. Due to the subwavelength spacing, from the light’s
perspective the metamaterial appears as a continuous medium that can be
associated with effective optical properties that can be specifically tailored. Since
the size of the constituent elements has to shrink as the wavelength does,
fabrication of such materials become increasingly difficult. Hence, most
metamaterials have been realised in the terahertz to near-infrared regime [128].

If one imposes the restriction of only placing a single layer of particles, the 2D
equivalent to a metamaterial is obtained, which is referred to as a metasurface.
Turning to metasurfaces has granted entry to the visible wavelength regime by
circumventing the two main drawbacks of metamaterials, namely (1) that the
elements constituting the metamaterial become increasingly lossy in visible
wavelengths, and (2) that fabrication of nanoscopic 3D structures is challenging
[132]. Metasurfaces has for the last 20 years been a popular research area from
which a wealth of fundamental results as well as applications have emanated.
Many of these findings have been beautifully summarised in review articles [16,
84, 133, 134]. The particular type of metasurfaces studied in this thesis are termed
phase-gradient metasurfaces and will be introduced in this chapter.
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3.1 Wavefront curvature and phase profiles

From fundamental optics, the most basic three-dimensional propagating
electromagnetic wave is the plane wave [1]. As it propagates its profile is
unchanged and its wavefronts, defined as the surfaces of constant phase, remain
planar. For any other wavefront moving through a homogenous medium, the
wavefront will either diverge or converge. In this respect, how a light wave is
propagating is determined solely by the curvature of the wavefronts (planes of
constant phase), or by the phase profile in any Cartesian plane, assuming that the
total amplitude of the wave is constant and unchanging.

Hence, any optical element (e.g. a lens, axicon, or waveplate) placed in the beam
path can be described as a phase modulation object. The simplest such case is the
transmission of a plane wave that arrives at an angle to the interface between two
materials of different optical thickness. From Snell’s law, we know that such a light
beam will bend towards the surface normal. In the wavefront/phase picture, this
can be understood simply as changing the angle of the wavefronts, or equivalently
the slope of the linear phase profile projected onto the plane of the interface.

To fully grasp the relationship between the wavefront curvature and in-plane phase
profiles, let us visualise the working of a lens, as in Figure 3.1. A plane wave strikes
a lens, and its wavefronts are converted to spherical wavefronts and generate a
focus a certain distance away. If the phase profile was recorded at the boundary
of the lens (dashed line in Figure 3.1), a rotationally symmetric paraboloid phase
profile would be found, as described by ¢(r,\) = 27“ <\/r2 + 2 - f), where ) is
the wavelength of light, r is the radial distance from the optical axis, and f is the
focal length of the lens [135, 136]. This relation is found by calculating the optical
path length required to translate a plane wave to a spherical wave with the radius of
curvature of f, as a function of distance from the optical axis. The phase wrapping
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FIGURE 3.1: The relation between wavefront curvature, phase profiles and beam propagation.

(a) Mustration of how the wavefronts of a plane wave are curved by a lens to obtain focusing.

The solid red lines in the left figure represent planes of constant phase. If a plane cut is taken

orthogonal to the optical axis just after the lens, the radial phase profile in that plane is a

paraboloid, which in wrapped phase is presented in (b). Above the 2D plane is also a radially
symmetrical plane cut of the phase profile of the lens at this plane.
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(modulation of 27) can be understood as when the subsequent wavefront crosses
the cut-plane.

Once projected in one dimension as in the top right inset of Figure 3.1, the general
shape of the phase profile might bring to mind optical elements such as Fresnel
lenses [137] and kinoform diffractive lenses [138, 139]. Indeed, these derive their
function from surfaces engineered to impart a desired phase profile to the
incoming wavefronts by removing redundant full multiples of 27 phase delay
compared to refractive lenses. In many ways, the study of these optical elements is
the predecessor to the vast body of research that the rest of this chapter will
introduce.

Lastly, let us note that in fact for any arbitrary object interacting with light, the light
tield (intensity distribution and wavefronts) will be distorted from a simple plane
wave and contain the information about the scene. Upon propagation through our
eye or some other well-designed optical system, these wavefronts are translated to
an image that allows us to visualise the scene. If one is able to record the full light
field at some plane, this recording could then “fool” an observer to see the scene
despite only viewing a recorded copy of the phase and intensity profiles that the
scene resulted in. This is exactly what is done in holography, where the intricate
wavefronts coming off a complete scene can be encoded to an optical element via a
space-varying two-dimensional phase profile, allowing the full light field of a scene
to be reproduced [1, 140].

3.2 Phase profiles from metasurfaces

One particular feature of metasurfaces is that they can introduce discrete changes
to optical properties at an interface. Hence, by cleverly engineering a metasurface
to gradually change its phase response across a surface, it is possible to modify the
laws of reflection and refraction at the interface [141]. Then something referred to
as a phase gradient metasurface (PGM) is obtained. To get an intuitive understanding
of this, let us inspect the case presented in Figure 3.2a. A plane wave is incident on
a metasurface, whose constituent particles are designed so that they can add an
arbitrary phase contribution between 0 and 27. If the adjacent meta-atoms are
designed to add a linearly changing amount of phase, the plane wave can be
redirected to a different angle, while still remaining a plane wave. In a
Huygens-Fresnel picture, the phase of each spherical wave point scatterer is tuned
to add up to a plane wave of a certain angle.

Starting from Fermat’s principle, Snell’s law can be derived by considering the path
that minimises the accumulated phase between two points P and Q in media of
different index of refraction n; and n; (Figure 3.2b). A metasurface can then simply
be modelled as an added discrete and spatially varying phase ¢(x) at the interface
between the two materials. Therefore with a PGM, the total acquired phase ®(x)
when travelling from P to Q becomes

Bp.o(r) = 27;;’“ VI + @+ @)+ R (= ). (3.1)
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Q

FIGURE 3.2: (a) Illustration of how a controlled phase gradient between adjacent objects can

lead to beam steering. In this particular case, a linear phase gradient is imposed along the surface,

leading to a simple beam deflection. The refractive equivalent to this system would be a simple

wedge-prism used for beam steering. (b) A geometry in which generalised laws of refraction

and reflections at an interface with a PGM can be derived by considering the path of least phase
accumulation between points P and Q.

Taking the derivative of (3.1) with respect to = and setting it equal to zero to find the
path that minimises the acquired phase results in
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By now identifying that Tz = sin 0; and m = sin 6y, Equation (3.2) can

be simplified to

A do(z)
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(3.3)

where 6; ; are the angles of the incident and transmitted waves, while d‘z—f) is the in-
plane variation in phase induced by the PGM. This can be recognised as a modified
version of Snell’s laws with a PGM at the interface [136, 141]. Similarly, for a PGM

on a reflective surface, a generalised law of reflection at angle ¢, can be obtained as

A do(z)

sinf, — sin6; = 5 q
mn; dx

(3.4)

In two dimensions the derivative is generalised to a gradient in phase along the
surface, giving rise to the PGM’s name. Hence, by controlling the phase-gradient
along the surface it is possible to change the propagation direction and polarisation
of light and construct 2D equivalents to any refractive or reflective optical element.
For example, by building the phase profile of a lens (Figure 3.1) light that passes
through such a metasurface will be focused to a point. This is a powerful
realisation that opens up countless opportunities for researchers to explore. In the
context of this thesis, the PGM's light-manipulation can be seen to arise from
momentum exchange between the nanostructured matter and light, with possible
accompanying reaction forces and torques. Hence, any time a light beam’s phase is
altered by a PGM, it is synonymous to an engineered spatially varying momentum
exchange between light and matter.
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An impressive breadth of phase profiles is attainable by this technique; however,
one critical limitation to keep in mind in the design process is that the steepest phase
gradients attainable is set by the Nyquist criterion [142]. This implies that each 27
phase region must be mapped by at least two elements to avoid aliasing in the
phase profile. That is, the difference in phase between adjacent elements A¢ < 7.
Amongst other things, this sets a limitation for the largest achievable numerical
aperture! for a flat lens where the phase is mapped by an element with unit-cell
size Az: The largest beam deflection angle nax occurs at the periphery of a lens,
with an in-plane wave vector addition of kmax = 2”% sin Omax. Hence by using
the generalised Snell’s law from Equation (3.3), the phase gradient required for a
metasurface at this position must be [143]

B9 2Mm p s Ap = 20 = NA< %. (3.5)

= <
Az A 27TNm SN Omax — 2Mm SiN Omax T

3.3 A brief history of phase-gradient metasurfaces

Considering the enhanced resonant light-matter interaction of plasmonic
nanoparticles they seem to be prime candidates to use as building blocks in
phase-gradient metasurfaces, where the local phase can be controlled by changing
the shape and dimension of each individual nanostructure. Indeed, this was the
reasoning in the pioneering PGM works in the early 2010s where plasmonic
meta-atoms were used and the term was coined [135, 136, 141, 144-147]. While
many proof-of-principle demonstrations of flat optical components were
performed at the time with these plasmonic PGMs, finding a configuration for a
single layer plasmonic metasurface with both full 27 phase coverage and high
efficiency seemed to be elusive [148], especially in transmission mode where PGMs
have remained below 10% efficient. Recently, an approach with
metal-insulator-metal nanorods/nanoholes have broken this barrier and realised
plasmonic metasurfaces with higher transmission efficiencies (>40%) [149, 150];
however at that stage, the community had already found its new forerunner for
simultaneously obtaining full phase control and high efficiency, namely
all-dielectric PGMs [151].

Partly coinciding with the surge in interest for PGMs was the realisation that
nanoparticles made of high refractive index dielectric materials are useful as
nano-optical resonators [84, 86]. Not only did these support multiple interesting
resonances that could be combined to produce a stronger phase response, but they
also displayed lower loss. This realisation was leveraged by researchers to
construct single-layer metasurfaces with 27 phase coverage and efficiencies
superior to anything seen at visible or NIR wavelengths before [152-155]. Today,
state-of-the-art PGMs are almost exclusively fabricated by excavating some type of
nanoscopic pattern in a dielectric material, chosen to have low loss in the desired
wavelength region [156-158]. Dielectric metasurfaces also present the added
benefit of using CMOS-compatible materials, eventually allowing them to be
incorporated in contemporary fabrication processes and facilitating its potential
commercialisation. For the interested reader, there are plenty of comprehensive

"Numerical aperture (NA) is a dimensionless quantity that describes how large the collection cone
of a lens or objective is. NA = ny, sin Omax where nn, is the refractive index of the surrounding medium
and Omax is the largest angle that the objective can collect light from.
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reviews for further explorations into both the past and present undertakings in the
tield of PGMs [17, 143, 159-161].

It is said that no discoveries occur in a vacuum, and this is certainly true for
phase-gradient metasurfaces. Several decades before PGMs were introduced,
similar wavefront shaping was performed in the microwave regime with
frequency-selective surfaces [162-164]. Furthermore, with diffractive optics it has
long been possible to make low-cost, efficient, and quite wideband optical
elements [165-167], even competitive in commercial applications. However, as the
fields of subwavelength gratings [168-172]?, advanced nanofabrication [175], and
later dielectric nanophotonics [84] matured, these fields could combine with
previous knowledge from both the microwave regime and diffractive optics to
create synergies that lead to the unravelling of the exciting field of phase-gradient
metasurfaces that we see today. As research progresses it does seem like PGMs do
provide some unique properties not previously enabled by the other fields [176];
nevertheless, some controversy remains [177]. Regardless, what is oftentimes lost
in the discussion is that, apart from nomenclature, PGMs constitute a subclass of
diffractive optics where the unit-cell size is chosen to be smaller than the
diffraction limit — effectively suppressing any diffraction order other than the
zeroth one.

3.4 Metasurface building blocks

So far we have stated vaguely that phase-gradient metasurfaces can by modifying
some of its properties impart a spatially varying phase profile to light. Plenty of
approaches to do this are available and each comes with its unique set of benefits
and drawbacks. All techniques can roughly be sorted into one of three categories,
namely propagating, geometric, or resonant phase metasurfaces. Below follows
introductory sections for each of these concepts [160, 161].

3.41 Propagating phase

From a pedagogic standpoint, propagating phase metasurfaces are probably the
simplest to explain. From elementary optics, we know that the optical path length,
and hence the accumulated phase, increases proportionally with the refractive
index of the material. Hence, if the index of refraction could be controlled with
high enough precision, any arbitrary phase gradient could be constructed. This
would be the crowning achievement within graded-index optics research [178].
Locally altering the refractive index of a solid bulk material turns out to be
exceedingly difficult; however, changing the effective refractive index of a
subwavelength area by varying the filling ratio of the material is readily doable.
Imagine a square lattice with a unit cell of area P? containing a dielectric pillar of
radius rp, height H, and refractive index ngie placed in air (n.i =~ 1). Such a lattice

*One should especially mention the work performed by Lalanne, Chavel, and coworkers in the
late 90s on binary blazed subwavelength gratings. They produced TiO» nanopillars to make both
beam deflectors and lenses of high efficiency for visible wavelengths [172-174]. Considering the
striking similarity to today’s metasurfaces, one could state that they were decades ahead of their time
and did things that in 2015 merited publication in the most prestigious journals, only under a different
name. That their work did not spur the PGM revolution seen in the early 2010s is a testament to the
importance of timing and framing of the presented research.
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would present a light-beam with the effective refractive index

2 2 2
Ndiel TG + Nair(P° — 1)
D2

Neff = (3.6)
Neglecting any other resonant effects, by passing through the array of pillars a light
beam would hence acquire a phase of

6= TneH. 7)
By then varying the pillar radius across the surface, the phase contribution for each
pixel can be selected at will, effectively building up the PGM. As long as the height
of the pillar is sufficient it is possible to cover the entire 27 phase range. In practice,
the exact phase response is never so simple as Equation (3.7) since the nanopillars
start acting as waveguides that will have resonances that alter the phase response
and also induce loss channels exempt from the correct phase profile. Hence, for
most applications, even this realisation of a phase-gradient metasurface require
rigorous electrodynamical simulations to optimise the metasurface building
block’s geometry.

Much of this was realised by researchers active within diffractive optics long
before the PGM revolution of today got started [170, 172-174]. Unfortunately, their
contribution has not received much recognition, likely because they are referred to
as binary blazed sub-wavelength gratings instead of phase-gradient metasurfaces.
However, as the community started moving away from plasmonic building blocks,
the propagation phase approach became popular and proved capable of producing
efficient metasurfaces with a range of functionalities [160, 179-183]. Figure 3.3
displays a metasurface where circular nanodisks of varying sizes change the phase
between 0 and 27.
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FIGURE 3.3: SEM image of an array of circular nanoholes designed as propagating phase
elements, fabricated during exploratory work for the thesis. Each nanostructure defines a
particular phase for its pixel dictated by its effective refractive index. The scale bar is 200 nm.

3.4.2 Geometric phase

In the middle of the 1950s, S. Pancharatnam performed substantial work on
birefringent crystal optics together with his supervisor C. V. Raman. During this
work, they discovered in particular that circularly polarised beams acquire a phase
difference related to the orientation of the fast axis of the crystal [184]. What he had
discovered with optical experiments was the first observation of the general
concept of geometric phase, which was later generalised by Sir M. Berry to
encompass phase advance of any system when it is subjected to so-called cyclic
adiabatic permutations [185]. Since its discovery and generalisation, geometric or
Pancharatnam-Berry (PB) phase has become a useful tool to understand processes
in both classical and quantum physics.

For phase-gradient metasurfaces the geometric phase becomes a way to spatially
control the phase response across a surface. The archetypical PB metasurface
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FIGURE 3.4: SEM image of a segment of an array of nanofins designed as PB phase elements.
Fabricated during optimisation of the metasurfaces studied in Paper III. Each nanofin defines a
particular phase for its unit cell in accordance with its rotation. The scale bar is 300 nm.

building block is an anisotropic nanofin (Figure 3.4). This can, due to
shape-birefringence, function as a miniature half-wave plate, since an incoming
wave experiences different effective indices of refraction along the two principal
axis of the nanofin. It turns out that due to the geometrical phase contribution, light
interacting with the nanofin will acquire a phase ¢ that is twice the rotational angle 6 of the
nanofin (¢ = 260). The PB phase concept was used to build the metasurfaces
investigated in Paper III.

The PB phase contribution that arises from the interaction with an arbitrary
transmissive retarder can be understood from Jones matrix analysis. The matrix for
a general retarder with phase delay ¢ and transmission coefficients ¢, , for light
polarised along or perpendicular to the retarder’s fast axis is written as

|tz 0
= [O tyei@} . (3:8)
By combining this with a rotation matrix

(3.9)

M(6) = [cose sin&] 7

—sinf cosd
the transformation matrix for any arbitrary orientation of the waveplate becomes

TO) =M 'JM =

_ [tecos?0+t,esin?0  (t, — t,e!)cosfsind (3.10)
T |(ty — tye™) cosOsind  t,sin®6 + t,e cos? ] '
When an electric field of arbitrary polarisation |Ei,) passes through the waveplate,
the resulting outgoing electric field is obtained as the matrix multiplication | Eqyt) =
T(0)|Ein). At first glance, there is no physically intuitive observations to make from
this expression; however, after a lengthy exercise in algebraic manipulation it can
be written as

‘Eout> = T(9)|Ein> =

= o[ Ein) + i [ R)(L| Ein) + €2 |L)(R|E) | (3.11)

Here, (x|x) denotes the scalar product, v = 3(t, + t,e'?) and spg = (¢, — t,€%),
N I . . .

whereas |L) = 7 [z and |R) = V3 || are the circularly polarised unit vectors.

On this form, there are plenty of valuable conclusions about the effect of passing
light through a half-wave plate. The first term in Equation (3.11) describes a
component of light that will pass through the waveplate unaffected by it. The two
other terms relate to light that will experience the PB phase shift of ¢ = |26|, with
the sign of the shift being dictated by the handedness of the light. The total amount
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of light acquiring the PB phase shift is determined by the magnitude of ¢, , and ¢,
whereas the ratio of light acquiring either positive or negative phase is determined
by the ellipticity of |Ei,). In the special case of a perfect waveplate with ¢, = ¢, =1
and ¢ = 7, a circularly polarised beam (e.g. |L)) is subjected to total polarisation
conversion and all light picks up the PB phase of ¢ = 27. Then |Eqy) = */|R).

In the original work by Pancharatnam, the phase gain was proven geometrically
by comparing traces for two different orientations of the waveplate on the Poincaré
sphere [184]. However, a more intuitive way of understanding how differently
oriented nanofins cause transmitted or reflected light to acquire an
angle-dependent phase is suggested in [152]. They propose to recall: (1) the basic
function of the nanofin as a half-wave plate, and (2) the decomposition of a
circularly polarised wave as two temporally offset linear components. The effect of
a half-wave plate on a linearly polarised wave is to rotate the plane of polarisation
by twice the angle between the plane of polarisation and the waveplate’s fast axis.
This effectively “mirrors” the polarisation plane in the fast axis of the waveplate.
By propagating through the waveplate and hence reflecting the linearly polarised
components in the axis of the waveplate, the resulting outgoing circularly
polarised wave is seen to switch its handedness and acquire a phase shift that is
twice the rotation angle of the waveplate (Figure 3.5).

That such an effect is present for a macroscopic waveplate is one thing; however,
that it occurs even if the waveplate is a single nanoparticle is quite remarkable. If
the contrast between the nanofin’s and the surrounding media’s index of refraction
is sufficiently high, the nanostructure will act as a truncated waveguide and
confine the light [171]. Hence, neighbouring nanofins can have different
orientations and subsequently impart different phase to the light that passes
through that particular object. Therefore, by discretising any desired phase profile,
a Pancharatnam-Berry metasurface can be designed to reproduce that profile by
simply selecting the orientation # of each sub-wavelength element to be half the
desired phase ¢ at that location (¢ = 20).
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FIGURE 3.5: Illustration of the origin of the PB phase for a half-wave plate. The top row

indicated left-handed polarised light propagating into the page. This circularly polarised light

can be decomposed into linear time-delayed components (red and blue arrows with 7 phase

difference). By then “mirroring” these linear components in the differently oriented fast axis

waveplates (thin grey lines, middle row), an outgoing right-handed circularly polarised wave

(bottom row) with an orientation-dependent phase gain of ¢ = 26 arises. This is the PB phase
used to build up a metasurface based on this technique.
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The pioneering realisation that the Pancharatnam-Berry phase concept was useful
to sculpt phase profiles of optical elements were made in the early 2000s by the
group of E. Hasman. They used spatially varying subwavelength gratings in the
mid-IR spectral range to perform a range of ingenious experiments [186-190]. As
with phase-gradient metasurfaces in general, also PB metasurfaces made of
plasmonic meta-atoms were initially considered [191-193].  Also here, the
community thereupon turned to dielectric materials after some convincing
demonstrations by the Brongersma [152] and Capasso [155] groups. Since then
dielectric PB phase-gradient metasurfaces have been thoroughly researched and
seem to be a promising approach to make both highly efficient and diverse
metasurfaces [156, 194, 195]. For more detail, an instructive recent review
especially focused on progress in metasurfaces based on PB phase can be found in
[161].

Regardless of what flat optical component is made it is important to verify that the
expected phase profile is obtained experimentally from fabrication. Often this is
simply done by noting that the metasurface performs the task it is intended for,
hence assuming that the designed phase profile is reproduced. However, to truly
improve the performance of a metasurface it would be useful to image its actual
imparted phase profile. Again the technique of quadriwave lateral shearing
interferometry (QLSI) can be employed to elucidate this. In Paper S.XIV, QLSI was
used to experimentally record the phase profile of metasurfaces operating as lenses
and beam deflectors (Figure 3.6).
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FIGURE 3.6: Phase-gradient metasurfaces based on PB phase elements where the actual

imparted phase profile (optical path difference, OPD) is measured by QLSI. The top row displays

data for a beam-steering metasurface, whereas the bottom row describes a positive lens, as it acts

on left-handed circularly polarised light. (a,d) SEM images of metasurfaces. (b,e) Measured 2D

phase profiles. (c,f) Averaged (horizontal/radial) data from the 2D images compared with the

expected phase profile from design and theory. The figure is adapted with permission from [196]
©2021 American Chemical Society.
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Furthermore, most PGMs are designed to manipulate and shape incident plane
waves. However, regularly the phase front of light incident on an optical
component has a curvature, the most common being associated with a Gaussian
beam. Therefore, in Paper S.IX, a PGM reflector was designed to act as a concave
mirror that reflects an incoming focused Gaussian beam onto itself. Figure 3.7
demonstrates that a metasurface can theoretically do this with over 90% reflectance

and without disrupting the beam shape.
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FIGURE 3.7: A theoretical realisation of a PGM in the form of a concave mirror, designed to

reflect an incoming Gaussian beam upon itself. For a mirror designed with a numerical aperture

of 0.24, the beam is seen to retrace both its path and curvature after it has been reflected from

the metamirror while retaining above 90% of its intensity. The figure is adapted with permission
from [197] ©2019 The Optical Society.

A tangential field worth mentioning due to its overlap with PB phase-based PGMs
is that of liquid crystal optics using geometric phase [198-201]. The birefringence
caused by the anisotropic nature of liquid crystal molecules lends itself well to
producing similar phase profiles as discussed above. An inherent benefit is that the
liquid crystal pixels can be controlled with an electric field and therefore allow for
switchable optical devices. However, as patterning of liquid crystal molecules are
more challenging, the range of different optical elements are limited compared to
metasurfaces.

Lastly, a property usually presented as a drawback for PB phase metasurfaces is that
when operating with unpolarised light the inherent maximum efficiency of a lens is
50%, which for many applications is a significant drawback. On the other hand, this
does offer an extra degree of freedom in that the function of a lens can be tuned to
be either converging or diverging since the imparted phase gradient will be positive
or negative depending on the handedness of incoming light [191]. At the same
time, using multiple (>4) LC-based PB lenses in sequence has been demonstrated to
produce a polarisation insensitive compound lens [202], which might be of interest
also for metasurface-based PB systems.
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3.4.3 Resonant phase

In the general field of dielectric nanophotonics, many interesting fundamental
resonance modes have been investigated [12], and some of them were introduced
in Chapter 2. In recent years, employing and tuning specific such resonances has
been suggested as a way to improve PGMs. One example is when an electric
dipole and a magnetic dipole of equal magnitude and phase overlap, fulfilling
Kerker’s condition [92]. Due to destructive interference, the back-scattering of such
a structure is completely cancelled. A nanoparticle fulfilling this condition will act
as a Huygens’ source, which only reradiates in the forward direction, and therefore
constitute a building block in a Huygens’ metasurface. These hold promise to
further increase the efficiency of flat optical components [154, 203-206]; however,
still suffer from narrow spectral bandwidth, and large electromagnetic coupling
between adjacent meta-atoms [160].

Furthermore, another area where resonant PGMs appear is for realising efficient
high-angle beam steering and by extension efficient high-NA lenses — an area
where metalenses hold an advantage over diffractive optical components [176].
The highest efficiency near-unity numerical aperture lens (NA ~ 1 in air) realised
to date is based on resonant dielectric meta-atoms [207]. By overlapping
resonances of two adjacent nanoparticles, a compound antenna (Figure 3.8) can be
created that asymmetrically scatters light [208, 209]. By placing such antennas in
an array, the direction of asymmetric scattering can be tuned by varying the
antenna spacing. Such resonant dielectric dimer metasurfaces for high-angle beam
steering were used for the experiments performed in Paper IV.

By strict definition, these metasurfaces can be considered blazed diffraction
gratings rather than PGMs, since the unit-cell size is larger than the wavelength.
However, despite being constructed by sub-wavelength unit-cells, a PGM always
has a diffractive supercell period Psyp within which a number of meta-atoms build

up a 27 zone. This period sets the beam-steering angle according to ¥ = sin™? %ﬂp

[152, 194]. For a beam deflector, Psyp is constant across the surface, whereas for a
lens it will decrease away from the optical axis. Considering this, such resonant
compound antennas should be counted as building blocks in PGMs too, only
where the phase response for individual subwavelength particles is difficult to
separate due to the high degree of electromagnetic coupling.

FIGURE 3.8: SEM image of a segment of an array of nanodimers as elements in a resonant
metasurface, fabricated during method development for Paper IV . The scale bar is 300 nm.

3.5 Research frontier

The forefront of research within phase-gradient metasurfaces is developing at an
incredible pace. As mentioned above, the field holds enormous potential to
contribute to a range of avenues of both science and technology. Therefore, a
chapter on phase-gradient metasurfaces would be incomplete without an outlook
towards the challenges remaining for them to reach their full potential. Four major
research directions in the field are identified, namely:
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1. Scalability:

Up to this point, most fabrication in the metasurface community is done through
electron beam lithography, to define the detailed and spatially varying
meta-atom configurations. This is fine for scientific exploration, but by
production line standards it is simply not scalable since it is several orders of
magnitude too slow. Therefore, one struggle that PGM proponents need to
address is that of scalability in fabrication. The most advantageous move in this
direction seems to be to approach the semiconductor fabrication industry by
using deep UV lithography to both scale and speed up potential fabrication
[210-213]. Another approach would be to use nano-imprint lithography to define
the nanoparticle structures. Then a mould is made with electron beam
lithography and subsequently replicated multiple times to make flat optical
elements [214, 215].

2. Achromatic metasurfaces:

A phase profile that is engineered to produce a certain optical effect is
wavelength-specific. This means that there is a strong wavelength dependence to
basic PGMs, even in the absence of material dispersion. Hence, early industrial
adoption of the technique could be in laser-based applications. Nevertheless,
metasurfaces that operate with achromatic behaviour over a broad wavelength
spectrum is highly desirable for most other optical components. Therefore,
designing achromatic PGMs has been a top priority for many researchers in the
community for several years. Approaches include fine-tuning the spectral
response of meta-atoms [158, 216-218], making compensative doublet metalenses
[219, 220], metasurface-refractive multiplet lens systems leveraging the opposite
dispersion of refractive and diffractive optics [221, 222], and others as outlined in
reviews [160, 161, 223].

3. Active metasurfaces:

The PGMs discussed above are all stationary and each is designed for a certain
fixed function. There are plenty of systems where replacing bulk refractive
optical components with flat counterparts could reduce weight and form factor.
However, if a metasurface could be actively tuned to any desired phase profile,
that would add a whole new dimension of possible uses. Therefore, one
attractive field of research today is to try to implement active control of phase
profiles with metasurfaces. A range of attempts to reach this has been put forth.
Amongst the most innovative are; multiplexed metasurfaces [224], flexible
metasurfaces [225, 226], and metasurfaces combined with liquid crystals to
augment already established SLM? techniques [227, 228]. Yet others propose to
use material properties with a dispersive response to alter the metasurface’s
optical behaviour [229-231].

An alternative approach for obtaining tuneable flat optical components has been
investigated during the last years. By producing a thermal gradient in some
material, a phase gradient effect can be produced via the concomitant refractive
index gradient [232-234]. Albeit a step removed from the patterned metasurfaces

*The spatial light modulator (SLM) can in many ways be considered the micro-scale counterpart
to metasurfaces in that they can manipulate the phase of an incoming wave in space to produce
any desired profile. Such systems are routinely used in both research and commercial products to
manipulate light.
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discussed here, it is noteworthy due to the clear connection it has to the
photothermal effects discussed in Section 2.5.

4. AEEIications:

As the field is coming of age and the fundamental physical queries are resolved,
more focus is put on demonstrating the usefulness for real-world applications.
There seems to be a consensus about the disruptive potential of flat optics and in
2019 it was among the "Top 10 Emerging Technologies” according to Scientific
American [235]. In recent years a wealth of interesting demonstrations where
PGMs are used as an integral part in a more complete system has emerged. A
few of the most exciting ones include: Vertical cavity emitting lasers (VCSEL)
with integrated metasurfaces for beam-shaping [236]; multi-photon entangled
light sources [237]; achromatic light-field imaging with metalens arrays [183];
compact imaging systems in biomedical applications [238-240], augmented and
virtual reality (AR/VR) devices [241, 242]; LIDAR systems [243]; and display
technology [244]. Lastly, it seems that both established technology companies as
well as start-up companies are vesting interests to a larger extent in the
possibilities offered by metasurfaces [245].



39

Chapter 4

Optical forces and torques

In Chapter 2 it was pointed out that the momentum of light is insufficient to
noticeably alter the momentum of electrons in matter. Similarly, for long it was
thought that any useful mechanical effects on materials were negligible too.
However, as photons interact with matter they do partake in momentum transfer,
albeit the per-photon contribution is minute. Regardless, if the photon density is
sufficient, the momentum transfer from light to matter will inevitably cause some
noticeable mechanical effects, through optical forces and torques. The following
chapter aims to introduce the components of optical manipulation essential for the
thesis. For a more comprehensive summary, see the excellent book by Jones et al.
[22] or reviews on the topic [21, 246, 247].

4.1 Optical forces

The most basic optical force, radiation pressure, arises even with plane wave
illumination and at steady state propels any particle along the propagation
direction of light [18]. The radiation pressure can be expressed in terms of the
time-averaged Poynting vector S and the speed of light c as P = (S)/c, or as the
summed force imparted by all photons with individual momentum p = h/\. If a
ray of light is completely absorbed all the photon momentum is transferred to the
physical object, and if light is perfectly reflected twice this momentum is
transferred.

Moreover, if a particle or ensemble of particles, scatters light non-symmetrically or
simply redirects light, the physical object must experience an instantaneous force
in the opposite direction for momentum to be conserved. On a macroscopic scale,
the avenue where optical momentum transfer can become most relevant may be in
the drag-free environment of space, where a long-term goal has been to utilise
optical forces to construct solar-sail vehicles driven by light’'s momentum [248,
249]. Recently, phase-gradient metasurfaces have even been suggested as a means
to stabilise these so-called beam rider structures [250, 251].

Nevertheless, even in viscous media, small enough particles or large enough light
intensities can result in forces sufficient to propel objects with appreciable speeds.
For example, directionally scattering resonant nanostructures have been seen to
experience reactive optical forces that propel them laterally [252, 253]. In fact, any
manifestation of a phase gradient of light, induced or incident, will result in an
optical force that propels an object [254]. This is leveraged when collimated light is
redirected to produce optical forces that lift refractive microparticles [255-257] or
propel wedge-shaped microparticles [258] in liquid environments. Indeed, even



40 Chapter 4. Optical forces and torques

centimetre-scaled liquid crystal PB phase objects have been seen to move due to
directional light steering [259]. In Paper IV this idea was used to propel
microscopic particles in plane wave illumination. For steady state propagation in
all these cases, an additional force must be present that maintains the structure’s
orientation. Often this is an interface that prevent the torque that would otherwise
reorient the particle and quench the reactive force.

4.1.1 Optical forces in a focused beam

Once light is focused through a strong lens the incident total momentum is vastly
more complex and therefore so are the resulting optical forces and torques. As a
result, as was discovered in the 1980s by Arthur Ashkin and coworkers, small
particles can be confined in 3D by light in optical tweezers with sufficient laser
power.

In a focused light beam, the induced forces can be decomposed into a scattering
and absorption force component (Fycat/abs) and a gradient force (Fgraq) component.
The first is a non-conservative force acting in the propagation direction of the light,
which arises from scattering and absorption processes. The gradient force appears
as a reactive force in response to how the optical interaction with the particle alters
the momentum distribution of the outgoing light in relation to the incoming one.
The gradient force is therefore responsible for the confinement in optical tweezers.
Three-dimensional confinement can be obtained when the gradient force
overcomes the scattering/absorption force. To achieve sufficiently strong gradient
forces experimentally, microscope objectives with high numerical apertures are
employed due to their large deflection angles.

Large dielectric particles in the Mie regime will redirect photon momentum due to
refraction, resulting in a counter-force on the particle. Hence, an attractive potential
is created near the intensity maximum of a trapping laser. This is referred to as the
ray optics model of optical tweezers. For particles smaller than the wavelength,
in the so-called Rayleigh regime, the description based on refraction breaks down.
Instead, the particle can be seen to experience a Lorentz force in response to its
induced polarisation. Expressions for the optical forces can then be derived under
the quasi-static approximation [260]. When the electric dipole moment p and the
incoming electric field E are linearly related the total force can be decomposed into
the gradient and scattering and absorption force components;

€0 .
Fyrad = %v (E*-a - E) (4.1)

_ €0€m * "
Fscat/abs = 9 Im{E Q- VE}, (42)

where * denotes the complex conjugate. For particles with a scalar polarisability (i.e.
spheres, or nanorods aligned with the Cartesian axes of the incoming light) and by
introducing I = |E|?, the expressions can be simplified further to

€0Em €0€m

Fgrad = O/VI, Fscat/abs = o/’Im{E* : VE)}
For a particle with arbitrary size and shape the resulting optical forces can be
found using more advanced numerical methods. Conservation of electromagnetic

energy flowing through a surface enclosing a particle yielded its optical properties
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(Equation (2.11)). Similarly, by considering the conservation of momentum across
the bounding interface, the optical forces for an arbitrary particle can be calculated.
This is done by following the Maxwell’s stress tensor method [22].

As seen from Equation (4.1), a particle with positive polarisability (refractive index
higher than its surrounding) will be directed towards the high-intensity region of
the light, whereas one of negative polarisability will be expelled from the trap. For
plasmonic particles, the sign of the real part of the polarisability may change when
crossing the LSP resonance due to a phase change of the resonance. This may lead
to the gradient force being attractive for light on the low-frequency (red) side of the
LSP peak, while repulsive for high-frequency (blue) light [29]. Furthermore, when
it comes to metallic nanoparticles, they are generally difficult to confine in three
dimensions with single-beam optical tweezers. Due to their strongly enhanced
scattering and absorption close to the LSP resonance, the scattering and absorption
force becomes larger than the gradient force. However, if one detunes the trapping
laser from the LSP resonance wavelength for small metallic nanoparticles, 3D
confinement is possible [28].

The electromagnetic field in optical tweezers is commonly a Gaussian beam. Within
the paraxial approximation!, the optical forces on particles in the Rayleigh regime
can be calculated (derivations outlined in references [262, 263]). Figure 4.1 displays
results of such calculations performed for a nanorod of length 80 nm and width 40
nm (see extinction spectra in Figure 2.8), as it is placed in the focus of a Gaussian
beam with divergence equal to that of an objective with numerical aperture NA =
1.4. To illustrate the importance of the LSP resonance on the trapping stability, the
forces are investigated at two standard laser wavelengths: 660 nm (red light, Figure
4.1a) and 1064 nm (NIR light, Figure 4.1b). For the 660 nm laser, the scattering and
absorption component dominates, and the particle is propelled in the propagation
direction of the light. The NIR laser, however, excites the particle far away from
resonance and produces an optical force that is dominated by the gradient force,
and hence confines the particle in 3D.

Stable trapping occurs when the potential well ¢/(r) caused by the optical forces is

much deeper than the particle’s kinetic energy due to Brownian motion. Therefore,

the stability criterion is defined as when the ratio exp [—Zzé;)} < 1, where kg is the

Boltzmann constant. An estimate to when this criterion is fulfilled is when
% > 10 [20], corresponding to the particle statistically residing in the trap for
hundreds of seconds [264]. For 1064 nm laser light (Figure 4.1b), this criterion is
fulfilled if the temperature is assumed to be below T = 430 K, and stable trapping
is thus possible. On the contrary, for 660 nm illumination, three-dimensional
confinement is not possible since the scattering force surpasses the gradient force,
and the particle will unavoidably be propelled along the optical axis. In the
rightmost graph of Figure 4.1a this can be understood seeing that all force vectors
are directed upwards. Nevertheless, both the optical forces are significantly
enhanced by the LSP resonance and the potential well in the zy plane is deep
(> 60kpT). Hence, if the particle’s movement in the z-direction is restricted by
other means, the particle will be stably trapped in the radial plane.

!'The validity of the paraxial model is decreasing as the angle of incoming radiation increases.
Hence, for high NA objectives, the estimated forces will differ from their true values [261].
Nevertheless, since the purpose here is to illustrate the qualitative properties of the Gaussian optical
trap, such deviations are neglected.
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FIGURE 4.1: Direction and magnitude of optical forces for a point dipole with the optical

properties of a prolate spheroid gold nanoparticle (80 nm long and 40 nm wide) in a paraxial

Gaussian beam with circularly polarised laser light at the wavelength of (a) 660 nm, and (b) 1064

nm. The light is focused through an objective of NA = 1.4 and has a total power of 100 mW. The

leftmost graphs show the scattering component, the middle ones the gradient force component,

and the rightmost the total force. The maximum force values are Fimax = 2.5 pN and 150 {N for
(a) and (b), respectively.

The effects associated with near-resonance excitation can be beneficial for
applications. In those cases, one can sacrifice one dimension of manipulation for
stable confinement in two dimensions by using alternative configurations for
optical tweezers. Such could include counterpropagating optical traps discussed in
references [19, 265] and Paper S.VII, where two beams with opposite propagation
directions are superimposed and effectively cancel the scattering force. Another
technique utilises a glass surface with the same charge polarity as the trapped
object. As the particle is pushed by radiation pressure towards the charged surface
it will be repelled by Coulomb interaction and find a stable trapping position at
some distance from the glass-water interface. This technique is subsequently
referred to as “2D optical tweezers” and was used in Paper I and II. Its underlying
physics is discussed further in Section 4.4.

4.1.2 Optical trapping with phase-gradient metasurfaces

Working with optical tweezers puts high demands on the objective lens used. To
obtain strong gradient forces, a lens with high quality and NA is needed. The
working distance, cost, immersion medium, flexibility and user-friendliness,
parallelisation, and miniaturisation can also play a role for the end result. In this
thesis where a novel form of flat lenses is studied in conjunction with optical
forces, it is natural to imagine combining these two to study optical trapping with
flat lenses.
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Indeed, this is such a promising and intuitive idea that researchers have already
touched upon this for quite some time. Already before the phase-gradient
metasurface surge in the early 2010s there were studies using Fresnel zone plates
[266] and diffractive optics [267] to construct low form factor optical tweezers
systems. Yet, as phase-gradient metasurfaces have become more popular, it seems
they could offer some novel opportunities to the optomanipulation community:

A theoretical study suggested the benefit of phase-gradient metasurfaces for
optical manipulation due to their potential to create complex fields carrying both
linear and angular momentum [56]. Then in 2018, the first experimental
realisations were presented. First, 3D optical trapping using phase-gradient
metasurfaces was realised with a reflective Fresnel zone plate high-contrast grating
to form a focus to trap particles in microfluidic environments [54]. A further
benefit of phase-gradient metasurfaces is that they offer control over the
polarisation of light as well as its propagation. This was around the same time
used to demonstrate metalens optical tweezers which could control the trapping
location of microparticles along the optical axis, by using polarisation sensitive
meta-atoms which for orthogonal linear polarisation formed foci at two different
locations [55].

Since these first demonstrations, a range of studies has been published that explore
the topic of phase-gradient metasurface optical tweezers. From theoretical studies
exploring new potential trapping geometries, such as gradient line-traps [268, 269]
or coherent beam focus steering [270] for particle sorting, to experimental
realisations of high-efficiency transmissive dielectric metasurfaces with ability to
produce both optical forces and torques [57], and dual-focus diffraction-limited
optical traps [271]. It seems that the idea might be picking up momentum and it
will be interesting to see how the field progresses in the years to come.

4.2 Optical torque

Similar to linear momentum, if a particle causes the angular momentum of light to
change after an interaction, the object must experience a counteracting torque. The
fundamental observations of light-induced torques in the early 201 century [42]
did not amount to much experimental follow-up work at the time. However, the
interest was rekindled as optical tweezers grew more common, and it turned out
that also light-induced torques could be applied to the optomechanically confined
objects, providing an additional level of control [272].

Angular momentum can be carried by light in two different forms, either by its
polarisation or by the shape of its wavefront. These two types are referred to as
spin angular momentum (SAM) [42], and orbital angular momentum (OAM) [273],
and their function and difference are illustrated in Figure 4.2. Hence, to impart a
net torque to an object the optical interaction needs to result in a change in the
angular momentum density of light. This can be done when a particle simply
absorbs light that carries either spin- [274-276] or orbital angular momentum [272,
277]. Moreover, angular momentum transfer can arise from an altered polarisation
state of the reemitted light. For example, birefringent particles can act as
waveplates and convert e.g. linearly polarised light to circularly polarised light
[43, 45, 278], or asymmetric particles can scatter light in such a way as to introduce
OAM to the exiting light [279-282].
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SAM OAM

FIGURE 4.2: Tlustration of the function and difference between a light beam carrying spin

angular momentum (SAM, left) through its polarisation state, and orbital angular momentum

(OAM, right) through its phase front. Figure is adapted from Paper S.XI with permission from
[283] ©2019 American Chemical Society.

The majority of studies on optically induced torques have been concerned with
microscopic objects. However, the enhanced light-matter interactions offered by
resonant nanoparticles could be useful for enhanced optical torques as well as
forces [46, 47, 246, 284]. Through resonantly enhanced optical torques, gold
nanoparticles have, while optically trapped in 2D against a cover-glass, been made
to spin in water with rotation frequencies above several kHz for nanospheres [276]
and several tens of kHz for nanorods (Paper S.I). In Paper I, the rotational
dynamics of such a spinning nanoparticle was used to study photothermal effects.

For stable rotation around one axis, the equation of motion can be written as

Je(t) = Mopt + Mg + M, (4-3)

where J is the moment of inertia for the particle, 0 is the orientation angle, Moyt is
the driving optical torque, M; the opposing frictional torque from the surrounding
liquid, and M a stochastic torque due to rotational Brownian motion, whose time-
average is zero.

The frictional torque from the surrounding liquid is counteracting the optical
torque. For a small spherical or spheroidal particle, the flow of liquid around the
object is laminar due to the low Reynolds number. Consequently, the friction
torque can be expressed as M; = —yQ = —7Gn(T)L3Q [53], where Q is the
angular velocity and +; is the rotational friction coefficient for a sphere or prolate
spheroidal particle expressed in terms of the length of the particle L, the viscosity
of the surrounding water n(7"). G is a geometrical shape correction factor, that for
spheres is equal to one and approaches zero when a spheroidal particle’s
eccentricity approaches one [285].

A general expression for the total optical torque (Mgypt) is attainable analytically
for spheres and spheroids, either small enough for the quasi-static model to be
valid, or using Mie theory. When these can be used to estimate an electrical dipole
strength p that dominates the multipolar response, the time-averaged optical
torque perpendicular to the direction of propagation of light can be related to the

incoming electric field E as
Mopt = (p X E). (4.4)
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In the case of circularly polarised light, an isotropic particle will experience a torque
that is solely accounted for by absorption of SAM, whereas a perfect thin rod (1D
polarisable particle) will derive its torque from a polarised scattering component
as well as from absorption. In a more complex case, with a particle that is both
asymmetric and absorptive, the total torque M,pt can be obtained by integrating
Maxwell’s stress tensor from a numerically obtained electric field distribution [284].
Regardless of how the optical torque is estimated, when it is exactly counteracted by
the friction torque (Mopt = M), the particle is on average rotating with a frequency
as determined by [53]

Mopt

21y,

Javg = (4.5)

The control offered by optical forces and torques enables applications within e.g.
microrheology [286], biology of both living organisms [287] and its DNA building
blocks (Paper S.IV), non-equilibrium thermodynamics (Paper S.V), and as optical
torque wrenches [288], to mention a few. In general, optical forces and torques is
one of several options to drive so-called nano- and micromotors with light. This
and other techniques have recently been reviewed in Paper S.XI for nanoparticles
and in several reviews for microscopic particles [289, 290].

Lastly, the studies mentioned above are all performed in water. However, optical
manipulation can also be performed in air [291] and even vacuum. Thanks to the
non-existent drag in vacuum, rotation frequencies of several MHz have been
observed [292], and such rotating particles have been used to build
record-sensitivity torque sensors [293].

4.3 Brownian motion

Even if optical forces and torques can allow micro- and nanoparticles to be
confined to impressively small volumes, their motion cannot be stopped
completely. The erratic and seemingly random motion of small particles has been
observed and pondered over for centuries. An early documented discussion about
such motion and its underlying cause is found in the Roman philosopher
Lucretius’s "On the Nature of Things" from the last century BC [294] where he
eloquently describes it as:

"Observe what happens when sunbeams are admitted into a building and
shed light on its shadowy places. You will see a multitude of tiny particles
mingling in a multitude of ways... their dancing is an actual indication of
underlying movements of matter that are hidden from our sight... It originates
with the atoms which move of themselves. Then those small compound
bodies that are least removed from the impetus of the atoms are set in motion
by the impact of their invisible blows and in turn cannon against slightly
larger bodies. So the movement mounts up from the atoms and gradually
emerges to the level of our senses, so that those bodies are in motion that we
see in sunbeams, moved by blows that remain invisible."

Indeed, such random motion referred to as Brownian motion is caused by
collisions between the particle and its surrounding molecules, as proven by
Einstein in 1905 [295]. It turns out that the motion of the Brownian particle is well
described by complementing Newton’s equation of motion with a stochastic term
[22]. One obtains the Langevin equation of motion for translational Brownian
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motion as
mi(t) = — i (t) + F (1), (4.6)

where F(t) is a random force with zero time average and that is uncorrelated in
time (ie. (F(t)) = 0 and (F(t)F(t')) = 0). m is the particle’s mass and 7 its
hydrodynamic friction coefficient for translational motion, which for a sphere in
the low Reynolds number regime2 can be written using Stokes’s law as y; = 67nry.
Here, 7 is the environment’s viscosity, which for water can be approximated by an
Arrhenius-type equation [276, 297].

In the presence of an external force F(r) (e.g. the optical forces from the laser
tweezers) and in the low Reynolds number regime, the Langevin equation can be
rewritten as [22]

r(t) = ——F )+ V2D W (t) 4.7)
Dy = = kT js the diffusion coefficient, and W (t) is white noise. The acceleration in

Equatlon (4.6) is removed since inertial effects can be neglected in the low Reynolds
number regime, since the momentum relaxation time becomes short (<1 ps) [298].

In the same way as molecular collisions give rise to translational Brownian motion,
they can also give rise to rotational Brownian motion. This expresses itself as a
stochastic torque that causes the particle to randomly change its orientation. Such
a process becomes especially important for anisotropic particles [299]. The
Langevin equation for rotational Brownian motion, including an externally
applied torque M.y (r) reads [22]

0(t) = —VlrMext(r) + /2D W (1). (4.8)

Here, 6(t) is the rotation angle, whereas ~; is the friction coefficient for rotational
motion, and D, = kBT is the diffusion coefficient for rotational motion.

4.3.1 Trapping stiffness

The translational Brownian motion of a particle inside the optical tweezers gives
rise to positional oscillations. For small fluctuations, the force acting on an
optically trapped particle is approximately linear. The strength of the restoring
force acting on the particle in one dimension can, therefore, be described as a
Hookean spring with spring constant kg, i.e. its stiffness. Characterising the
trapping stability of the optical tweezers (referred to as trap stiffness) is both an
established method for calibrating and quality-testing optical tweezers, and for
measuring valuable parameters such as force, viscosity, and temperature.

In the one-dimensional case of Equation (4.7) and in the linear regime where
F(z) = —ksxz, the Fourier transform of the stochastic positional fluctuations of the
trapped particle sampled for a sufficiently long time teyp generates an overdamped
Lorentzian power spectrum according to

~ 2
_EHE D 1
tmeas 272 fc2 + f2
The Reynolds number characterises the ratio between inertial and viscous forces on an object in a
fluid. Nanoparticles are generally in the “low Reynolds number regime”, where viscosity dominates

over inertia. In such a laminar regime, the motion of an object is determined by only its momentary
force, without any “memory”. Reference [296] introduces the topic in a very accessible way.

(4.9)
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Here, f. = (271?%> is defined as the corner frequency of the Lorentzian, containing ks

as the trapping stiffness of the optical tweezers [300]. Consequently, we can obtain
an expression for the trapping stiffness

ks = 277 f. (4.10)

By measuring a particle’s positional fluctuations in the trap and Fourier
transforming these, the power spectrum can be obtained. The corner frequency can
thereafter be extracted by fitting the experimentally obtained power spectrum to
Equation (4.9), and together with an estimate for the friction coefficient, the trap
stiffness can be measured.

4.3.2 Hot Brownian motion

So far, the Brownian diffusion considered above has taken place in a homogeneous
environment, where the particle is at equilibrium with its surroundings. This
implies there are no gradients in any of the surroundings’ properties. In Section 2.5
the fact that a plasmonic particle is significantly heated by light was introduced.
This heating leads to strong thermal and viscous gradients in the particle’s
surroundings. This holds for any optically trapped particle and especially for
metallic nanoparticles, due to Ohmic heating. It is not apparent from the
homogeneous case how a Brownian particle in these temperature-induced
non-equilibrium environments should behave, and another theory that captures
this is needed.

Since the time scale for heat conduction is faster than the characteristic diffusion
time of the particle, the surrounding gradient will be comoving with the particle. It
turns out that the dynamics of such a particle can be well described by an effective
temperature and viscosity in a homogenous medium, which gives the particle the
same diffusive behaviour as the real heated one in the thermal gradient. This
effective temperature and viscosity (giving rise to an effective diffusion coefficient)
is discussed for translational motion in references [301, 302], and for rotational
motion in [303].

Due to the fact that rotational and translational motion sample their environments
differently (expressed as a more localised velocity flow field for rotational motion
in reference [303]), the temperatures associated to translation (Tgm ) and rotation
(TrBm,r) Will be different. They relate to each other and the nanoparticle surface
temperature (Ty,¢) and surrounding (7p) according to Ty < Thapmt < Traemyr < Tour-
The relationship between these temperatures has been verified experimentally by
several independent experiments such as [34, 304, 305] and in Paper S.II.

4.4 Surface interactions

In the majority of the studies performed for this thesis, small particles are moving
in close proximity to flat surfaces. In Papers I and II, stable confinement of metallic
nanoparticles is obtained by balancing the destabilising radiation pressure
component of the optical force with a repulsive force from a surface with the same
charge polarity as the nanoparticles (Figure 4.3a). In this case, the three main force
components are the repulsive Coulomb force, the attractive van der Waals force
and the optical scattering force. In Paper IV, dielectric microparticles sediment at
and move along a water-glass interface (Figure 4.3b). For microparticles, the forces
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FIGURE 4.3: Decomposition of forces involved when nano- and microparticles approach

charged surfaces. (a) A nanoparticle confined in 2D optical tweezers. Coulomb repulsion (Fpr,

double layer repulsion) is counteracting the scattering force (Ficat/abs). The short-range van der

Waals force (Fiqw) also comes into play as the particle approaches the surface. (b) A microparticle

that sediments on a surface at the water-glass interface. Gravity (Fyav) acts downwards while
being counteracted by buoyancy (Fiuoy) and Coulomb repulsion.

of gravity and buoyancy are non-negligible and balanced by the repulsive
electrostatic force.

For both cases, in aqueous solutions the interaction and forces between charged
surfaces, such as a particle and an interface, are described by the DLVO theory. The
forces arise from interaction between charges in the objects as well as ionic layers
at their surfaces and can be decomposed into two components; the van der Waals
force (vdW) and the Coulomb force (double layer repulsion, DL) [306].

The van der Waals force results from the correlation between instantaneous
multipolar (primarily dipolar) charge fluctuations of adjacent objects. For two
single atoms or molecules, such interactions include only the two entities” dipoles.
However, going to nanoparticles and even macroscopic bodies the interaction
between all component multipoles needs to be summed to provide a measure of
the force. Therefore, the vdW force is highly dependent on the shape of the
interacting objects.

A surface in a liquid can become charged either by ionisation of its surface atoms
or by adsorption of ions from solution. This surface charge will attract oppositely
charged counter-ions, some of which will bind to the surface in a so-called Stern
(or Helmholtz) layer, whereas others form a diffuse electric double layer as an
atmosphere around the particle. Such charged counter-ion clouds are responsible
for the repulsive force between objects in solution. Relevant measures for the
strength and range of these repulsive forces are captured in the zeta potential and
the Debye length. These describe the potential difference between the edge of the
stabile counter-ion cloud and the surrounding medium, and the thickness of the
double layer, respectively. Double layer forces can in general be derived from the
Poisson-Boltzmann equation, and the special case of a spherical particle near an
interface is approximately obtained through the Derjaguin approximation, both of
which are outlined in detail in reference [306].

Lastly, as a particle performs Brownian motion near an interface, the drag that it
experiences increases as it gets closer to the surface, because of the surface’s no-
slip (sometimes partial-slip) boundary condition [307]. The drag coefficients are
different for different degrees of freedom (i.e. translation or rotation, parallel or
perpendicular to the surface) and each can for a spherical particle be approximated
using Faxén’s laws [308, 309].
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Chapter 5

Research methods

Any hypothesis proposed in science needs to withstand rigorous scrutiny of both
experimental and numerical nature. To take a research project from conception to a
finalised article requires a brimming toolbox of methods. Generally, when an idea
for a nano-optics study is conceived a nanostructure first needs to be optimised,
often via numerical simulations. After finding an optimal structure, it needs to be
realised experimentally using nanofabrication techniques. Thereafter,
characterisation measurement ensues to verify the study’s hypothesis. These are
usually optical experiments but can also include additional simulations. The
chapter below follows the chronological outline of such a generic research project
and introduces standard techniques as well as methods specific to the appended

papers.

5.1 Numerical simulations

To design and optimise a nanostructure’s optical response a prudent first step is
with numerical simulations. As mentioned in Chapter 2 there are several
techniques used in nano-optics. Yet, the one that has become most prevalent
within the research community and hence also used in this thesis is the
finite-difference time-domain (FDTD) approach. Here, Maxwell’s equations are
solved in a discretised cubic coordinate system by iteratively stepping forward in
time. Since the method is performed in the time-domain with a broadband pulse
the spectral response of the simulated structure is accessible through a Fourier
transform. A more thorough introduction of the technique is beyond the scope of
this thesis and further details can be acquired in reference [310].

All FDTD simulations performed for the thesis were done using the commercial
software Lumerical FDTD Solutions. The shape and material composition of the
nanostructure is built using computer-aided design, the boundary conditions and
meshing properties are decided, whereupon the equations can be solved and fields
extracted on predefined surfaces. The FDTD simulations for Papers I and II were
performed by Dr. Nils Odebo Lank and Dr. Denis Baranov was responsible for the
ones in Paper IV. I performed the simulations for Paper III, where
polarisation-resolved transmission through polymer nanofins in a periodic lattice
was carried out to optimise the PB polarisation conversion efficiency at different
optical wavelengths.

Moreover, thermal simulations have been of importance for the thesis. These have
been performed with the finite element method (FEM) in COMSOL Multiphysics
software, by Dr. Steven Jones. An introduction to this can be found in [96, 311].
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5.2 Nanofabrication

The ability to structure matter with nanometric precision has enabled nanoscience
to flourish, with nano-optics being only one of the areas where nano is now a
common prefix. Nanofabrication is often divided into either bottom-up or
top-down techniques, where molecules are made to assemble into complex shapes
or bulk matter is artificially nanostructured by removing excess material,
respectively. However, in the thesis” context, it is rather more instructive to make
the distinction between the fabrication of nanoparticles in colloidal suspensions
(Papers I, IT and IV) and surface-bound nanostructures (Paper III and partly Paper
IV). Naturally, a field as vast as nanofabrication will only be cursorily introduced
here, and more details can be found in the following books [175, 312, 313].

5.2.1 Surface-bound nanostructures

In 1959 Richard Feynman boldly challenged the scientific community to enter the
realm of nanoscience in his iconic lecture “There’s Plenty of Room at the Bottom”
[314]. Not only did he inspire his contemporaries, but also managed to predict
with impressive accuracy many of the fabrication processes critical to modern top-
down nanofabrication. To fabricate a surface-bound nanostructure is a sequential
process where one or several functional layers are patterned and partly removed to
successively build the final nanostructure. A procedure consists of many detailed
recipe steps and tools, all with technical names and acronyms; however, each layer
usually consists of lithographic patterning, material deposition and pattern transfer
via etching or lift-off, in different combination and order (Figure 5.1):
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FIGURE 5.1: An overview of the two most prevalent nanofabrication processes, namely lift-
off (left) and etching (right). Both processes are ideally initiated on a planar substrate (which
can have previously been structured). The lift-off process then proceeds to coat the substrate
with a suitable resist (red), followed by a lithography step to define the desired pattern. After
the pattern has been exposed, the target material (green) is deposited, usually via evaporation.
The sample is then submerged in a developer which dissolve the remaining resist and undesired
target material, leaving the layer finished. The etch process instead starts by depositing a thin
film of the target material, followed by a layer of resist. Thereafter, a lithographic step defines
the pattern which subsequently can be transferred to the target material via an etching step.
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* Material deposition:

Any nanofabrication procedure starts from a pristine wafer or slab of material.
Patterning can be done straight into this bulk substrate; however, the substrate is
mostly used as a support structure. Instead, the material of interest is often
deposited onto the wafer to form high-quality thin films that then can be
patterned. Techniques for material deposition are plenty but can roughly be
subdivided into chemical- and physical vapour deposition (CVD and PVD). Both
have benefits depending on the intended material deposited and are used
throughout this thesis. For example, low-pressure CVD and subsequent thermal
annealing are used to deposit low-loss polycrystalline silicon films that are
patterned in Paper IV.

Soluble elements, in this context often polymers, are commonly deposited using
spin-coating. This is routinely used to coat (potentially large-scale) surfaces with
light- or electron-irradiation-sensitive resists which are subsequently used in a
lithographic step to transfer a pattern to another functional layer. Depending on
its chemical composition, a resist can be classified as positive or negative, if it
becomes either more or less soluble in a developer after irradiation. Albeit often
used as an intermediate step, resists can also have useful optical properties for
nano-optics applications. In Paper III, a method that uses the patterned resist
itself as building-blocks for PB metasurfaces is presented.

Material deposition can also be performed after a lithographic step. Through a
lift-off process, the deposited material only remains in predetermined areas
where the resist had selectively been removed during the lithography. Due to its
non-conformal step coverage which leaves side-walls uncovered, the PVD
technique of evaporative deposition is often preferred here [315]. The remaining
deposited material can either be the material of interest for the intended
application (e.g. gold forming plasmonic nanoparticles) or a robust etch mask for
further processing (e.g. nickel used in Paper IV to mask the final microparticle
etching).

¢ Lithography:

A desired nanoscopic pattern can be written in the resist by lithographic
techniques with sufficient pattern transfer resolution, which include among
others photo-, imprint-, and electron-beam lithography. In nano-optic research,
where critical dimensions are often below one hundred nanometers, the most
prevalent technique is electron-beam lithography (EBL). Hence, it is the
technique used in Papers III and IV to expose patterns. However, due to its high
cost and low throughput speed, EBL is not suited for assembly-line
manufacturing, but it is ideal for the often small batches and flexible demands in
a research environment.

By rasterising a focused electron beam across the resist-covered substrate, a 2D
pattern with a minimum feature size of around ten nanometers can be inscribed
in the resist. When the exposed sample is subsequently submerged in a developer,
the positive or negative image of the desired pattern will be dissolved to reveal the
underlying substrate. This is now accessible to either deposit the target material
or for removing the exposed underlying layer with etching [316].
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Another lithographic technique worth mentioning is hole-mask colloidal
lithography [317]. Here, charged colloidal polystyrene beads are made to
self-assemble on a surface in a quasi-periodic monolayer. These beads then
define a mask for either lift-off or etching as discussed above. The technique has
been used extensively in past studies by the Kall group to construct optical
metasurfaces [318-320], and again by me for the work performed in Paper S.XII
mentioned in Section 2.2.2 and Paper S.VIII discussed below. A benefit of the
technique is that it can easily be upscaled to a fraction of the cost of other
techniques with similar resolution. = Nevertheless, being a self-assembly
technique, the possible patterns are limited compared to regular top-down
approaches, although clever augmentations to the technique continue to be
invented [321].

¢ Etching:

A technique used for creating art historically, etching is nowadays an essential
step in micro- or nanofabrication to transfer a pattern in a masking layer into an
underlying target material. An etchant is chosen because it reacts with the target
material to form volatile compounds that subsequently desorb from the surface
[313]. For example, halogen elements (group 17 in the periodic table; Cl, F, Br,
etc.) are well suited to etch dielectric materials. Moreover, etching methods can
be subdivided into those that use either liquid or gaseous active compounds (wet
or dry etching, respectively). During wet etching, the sample is simply submerged
in the etching compound. Dry etching is most commonly performed in reactive
ion etching (RIE) configurations where a plasma of the etch gas is formed and
ionised molecules are accelerated towards the substrate.

Moreover, etching can be either isotropic or anisotropic, meaning that it removes
material equally in all directions or preferentially in one specific direction. Both
can be useful, depending on the fabrication needs. For example, in Paper IV
anisotropic etching was used to excavate the silicon metasurface whereas
isotropic etching was used to release microparticles from its sacrificial substrate.
Wet etching techniques can be anisotropic e.g. by the active compound reacting
differently on different crystalline facets, whereas dry reactive ion etching often
gains its anisotropy from both directionally incident ions as well as non-reactive
compounds formed on the vertical surfaces during etching. When performing
RIE the anisotropy of the etch is dependent on a range of parameters, including
etch gas composition, plasma energy, acceleration voltage, pattern density, etc.,
and finding the optimal recipe for obtaining vertical side-walls can be
time-consuming.

Lastly, it is important to consider the etch selectivity between the material that is
being removed and the mask layer. For some etch procedures a resist can form a
non-reactive and well-suited etch mask, while some etching requires a more
robust mask such as SiOs or a metal such as Ni or Cr. This then entails an
additional lift-off step before the etch to produce the mask.

Controlled structuring at these small length scales often becomes complicated and
even the seemingly simplest step can cause issues. An illustrative example of this
is when drying a sample from water. The high interfacial tension of water can
result in forces sufficient to deform and destroy sensitive nanostructures. To solve
this issue one can beautifully utilise a fundamental thermodynamic property,
namely the supercritical state of matter where the liquid and gas phases coexist
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and the interfacial tension attributed to the phase transition vanishes. In critical
point drying the water is replaced by liquid carbon dioxide which is heated and
pressurised to become supercritical and then purged from the chamber to leave a
dry and intact nanostructure [322]. The technique proved crucial in Paper III
where it was used to obtain high aspect ratio nanostructures and efficient
metasurfaces. If regular drying was used after the resist metasurface had been
developed, the tall and tightly packed nanofins collapsed. Most supercritical
drying use either acetone or isopropanol as an intermediate liquid since both CO,
and water is soluble in these. Unfortunately, these intermediate liquids dissolve
the resist studied. However, a surfactant-modified hexane solution can be used as
an intermediate liquid that does not dissolve the resist metasurface.

Furthermore, depending on the complexity of a nanostructure, a multitude of
parameters can influence both the fabrication procedure and finally its optical
properties. Therefore, despite having found an optimal design for a particular task
with numerical simulations it is common that some additional experimental
optimisation is needed. By fabricating various nanostructures with small
perturbations around the numerical optimum the figure of merit can usually be
refined further. Figure 5.2 demonstrates such an approach for two cases where
either a fabrication parameter (EBL dose) or the constituent particle’s dimensions
were varied.
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FIGURE 5.2: A simulated optimal nanostructure often benefits from some refinement using
complementary experimental optimisation. (a) Shift of polarisation-conversion spectra for
transmissive silicon PB metasurfaces (Section 5.3.4) fabricated with different doses of electron
beam exposure. For an operation wavelength of 1064 nm, the optimal dose is ~350 ;C/cm?. (b)
Figure of merit for beam steering metasurfaces measured by Fourier microscopy (Section 5.3.5).
In Paper IV, transmission asymmetry between the +1 diffraction orders (711, 7-1) is key to large
momentum transfer and therefore the figure of merit is defined as FoM = (771 —7_1) / Tokg, where
Tokg is the background transmission. When varying both element’s length, the FoM is seen to be
maximised for the length combination of L; = 265 nm and L» = 385 nm. An SEM image of the
optimal structure is shown on the right.

5.2.2 Colloidal suspensions

Chemical synthesis of metallic nanoparticles has been performed for centuries.
Predating the understanding of resonant nanoparticles, both Roman and medieval
artists used plasmonic effects to obtain vivid colours in cranberry glass (e.g. the
Lycurgus cup) and stained church windows (e.g. Notre Dame’s rose windows),
respectively. That the vivid colours are attributed to metallic nanoparticles formed
around small seeds when metallic salts are reacting with a reduction agent to form
single-crystalline nanoparticles was first suggested by Faraday in 1857 [323]. Since
then so-called seed-mediated wet-chemical growth of metallic nanoparticles has
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FIGURE 5.3: A sample of shapes and sizes of colloidal gold nanoparticles attainable through

wet-chemical synthesis. (a-b) Nanospheres of different diameters, (c) nanostars, (d) nanowires,

(e-g) nanorods of different aspect ratios, (h) core-shell nanorods with gold core and TiOx shell, (i)

triangular nanoplates, (j) hexagonal nanoplates, (k) core-shell nanoplate with gold core and SiO-

shell, and (I) nanocubes. The synthesis was performed by Dr. Lei Shao (a-c,e-h) and Dr. Ximin
Cui (d,i-1). The scale bar in (a) is valid for all subfigures.

been explored in detail [324, 325], specifically driven by the strong interest in
nano-optical applications. In particular, the realisation that different crystalline
facets will lead to different growth rates and that these can be controlled by
face-selective capping agent surfactants has enabled an abundance of differently
shaped nanoparticles to be constructed [77, 325-328]. Figure 5.3 exemplifies part of
the diverse range of nanoparticles available when using seed-mediated
wet-chemical synthesis.

In Paper I, gold nanorods were used as rotary nanomotors driven by circularly
polarised light. = These were synthesised in-house by Dr. Lei Shao using
seed-mediated growth and anisotropic etching similar to what is presented in
reference [325]. In Paper II a batch of simple prototypical gold nanospheres were
acquired from a company (Sigma-Aldrich) and its Brownian motion and optical
characteristics were studied in the vicinity of the glass surfaces in the 2D trapping
geometry introduced in Chapter 4. Hence, bottom-up colloidal synthesis was in
this thesis exclusively used to produce gold nanoparticles and, accordingly, most
discussion below is concerned with this metal. However, colloidal nanoparticles
can be synthesised with silver [329, 330], palladium [330], metallic alloys [331], and
as core-shell structures [332] as well.

From Chapter 2, we know that the final shape of the nanoparticle significantly
influences its optical properties. For instance, the spectral position of the
longitudinal LSP resonance is proportional to the length of a nanorod. Hence, if a
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specific wavelength of operation is desired for an application it becomes important
to produce nanorods with precise dimensions. Fortunately, as long as the nanorod
is longer than required it is possible to perform post-growth anisotropic oxidation
to selectively shorten the rod and pick the resonance position with precision [333].
Such an approach was used in Paper I to optimise the overlap between the
nanorod’s spectrum and the excitation laser to maximise the photothermal effects
investigated.

For the colloid to be stable and to avoid aggregation of nearby nanoparticles a
stabilising surfactant is commonly required, which forms a repulsive double-layer
around each nanoparticle. The most prevalently used growth recipe, as introduced
by J. Turkevich [334] and later refined by others [335, 336], uses sodium citrate to
both reduce a gold salt precursor (HAuCl;) and thereafter stabilise the final
colloid. ~However, for directed growth citrate is not ideal since it is not
facet-specific. Instead, an ammonium-based surfactant named Cetrimonium
bromide (CTAB) is often used both as a directive and post-growth stabilising agent
[77, 325, 337]. Unfortunately, CTAB-functionalised nanoparticles can be cytotoxic
[338] and it is therefore often desired to replace it with some other surfactant when
biological applications are intended. Due to the strong affinity between sulphur
and gold, thiol molecules (-SH) are often used as end-groups to organic molecules
that bind efficiently to gold [339]. Therefore, with a thiolated end-group, both
long-chained polymer and DNA molecules have become commonplace for
customisable functionalisation of gold nanoparticles [77].

Colloidal nanoparticles in solution are in many ways synonymous with bottom-up
fabrication and wet-chemical synthesis, due to the ease at which large amounts of
single-crystalline monodisperse nanoparticles can be made. However, despite the
impressive advances in chemical synthesis during recent decades, the attainable
shapes, material compositions, and sizes of particles are still limited. To widen the
range of colloidal nanoparticles one can utilise top-down fabrication here too. In
MEMS fabrication, the release of parts of a complex nanostructure is commonplace
and usually performed by dissolving a sacrificial layer on which the nanostructure
of interest has been fabricated using lithographic techniques as discussed above
[340]. These techniques have also been successfully adopted to realise complex
colloidal particles [341]. Such an approach has been used to construct specialised
microparticles with embedded nanostructures for light-matter momentum
exchange [253, 342], and in Paper IV it was used to release SiO, microparticles
with embedded directional silicon metasurfaces.

With the current development in nano-optics — moving from metallic
nanostructures to high-index dielectric ones — an increased demand is seen for
cost-efficient and flexible synthesis of HID nanoparticles with variable shapes. As
for its plasmonic counterparts, chemical synthesis of HID nanostructures improves
at an impressive pace [343-346] and hopefully within a decade a variety of
nanoparticles can be routinely self-assembled. However, to meet the present
increased demand, top-down fabrication and release of HID nanoparticles can
prove useful. In Paper S.VIII, one such fabrication procedure was explored to
make large-scale silicon metasurfaces with nanoparticles that can subsequently be
released into solution via wet-etching of a sacrificial layer (Figure 5.4).



56 Chapter 5. Research methods

HF evaporation

Colloidal solution

e} 4000 Substrate Sonication
o Yo RS S
Mcg?asurfaQ\ O

FIGURE 5.4: Summary of the results of Paper S.VIIIL. The hole-mask colloidal lithography

technique [317] can be adapted to fabricate large-scale surface-bound metasurfaces of silicon

nanoparticles. The nanoparticles can subsequently be released into colloidal suspension by

etching an underlying sacrificial layer of SiO2. Owing to the top-down fabrication approach,

a wide range of complex shapes of released nanoparticles can be obtained. The figure is adapted
with permission from [347] ©2018 John Wiley and Sons.

5.3 Optical characterisation

As with nanofabrication, there is no ubiquitous solution for optical characterisation
of nano-optics systems and each project presents different challenges. Methods
used in this thesis include optical tweezers and different kinds of microscopy and
spectroscopy, with the most central ones introduced below.

5.3.1 Optical tweezing

Papers I and II relied heavily on 2D optical tweezing of metallic nanoparticles. The
type of tweezers system used for these publications are similar to several previous
publications from the Kall group [53, 276, 348]. To further spread knowledge about
the technique’s practical details, a method-paper (Paper S.VI) with an
accompanying video was produced that outlines the setup and operation of such
an optical tweezers system.

In summary, optical tweezers are constructed by collimating light from a
sufficiently strong laser and directing it into a microscope objective. In both optical
tweezing projects in this thesis, a 660 nm laser was used to form the trap. A
colloidal sample with the nanoparticles of interest is prepared with a concentration
of ~5000 particles per uL to avoid interference between multiple particles, and
then ~5 pL of the solution is put in a sample cell in the microscope. Since metallic
nanoparticles with strong absorption are studied, the laser is focused close to a
microscope cover slide that has been prepared to provide sufficient Coulomb
repulsion for particles to be stably confined in 2D without becoming printed on the
glass surface.

To study the translational motion of the particle in the optical tweezers, a fast
camera was used to record particles’ translational Brownian motion in the trap.
These fluctuations can subsequently be transformed into a power spectrum from
which the trapping stiffness can be extracted. This is done following Equations
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(4.9) and (4.10). The rotational motion of a non-symmetric particle can also be
probed using power spectrum analysis; however, for this work, it is instead
measured with autocorrelation of linearly polarised back-scattering from the
trapped particles. Theoretically, a continuously rotating particle would generate an
autocorrelation curve expressed as [276]

12
C(r)= Ig + ?1 exp [—T] COS(QNﬂ'fanT). (5.1)
70
Here 7 is the correlation lag time, favg is the average rotation frequency, and N is
the degree of rotational symmetry (N = 2 for a rod). The term 7y = %IETLS

describes the autocorrelation decay time and provides information of the rotational
Brownian motion. L is the long axis of a spheroid, T is the temperature in the
surrounding liquid in the vicinity of the nanoparticle, and G is the shape correction
factor introduced in Section 4.2. Hence, by fitting the theoretical autocorrelation
curve to experimental data, information about the rotational dynamics and
subsequently the temperature can be extracted.

5.3.2 Dark-field spectroscopy

Because of their strongly enhanced scattering, the most commonly used method
for both observation and spectroscopy of single resonant nanoparticles is the
dark-field (DF) configuration. Here, the illumination is such that only the
scattering and not the incident light reaches the detector, providing a high
signal-to-noise ratio for observation of individual nanoparticles against a dark
background. When recording a raw spectrum Ir,w(A) from a scattering
nanoparticle it will not only contain the spectral characteristics of the nanoparticle,
but also variations related to e.g. the illumination’s spectral profile, detector
response, and background signal. Hence, it is crucial to calibrate a spectrum before
using it for interpretation. To do so, spectra for the white light illumination
Tyhite(A), the background Ipg(A) and the detector’s dark counts Iy, (\) are
recorded and thereafter the calibrated spectrum is obtained from

Iraw(/\) - Ibkg()‘)
Iwhite(A) - Idark(A) '

Another signal that unavoidably arises when working with an intense laser in a 2D
tweezing configuration is autofluorescence from the nearby glass slide [349]. By
recording the background signal with empty laser tweezers the autofluorescence
can be accounted for and does not corrupt the nanoparticle’s spectrum.

Iscatt()\) — (52)

From Chapter 2 we know that the nanoparticle spectrum contains plenty of
information, which partly can be accessed by fitting a Lorentzian function to a
resonance mode. From this, one can extract the peak position and full width at half
maximum (FWHM), providing information about the nanoparticle’s size, damping
characteristics, surroundings, etc. Time-resolved nanoparticle sensing is then
enabled by tracking the spectral evolution in time [6], as is done in Paper I. The
Lorentzian can be expressed as

I(E) = — g (5.3)
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where F = % is the energy expressed in terms of the speed of light ¢, Planck’s
constant i, and the vacuum wavelength. I' is the full width at half maximum
(FWHM) and Ej is the Lorentzian’s peak position.

5.3.3 Total internal reflection microscopy

As a scatterer is placed in an evanescent field, it will convert some of the
exponentially decaying near-field radiation into far-field scattered light through a
process called frustrated total internal reflection. The intensity of such scattered
light depends on where in the decaying evanescent field the particle is located. By
knowing the decay profile of the evanescent wave, and measuring the scattered
intensity, it is possible to extract information about the separation distance
between the surface and the scatterer. This is the base of a microscopy technique
called total internal reflection microscopy (TIRM), which has been successfully used
to probe a range of interactions between particles and surfaces [350-357]. In Paper
II, a 514 nm laser was free-space coupled via a dove-prism to perform TIRM.

In order to reach a measure for the particle-surface separation distance, a translation
between scattered intensity and height is needed. Previously, it was recognised
that the height-dependent scattering followed the same exponential decay as the
evanescent field, I(h) = Ioe=Ph. Here, h is the separation distance, I is the incident

intensity at the surface, 3 = ¢ nél s Sin? 0; — nZ, . is the reciprocal penetration

depth of the evanescent field, expressed in terms of the refractive index of the two
media nyater and nglass, and the angle of incidence 6; for the exciting light wave.

In an attempt to verify this exponential dependence, Mie calculations in the
vicinity of an interface were performed by Dr. Nils Odebo Lank. By comparing the
intensity-distance translation for collection from the water side of the interface
from this Mie-model to the exponentially decaying model, a discrepancy
manifested as an oscillatory trend is noted (Figure 5.5a). However, when the light
is collected on the glass-side of the interface or if an anti-reflection coating is
applied at the interface when collecting from the water-side, the oscillation goes
away, and the exponential trend is present also for the Mie-model (Figure 5.5b).
Therefore, the discrepancy for the collection geometry at hand is attributed to
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FIGURE 5.5: Scattered TIRM intensity from a 100 nm gold sphere near a glass interface. A
Mie-model (blue) is compared to the previously used exponential decay model (dashed orange).
(a) For light collected from the water side, the intensity-distance relation is deviating from
exponential decay. This trend is explained from interference between directly scattered light
with scattered and reflected light (see inset), which becomes negligible if one instead were to
collect light from the glass side, or when using an anti-reflection coated surface (as shown in (b)).
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interference between directly scattered light and light reflected once from the
interface. Hence, for the intensity-distance translation performed in Paper II, a
table obtained from the Mie simulations is used, rather than the exponential
model.

5.3.4 Measurement of PB metasurface efficiency

A high transmission or reflection efficiency is essential for phase-gradient
metasurfaces to eventually become a competitor to conventional optical elements.
For PB metasurfaces we saw in Section 3.4.2 that the component of light that
acquires a phase-shift also experiences a concomitant reversal of handedness.
Hence, the first step in any metasurface optimisation process is to find the nanofin
dimensions that produce the highest cross polarised transmission for circularly
polarised light. This is equivalent to trying to find the configuration where
ty = ty, = 1 and ¢ = 7 in Equation (3.11), where the metasurface acts as a perfect
half-wave retarder.

The basic function of a half-wave retarder is to reverse the handedness of circularly
polarised light or rotate the plane of linear polarisation. The linear polarisation
plane turns two times the angle between the fast axis and its incident direction.
Hence, the amount of circularly polarised light that reverses handedness (and
acquires a PB phase) is equivalent to the amount of linearly polarised light that
turns its polarisation direction. Experimentally, the second of these cases is much
simpler since it involves only two crossed linear polarisers where the retarder is
placed with its fast axis halfway between the two polarisers (at 45°). The light that
passes through the crossed polarisers has thus been turned by the half-wave
retarder and acquired a PB phase.

That these two cases are equivalent also for PB metasurfaces is verified with FDTD
simulations of polarisation-resolved transmission spectra through a metasurface
consisting of a homogenous array of nanofins placed at 45° (Figure 5.6). Since the
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FIGURE 5.6: Polarisation-resolved transmission spectra from FDTD simulations for a polymer
nanofin array optimised for operation at 532 nm light, from Paper III. When RCP light is sent
in, the transmitted light is either still RCP (S21, purple line), or reversed to LCP (S41, red line)
while acquiring a PB phase. When horizontal linearly polarised light is incident at an angle of
45° in relation to the nanofin’s fast axis, part of the transmitted light remains horizontal (co-pol,
green dash), and the rest is rotated by 90 ° (cross-pol, blue dash). That these spectra are identical

justifies the validity of measuring linear cross-polarised transmission to gauge a PB metasurface’s
polarisation conversion efficiency.
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spectra for these two cases are identical the linearly polarised approach to quantify
the polarisation conversion efficiency is used in Paper III.

5.3.5 Fourier microscopy

In nano-optics, angles at which light is transmitted or reflected supply valuable
information about a system. From image formation theory it is well known that the
spatial and angular information of an image are related via the Fourier transform.
Thus, any imaging system has both a set of conjugate focal planes and back focal
(Fourier) planes. By projecting a back-focal plane onto a detector, the angular
information content of the image is resolved as a decomposition of plane waves
with each k-vector appearing as a point spread function in the image. This
angle-resolved imaging technique is referred to as Fourier microscopy or
back-focal plane imaging [358]. If a spectrum is taken at each position in the
Fourier plane it is even possible to perform angle-resolved spectroscopy.

In Paper III and IV, Fourier microscopy was useful to investigate the
beam-steering qualities of phase-gradient metasurfaces. In particular, for the
asymmetric transmission metasurfaces studied in Paper IV the technique enabled
us to quantify and optimise the metasurfaces to maximise the momentum transfer
from light to matter (Figure 5.7). Since maximal momentum transfer is sought, a
tigure of merit is defined as

FoM = M, (5.4)
ng
where Ty, is the background transmission (Figure 5.7a), whereas 7.1, 7-; are
transmission to the 41 diffraction orders (Figure 5.7b). For the particular
metasurface, corresponding to the one imaged in Figure 5.2b, an FoM = 0.45 can be
determined with Fourier microscopy.
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FIGURE 5.7: Fourier microscopy used to study the angular distribution of light interacting with

nanostructures. (a) As normal incidence collimated light passes through a substrate undeviated

only a single point shows up on the Fourier image. (b) As light passes through a beam-steering

metasurface the main spot shift to the +1 diffraction order with only little light reaching the Oth

and -1 orders. From this, the FoM for a range of metasurfaces can be investigated to find the
optimal design.
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5.4 Brownian dynamics simulations

The Langevin equation for translational motion is written according to Equation
(4.7). This stochastic differential equation needs to be solved to obtain a Brownian
particle’s trajectory. A common way of solving this problem is through iterative
methods, where the position at one time-step is re-evaluated to the next one by
applying a stochastic term to either the position or the velocity of the particle. In
Paper II, an approach to do this was used which produces a time-efficient solution
by expressing the equation in Liouville operators [359] as outlined in reference
[360]. One time-step in the algorithm is made by the four steps below, and the
three-dimensional counterpart is solved by iteratively performing the four steps
along each Cartesian coordinate axis.

Brownian dynamics simulation algorithm:

N 1
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Here, ¢y = e "AY™ Vih = \/%, and Wy, and W5, are Gaussian random
numbers with zero mean, unit variance and that are uncorrelated in time.

J

The first step is the discretised analytical solution to the Langevin equation, solved
at a half time-step without altering the position (Step 1). When the velocity for
the time-step is estimated, that velocity is used to calculate the new position (Step
2). The total force Fiy at the current location of the particle is used to calculate its
instantaneous acceleration (Step 3). For the specific case investigated in Paper II the
total force is comprised of the surface dependent van der Waals and Coulomb force
components estimated from [306], as well as an optical force component obtained
from Mie calculations performed by Dr. Nils Odebo Lank. After the acceleration
is found, the conclusive velocity for the time-step is estimated with another use of
the discretised analytical solution of the Langevin equation (Step 4). The separated
velocity calculation is a symmetric decomposition performed to reduce the errors
of the method [360].

The hydrodynamic friction coefficient 7 is for a sphere set by Stokes’s law and is
governed by the viscosity of the surrounding fluid and the radius of the particle.
The value of v is affected both by the presence of the surface and the fact that the
metallic nanoparticle in the optical trap is performing hot Brownian motion.
Therefore, the values going into the simulation routine take these effects into
account.

To certify the correctness of the algorithm, the known case of freely diffusing
Brownian spheres (rg = 50 nm) is tested. The external force term is set to zero, and
the friction coefficient is made isotropic. The mean square displacement (MSD) in
one dimension of such particles” positional fluctuations should be proportional to
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time [22]. It relates as
MSD,.(t) = {(x(t) — z0)?) o t, (5.5)

where the brackets denote an ensemble average, x(t) is the particle position at time
t, and zy is a reference position for each particle. Figure 5.8 displays the MSD in
each Cartesian direction for a freely diffusing particle simulated in the model
above, and the expected relation is seen to hold. Moreover, the diffusion coefficient
of a Brownian particle is related to the mean square displacement as
MSD(t) = 2Dit. From the data in Figure 5.8, the diffusion coefficient is estimated to
45 pm?/s. This is found to be only 4% away from the analytically derived value
for the diffusion coefficient (D; = ’“ETT [22]), and can be compared to the
experimentally measured value of around 4 um?/s for the nanoparticles used in
Paper II. This agreement is reasonable, considering that experimentally the
colloidal nanoparticles suffer from polydispersity and that their hydrodynamic

radius is slightly enlarged by the stabilising double layer.

This algorithm is a general one for Brownian motion in several regimes, capturing
both the initial ballistic and the subsequent diffusive states. The transition between
these occurs on the time-scale of the momentum-relaxation time 7 = m/~; [298].
For micro- and nanoparticles in liquids this is usually below a single s, and hence
shorter than what most experimental detectors can capture. Therefore, in the
diffusive regime, inertial effects can be disregarded and the mass-containing term
in the Langevin equation (4.7) cancels out. To verify this, the diffusion coefficient is
calculated for freely diffusing spherical particles of fixed size but with masses
spaning three orders of magnitude. At the time of 0.5 ms, which is the time-limit
for the detector used in Paper II, the diffusion coefficient remains at a value of
around 4.5 ym? /s for all particles.
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FIGURE 5.8: Mean square displacement for a freely diffusing 100 nm nanosphere. The MSD is
proportional to time. From the MSD, the diffusion coefficient of the object can be obtained to 4.5

pm?/s.
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Chapter 6

Concluding remarks

Scientific output during doctoral studies can be seen as a product of the conducted
experiments, the individual student’s ability and curiosity, the available resources
both in terms of infrastructure and colleagues, and the current scientific
opportunities. Pragmatically, the output will in some way reflect all of these
components. The condensed and objective scientific contribution of this thesis is
presented in the appended papers. However, research is as much a personal
endeavour as it is a scientific one and in the journal article format the multifaceted
efforts of the research are somewhat lost. Therefore, this chapter attempts to
summarise and discuss the papers in a wider, slightly more reflective format, and
thereafter end with an outlook towards future undertakings.

Paper I

Probing Photothermal Effects on Optically Trapped Gold Nanorods by Simultaneous
Plasmon Spectroscopy and Brownian Dynamics Analysis

As a new Ph.D. candidate, it is natural to look close to home for a first project. It is
where the research group’s expertise lies and where there is hopefully plenty of
support and guidance. As I joined the group, the major ongoing project related to
my interests was that of 2D trapping of metallic nanoparticles and specifically
operating these as rotary nanomotors. Starting in the group, I contributed to Paper
S.I where it was shown that nanorods can spin faster than 2.5 million revolutions
per minute when driven with near-resonant circularly polarised light. Even
though the inevitable temperature increase associated with laser trapping was
accounted for in this publication, there were still thermal considerations that could
be elucidated further.

Hence, for the first study of this thesis, we set out to study how photothermally
induced effects alter gold nanorods as they are trapped in optical tweezers. Two
independent yet complementary measurement techniques, namely photon
correlation spectroscopy and dark-field spectroscopy were utilised to probe
temporal changes experienced by the trapped nanoparticles. It was with single-nm
resolution possible to discern nanorod reshaping of a few nanometres during
30-minute experiments. Furthermore, from the measurement channels, two gauges
for the temperature of the particle’s surroundings were obtainable, which both
showed temperatures of water superheating to ~230°C. These measurements were
based on the analysis of altered rotational Brownian motion as well as LSP
resonance peak shift, caused by the temperature-dependent viscosity and
refractive index of the surrounding water, respectively.
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Thermoplasmonic effects is a popular research area and this particular article has
been cited in subsequent studies to exemplify both advantageous and detrimental
photothermal effects. It was also useful locally in our research when using the
trapping and rotation geometry for sensitive biological applications in Paper S.IV.
Apart from furthering the community’s understanding of photothermal effects at
the nanoscale, this study also served an educational purpose for me personally.
After completing the study I had constructed optical setups from scratch,
performed optical tweezing and characterisation, and been exposed to a plethora
of physics and data analysis that would be useful throughout the rest of my
studies. Equipped with this I was ready to remove the training wheels and steer
my research towards new innovative projects. But before that, one more question
about the 2D trapping of metallic nanoparticles intrigued me, namely the influence
of the nearby surface.

Paper I1
Surface Interactions of Gold Nanoparticles Optically Trapped Against an Interface

It is well-known that the presence of a surface can affect a micro- or nanoparticle’s
movement and its thermal and optical properties significantly. Considering how
prevalent the surface-based 2D optical trapping geometry is, it seemed surprising
to find that the literature lacked detailed investigations about the
nanoparticle-surface separation distance and ultimately the surface’s influence on
the dynamics and properties of a 2D trapped nanoparticle. In most studies, the
nanoparticle is treated as if residing in a homogenous solution, and the surface is
not accounted for.

To certify or falsify this presumption, experiments employing total internal
reflection microscopy were carried out. After having installed a detector sensitive
enough to capture the shot-noise limited signal, the distance separating a trapped
gold nanosphere and the glass interface was measured to be between ~30-90 nm,
depending on laser power and double-layer force screening. An analytical force
model was introduced that, when used as the external force in Equation (4.7),
closely reproduces the experimentally observed positional fluctuations of a
trapped particle. Once the exact separation distance is known, it is possible to
draw conclusions about the surface’s effect on a particle’s dynamic and thermal
behaviour. At these separation distances, a particle experiences a ~ 10% reduced
temperature compared to in a homogenous water environment, due to the
increased thermal conductivity of the nearby glass. Furthermore, its translational
motion is significantly damped due to increased drag near the surface, while the
rotational motion is only weakly affected.

For me personally, this study addressed a main fundamental physical question
about surface-based 2D optical tweezing of metallic nanoparticles. Certainly, there
are plenty of scientific questions left to study in similar systems; however, I felt
that this one was important for me to address before moving on in my research.
Since its publication in 2019, this article has so far attracted limited attention.
However, with an idealistic view of science, one can argue that it is important to
allow the pursuit of answers to even seemingly minor questions. In that sense, this
was my most curiosity-driven project. Hopefully, in the future, this study’s
tindings will prove useful for someone else posing a related question.
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Paper 111
Large-Scale Metasurfaces Made by an Exposed Resist

During the early years of my graduate work I intently followed the progress of the
field of flat optics and phase-gradient metasurfaces. It seemed to be a fascinating
topic with plenty of potential for both scientific breakthroughs as well as industrial
applications. Recognising that this field too is based on momentum transfer, I
decided to continue my research by exploring it in the context of optical forces and
torques. To do that it was paramount to establish a procedure to reliably build
phase-gradient metasurfaces. During an exploratory phase of nanofabrication, we
realised that off-the-shelf EBL resists had optical properties that could potentially
render them useful as the very construction material for flat optical components.
Since this idea was absent in the literature and could be of use for the community,
we decided to veer from the intended course and perform a more comprehensive
study of this system.

Early  results showed  promising results of beam-steering and
near-diffraction-limited lenses. However, it was soon realised that due to the
comparably low refractive index of polymers, metasurfaces with transmission
efficiencies exceeding 10% eluded us. This was because efficient metasurfaces
required high aspect-ratio particles, which collapsed under capillary forces during
post-development drying. The project’s turning point was the realisation that taller
meta-atoms could be fabricated if supercritical drying in a CO5 environment was
performed, avoiding the liquid-gas phase transition and therefore any detrimental
interfacial tension. Thus, metasurfaces with transmission efficiencies above 60%
could be obtained, facilitating the fabrication of efficient high-NA lenses,
substrate-independent metasurfaces, as well as flexible and macroscopic optical
elements. Further benefits of the technique are that it is faster, cheaper, and safer
than conventional metasurface fabrication techniques, which today often rely on
multiple steps of material deposition, patterning, and etching.

In terms of scientific impact, not sufficient time has passed to objectively gauge if
the idea will prove useful for the community. However, as it was published, the
paper attracted conciderable attention in regular media as well as from potential
industrial collaborators, hence serving a parallel purpose of science outreach.
Moreover, the fabrication technique has since been used to fabricate metasurfaces
used in Paper S.XIV, and for an additional ongoing study. Nevertheless, if
industry-wide adoption of flat optics will happen, it will likely rather be based on
scaleable and robust techniques such as UV-lithography or nano-imprint
lithography, rendering EBL superfluous in fabrication.

Paper IV
Microscopic Metavehicles Powered and Steered by Embedded Optical Metasurfaces

Entering the phase-gradient metasurface field with an optical manipulation
background made us realise the untapped potential in using metasurfaces as a
means to derive motion from beam- and polarisation-manipulation even of plane
waves. In the community, metasurfaces are mostly seen as stationary objects that
manipulate light. However, beam shaping metasurfaces could, instead of the
preceding optical components, take on the responsibility of producing complex
optical momentum distributions resulting in optical forces and torques.
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Engineered metasurfaces could then in some contexts lessen the stringent
requirements on focused beams for optical manipulation.

Metasurfaces based on anisotropic silicon dimers were fabricated to function as
polarisation-sensitive asymmetric diffraction gratings, steering light preferentially
to the +1 diffraction order. Being anisotropic, the metasurface also converts the
polarisation of reemitted light, resulting in a torque that aligns the long axis of the
dimer to the polarisation plane of the incident light. By embedding this
metasurface into a microparticle, we demonstrated that the momentum exchange
results in forces and torques sufficient to drive and steer these objects. In
unfocused light beams with an average light intensity of only ~10 uW/um? the
metasurfaces move at speeds of above 10 um/s. These so-called metavehicles were
subsequently shown to perform controlled complex motion and could even
function as transport vehicles for microscopic objects of both inorganic and
biological character.

At the time of writing, the manuscript for this project is under review and hence
its impact and influence is yet to be determined. However, considering the vast
amount of metasurfaces studied in the community, there is ample opportunity to
investigate their incorporation into scaled-down and dynamic systems where the
full potential of momentum exchange between light and matter can be exploited.

Outlook

As eloquently illustrated by Prof. Matt Might; if one can view the world’s
aggregate knowledge as a sphere, the work embodying a Ph.D. is to expand this
sphere by a minuscule amount in some specific direction [361]. In the last 20 years
or so the science of nanophotonic systems has interdisciplinarily provided
expansion in several directions, including physics, chemistry, and biology [362],
and the study of optical forces and torques dates back even further. I hope that this
thesis” work has somehow aided said expansion within both nanophotonics and
optical manipulation, and that it will help inspire research to come. However, in
line with the aphorism “The more you learn, the more you realise how much you
don’t know.”, an expanding sphere of collective knowledge inevitably unlocks
new questions as well as opportunities. These can roughly be grouped into either
fundamental or application-oriented, and possible continuations of this thesis
include both. Proposed continuations of each specific project are outlined in the
concluding paragraph of each article, whereas here a broader view is taken.

Even the seemingly simple system of small particles confined by light is still
subject of investigation from a fundamental perspective. Plenty of effort has been
exerted to modify and widen the capabilities for optical manipulation; either by
more exotic light fields such as Airy [363] or Bessel beams [364], or by the tailored
optical response of nanoparticles to realise for example pulling forces [365],
topologically enabled continuous rotation [366], and lateral forces perpendicular to
light’s propagation direction [367, 368]. Although theoretically more complex than
ordinary optical tweezers, such systems could provide additional degrees of
freedom for optically mediated manipulation.

Moreover, if multiple particles are confined in the same loosely focused beam, their
interactions with light and each other result in optically bound aggregates
[369-371]. These, sometimes referred to as optical matter, display interesting
dynamics and if conditions are right the collective scattering even gives rise to
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something as counterintuitive as negative optical torque [372]. Potentially, the
techniques and results from Papers I and II could prove useful in further
elucidating such dynamics. It would be interesting to study how anisotropic
nanoparticles fair in such environments and what role photothermal effects or the
vicinity to a glass interface plays.

Optical manipulation and force sensing with micron-sized dielectric spheres has
long been a workhorse in the study of biological systems, and today there are
multiple companies (e.g. Lumicks, JPK Instruments, and Boulder Nonlinear
Systems) even providing turnkey optical tweezers systems. With the increasing
fundamental understanding of resonant nanostructures and their enhanced optical
forces and torques, it is desirable to demonstrate potential commercialisable
applications of such systems as well. For instance, metallic nanoparticles in optical
tweezers can be used in nanosurgery for precise injection of active substances or
medicine into single cells [107, 373]. Other intriguing suggested applications
include resonantly improved nanotweezers geometries based on field
enhancement of surface-bound nanoantennas of both plasmonic [374] and
dielectric [375] kind, novel nanofabrication platforms based on localised
photothermally induced curing of polymers [38] or optical printing of individual
nanoparticles [51], and high-resolution surface imaging with optically trapped
nanoparticles [376].

Furthermore, with the current interest in high-index dielectric nanoparticles, a
natural query is how they can augment optical forces and torques. Their lower
absorption together with their rich optical response endowed by having both
electric and magnetic resonances in the visible to NIR regime could lead to
interesting behaviours [377]. Despite being suggested as a route to reduce
radiation pressure forces, the overlapping magnetic and electric resonances
tulfilling the first Kerker condition does not seem to contribute particularly to trap
stability [378]. Nevertheless, for applications where reduced photothermal heating
is required, the lower absorption of high-index dielectric and particularly silicon
nanoparticles under NIR illumination is superior to its metallic counterparts [264].
These early results are sufficiently promising to warrant future investigations into
high-index dielectric nanoparticle optical manipulation. Moreover, by making use
of effective-medium metamaterials, the optical response and subsequently
manipulation of dielectric nanostructures can be modifiable, potentially to fit the
needs of particularly demanding applications [379]. Such an idea, to use top-down
nanofabrication to engineer the optomechanical response of micro- and
nanoparticles, is similar to what was performed in Papers III and IV, and maybe
the fabrication procedure explored here can further be used in this context.

Despite being related via the overarching topic of light-matter momentum transfer,
Paper III is to some extent the odd one out in this thesis. It is concerned with the
fabrication of static and large-scale phase-gradient metasurfaces for the potential
replacement of refractive optical components with metasurface counterparts. Such
flat optics likely have a bright future ahead, partly eluded to in the outlook
provided in the concluding section of Chapter 3. However, at its heart, this thesis is
concerned with optical forces and torques on matter. The usefulness of
metasurfaces in this context is more clearly exemplified in Paper IV, which
provides a first experimental demonstration that metasurfaces are capable of
providing stable propulsion due to optical momentum exchange. Going forward it
is easy to envision other functionalities that could be included into these dynamical
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metasurfaces, to make more multifunctional optically driven microscopic robots.
For example, flat lens-based or plasmonic optical tweezers could be constructed
“on board” to supply more functions related to the demonstrated transport
capabilities. Another possible function that easily could be added is a plasmonic
antenna to perform non-stationary molecular sensing experiments. Moreover, a
range of different phase-gradient metasurfaces can be explored to produce even
more freedom of motion, including the direction of travel (forwards/backwards)
and variable turning radius. One particularly interesting realisation of stationary
phase-gradient metasurfaces has been performed in reference [380] where optically
multiplexed holograms were designed based on orbital angular momentum
encoding. If such metasurfaces were embedded into metavehicles, a range of
driving modes for the same particle and wavelength could be designed.
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