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Automation Aftereffects: The Influence of
Automation Duration, Test Track and Timings

Linda Pipkorn , Trent Victor, Marco Dozza , and Emma Tivesten

Abstract— Automation aftereffects (i.e., degraded manual
driving performance, delayed responses, and more aggressive
avoidance maneuvers) have been found in driving simulator
studies. In addition, longer automation duration seems to result
in more severe aftereffects, compared to shorter duration. The
extent to which these findings generalize to real-world driving is
currently unknown. The present study investigated how automa-
tion duration affects drivers’ take-over response quality and
driving performance in a road-work zone. Seventeen participants
followed a lead vehicle on test track. They encountered the
road-work zone four times: two times while driving manually,
and after a short and a long automation duration. The take-over
request was issued before the lead vehicle changed lane to
reveal the road-work zone. After both short and long automation
durations, all drivers deactivated automation well ahead of the
road-work zone. Compared to manual, drivers started their
steering maneuvers earlier or at similar times after automation
(independently of duration), and none of the drivers crashed.
However, slight increases in vehicle speed and accelerations were
observed after exposure to automation. In sum, the present study
did not observe as large automation aftereffects on the test track
as previously found in driving simulator studies. The extent to
which these results are a consequence of a more realistic test
environment, or due to the duration between the timings for the
take-over request and the conflict appearance, is still unknown.

Index Terms— Automated driving, driver response, driving
performance, take-over request, driver behavior, automation.

I. INTRODUCTION

VEHICLE automation that can relieve the driver from
the driving task, is still under development. This type

of unsupervised vehicle automation differs from the assisted
vehicle automation currently present in on-market vehicles,
which requires the driver to be responsible for the driving
task at all times [1]. Unsupervised driving automation, on the
other hand, enables the vehicle to take full responsibility of the
driving task (longitudinal and lateral control, event detection
and response). The driver is then allowed to disengage from
driving and engage in non-driving related tasks (e.g., playing
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a game). However, the driver is required to appropriately
resume manual control when notified by the system [2]. Such
a notification, often referred to as a take-over request (TOR),
takes place for situations when the limitations of the system
are encountered.

The extent to which drivers can safely and in a controlled
manner resume manual control after a period of automated
driving, is subject to ongoing research. Previous research on
human collaboration with automation gives us reason to be
cautious [3], [4]. This is because human limitations exist in the
collaboration with automated systems. Increased automation
results in an altered task for the driver, which involves less
active participation in controlling the system, and more mon-
itoring of the system performance. Consequently, the drivers
may enter an “out-of-the-loop” state [5], [6], which may limit
their ability to safely resume manual control when needed [3].

In the context of vehicle automation, the ability to resume
manual control has, to a great extent, been assessed through
the take-over time (TOT) and to some extent by analyzing
driving performance after the takeover [7], [8]. The TOT
is defined as the time from the TOR until automation is
deactivated by either steering, braking, or a button press.
A recent review of 129 studies pointed out a wide variety
of mean TOTs, ranging from 0.69 s up to 19.79 s, with an
average mean TOT of 2.72 s [9]. Several factors have been
shown to have an impact on the TOT including: the take-over
time budget (Time to collision (TTC) when TOR is issued); if
the take-over procedure is practiced beforehand, the presence
of secondary tasks (especially hand-held tasks); and if a TOR
is present or not. Whereas many studies have focused on the
effect of automation on the TOT, automation aftereffects (i.e.,
the effect of automation on the driving performance following
the takeover) have not received as much attention [7], [8]. It is
especially important to also consider the driving performance
after automation, since the TOT has not been shown to predict
if the driving performance will be degraded. That is, a long
TOT does not necessarily result in a delayed event response
or a poorer driving performance, if a quick and appropriate
response follows this TOT [10]. However, the longer the
TOT, the shorter the available time for a driver to respond
to a subsequent event if the TOR is issued at a specific
time before reaching a conflict object. Thus, to understand
the mechanisms behind an observed automation aftereffect
(e.g., a less calibrated sensorimotor control as hypothesized
by [8]), it is important to disentangle the influence of TOT
on the driving performance from other possible influencing
factors.
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Some studies have already observed unsupervised automa-
tion aftereffects, when drivers need to resume manual control
and respond to a subsequent event that requires driver inter-
vention (e.g., a road-work zone, a stationary vehicle in lane).
A period of automated driving may lead to a reduced driving
performance compared to manual driving [7], [11], [12].
In addition, some evidence exists on that automation dura-
tion (i.e., the time drivers are exposed to automation) also
reduces driving performance after a TOR [13], [14]. That is,
longer automation duration seems to result in more degraded
performance (e.g., longer response times, greater number of
uncontrolled maneuvers, greater accelerations) than shorter
automation duration [13], [14]. However, at least one study
showed no effects of automation duration on driving perfor-
mance [15]. A degraded driving performance after a longer
automation duration, compared to a shorter duration, may be
related to increased driver drowsiness or fatigue [13], or driver
vigilance decrements [16].

Notably, the current evidence behind the existence of
automation aftereffects stems mainly from studies performed
in driving simulators, and with event-response designs in
which the drivers first need to resume manual control in
response to a TOR, and then shortly after respond to a critical
event. A common scenario in these studies is a broken-
down vehicle in the lane, which the driver encounters at
high speeds typically above 100 kph [11]–[15]. Thus, it is
currently unknown the extent to which these findings gen-
eralize to real-world driving (non-simulator), lower speeds,
and less critical events. A logical next step is therefore to
investigate if automation aftereffects are also present in a
more realistic driving environment (e.g., on a test track)
with a real vehicle, for an event that is encountered in low
speeds (e.g., with a traffic jam pilot system). The use of a
more realistic environment and a real vehicle is especially
relevant when trying to understand and model steering and
braking behaviors (i.e., the driving performance following a
control transition) since kinematic cues are not present in
most driving simulators [17]. Some studies (e.g., [18], [19])
have investigated automated driving take-overs in realistic
environments (on public roads) for take-overs not followed
by a conflict event. Whereas [18] focused on TOTs, [19] also
investigated the driving performance. Specifically, [19] found
that all drivers were able to safely resume manual control after
automation, and stabilize their manual driving performance
within 5 s.

Therefore, the aim of this study was to examine the effect
of automation duration on the driver take-over response and
driving performance after a TOR in a simulated road-work
zone on test track. The road-work zone, which required
the driver to act after the take-over was completed, was
encountered multiple times at low speed (about 60-70 km/h).
By comparing the present study’s results with previous driving
simulator studies, this study also aims to better understand the
potential factors (e.g., test environment, experimental proto-
cols) that contribute to automation aftereffects. The following
research questions were addressed: 1) what is the effect of
automation duration on the driver take-over response after a
TOR?, 2) what is the aftereffect of automation duration on

Fig. 1. The cone zone used in the test.

driving performance?, and 3) how do these test-track results
compare to previous results from driving simulators?

II. METHODS

This test-track study investigates drivers’ take-over response
and driving performance when a driver encounters a road-work
zone, after a long automation duration and a short automation
duration. The road-work zone was simulated by placing cones
on the test track in a way that invited the drivers to carefully
maneuver the vehicle in order not to collide with any cones
(see section B . for details); in the paper we refer to this
surrogate road-work zone as the cone zone.

A. Participants

Eighteen Volvo Cars employees were recruited for the
study. To minimize biases, the participants had no work duties
associated with the development of automated driving, did not
work as test drivers, and had not been part of a similar study
before. All participants had driven at least 5000 km during the
year prior to the study. One participant was excluded from the
analysis due to missing data, resulting in a final sample size
of 17 participants that was used for the analyses presented
in this paper. Out of the participants, 11 (65%) were male
and 6 (35%) were female, aged between 29 and 63 years (M =
43.9 years, SD = 9.7). All participants signed a consent form
prior to participation. The study was reviewed and approved
by the regional national ethical review board in Gothenburg,
Sweden (Dnr:369-16).

B. Testing Environment and Equipment

The study was conducted on a two-lane rural-road test
track, located outside of Gothenburg, Sweden [20]. To assess
the manual driving performance after a period of manual
driving or when the drivers had resumed manual control after
automation (short or long duration), we designed a driving
scenario based on the following criteria: 1) the driver shall
be required to act to avoid obstacles, 2) the driver shall not
be forced to perform a critical evasive maneuver, but still be
required to perform fine lateral control, and 3) the situation
shall resemble something that drivers may experience in real
traffic (i.e., as part of a road-work zone). The cone zone used
in the present study, designed to meet these criteria, was built
up by four larger cones and eight smaller cones as shown
in Fig. 1. The cones were placed on the test track in such a
way that the driver had to follow a specific trajectory to avoid
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Fig. 2. Top: The HMI view in manual mode. Bottom: The HMI view in
automated mode.

hitting any cones (Fig. 1). The larger cones were the same
type of cones typically used in road-work zones on Swedish
roadways.

1) Test Vehicles: The test vehicle (TV) used in the study
was a Volvo XC90 (Model Year 2017). The TV was rebuilt
to incorporate a Wizard-of-Oz [21] experimental platform to
simulate automation. Inside the TV, three cameras recorded
the video of the drivers’ face and upper body, as well as the
forward roadway. To enable the participants to play a game
while in automated driving mode, a dashboard-mounted tablet
was installed in the TV. In addition, the TV was equipped with
a custom human-machine interface (HMI) in the dashboard
behind the steering wheel. The HMI provided the driver with
information on driving mode (manual or automated) as shown
in Fig. 2. Further, the TV was equipped with a DeweSoft
data logger. The collected data included: vehicle controller-
area-network signals and GPS data (recorded at 100 Hz),
HMI signals (recorded at 0.4 Hz), and video data (recorded at
30 Hz). The only other vehicle present during the study was
a robot-controlled XC60 (Model Year 2018), that we refer
as lead vehicle (LV) because participants were instructed to
follow it. The LV was programmed to follow a pre-defined
path and speed profile.

2) The Automated Driving System: The automated driving
system (ADS) was simulated by a wizard driver controlling
the vehicle by using a steering wheel positioned in front of
the middle backseat of the TV. The simulated ADS was an
unsupervised traffic jam pilot (TJP): an ADS designed for
low speeds, that allows the participant to disengage from the
driving task during automation, although s/he must be prepared
to resume manual driving when requested. The simulated TJP
required that the speed was lower than 70 km/h and that the
LV was present. When the TJP was active, and any of the
requirements was no longer met, the TJP notified the driver
about the need to resume manual driving. Visual feedback
about the current driving mode was presented in the dashboard
located behind the steering wheel (Fig. 2).

a) Activation of TJP: When TJP was available for acti-
vation, the system notified the driver by an audio tone and a
message in the DIM reading “Autopilot available”. The driver

Fig. 3. Top: The HMI view for TJP deactivation (the TOR). Bottom: The
HMI view when the two steering wheel buttons are being pressed and the
turquoise bars move toward each other.

pressed two buttons on the steering wheel for 0.6 seconds
to activate TJP. The driver received feedback when TJP was
activated, through a voice sounding “Autopilot active” and the
HMI (Fig. 2 bottom).

b) Deactivation of TJP: When the requirements for the
TJP were no longer met, the system notified the driver through
a take-over request (TOR). The TOR consisted of an audio
tone, a seat-belt tensioning, and a message in the DIM reading
“Autopilot ending” (Fig. 3 top). The participants had 6 s to
deactivate automation (this time was visualized in the DIM
with a red shrinking bar, see Fig. 3 top). If the participants
did not deactivate TJP within 6 s, the DIM view changed
to “Moving to a safe stop” but the participants could still
deactivate automation (this only happened once in the exper-
iment). Deactivation was performed by pressing for 0.6 s the
same two buttons previously used to activate the system. The
remaining time was visualized in the DIM with two turquoise
bars (Fig. 3 bottom) approaching each other and meeting when
the deactivation was completed. When TJP was deactivated,
the HMI changed to the manual driving mode view (Fig. 2,
top) and a voice sounded: “Drive the car”.

C. Study Procedure

Prior to the test, the participants received information about
the test. The purpose explained to the participants, was to
evaluate driver experiences during automated driving in traffic
jam conditions. In addition, the participants were given infor-
mation about the automated driving system. This information
included: 1) the specifications and requirements for the TJP,
2) that the vehicle was responsible for the driving task when
TJP was active, and 3) the need for having a safety driver in
the backseat. The participants were instructed to follow the LV
closely to avoid other “imaginary” vehicles to cut in between
the TV and the LV. Apart from following the LV closely,
the participants were free to drive as they normally would
as long as they obeyed the traffic rules. The participants were
informed about the need to activate and deactivate the TJP
when notified by the system. In addition, they were instructed
to play a game [22] on the dashboard-mounted tablet, when in
automated driving mode. The participants practiced activating
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Fig. 4. The study design.

and deactivating the TJP and how to play the game, both at
stand-still before the test and during a first training lap.

The total test duration (excluding the training lap) was
30 minutes. Each participant drove 4 laps around the test track
and drove both manually and with automation. The TV always
followed the LV: in manual mode the participants were free
to decide the speed and the time headway, but in automated
mode the time headway was kept at 2.5 s. Each participant
started the test in manual driving mode. During the first lap,
the participants encountered the cone zone twice: the first time,
after 1.5 minutes, was used as a practice and the second time,
after 4.5 minutes, was used as a manual baseline (Fig. 4). The
purpose of the practice was to familiarize the drivers with the
design of the cone zone. The purpose of the manual condition
was to collect a baseline of driving performance in the cone
zone before automation exposure.

To address the defined research questions, the three remain-
ing laps (Laps 2-4) included one long automation duration
(14 minutes) and one short (4.5 minutes). These two durations
were counterbalanced among the participants, with 9 of the
participants experiencing the short duration first followed by
the long duration, and the remaining 8 participants experi-
encing the long duration first, followed by the short duration.
When in automated driving mode, the participants received the
TOR about 5-7 s before the cone zone was revealed (hereafter
referred to as the time of conflict appearance) due to the
LV speeding up. At conflict appearance, the LV speed was
70 km/h and the LV was 1.5 s from the first cone in the
cone zone. Thus, the TOR was given when the TV was about
9-11 s from the first cone in the cone zone. In this paper,
the three driving conditions will be referred to as: manual for
the manual baseline, AD long for the long automation duration,
and AD short for the short automation duration. The complete
design is illustrated in Fig. 4.

D. Data Processing and Coding

The videos of all drives were analyzed to assess crash
involvement (crash or no crash), take-over outcome (successful
or failed), and response process. Crash outcome was originally
included as a dependent variable, but no crashes occurred
during the experiment. A take-over was coded as failed if the
first button press did not succeed to deactivate the system, and
the participant needed an additional try to deactivate the TJP.

1) Coding of Relevant Time Points for Take-Over Response:
The driver take-over response process (i.e., the driver actions

TABLE I

RESPONSE PROCESS VARIABLE DEFINITIONS

following the TOR) were coded using video views and HMI
signals. The take-over response actions were: hands on wheel,
eyes forward, eyes on HMI, AD deactivated, and 2nd try to
deactivate TJP. In addition, the moment when the LV started
turning as observed from the video of the forward roadway
(LV start turn) and the start of the driver steering maneuver
(driver steering start) were coded. Table I summarizes how
these variables were coded.

2) Vehicle Signals: The driving performance in the cone
zone was assessed using vehicle signals including longitudinal
vehicle speed, longitudinal and lateral accelerations, steering
wheel angle, and longitudinal distance to the first cone in the
cone zone (based on GPS position). All extracted signals were
resampled (mean aggregation) to 20 Hz.

E. Data Analysis

To answer the defined research questions, driver take-over
response and driving performance in the cone zone were
assessed and compared across all conditions.

1) Driver Take-Over Response: The driver take-over
response was assessed through: 1) the take-over outcome (i.e.,
if the drivers needed a second try to deactivate automation),
2) the individual take-over response process (Table I) and
3) the take-over time (TOT; i.e., the time from the TOR until
AD deactivated). The individual take-over response process
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was assessed by visualizing the time points (i.e., hands on
wheel, eyes forward, eyes on HMI, TJP deactivated and 2nd

try to deactivate TJP; Table 1), for each individual partici-
pant, using scatterplots. The take-over response process was
anchored at the TOR.

2) The Driving Performance in the Cone Zone: The driving
performance in the cone zone was assessed through: 1) the
conflict outcome, 2) the vehicle signals (vehicle speed, lon-
gitudinal and lateral accelerations, and the steering wheel
angle) in the interval-of-interest (i.e., the recording between
100 m before and 100 m after the first cone in the cone
zone) and 3) some driving performance metrics; namely,
the time to collision (TTC) at driver steering start, maximum
vehicle speed, maximum longitudinal acceleration, maximum
lateral acceleration, and minimum steering wheel angle within
the interval-of-interest. The TTC at driver steering start was
calculated by dividing the distance at driver steering start by
the longitudinal vehicle speed. The distance used in the TTC
calculation was obtained from a GPS signal measuring the
distance from the front of the vehicle until the first large cone
in the cone zone [23]. The four remaining driving performance
metrics were the maximum values within the interval-of-
interest of the following vehicle signals: longitudinal vehicle
speed, longitudinal and lateral acceleration, and steering wheel
angle.

3) Statistical Analysis: Descriptive statistics (i.e., frequen-
cies, boxplots, means and standard deviations) were used to
understand how the driver take-over response, the conflict
outcome, and the take-over outcome differed depending on
automation duration. Bayesian hierarchical varying-intercept
models were used to assess the effect of automation exposure
and its duration on the TOTs and driving performance. One
model was fit to each of the each of the driving performance
metrics and the TOT. The general formula for the varying-
intercepts models is represented in (1).

yi j = β0 + β1 · x1i j + β2 · x2i j + u j + γi j (1)

yi j is the modelled response (e.g., TOT) for condition i =
1, . . . , 3 (i.e., manual, short or long) and participant j =
1, .., 17, u j is the random effect on the intercept with standard
deviation τ 2 and γi j is the model error: γi j ∼ N(0, σ 2). β0 is
the global intercept which in this case corresponds to the
manual mean (μmanual) and β1, β2 represent the effect of AD
long (μADlong −μmanual) and AD short (μADshort −μmanual).
To quantify the effect of automation exposure and duration,
posterior distributions were obtained for the difference in
means for: 1) AD long vs. manual (μADlong−μmanual), 2) AD
short vs. manual (μADshort − μmanual) and 3) AD long vs.
AD short (μADlong − μADshort ).

In Bayesian statistics, posterior distributions represent the
most credible (likely) parameter value together with the uncer-
tainty of this value [20]. The uncertainty can be represented
with a 95% highest posterior density (HPD): the values inside
the HPD have a total probability of 95%, meaning that these
values are more credible than the values outside the interval.
Thus, a 95% HPD obtained for differences between group
means, as done in this study, offers a way to determine
effect sizes, as well as the uncertainty for this effect size.

Specifically, the HPDs can be compared to a so-called region
of practical equivalence (ROPE) with user-specified limits,
often centered around zero [24]. In line with the new sta-
tistics [25], this paper will present estimates of effect sizes
(i.e., differences in means), but will leave further assessment
of practical significance (e.g., setting ROPE limits) to the
reader. In the present study, the effect sizes were obtained
through the posterior distributions of the difference in means
(including a 95% HPD), which were visualized together with a
vertical reference line marking the zero. For an HPD that does
include the zero, a ROPE centered around zero would always
overlap with the HPD, and a difference of zero cannot be
ruled out.

Prior to fitting the models to the data, TOT and TTC at
driver steering start were transformed using the natural loga-
rithm (i.e., ln(yi j )). The reason was that the data distributions
was slightly skewed (i.e., the transformation was applied to
achieve distributions that were closer to normal). Prior to
graphing the posterior distributions of the log transformed
parameters, these were transformed back by taking the expo-
nential (i.e., μmanual in original units = exp(β0+(σ 2+τ 2)/2),
μADlongandμADshort in original units = exp(β0 + β1 + (σ 2 +
τ 2)/2)and exp(β0 +β2 + (σ 2 +τ 2)/2). The remaining metrics
(maximum speed, maximum longitudinal and lateral acceler-
ation, and minimum steering wheel angle) were modelled as
normally distributed. This decision was based on observations
of the data distributions.

Model-specification and fitting were performed with the
Python (version 3.7.6) packages PyMC3 3.7 [26] and Bambi
0.1.5 [27]. Weakly informative priors were placed on the
parameters using the default priors in Bambi [27]. To fit the
models the Markov Chain Monte Carlo algorithm No-U-Turn
Sampler (NUTS) was used [28]. For each model, the sampler
was tuned with 1000 samples and then 4000 posterior samples
per chain were drawn (2 chains). The model convergence was
verified through: (a) visual inspection of the generated trace
plots (after 1000 burn-in samples were discarded) and (b) the
obtained Gelman Rubin R hat [29] statistic that should be
close to 1. Finally, the generated predictive distributions were
compared to the empirical data in order to understand how
well the models could describe the data. Further information
can be found in the Supplementary materials.

III. RESULTS

A. Driver Take-Over Response

1) Individual Driver Take-Over Response: Fig. 5a shows
the participants’ individual take-over response process, for
AD short and AD long. Most participants put their hands on
the wheel and glanced towards the HMI or on the forward
roadway shortly after the TOR. Typically, these actions (i.e.,
hands on wheel and glances towards the HMI or on the
forward roadway) were performed within 2 seconds from the
TOR, for both conditions. Most of the participants (11/17 in
AD short and 14/17 in AD long) glanced towards the HMI
before they glanced to the forward roadway. That is, when
the participants noticed the TOR, they redirected their eyes
from the dashboard-mounted tablet towards the HMI, and then
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Fig. 5. (a) The individual take-over responses for each participant after
a short (top graph) and a long automation (bottom graph) duration, (b) the
take-over time for AD short and AD long, and (c) the posterior distribution
of the difference in mean TOT between AD long and AD short (note that the
orange vertical line in Fig. 5c marks the zero reference and the horizontal
grey bar the 95% HPD).

on the forward roadway. In addition to the fast re-direction
of gaze, most participants also had put their hands on the
steering wheel within 2 s after the TOR. Only one of the
participants (the same participant for AD short and AD long)
had at least one hand on the steering wheel at the TOR both
in AD long and AD short. Fig. 5a also reveals that a longer
automation exposure resulted in four failed first attempts to
take over control (i.e., four participants required a second
additional button press to deactivate automation) whereas no
failed takeovers was recorded after the participants had been
exposed to a short automation duration.

Note that 75% (3/4) of these drivers were in the group that
first experienced a short automation duration followed by the
long duration, and 25% (1/4) of these drivers were in the group
that first experienced the long automation duration followed
by the short. The reason behind these failed attempts was that
the drivers did not keep the steering wheel buttons pressed
long enough (< 0.6 s). In general, most drivers obtained
the necessary motor readiness (i.e., put hands on wheel and
deactivated automation) within 3 s. Most drivers (all except
three, all in AD long) had achieved this motor readiness before
the conflict appearance.

2) Take-Over Times: On average, the long automation
duration resulted in increased TOTs compared to the short
duration. In Fig. 5b, the mean TOT for AD long (M = 3.53 s,
SD = 1.18 s) is larger than for AD short (M = 2.91 s, SD =
0.67 s), and in Fig. 5c the whole 95% HPD for the mean

Fig. 6. (a) The TTC at driver steering start for manual, AD short and AD
long, (b)-(d) posterior distributions and highest probability density intervals
for the difference in mean TTC for: b) AD long vs. manual, c) AD short
vs. manual, and d) AD long vs. AD short. Note that the orange vertical line
in Fig. 6b-d marks the zero reference and the horizontal grey bar the 95%
HPD.

TOT difference between AD long and AD short is above zero
signifying that the effect size is credible. Further, the posterior
distribution in Fig. 5c shows that, on average, a 9.5 min longer
automation duration results in a 0.52 s longer TOT. Removing
the four drivers that failed to deactivate automation at their
first attempt resulted in a slightly increased mean TOT after
AD long (M = 3.12 s, SD = 0.91 s) compared to AD short
(M = 2.91, SD = 0.67 s).

B. The Driving Performance in the Cone Zone

Overall, the participants managed to maneuver through the
cone zone successfully (i.e., no crashes; see Section D in
Chapter II), both in manual as well as after AD long and
AD short.

1) Time to Collision at Driver Steering Start: Automation
exposure (including both durations) resulted in that partici-
pants, on average, started steering to pass the cone zone earlier
(at higher TTC) compared to manual. The participants started
steering at the largest mean TTC for AD short (M = 3.37 s,
SD = 0.36 s), followed by AD long (M = 3.19 s, SD =
0.46 s) and then manual (M = 3.01 s, SD = 0.21 s) as
shown in Fig. 6a. Further, the effect of automation on the
TTC at driver steering start was largest for the short duration,
compared to the long duration: in Fig. 6b-c, the whole 95%
HPD for the mean TTC difference between AD short and
manual is above zero, whereas 92% of the corresponding 95%
HPD for AD long and manual is above zero. However, since
in Fig. 6d, the 95% HPD still includes the zero, both durations
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Fig. 7. Vehicle signals (vehicle speed, longitudinal and lateral acceleration, and steering wheel angle) for manual, AD short and AD long 100 m before and
100 m after the first cone in the cone zone.

Fig. 8. Driving performance metrics (maximum vehicle speed, maximum
longitudinal and lateral acceleration, and minimum steering wheel angle) for
manual, AD short, and AD long.

may result in similar TTC values (i.e., no credible effect of
automation duration).

2) The Vehicle Speed, Accelerations and Steering Wheel
Angle:

a) Vehicle speed: Automation exposure (including both
durations) resulted in increased vehicle speed within the
interval-of-interest: in Fig. 7, an increase in vehicle speed can
be observed towards the end of the interval-of-interest for AD
long and AD short, whereas the vehicle speed for manual is
almost constant within the interval. Further, Fig. 8 reveals
that the mean maximum vehicle speed for AD long
(M = 18.90 m/s) and AD short (M = 18.92 m/s) was slightly
higher than for manual (M = 17.96 m/s).

Similar effect sizes for the effect of automation on the
maximum vehicle speed was observed for the long and the
short automation duration.

In Fig. 9 (column 1 and 2), both the 95% HPD for
the mean maximum vehicle speed difference between AD
long and manual and the corresponding 95% HPD for AD
short compared to manual was above zero. Consequently, the
automation duration was not found to affect the generated
maximum vehicle speed: in Fig. 9 (column 3), the 95% HPD
for the mean difference between AD long and AD short was
neither fully above nor fully below zero, and the most credible
difference was almost zero (–0.021 m/s).

b) Accelerations: In addition to an increase in vehicle
speed, automation exposure (including both durations) also
resulted in increased maximum accelerations: the mean max-
imum longitudinal acceleration was greater for AD long (M
= 1.17 m/s2, SD = 0.48 m/s2) and AD short (M = 1.04
m/s2, SD = 0.55 m/s2) compared to manual (M = 0.85 m/s2,
SD = 0.42 m/s2). The mean maximum lateral acceleration
was also slightly larger for AD long (M = 1.57 m/s2, SD =
0.54 m/s2) and AD short (M = 1.47 m/s2, SD = 0.39 m/s2)
compared to manual (M = 1.28 m/s2, SD = 0.31 m/s2). For
both the longitudinal and the lateral acceleration, a larger effect
size was observed for the long automation duration, compared
to the short duration. In Fig. 9, both the 95% HPD for
AD long compared to manual for the maximum longitudinal
acceleration and the 95% HPD for AD long compared to
manual for the maximum lateral acceleration were above zero.
For AD short compared to manual, however, the effect size
was not as large: 87.7% of the 95% HPD for the longitudinal
acceleration and 95.7% of the 95% HPD for the lateral
acceleration, were greater than zero, but both still included
the zero. However, since in Fig. 9 (column 3), the 95% HPDs
for both the maximum longitudinal and lateral accelerations
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Fig. 9. Posterior distributions (including the highest-posterior density
intervals) for the mean difference in maximum vehicle speed (first row
from the top), longitudinal acceleration (second row from the top), lateral
acceleration (third row from the top) and minimum steering wheel angle (swa;
bottom row) for AD long vs. manual, AD short vs. manual, and AD long vs.
AD short. Note that the vertical orange line marks the zero reference and the
grey horizontal bar the 95% HPD.

still include the zero, we cannot rule out the possibility of
that both durations may result in similar accelerations (i.e.,
no credible effect of automation duration).

c) Steering wheel angle: Automation exposure (including
both durations) resulted in decreased minimum steering wheel
angle: the mean minimum steering wheel angle was smaller
for AD long (M = –19.12, SD = 6.68) and AD short
(M = –17.06, SD = 4.43) deg. compared to manual (M =
–15.75, SD = 3.96) deg. Further, a larger effect size was
observed for the long automation duration compared to the
short duration. In Fig. 9 (column 1 and 2), the whole 95%
HPD for the difference in mean minimum steering wheel angle
for AD long compared to manual was below zero, whereas
86.5% of the corresponding 95% HPD was below zero for
AD short compared to manual. However, since in Fig. 9
(column 3), the 95% HPD still include the zero, we cannot
rule out the possibility of that both durations may result in
similar minimum steering wheel angles (i.e., no credible effect
of automation duration).

IV. DISCUSSION

A. The Effect of Automation Duration on Driver Take-Over
Response and Driving Performance

The present study found surprisingly small effects of
automation duration on driving performance, suggesting that

the automation effect is well within acceptable limits for the
studied driving scenario and durations. After a long and a
short automation duration the drivers generated similar maxi-
mum longitudinal vehicle speed, accelerations, and minimum
steering wheel angles within the interval-of-interest used in the
present study. These findings are in line with [15], but contrasts
to [13] and [14], who found that a longer duration resulted in
a degraded driving performance (higher lateral accelerations
and more collisions or loss of control). A reason behind
this difference, may be that automation durations were not
consistent across the studies. In fact, the present study and [15]
compared about 5 minutes of exposure to automation to
15-20 minutes, whereas [13] and [14] compared 10 minutes
with 1 hour, and 25 minutes with 50 minutes, respectively.
Another possibility for the observed differences in driving
performance across studies, may be that the different studies
used events of different criticalities. That is, [15] and [14],
were notified about the need to take over control at 6-7 s
TTC, whereas the drivers in [13] and the present study were
notified at TTC 9-11s. However, considering that [13] and [14]
(i.e., TTC 7 s vs. TTC 10 s) observed greater effects compared
to [15] and the present study (i.e., TTC 6 s vs. TTC 9-11 s),
the different criticalities seems to be less likely to explain the
observed differences across studies.

The greatest effect of automation duration found in the
present study was on the driver take-over response. That is,
a longer automation duration results in a lower probability
for the drivers to successfully deactivate automation. Further,
we observed longer TOTs after the longer automation duration,
compared to the shorter. However, this result is likely due to
the greater number of failed deactivations after a long duration
compared to a shorter duration of automation. In fact, a driver
who fails to press the buttons long enough the first attempt,
will need additional time to succeed at the second try. Since
removing the four failed attempts markedly reduces the mean
TOT (from 3.53 s to 3.12 s) after a long automation duration,
we propose that the increased TOT rather stems from drivers
not mastering the HMI than from driver fatigue or vigilance
decrements.

The reason behind why the drivers failed to deactivate
automation at the first attempt could be that the drivers forgot
the need to press the buttons. Assuming the likelihood of for-
getting increases with time from the practice, this is supported
by the fact that a greater number (3/4) of the participants
that failed belonged to the group that experienced the long
automation duration after the short automation duration (i.e.,
later during the test drive). However, since no driver failed
to deactivate automation after the short automation duration,
it seems that the automation duration also matters. One reason
could be that the drivers had longer time to immerse into play-
ing the game, and when it was time to deactivate automation
they responded intuitively by “clicking” the buttons instead
of pressing them. Their intuitive response is likely “clicking”
on the buttons, since that is what is typically required for
activating/deactivating existing systems such as for example
adaptive cruise control (ACC).

A different HMI design or additional practice (which may
naturally occur if the system would be used regularly in a
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commercial vehicle) may resolve the problem of failed deac-
tivations, and consequently the TOTs after a longer exposure
would decrease. For example, an HMI that do not require the
drivers to press the buttons (but instead allow a short click
on the buttons) will likely have solved the issues with failed
first deactivation attempts observed in this study. In addition,
an HMI letting the drivers deactivate automation by steering
or braking may also have been beneficial. Such an HMI may
also have shortened the time the drivers needed to look down
on the HMI before they looked up on the forward path.
This is because steering and braking typically do not require
the drivers to look down and search for the controls (which
may be the case for buttons on the steering wheel). A driver
monitoring system (DMS) may be useful to identify drivers
that are distracted or drowsy and at risk of not mastering the
HMI and may therefore fail to deactivate automation at the first
attempt. However, the present study did not manipulate any
factors related to distraction or drowsiness. In fact, all drivers
in the present study were instructed to engage in a visually
demanding task while driving with automation (i.e., the drivers
were almost only looking off path). Therefore, to inform future
DMS systems, more research is needed to better understand
potential factors (e.g., drowsiness, glance behaviors) that may
correlate with the take-over outcome (i.e., failed or successful
automation deactivation).

The present study found that, on average, a driver would
need 3.22 seconds (for both automation durations) to deacti-
vate automation in response to the TOR. This time is smaller
than the predicted mean TOT of about 3.75 s obtained from
[7, pg. 652], when assuming a take-over time-budget of 10 s.
On the other hand, a mean TOT of 3.22 s is in line with the pre-
dicted mean TOT of about 3.20 s obtained from [9, pg. 294],
assuming the same take-over time budget (referred to as
the Time Budget to Collision in [9]). Further, the present
study found that, on average, a driver would need 0.52 s
additional TOT after a 9.5 min longer automation duration.
This result of increased average TOTs (even if only slightly)
after a longer duration is in line with [13] and [15]. [15] only
observed a slight difference in mean TOT (i.e., 0.1 s longer
for the 15 minutes longer duration), whereas [13] observed
a difference in mean TOT similar as to the present study
(i.e., 0.5 s longer for the 50 minutes longer duration).

B. The Automation Aftereffects on Driving Performance

Surprisingly, in the present study the drivers started their
steering maneuver earlier after automation (both durations)
compared to manual. Thus, our findings contradict the litera-
ture reporting a delay in the driver response after a period
of automated driving (i.e., that drivers start steering closer
to the conflict object after automation, compared to man-
ual). One possible explanation to why this result contrasts
to [7], [11], [12] is the use of different timings for TOR
triggering and the conflict appearance. In the mentioned
studies, these two timings happen simultaneously, whereas
in the present study the TOR triggering took place about
5-6 s prior to conflict appearance. Consequently, the drivers
in the present study had the chance to become ready-to-act

(i.e., by putting their hands on the steering wheel and deac-
tivating automation) before the conflict appearance and could
start steering at similar times as when in manual driving mode.
However, in the mentioned studies the drivers had not received
a notification about the need to start preparing at the conflict
appearance. Consequently, the drivers in the afore mentioned
studies likely showed a delayed reaction due to the time
needed for moving the hands to the steering wheel and the
feet to the pedals before they could act. Another explanation
for the observed lack of delayed driver response in the present
study, compared to previous studies, could be the fact that the
drivers in the present study had prior experience of the cone
zone (i.e., they had practiced beforehand), which was not the
case in [11]-[12].

The present study observed some effects of automation
on the longitudinal vehicle speed and some influence of
automation on the accelerations and steering wheel angle
within the cone zone. That is, the participants increased the
vehicle speed (both maximum and within the interval-of-
interest) as well as the longitudinal and lateral accelerations,
and decreased the steering wheel angle, after automation
compared to manual. For the vehicle speed, the observed
difference between the manual condition and the automation
condition, indicates that drivers keep a constant speed when
driving manually, whereas, after automation, the vehicle seems
to slow down a little, potentially as a result of the drivers
taking time to locate the accelerator pedal. Then, when they
had located the pedals, the drivers accelerated and increased
their speed significantly, potentially to keep up with the LV.
Shortly after, when the drivers entered the cone zone, they
showed a slightly different steering behavior (i.e., increased
lateral accelerations, decreased steering wheel angle) com-
pared to the manual condition. This could be explained by the
interactions between the observed increase in vehicle speed
and the generated accelerations. For the vehicle speed to
increase, the longitudinal acceleration must have increased,
but increased vehicle speed may also result in increased lateral
accelerations and decreased steering wheel angles needed to
avoid colliding with any cones. Thus, it may be that the
steering behavior within the cone zone, after automation,
is merely the result of the decreased speed while the drivers
were busy finding the pedals. Therefore, the extent to which
the observed difference in driving performance may also be
due to a less calibrated perceptual-motor control loop remains
unknown.

Overall, the increase in accelerations after automation com-
pared to manual driving were lower than the accelerations
reported in [11] and [12]. Our data suggests a maximum
increase of accelerations (based on the maximum longitudinal
and lateral acceleration metrics) in the range of 1.2-1.3 times
higher for automation compared to manual. This difference
is smaller compared to the accelerations reported in driving
simulator experiments from [12] and [11]. [12] found the mean
accelerations, calculated as mean(ac) where ac = sqrt(a2

long+
a2

lat), to be 2-3 times higher after automation compared to man-
ual, whereas [11] found the average max lateral acceleration
to be 1.7 times higher after automation compared to manual
in the distracted condition.
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Finally, when comparing manual driving with manual
driving after automation, it is important to put the findings into
a bigger picture. For example, in the present study automation
was found to increase mean lateral accelerations compared
to manual (i.e., from 0.19 m/s2 to 0.28 m/s2). However, this
increase resulted in lateral accelerations, after automation, that
were below 2.5 m/s2, which is well below the thresholds
for being considered an “evasive steering maneuver” (defined
in [30] as a steering maneuver with a lateral acceleration
of above approximately 4 m/s2). Thus, in the present study,
the effect of automation on driver behavior seems to be minor
(i.e., automation did not result in any particularly critical
situation for any of the drivers). By only focusing on the
relative differences in driving performance for automation vs.
manual, we may just observe the natural differences between
manual driving and manual driving after automation. That
is, an observed increase in vehicle speed may be because
drivers need to calibrate their longitudinal control, which is not
necessarily safety critical. Thus, the effects we found should
be considered as mild.

C. The Influence of Test Environment and Test
Protocol (TOR Timing)

Overall, the present test track study did not observe as
large effects of automation as previously found in driving
simulator studies. However, it is not clear in which way this
difference may be the cause of different test environments
(i.e., test track vs. driving simulators) or differences in test
protocols (i.e., the difference in timings for the TOR and
the conflict appearance). The present study collected data
on a test track where real motion cues and force feedback
are present, which is not the case in driving simulator stud-
ies were motion cues and force feedback are simulated or
absent [31]. In addition, driving simulators have been shown
to demonstrate relative validity, rather than absolute validity.
That is, driving simulator studies are able to produce results
in similar directions and when compared to other test envi-
ronments, but the actual result magnitudes are not necessarily
correct [31].

Therefore, comparisons across studies regarding the pres-
ence and absence of effects are likely to be trusted, but
the comparisons of actual values (e.g., accelerations) may be
affected by the differences in test environments. Consequently,
previous studies that have investigated automation aftereffects
in driving simulators seem therefore to overestimate (exag-
gerate) the effect of automation and automation duration on
driving performance and response process to a TOR. To the
knowledge of the authors, no previous studies have directly
compared automation aftereffects across test environments.
However, as a good starting point, Eriksson et al. [18] inves-
tigated the effect of test environment (driving simulator vs.
on-road test) on the TOT. Eriksson et al. [18] confirmed that
absolute validity could not be established and that driving
simulators may exaggerate the effects of automation, since the
observed mean TOT was 1.4 s longer in the driving simulator
compared to the on-road study.

D. Limitations and Future Work

The results presented in this paper should be viewed in
the lights of its limitations. To begin with, the experiment
was performed on a test track and not in real traffic. Thus,
the experiment lack realism since no surrounding traffic (only a
lead vehicle) was present, the construction zone was simulated,
the participants knew that they were part of an experiment
and a test leader was present. However, it is difficult to
perform controlled experiments with a degree of realism
without encountering difficult ethical considerations associated
with the risk of crashing. Further, the positive aspects of
the test track (e.g., real kinematics) needs to be balanced
against the limitations (e.g., the difficulties in obtaining exact
timings across participants for the take-over request and the
conflict appearance). Further, the participants were Volvo Cars
employees who are not directly involved in the development
of vehicle automation. Thus, the extent to which the results
generalize to other populations remains unknown. The video
reduction to obtain variables for the response process was
performed by only one person. Thus, the present results
depend on the judgement from one person and may have
differed slightly if another person would have performed the
video reduction.

First, in order to fully understand the impact of the test
environment, two studies with the same experimental protocol
could be performed in a driving simulator and on the test track.
Second, independent of the test environments, a study which
controls for the influence of the driver take-over response,
on the driving performance should be performed. That is,
we hypothesize that the test protocols used in previous driving
simulator studies (i.e., when TOR and conflict appearance tim-
ings coincide), may have influenced the presence and size of
automation aftereffects. Practically, a future study that would
control for the driver take-over response, would provide the
drivers with enough time after automation to become ready-
to-act before presented with the conflict. Such a setup would
enable us to understand if the observed automation aftereffect
is merely a consequence of the time needed to become ready-
to-act (i.e., the time needed for the driver take-over response
process) or if there are some other underlying mechanism
(e.g., sensorimotor, cognitive reaction times) at play.

V. CONCLUSION

To conclude, our findings demonstrate that after a duration
of 4.5-14 minutes automated driving, drivers are able to safely
deactivate automation and maneuver through a road-work
zone. Nevertheless, the longer the exposure to automation
(14 min) the more important it is for drivers to master the HMI
to appropriately take over control. The present test-track study
did not observe as large automation aftereffects as indicated
by previous driving simulator studies. The extent to which
this is due to the use of different test environments (test track
vs. simulator) or different protocols needs to be investigated
but is likely an overestimation due to driving simulator char-
acteristics. However, a key point is that independent of test
environment, the timing of when the TOR is triggered and
when the conflict becomes visible for the driver is an important
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influential factor, because this relation may influence the
presence and magnitude of an automation aftereffects (larger
aftereffects when TOR closer to conflict). Previous studies
which have observed automation effects, triggered the TOR
at the same time as the conflict became visible. Consequently,
when comparing driving performance in a manual condition
with manual driving after automation, such an automation
aftereffect is at least partly due to the additional time drivers
need to become physically ready-to-act after automation (put
hands on wheel etc.). Drivers in manual mode can act directly
(e.g., without taking extra time to locate steering wheel and
pedals) as they are already controlling the vehicle. For a fair
comparison, future studies should control for the influence of
the driver take-over response (e.g., the take-over time) on the
driving performance, by giving the drivers enough time to
become physically ready-to-act, before the conflict becomes
visible.
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