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Spectrum Anomaly Detection for Optical Network
Monitoring using Deep Unsupervised Learning

Carlos Natalino, Member, IEEE, Aleksejs Udalcovs, Member, IEEE, Lena Wosinska, Senior Member, IEEE,
Oskars Ozolins, and Marija Furdek Senior Member, IEEE, OSA

Abstract—Accurate and efficient anomaly detection is a key
enabler for the cognitive management of optical networks, but
traditional anomaly detection algorithms are computationally
complex and do not scale well with the amount of monitoring
data. Therefore, we propose an optical spectrum anomaly detec-
tion scheme that exploits computer vision and deep unsupervised
learning to perform optical network monitoring relying only on
constellation diagrams of received signals. The proposed scheme
achieves 100% detection accuracy even without prior knowledge
of the anomalies. Furthermore, operation with encoded images of
constellation diagrams reduces the runtime by up to 200 times.

Index Terms—Deep unsupervised learning, anomaly detection,
constellation diagram, autoencoder, optical network monitoring

I. INTRODUCTION

The proliferating high-performance network services and
applications require increasingly dynamic, flexible and au-
tonomous optical networks. Optical network telemetry [2]
and machine learning (ML)-based approaches [3] are con-
sidered critical enablers of quick and reliable network
(re)configuration through state sensing, analyses and learn-
ing from ever-larger optical performance monitoring (OPM)
datasets. Among the multitude of possible ML applications in
autonomous optical network operation, anomaly detection has
particular importance thanks to its ability to spot an anomaly
without specific knowledge of its signature. This can be used
to trigger a response without depending on human expert
interpretation and action [4], [5].

However, optical equipment collects diverse numeri-
cal/categorical data, furnishing a fragmented set of ML so-
lutions that need different inputs for each objective. In this
context, constellation diagrams show potential to become an
interoperable input for a wide range of models assessing
optical channel quality [6]–[9]. Constellation diagrams can
be interpreted by both humans and ML algorithms, which
facilitates the checking and validation of ML decisions by
specialists. Nonetheless, anomaly detection using constellation
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diagrams is challenging due to their high dimensionality. Per-
tinent algorithms usually require traversing the entire dataset,
which builds up complexity [4], [10]–[12].

While [6]–[9] combine computer vision and supervised
learning approaches to estimate the signal imperfections and
quality of transmission (QoT), this letter demonstrates, for the
first time, the use of computer vision and deep unsupervised
learning (UL) for efficient and accurate anomaly detection.
To reduce complexity, we develop an autoencoder that com-
presses constellation diagram images by extracting the feature
information. In such a way, we decrease the dimensions of
processed data before they are fed as input to the anomaly
detection algorithm, yielding up to a 200-fold runtime reduc-
tion and improving the accuracy. With no prior knowledge, the
proposed approach detects 100% of abnormalities imposed on
the optical channel by analyzing only constellation diagrams.
It outperforms one-class support vector machine (OCSVM),
a conventional UL algorithm considered efficient in anomaly
detection [12], [13], as well as density-based spatial clustering
of applications with noise (DBSCAN).

II. DEEP UL FOR ANOMALY DETECTION

Figure 1 shows the architecture of the deep UL approach
for anomaly detection proposed in this work. The approach
combines the use of a convolutional neural network (CNN) and
an anomaly detection algorithm to detect spectrum anomalies
from the constellation diagrams.

A. Background

Constellation diagrams have been used for various OPM
tasks, such as modulation format identification [6], [9] and
optical signal-to-noise ratio (OSNR) estimation [7]. This in-
dicates the potential of computer vision models in optical
networks, allowing the use of a unified representation of
an optical channel to identify/estimate different performance
metrics. Moreover, such models can be combined to provide
a broad assessment of the optical channel quality with a
single model inference, i.e., provide multiple output values
for the same input, potentially enhancing the efficiency of
network management. However, all of the previous works
that use computer vision algorithms to assess performance
of optical networks [6]–[9] rely on supervised learning and
thus require a dataset with previously observed samples clearly
identifying the inputs and outputs of the problem. Due to the
relatively infrequent occurrences of anomalies, the difficulties
of collecting representative datasets, the potentially evolving
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Fig. 1: The proposed deep UL approach for anomaly detection. Supervised learning is used to train an autoencoder (top).
Anomaly detection is performed over encoded constellation diagrams, obtained by the encoder part (bottom).

anomaly landscape, and the time-consuming task of dataset
labeling, it becomes impractical to rely solely on supervised
learning algorithms for anomaly detection [4].

Unsupervised learning algorithms, on the contrary, learn
from the data without prior knowledge, and have the potential
to enable truly autonomous optical network monitoring and
quality assurance. Algorithms such as the DBSCAN [10] have
been successfully applied to detect anomalies [4] and jamming
attacks [5] in optical networks. However, the complexity of
DBSCAN, when considering Euclidean distance between the
samples, is known to increase with the number of samples
𝑛 and features (or dimensions) 𝑑 in the order of Θ(𝑛2 · 𝑑).
Consequently, inputs to the algorithm must be critically sieved,
especially when operating with images. Applying the density-
based clustering directly on the obtained high-resolution im-
ages of constellation diagrams would lead to computationally-
demanding and thus slow anomaly detection. To overcome
this issue, we use a CNN-based autoencoder to encode (and
decode) the features of a constellation diagram. In this way,
the encoded representation contains only the most informative
features, which allows the UL algorithm to concentrate on
them, boosting the performance.

B. Autoencoder Training

The autoencoder used to reduce the dimensionality of
constellation diagrams is a symmetrical neural network that
consists of two parts—encoder and decoder. These are con-
nected by a central layer responsible for the extraction and
encoding the representation of the input. We use a supervised
learning approach to train the autoencoder, as illustrated in the
top part of Fig. 1. Since in our work constellation diagrams
are represented as images, we use a CNN structure composed
of convolutional and pooling layers. During the training, the
original constellation diagram 𝑋 is given as input, and it is
also used to supervise the update process of the trainable CNN
parameters in a way that the output diagram 𝑋 ′ approximates
the original 𝑋 as closely as possible. After the training is
complete, the encoder can be used to extract the encoded
representation of any constellation diagram 𝑋 ′′, concentrating
the most informative features.

C. In-Operation Use of the Approach

The in-operation use of the proposed approach is illustrated
in the bottom part of Fig. 1. Constellation diagrams are
sampled at the optical receiver and preprocessed on-the-fly to
make the images more suitable for ML algorithms by remov-
ing axes labels and grid lines. A preprocessed constellation
diagram is input to the CNN-based encoder, and the encoded
diagram is added to a dataset containing historical encoded
constellation diagrams for the channel being analyzed. This
dataset is input to the DBSCAN algorithm [10] that detects
anomalies assuming that anomalous constellation diagrams
are much rarer than the normal ones. Fig. 1 illustrates how
DBSCAN works, i.e., by finding core samples (represented by
the sample A) which have a minimum number of neighbors
within a given radius, and border samples (samples B and C).
When a sample does not have enough neighbors within the
radius, it is considered an anomaly (sample N). The detected
anomalies can be used to raise alarms, trigger corrective
procedures, and/or be analyzed together with detailed data of
the anomalous channel for (deeper) root cause analysis.

III. CONSIDERED SPECTRUM ANOMALIES

We consider anomalies caused by the interference between
a neighboring channel and the channel under test (CUT, _1)
in a wavelength division multiplexed (WDM) system that
uses a 16-ary quadrature amplitude modulation (16QAM)
for transmission at 32 Gbaud. The considered anomalies can
appear due to, e.g., laser detuning due to ageing, temperature
change, optical filter misalignment in optical nodes, or critical
degradation, spectrum slot allocation problem, or even a
deliberate attack inserted on an adjacent wavelength [14].

To assess the impact of the interferer on signal quality, we
use a system configuration depicted in Fig. 2(a). We assume
that (i) all channels (_1 − _3, and the interferer) use the same
signal format; (ii) initially, all channels are equally spaced in
the 50 GHz grid and have the same optical power level; (iii)
the frequency interval between the interferer and the CUT is
defined by parameter Δ 𝑓={50, 43.75, 37.5, 31.25} GHz; and
(iv) the power level difference between the interferer and the
CUT is defined by parameter Δ𝑝={−3, 0, 3, 6} dB. We use the
VPIphotonics Design SuiteTM [15] to characterize the system
performance. To consider different noise conditions for the
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Fig. 2: (a) Simulation setup of the three-channel WDM system with the interferer; (b) BER detected for the CUT under
assumed normal (green) and anomalous (red) conditions; (c) BER vs. OSNR curves for the selected cases; and (d) example
of constellation diagrams: (top) no interferer and (bottom) impaired by the interferer for (Δ𝑝=-3 dB, Δ 𝑓 =43.75 GHz).

CUT, we set a specific OSNR value in the transmitter prior to
inserting the interferer. To obtain statistically reliable results,
each constellation diagram sample is generated by mapping a
215 − 1 long uniquely-seeded pseudorandom binary sequence
(PRBS) to 16QAM symbols.

Figure 2 (b) shows the BER values of the CUT for 40 dB
OSNR after it has been affected by the interferer characterized
by different Δ𝑝 and Δ 𝑓 values. The constellation diagrams
for the selected normal and anomalous conditions are used
to evaluate our approach. The normal operating conditions
include two cases: when the interferer is not present; and
when it is added to the system with appropriate settings, i.e.,
(Δ𝑝=0 dB, Δ 𝑓 =50 GHz), and, thus, behaves and is treated
as a legitimate channel. We selected four cases among the
remaining ones and labeled them as the anomalous operating
conditions, considering the BERs, Δ𝑝 and Δ 𝑓 values as well
as other aspects. Finally, Fig. 2(c) characterizes the system
performance with and without the presence of the interferer
for an OSNR range of interest. Together with the provided
examples of constellation diagrams (Fig. 2(d)), these illustrate
the severity of the interferer-induced distortions.

IV. RESULTS AND DISCUSSION

The performance of the proposed autoencoder-assisted
DBSCAN approach (DBSCAN-AE) is evaluated using data
collected via simulations. 200 samples of constellation dia-
grams were collected under the two normal operating condi-
tions, i.e., no interferer and (Δ𝑝=0 dB, Δ 𝑓 =50 GHz). These
constellation diagrams are split 100:100 and used for training
and validation when trying several combinations of CNN
architectures and learning rates. The best architecture has 4
convolutional alternating with 4 pooling layers for both the
encoder and the decoder, resulting in an encoded constellation
diagram of 26×26 (676 pixels).

Two benchmarks are used to assess the benefits of the
proposed approach: (i) OCSVM, a semi-supervised learn-
ing algorithm regarded as efficient in anomaly detection
algorithm [12], [13] but requiring training to character-
ize normal operating conditions; and (ii) DBSCAN using
un-encoded constellation diagrams (DBSCAN-U). OCSVM
has three parameters: the kernel function (𝑘), the up-
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Fig. 3: Accuracy of the considered approaches and the settings
giving the best performance.

per bound on the training error (a) and 𝛾 which de-
fines the coefficient of the kernel function (when appli-
cable). We considered the following sets of the parame-
ters: 𝑘={𝑙𝑖𝑛𝑒𝑎𝑟, 𝑅𝐵𝐹, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑}, a={0.01, 0.1, 0.3, 0.5, 0.7, 1}
and 𝛾={0.01, 0.1, 0.2, 0.5, 0.7, 1}. DBSCAN has two param-
eters: the minimum number of neighboring samples for
a sample to be considered normal (𝑀) and the neigh-
borhood radius (𝜖). We considered the following sets
of the parameters: 𝑀={1, 4, 8, 10, 12, 15, 20, 30, 40, 50} and
𝜖={0.1, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 10}. The algorithms are tested
over all possible combinations of <𝑘, a, 𝛾> values for
OCSVM and <𝑀, 𝜖> values for DBSCAN. We perform
50 random experiments to obtain and average the results.
During each experiment, we randomly select 100 constellation
diagrams representing the normal operating conditions and
10 diagrams for each of the four anomalous conditions. By
repeating this random selection procedure 50 times, we ensure
that the obtained performance is not biased towards any
particular part of the dataset. We use Python 3.7 and Scikit-
learn version 0.21.2 [1] running on a workstation with a Core
i9 9900X processor and 64 GB of RAM.

To reveal which parameter settings yield the best accuracy
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(i.e., lowest false positive and false negative rates), we per-
formed a sensitivity analysis, considering different values of
the parameters in the benchmarked algorithms. Fig. 3 shows
the performance in terms of false positives and false negatives
for different parameter settings, highlighting the best setting
and performance achieved by each approach. DBSCAN-U
is not able to detect the anomalies in any of the tested
configurations, achieving either 100% false positives or 100%
false negatives. This is explained by the sensitivity of the
DBSCAN (and any other unsupervised learning algorithm)
when operating with high-dimensional data. OCSVM performs
better, achieving only 7% false positive rate with zero false
negatives, but it requires a training procedure for each type of
signal. On the contrary, our proposed DBSCAN-AE approach
is able to achieve both zero false positive and false negative
rates for configurations where 𝑀 ≥ 20 and 𝜖=1.0.

Furthermore, we tested these anomaly detection approaches
on two different signals: (i) 16QAM at 25 dB OSNR and
(ii) 64QAM at 40 dB OSNR. Even without re-training the
autoencoder, DBSCAN-AE achieves 1.9% false positive and
0% false negative rates for the 16QAM@25 dB signals. The
corresponding numbers for the 64QAM@40 dB are 42%
and 0%. In both cases, the DBSCAN-U fails at detecting
anomalies. OCSVM, even when re-trained, performs slightly
worse than the DBSCAN-AE for the 16QAM@25 dB, and
similar for the 64QAM@40 dB signals. These results clearly
identify DBSCAN-AE as an appropriate solution for detecting
anomalies based solely on encoded constellation diagrams.

We also assess the benefit of the proposed approach by
measuring the runtime of the anomaly detection approaches.
Using the existing dataset, we extracted the average and
standard deviations for the normal and anomalous scenarios.
These values are applied to parameterize a normal distribution
used to synthetically generate another dataset for the runtime
assessment. Fig. 4 shows the runtime of the algorithms when
the dataset is scaled from 100 to 10,000 samples. For the
un-encoded datasets, we were able to process up to 5,000
samples (due to out-of-memory problems). The runtime results
show that DBSCAN-AE runs up to 200 times faster than
DBSCAN-U if a dataset contains a small number of samples
(e.g., 100 samples). For a dataset with many samples (e.g.,

5000), the corresponding speedup is at least 10-fold. Moreover,
DBSCAN-AE has a similar runtime to OCSVM. The proposed
approach allows for processing up to 2,500 samples within
less than one minute, which is a desired monitoring window
for optical networks [11]. Assuming a shorter runtime budget
for the anomaly detection algorithm of 10 s (e.g., due to
other processing required within the monitoring window), it
is possible to process up to 1,000 samples.

V. CONCLUSION

The proposed approach sieves relevant features from im-
ages of constellation diagrams using a CNNs-based encoder.
The extracted features are exploited by an UL clustering
algorithm – we use the DBSCAN – to detect anomalies.
Performance evaluation under the four considered anomalous
conditions indicates that, with a correct configuration, the pro-
posed approach can detect previously unseen optical spectrum
anomalies with 100% accuracy, outperforming the OCSVM
approach. Moreover, the proposed autoencoder brings up to a
200-fold runtime reduction. The proposed approach paves the
way for more interoperable ML methods in optical networks
suitable to operate in parallel with other models that exploit
constellation diagrams as unified input to assess a broad
range of performance metrics. Furthermore, the same CNN
can be extended with other outputs to provide several OPM
estimations obtained by a single execution/inference.
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