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Abstract: This study describes, applies, and compares three different approaches to integrate electric
vehicles (EVs) in a cost-minimising electricity system investment model and a dispatch model. The
approaches include both an aggregated vehicle representation and individual driving profiles of
passenger EVs. The driving patterns of 426 randomly selected vehicles in Sweden were recorded
between 30 and 73 days each and used as input to the electricity system model for the individual
driving profiles. The main conclusion is that an aggregated vehicle representation gives similar
results as when including individual driving profiles for most scenarios modelled. However, this
study also concludes that it is important to represent the heterogeneity of individual driving profiles
in electricity system optimisation models when: (i) charging infrastructure is limited to only the home
location in regions with a high share of solar and wind power in the electricity system, and (ii) when
addressing special research issues such as impact of vehicle-to-grid (V2G) on battery health status.
An aggregated vehicle representation will, if the charging infrastructure is limited to only home
location, over-estimate the V2G potential resulting in a higher share (up to 10 percentage points) of
variable renewable electricity generation and an under-estimation of investments in both short- and
long-term storage technologies.

Keywords: energy system modelling; method; vehicle-to-grid; variability management; smart
charging; energy storage

1. Introduction

To meet the challenging climate targets of the Paris agreement [1] and the European
Union framework [2,3] will most likely require large-scale employment of electric vehicles
(EVs) over the coming decades. New EVs will entail a new electricity demand and charging
infrastructure that must be integrated into the electricity supply system. The electricity
supply system will, at the same time, be increasingly dependent on solar and wind power
that will vary in production. Thus, if the integration of EVs comes with an appropriate
strategy, the new EV demand could offer benefits in terms of flexibility of the load, e.g.,
demand response services and, possibly, also discharge back to the grid (i.e., vehicle-to-grid;
V2G). It is therefore essential to investigate EV’s impact on the current and future electricity
system. This can be accomplished by, for example, using electricity system optimisation
models [4–6].

Previous studies on modelling of the electricity system with the inclusion of charging
of EVs in the models have based their EV driving demand mainly on data from travelling
surveys, standardised driving cycles and one day measured driving distances [7–17]. Thus
in previous studies, due to the lack of detailed data on individual driving patterns, the
heterogeneity of the EV fleet is aggregated to one entire EV fleet represented as “one huge
battery” in these models. For example, Šare et al. [10] are using traffic load measured for
the Dubrovnik region for one specific day when modelling the electricity system in Ukraine.
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In Juul [8] transport pattern is treated with average values based on statistical data from
a Danish travel study. In Hadley et al. [13] it was assumed that all vehicles plugged in at
two different times of the day and remained plugged in until fully re-charged. Cai and
Xu [9] used large-scale individual-based trajectory driving data, in a case study of Beijing,
to better understand the electrification of the taxi fleet. However, driving data to be used
for electricity system optimisation models, including the whole passenger car fleet, needs
to be randomly selected among all registered passenger car owners in order to capture the
driving pattern.

Data from self-reported travelling surveys, the main methodology used in previous
studies, often under-estimate the frequency of trips, focusing on the travel behaviors of
persons during one day rather than on the movement patterns of cars over a longer time
period [18]. Elango et al. [19] and Björnsson [20] have shown that individual passenger car
driving patterns vary considerably from day to day, which might be an important factor to
include in the electricity system models, so as to estimate the flexibility in load that could
be offered by the EV batteries over a time-frame of more than one day.

Schuller et al. [11] and Taljegard et al. [21] used to some extent detailed individual
driving data in their modelling. Schuller et al. [11] used one week of driving patterns
with total 1000 different driving profiles from the German National Travel Survey to study
the integration of wind and solar power with flexible EV charging. Taljegard et al. [21]
studied the North European electricity system using an optimisation model and a dataset of
426 representative passenger cars measured for 30–70 days per car in western Sweden. One
drawback with the clustering method of representative vehicles used by Taljegard et al. [21]
is that it does not allow electricity storage in the vehicle batteries from one day to another.

A more detailed definition of individual car movement patterns than presented in
previous mentioned studies can be achieved when using measurements of time and posi-
tion using Global Positioning System (GPS) equipment over a sufficiently long time period
(most likely several weeks). Two main reasons why electricity system models aggregate
the individual EV driving demands and profiles to a single driving profile for the entire
EV fleet represented as “one huge battery” without evaluating the consequences of this
simplification are that:

• GPS measurement data-sets for passenger vehicles, available for scientific purposes,
are scarce with most of them having been collected over a short time period and/or for
a restricted geographical area or a specific group of passenger car owners (e.g., [22–25]).

• There is a large increase in the number of decision variables inherent to a model that
includes individual driving patterns.

Since previous studies in the literature does not including individual driving patterns,
there might be a risk that they over-estimate the potential of using the EV batteries for
optimised charging and V2G. This could be the case since a vehicle that is parked might be
charging so as to supply an EV that is out driving. Therefore, it is important to investigate
when an aggregated vehicle representation is a good proxy and when representation of
individual driving patterns is needed in electricity system models to estimate the V2G
potential of passenger EVs. More comprehensive energy system models than the one used
in this study, that also include, for example, trade between regions or several sectors, might
not be suitable for something other than an aggregated vehicle representation. However, it
is still important to understand the impact of the simplification with an aggregated vehicle
representation on the model results.

This study are aiming at filling this research gap by developing and comparing both an
aggregated vehicle representation with individual driving profiles, as well as, comparing
two different ways of including individual driving profiles in an optimisation electricity
system model. This study investigates when the different approaches (i.e., an aggregated
EV representation and individual driving profiles) can be a good enough proxy to represent
EVs in electricity system models by comparing modeling results from model runs that
includes the different approaches.
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The electricity system model used in this study was designed so that all approaches
could be run within a reasonable time-frame. In this study, the differences of including indi-
vidual EV driving profiles compared to an aggregated vehicle representation in electricity
systems models are analysed while varying a number of parameters that might affect the
results. These parameters are, for example, the geographical scope, EV battery capacities,
V2G implementation schemes, and charging infrastructure connection points.

2. Data and Model Description

Three different approaches to integrate EV in electricity system models are described
in Section 2.2. The approaches are (i) aggregated vehicle profile (AGG); (ii) representative
daily driving profiles (DDP); and (iii) yearly driving profiles (YDP). DDP and YDP include
individual driving patterns, while AGG uses only the values averaged from the measured
individual driving patterns. The individual driving patterns is in this study taken from a
dataset of 426 representative passenger cars measured with GPS for 30–70 days per car in
western Sweden. More details of the dataset can be found in Section 2.1.

To evaluate and compare these approaches, a cost-minimisation model of the electricity
system (called ENODE) has been used in this study. ENODE is designed to analyse the
electricity system in regions in Europe when meeting a strict CO2 emission target. A
general description of the model can be found in Section 2.3. The way EVs (i.e., AGG, DDP,
and YDP) are implemented in ENODE is described in Section 2.4. The different approaches
have methodological implications, such as differences in data and equations structure, as
described in Section 2.4.

2.1. The GPS Vehicle Data-set

Measured travelling patterns from a campaign conducted in the region of Västra
Götaland (western part of Sweden) are used for the individual driving pattern in the
modelling. These are GPS measurements of about 770 randomly chosen gasoline- and
diesel-powered vehicles that completed 107,910 trips between years 2010 and 2012 [20,26].
The vehicles were randomly selected from the Swedish vehicle database.

Of the around 770 households that had GPS equipment sent to them, about 529
were logged for more than 30 days, and 426 of those 529 provided high-quality data (i.e.,
excluding some of the vehicles where too much data were missing due to problems with the
GPS equipment such as lost contact in power supply or satellite connection). Extensive data
cleaning, validation, and a deeper analysis of the representation of the GPS vehicle data-set
were carried out by Björnsson [20]. The regions are found to be reasonably representative
for Sweden in terms of fleet composition, car ownership, household size, income, and
distribution of cars in larger and smaller towns and rural areas [20]. Each vehicle was
measured for a period of about 2 months, although the 2-month periods occurred during
different times of the year for the vehicles involved. In total, 27,879 logged days were
included.

The GPS-data applied in this work to determine individual driving patterns includes
data that are measured for several days in a row and that are representative for the
population in a larger geographical region. Thereby this GPS-data set is so far unique
and only available for one region in Sweden. Since no such data was available for the
other regions investigated, we have assumed the same driving profiles for all regions
investigated in Europe. Since data on individual driving patterns were only available for
one region in Sweden and therefore applied also to the other regions investigated, this
will obviously not consider national differences in the driving profiles. Thus, there may
be regional differences affecting the driving patterns such as working hours, leisure time
activities, as well as geographical factors like Sweden being a low population density
country.
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2.2. Description of EV Integration Approaches

Table 1 gives a summary of the three approaches to integrate EVs into electricity
system models. Out of the three approaches to integrate EVs, DDP, and YDP include
individual driving patterns, while AGG uses only the values averaged from the measured
individual vehicles.

Table 1. Summary of the three approaches to integrate electric vehicles (EVs) into electricity system models.

Aggregated Vehicle Profile (AGG) Representative Daily Driving
Profiles (DDP) Yearly Driving Profiles (YDP)

Number of vehicle categories
or driving profiles One (or possible two) 200 426

Description
One large vehicle battery, share of the
fleet being parked per hour, storage

between days is possible

Chosen 200 representative daily
driving profiles out of the ~28,000
measured days with a weighting

factor attached to each profile

The measured driving demands
and profiles of 426 vehicles

extrapolated to a full year of
driving

Vehicle driving data
requirements

Works with any dataset of traveling
patterns available

At least measurements or
information of one day traveling

patterns (randomly selected
among all car owners in order to

be representative)

Measurements of the driving
patterns, preferably with GPS, of
at least several weeks in a row per
vehicle (randomly selected among

all car owners)

Benefits

Not computationally demanding and
can therefore be used in most

optimisation models, regardless of the
size of the model

200 DDP gives a good
approximation of the driving

profile/demand of the passenger
car fleet

Good approximation of the
driving profile, storage between

days can be included in the
model, possibility to analyse

research topics related to
individual charging patterns

Drawbacks

Risk of over-estimating the V2G
potential, no possibility to analyse

research topics related to individual
charging patterns

Computationally demanding, no
connections between days in the
model, no possibility to analyse

research topics related to
individual charging patterns

Computationally demanding,
extrapolation of the relatively

short measured period of several
months to a full year

2.2.1. Aggregated Vehicle Profile (AGG)

AGG uses the values averaged from the measured individual vehicles. An extrapo-
lation of the measured driving distance of about 2 months per vehicle in the GPS vehicle
data-set to a full year of driving by using the measured period repeatedly, yields an average
yearly driving distance of about 15,000 km per vehicle. With AGG, it is thereby assumed
that all vehicles are driving 15,000 km per year. Furthermore, we used the 426 extrapolated
vehicles to get the share of the vehicle fleet that are being parked each hour and being out
driving each hour, respectively.

The GPS vehicle data-set comes from driving patterns of fossil fuel cars. Some of
the driving distances are not possible for EVs, due to the limited range of EVs. From the
GPS vehicle data-set, we have estimated how large share of the kilometers driven by the
measured fossil fueled vehicles that could be covered with EVs. The share of the yearly
kilometres that can be run on electricity per vehicle depends on the EV battery capacity,
the assumed deployment of charging infrastructure and charging power. For example, the
shares of the distances driven on electricity, when assuming a charging power of 7 kW,
charging connection exclusively at the home location and applying 15, 30, and 85 kWh EV
battery capacities, are 71%, 83%, and 94%, respectively (see Figure A2 in Appendix C).

The model optimises the charging and discharging to the grid of the aggregated EV
battery with an hourly time resolution, and since this approach entails only an aggregated
vehicle profile, it is assumed that a share of the fleet is parked and a share is out being
driven. Therefore, with the AGG approach, there is the risk that a vehicle that is standing
still can be charging for a vehicle that is out driving. Thereby over-estimating the potential
to use the EV batteries for optimising the charging and for V2G. Data for how large share
of the fleet that is parked, respectively out driving, each time-step in the model is based on
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data from the GPS vehicle data-set. The main benefits with AGG is that the approach can
be used in most optimisation models, regardless of the size of the model.

2.2.2. Representative Daily Driving Profiles (DDP)

The aim of using DDP in the model is to account for individual driving profiles while
still keeping the number of variables in the model relatively low. The DDP divides the
measured vehicles into several daily driving profiles. For each representative driving
profile and time-step, all the vehicles in that category are either being parked or out driving.
This strategy thereby solves the problem associated with the AGG approach where the
collective idle vehicle battery capacity can be charged even though the electricity is needed
by vehicles that are on the road.

The GPS vehicle data-set consist of 27,879 measured days, including days during which the
measured vehicles are driving, as well as, not driving. We call these 27,879 measured days for
daily driving profiles. In the present work, a K-means clustering method [27] is applied to
determine (i) which of the daily driving profiles; (ii) how many of the daily driving profiles
that is needed; and (iii) how these daily driving profiles should be weighted in relation
to each other, to represent the curve of total number of daily driving profiles. Figure 1
shows the total average daily driving distance over the day for sample sizes of 10, 50, 100,
200, and 500 representative days, as well as for the entire 27,879 measured days. Thus,
approximately 200 representative days out of the total of 27,879 measured 1-day profiles
are required for a reasonable representation in terms of both the driving distance and the
shape of the average driving profile. Thus, in this study, the driving demand for EVs is
approximated by 200 representative daily driving profiles.
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Figure 1. Profiles describing the period during an average day in which the driving takes place, i.e.,
the share of the daily driving distance distributed over the day, for different numbers of sample sizes
of representative days (27,879 is the full-sample size).

The main drawback of the applied modelling approach (i.e., DDP) using represen-
tative daily driving profiles is that it does not allow for electricity storage in the vehicle
batteries from one day to another. Thus, even though there is a good overall representation
of the demand profiles from the representative days there is no information on the link-
ages between such representative days. The model also becomes more computationally
demanding, as compared to AGG, due to the increased number of variables with DDP.

2.2.3. Yearly Driving Profiles (YDP)

The GPS vehicle data-set includes high-quality data for 426 gasoline- and diesel-driven
vehicles measured for 30–73 days per vehicle, i.e., no vehicle has a full year of logging. An
alternative approach to using representative daily driving profiles is to use the measured
driving period per vehicle and extrapolate the data from the original period to 12 months.
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This means that the driving data for each vehicle are used repeatedly with respect to days
of the week, such that the driving data have always the same weekday as the other load
data. In this way, we get 426 yearly driving profiles.

Figure 2 shows, for the 426 yearly driving profiles, the share of the year being parked at
the home location, all parking at stops longer than 6 h, and all parking at stops longer than
1 h. Large variability is seen between the 426 yearly driving profiles in terms of the numbers
of kilometres driven per year (see Figure A1 in Appendix C) and the driving profiles and
hours being parked per year (Figure 2). This shows that the different driving profiles most
likely need to be charged differently and have different conditions for participating in V2G.

Energies 2021, 14, x FOR PEER REVIEW 7 of 26 
 

 

 
Figure 2. Share of the year for which the 426 driving profiles in the GPS vehicle data-set are being 
parked at home location, at stops longer than 6 h, and at stops longer than 1 h. The x-axis is sorted, 
among the 426 yearly driving profiles, from the profile with the most to the least hours being 
parked per year. 

2.3. General Model Description 
The cost-minimisation model of the electricity system, ENODE, is both an investment 

and dispatch model designed to analyse investments in electricity generation capacities 
and storage technologies, and the hourly dispatches of different technologies. It is also a 
Greenfield model (i.e., assumes an empty system as the starting point without any gener-
ation capacity in place). This can be motivated, since we assume no net CO2 emissions for 
the modelled year (2050) and thereby almost all of the current capacity needs to be re-
placed. The model has an hourly time resolution, run for 1 year and without inter-connec-
tions between regions. Figure 3 shows a schematic picture of the modelling applied in this 
work. 

 
Figure 3. Schematic picture of the modelling applied in this work. Everything inside the solid line is included in the model 
optimisation. GT = gas turbines; CCGT = closed-cycle gas turbine; CHP = combined heat and power; CCS = carbon capture 
and storage; V2G = vehicle-to-grid; EV = electric vehicle. 

The ENODE model is explained to the full extent by Göransson et al. [28]. The fol-
lowing refinements of the model have been made since the study of Göransson et al. [28]: 
(i) Garðarsdóttir et al. [29] improved the representation of thermal power plant flexibility; 
(ii) Göransson and Johnsson [30] added different flexibility measures; (iii) Johansson et al. 
[31] added new biomass and gasification electricity generation technologies. 

Equation (1) gives the objective function of the model. Equation (2) is the constraint 
giving that the demand for electricity must be met in all timesteps (all variables in the 

Figure 2. Share of the year for which the 426 driving profiles in the GPS vehicle data-set are being
parked at home location, at stops longer than 6 h, and at stops longer than 1 h. The x-axis is sorted,
among the 426 yearly driving profiles, from the profile with the most to the least hours being parked
per year.

The main advantage with this method is that the storing of electricity between days
can be captured, reducing the risk of under-estimating the potential of optimised charging
and V2G, compared to DDP. The main disadvantage with this approach is that more
variables are needed in the model, which means that either the model takes longer time to
run compared to AGG and DDP, or that less details are required in some other parts of the
model.

2.3. General Model Description

The cost-minimisation model of the electricity system, ENODE, is both an investment
and dispatch model designed to analyse investments in electricity generation capacities
and storage technologies, and the hourly dispatches of different technologies. It is also
a Greenfield model (i.e., assumes an empty system as the starting point without any
generation capacity in place). This can be motivated, since we assume no net CO2 emissions
for the modelled year (2050) and thereby almost all of the current capacity needs to be
replaced. The model has an hourly time resolution, run for 1 year and without inter-
connections between regions. Figure 3 shows a schematic picture of the modelling applied
in this work.

The ENODE model is explained to the full extent by Göransson et al. [28]. The
following refinements of the model have been made since the study of Göransson et al. [28]:
(i) Garðarsdóttir et al. [29] improved the representation of thermal power plant flexibility;
(ii) Göransson and Johnsson [30] added different flexibility measures; (iii) Johansson
et al. [31] added new biomass and gasification electricity generation technologies.
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optimisation. GT = gas turbines; CCGT = closed-cycle gas turbine; CHP = combined heat and power; CCS = carbon capture
and storage; V2G = vehicle-to-grid; EV = electric vehicle.

Equation (1) gives the objective function of the model. Equation (2) is the constraint
giving that the demand for electricity must be met in all timesteps (all variables in the
model are only allowed to be non-negative values). The full mathematical description of
the ENODE model, including all constraints and equations, is presented in Appendix A.

minCtot = ∑
p∈P

Cinv
p ip + ∑

p∈P
∑
t∈T

(
Crun

p,t gp,t + ccycl
p,t

)
(1)

∑
p∈P

gp,t + ∑
p∈PSTR

bdisch
p,t + ∑

dp∈DP
EDgrid

dp,t ≥ Dt + ∑
dp∈DP

ECPEV
dp,t + ∑

p∈PSTR

bch
p,t, ∀ t ∈ T (2)

where
Ctot is the total system cost
P is the set of all technologes
T is the set of all timesteps
PSTR is subset of P which includes two types of stationary batteries and two types of hydrogen storages
Cinv

p is the investment cost of technology p
ip is the investments in technology p
Crun

p,t is the running cost of technology p in timestep t
gp,t is the electricity generation from technology p in timestep t
ccycl

p,t is the the cycling cost (summed start-up cost and part load costs) of technology p in timestep t
bch

p,t is the electricity with which the storage type pSTR is charged at timestep t
Dt is the demand of electricity at timestep t
bdisch

p,t is the discharged to the grid with the storage type pSTR at timestep t
DP is the set of electric vehicle driving profiles
ECPEV

dp,t is the electric vehicle charging for driving profile dp at timestep t

EDgrid
dp,t

is the electric vehicle discharging to the grid for driving profile dp at timestep t

The model has the possibility to invest in a number of different available generation
technologies, such as, wind, solar, hydro, pumped storage, heat pumps, and different
types of thermal power plants (see Figure 3). The thermal power plants can be run on coal,
natural gas, biomass or waste. To balance the hourly supply and demand, investments are
also possible in different storage technologies, including stationary batteries and hydrogen
storage tanks and caverns.

Costs for the different power technologies are taken from the World Energy Out-
look [32], while cost and data for storage technology data is taken from several sources
(Technology data for energy plants by the Danish Energy Agency [33], Brynolf et al. [34]
and Nykvist & Nilsson [35]). Appendix B, Tables A1–A3, includes more information on the
assumed investment costs and properties of the different power and storage technologies
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and fuels included in the model. The model has an hourly time resolution and includes
load data from the European Network of Transmission System Operators [36], and MERRA
and ECMWF metrological data (solar [37,38] and wind [39,40]) for Year 2012.

2.4. Implementation of Electric Vehicles in the Model

Equations (3)–(8) are new equations in the model with the aim of optimizing EV
charging and discharging to the grid (i.e., V2G). The model can optimize the time of
charging and discharging to the grid with the limitation of always fulfilling a given hourly
passenger EV demand.

There are five constraints implemented in the model related to EV charging/discharging
that are imposed in the same way for the three EV integration approaches (i.e., AGG, DDP,
and YDP):

I. the maximum amount of charging at each time-step (Equation (3))
II. the maximum amount of discharging to the grid at each time-step (Equation (4))
III. the number of EVs connected to the grid that are available for charging and

discharging to the grid (Equation (5))
IV. the balance between the charging and discharging of the EV battery (Equations (6)

and (7))
V. the maximum EV battery storage capacity (Equation (8)).

AGG, DDP, and YDP use the same set of equations (Equations (3)–(8)) to integrate
EVs, thus, with some important exceptions. In the AGG approach, all vehicles are in the
same aggregated vehicle profile, i.e., the number driving profiles (DP) equals one. For the
DDP and YDP approaches, the number of driving profiles equals 200 and 426, respectively.
Thereby, the parameter FAdp,t, used in Equation (5), is in DDP and YDP, either 1 or 0
depending on whether or not the vehicles belonging to driving profile dp are parked and
connected to the grid (FAdp,t = 1) or not (FAdp,t = 0) at time-step t. In AGG, which only have
one aggregated driving profile, FAdp,t is instead a share of the fleet (i.e., a number between
0 and 1) that is connected to the grid available for charging or discharging to the grid at
timestep t.

Furthermore, Equation (7) is only included in the DDP approach, since in that ap-
proach the balancing equations of the battery are executed only on a daily basis (and not
between days). This means that the storage level of the battery at hour t + 1 is a function of
the storage level and the charging and discharging of the battery at hour t, except for the
last hour of the day (see Equation (7)).

ECPEV
dp,t ≤ NCdp,t ·CP ∀ dp ∈ DP, t ∈ T (3)

EDgrid
dp,t ≤ NCdp,t ·BS·n ∀ dp ∈ DP, t ∈ T (4)

NCdp,t ≤ FAdp,t ·Ndp ∀ dp ∈ DP, t ∈ T (5)

SLPEV
dp,t+1 ≤ SLPEV

dp,t + ECPEV
dp,t ·n− EDGrid

dp,t ·1/n− EDPEV
dp,t ∀ dp ∈ DP, t ∈ T (6)

SLPEV
,dp,tt−23 ≤ SLPEV

dp,tt + ECPEV
dp,tt ·n− EDGrid

dp,tt ·1/n− EDPEV
dp,tt ∀ dp ∈ DP, tt ∈ TT (7)

SLPEV
dp.t ≤ BS·Ndp ∀ dp ∈ DP, t ∈ T (8)

where
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TT is a subset of t consisting of the last hour of all days
n is the charging and discharging efficiency of the EV battery
NCdp,t is the number of electric vehcles that are connected to the grid for driving profile dp at timestep t
CP is the maximum charging power (set to 7 kW)

FAdp,t

is, in DDP and YDP, either 1 or 0 depending on whether or not the vehicles belonging to driving
profile dp are parked and connected to the grid at time-step t; and in AGG, it is a share of the fleet
that is parked and connected to the grid at timestep t

Ndp is the number of electric vehicles belonging to driving profile dp
SLPEV

dp,t is the storage level of the electric vehicle battery for driving profile dp at timestep t
EDPEV

dp,t is the electric vehicle discharging to the wheels for driving profile dp at timestep t
BS is the battery capacity of the electric vehicle

The number of EVs and individual battery capacities are exogenously given in the
model (i.e., not part of the optimisation as seen in Figure 3). The number of EVs and
the total distance driven by all vehicles is about the same for the three EV integration
approaches. The EV share of the total fleet in the model is set at 60%.

2.5. Parameters Varied

All the approaches to integrate the EV in the electricity system model are analysed for
the following geographical regions that have large differences in wind, hydro and solar
resources: central Sweden (electricity price area SE3), with substantial availability of hydro
power, good wind conditions and comparatively poor solar conditions; Ireland, with ex-
ceptionally good wind conditions; central Spain, with good solar conditions; and Hungary,
which is a region without hydro power and relatively poor conditions for both wind and
solar generation (see Figure A4). Each region is a closed system in the model without trade
connections to neighbouring regions. Two charging strategies are investigated:

• optimisation of the charging time to minimise the cost of meeting the electricity
demand (Opt)

• V2G strategy (V2G), which also includes the possibility to discharge the EVs to the
grid according to what is most advantageous from the electricity system point-of-view.

Furthermore, the results of the model runs with three different battery capacities
(15, 30, and 85 kWh per vehicle) and three different assumptions regarding the charging
infrastructure (all stops at the home location, all parking with stops longer than 6 h, and all
parking with stops longer than 1 h) are compared. The EV battery capacity in the model is
the same for all vehicles in the same model run and is defined as the usable share of the
EV battery size for the electricity system. In all the model runs, there is the requirement to
meet a given EV driving demand prior to participating in a V2G scheme.

3. Results
3.1. Comparison of the EV Integration Approaches Used

Table 2 lists the computational times to solve the optimisation model, number of
variables, and maximum/minimum values for the share of the year stopped for parking
when running the model with the three different EV integration approaches AGG, DDP,
and YDP. The maximum and minimum values for the share of the year parked at stops
longer than 1 h are very similar for DDP and YDP as seen in Table 2.

Figure 4 shows how the driving demand is distributed over an average day of the
year. Figure 4 compares representative daily driving profiles (DDP) with yearly driving
profiles (YDP) for an average day, i.e., the share of the daily driving distance distributed
over the day. The DDP is based on 200, 426, and 27,879 representative daily driving profiles
and the YDP is from 200 to 429 yearly driving profiles. As shown in Figure 4, the DDP or
YDP gives approximately the same average driving profile.

Figure 4 and Table 2 reveal that both DDP and YDP most likely provide a good
representation of the individual driving patterns in the model, and that 200 daily driving
profiles and 200 yearly driving profiles are most likely sufficient to represent the vehicle
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fleet in the region of Västra Götaland. However, DDP and YDP have substantially (>3-fold)
more variables and much longer solution times than AGG as seen in Table 2.

Table 2. Computational times of generating and solving the optimisation problem, number of model variables and
equations, average yearly driving distance and the share of the year parked at stops longer than 1 h for an aggregated
vehicle representation, yearly and daily driving profile approach.

Number of
Variables

Number of
Equations

CPU Time Per
Region (s)

Share of the Year Parked
at Stops Longer than 1 h

Average/Max/Min

Average Yearly
Driving Distance

(km per year)

Without electric vehicles 2,802,093 4,100,592 ~281 - -

Aggregated vehicle
representation (AGG) 2,828,445 4,109,376 ~241 89%/99%/66% 15,000

Representative daily
driving profiles (DDP) 9,046,053 5,857,392 ~1485 88%/100%/71% 13,800

Yearly driving
profiles (YDP) 17,022,065 7,842,576 ~3589 89%/99%/66% 15,000
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3.2. Impacts on Renewable Capacity and Electricity Generation

Figure 5 presents results from the modeling of the electricity system with ENODE,
showing the shares of variable renewable electricity (Figure 5a–c), the electricity discharged
to the grid from stationary batteries (Figure 5d–f), and hydrogen storage (Figure 5g–j), for
AGG, DDP, and YDP. Each data point in Figure 5 corresponds to one model run. Battery
size, EV integration approach and charging strategy has been varied. Variable renewable
electricity (VRE) consist of generation from solar and wind power.

As seen in Figure 5, in general, DDP either gives a lower share of electricity generation
from VRE or requires higher investments in other storage technologies than EV batteries
to achieve the same level of VRE compared to YDP or AGG, assuming the same charging
strategy and battery capacity. This is due to the possibility to store electricity between days
with YDP and AGG. Some of the day–night variations can be captured with DDP, which is
an important feature in order to understand how more solar energy can be integrated into
the electricity system, although both solar and wind power need also to store electricity
between days.

As seen in Figure 5a–c, in central Spain, Ireland and central Sweden, the share of VRE
is similar for the three approaches. The main difference between the approaches is that
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DDP requires—for some of the scenarios and regions—larger investments in technologies
supplying high net load situations, as compared to YDP and AGG (Figure 5). For example,
investments in stationary batteries in central Spain (only in the case with 15 kWh battery)
and investments in hydrogen storage in Ireland are substantially larger with DDP compared
to AGG/YDP. The possibility to store electricity between days can in AGG/YDP be handle
also by the EV batteries and thereby lower the need for investments in additional storage
technologies.
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Figure 5. Modelling results comparing the three different approaches; Representative daily driving
profiles (DDP), Yearly driving profiles (YDP) and Aggregated vehicle representation (AGG). (a–c)
Shares of electricity generation from variable renewable electricity (VRE), (d–f) electricity discharged
to the grid from stationary batteries and (g–i) electricity discharged from hydrogen storage for the
different regions, EV integration approaches, charging strategies and battery capacities. The values
on the x-axis represent battery capacities.

The results for DDP are similar in central Sweden and Hungary as YDP and AGG,
except for the case with 85 kWh batteries. In the case with 85 kWh batteries, the EV batteries
can help push in more wind power and increase the share of VRE with AGG and YDP. This
is not the case with DDP, since wind power demands storage over several days.

There were, as pointed out, a noticeable difference between the results for DDP and
AGG/YDP. However, no major difference in results were seen between AGG and YDP for
the model runs seen in Figure 5. Table 3 compares, between AGG and YDP, the shares of
VRE, the levels of electricity discharged to the grid per year from EV batteries, stationary
batteries and long-term hydrogen storage for some more scenarios than presented in
Figure 5. These scenarios include different regions and varies more parameters, such as,
testing three different charging infrastructure deployments and battery capacities.

Figure 5 and Table 3 indicate that for most scenarios, AGG can be a good enough
proxy to represent EVs in electricity system models. However, there are some scenarios
where a difference can be important to capture as seen in Table 3.
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Table 3. Share of variable renewable electricity (VRE), the amount of electricity discharged to the grid per year from
electric vehicle (EV) batteries, stationary batteries and long-term hydrogen storage for four regions, and the model EV
integration approaches AGG and YDP. Results marked with bold indicates a difference in results between AGG and YDP.
Opt = optimisation of the charging time to minimise the cost of meeting the electricity demand. V2G = vehicle-to-grid.

Central Spain
(AGG/YDP)

Hungary
(AGG/YDP) Ireland (AGG/YDP) Central Sweden

(AGG/YDP)

Share of variable renewable
electricity

15 kWh-Opt—home location 0.86/0.86 0.57/0.51 0.94/0.93 0.64/0.63
15 kWh-V2G—home location 0.87/0.87 0.70/0.60 0.94/0.94 0.65/0.66
30 kWh-V2G—home location 0.89/0.87 0.70/0.70 0.95/0.95 0.67/0.68
85 kWh-V2G—home location 0.90/0.90 0.75/0.74 0.96/0.95 0.70/0.70

15 kWh-V2G—6 h 0.87/0.86 0.70/0.70 0.95/0.93 0.65/0.66
15 kWh-V2G—1 h 0.87/0.86 0.70/0.70 0.94/0.94 0.65/0.65

Electricity discharge to the grid
from EV batteries [TWh/year]
15 kWh-Opt—home location 0/0 0/0 0/0 0/0
15 kWh-V2G—home location 19/10 7/4 1/1 1/1
30 kWh-V2G—home location 22/19 7/7 2/2 2/2
85 kWh-V2G—home location 22/22 7/7 3/3 3/3

15 kWh-V2G—6 h 19/14 7/6 1/1 1/1
15 kWh-V2G—1 h 19/16 7/6 1/1 1/1

Stationary battery storage
[TWh/year]

15 kWh-Opt—home location 17/19 2.5/2.1 0.4/0.4 0.1/0.1
15 kWh-V2G—home location 1/10 0/0 0/0 0/0
30 kWh-V2G—home location 0/1 0/0 0/0 0/0
85 kWh-V2G—home location 0/0 0/0 0/0 0/0

15 kWh-V2G—6 h 0/5 0/0 0/0 0/0
15 kWh-V2G—1 h 0/1 0/0 0/0 0/0

Hydrogen long-term storage
[TWh/year]

15 kWh-Opt—home location 0.8/0.9 0.1/0.1 2.8/3.0 0.1/0.1
15 kWh-V2G—home location 1.0/0.9 0/0 2.2/2.4 0/0.1
30 kWh-V2G—home location 0/0 0/0 1.5/1.9 0/0.1
85 kWh-V2G—home location 0/0 0/0 0.2/0.2 0/0

15 kWh-V2G—6 h 1.0/1.0 0/0 2.1/2.1 0/0.1
15 kWh-V2G—1 h 1.1/1.1 0/0 2.1/2.1 0/0

AGG yields a higher share of VRE than YDP for Hungary when the charging and
discharging to the grid are limited to only the home location and the battery capacity
is 15 kWh per vehicle (Table 3). As seen in Table 3, AGG gives then approximately 10
percentage point higher share of VRE in the Hungary electricity system than does YDP.
Higher investment and use of stationary batteries are also evident in central Spain for the
model runs with YDP compare to AGG. This is the case when assuming battery capacities
of 15 and 30 kWh, charging infrastructure at the home location, at stops longer than 6 h
and 1 h (see Table 3).

For central Sweden, none of the model runs shows a difference in results between
AGG and YDP (Table 3), which can be explained by the long-term storage capacity in
hydro power. In Ireland, both the share of VRE and amount of V2G are about the same for
AGG and YDP in all the model runs. However, the V2G potential at certain hours of the
year are over-estimated with AGG, resulting in a lack of investment and use in long-term
hydrogen storage, as seen in Table 3. The model has also been run with different numbers
of EVs (between 10% and 100% of the vehicle fleet) and different number of the vehicles
participating in V2G. However, no noticeable differences were seen between AGG and
YDP in those runs.

3.3. Aggregated Battery Storage Level and Charging Patterns

Figure 6 shows the aggregated storage level of the EVs batteries for the first 90 days
of the year in central Spain. Figure 6a compares the three different approaches (AGG,
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DDP, and YDP) with a 30 kWh battery capacity, access to the charging infrastructure at all
parking with stops longer than 1 h, and the possibility to engage in V2G. From Figure 6a
it can be seen that DDP, which lacks the possibility to store electricity between days, can
only handle day–night differences in electricity generation and load. With DDP, none of
the hours in Figure 6a exploits the full potential of the EV battery capacity (i.e., 155 GW in
central Spain). For these two reasons, DDP under-estimates the flexibility services provided
by the EV batteries in the electricity system.
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Managing variations within the day, the full EV battery capacity available is not
needed. However, in central Spain with a large share of solar power in the electricity
system, DDP still provides system flexibility within the day as seen in Figure 6a. This is
also seen in Figure 5, where, i.e., DDP needs to complement the flexibility of EV batteries
with greater investments in long-term hydrogen storage compared to AGG and YDP for
Ireland.

The YDP shows similar EV battery storage levels as the AGG for the case presented
in Figure 6a (i.e., 30 kWh and charging at all stops longer than 1 h). The EV batteries
are then used both to handle the day-night differences in electricity generation, mainly
from solar power, and to provide storage of electricity for several days. The possibility to
store electricity for a couple of days becomes especially important when providing system
flexibility for wind power. It is important to mention that Figure 6a gives the aggregated
storage level, where large differences exist among the 200 and 426 profiles in the DDP and
YDP cases, respectively (see Section 3.4).

In Figure 6b, a battery capacity of 15 kWh and charging/discharging to the grid being
available only at the home location are assumed and given for AGG and YDP. As shown in
Figure 6b, AGG will in such a scenario use more of the storage capacity in the EV batteries
than YDP. This results in less investments and use of stationary batteries and peak power
technologies with AGG than with YDP in central Spain (as seen in Table 3). AGG shows
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that it would be economical profitable to use more of the EV battery storage capacity if
possible. However, in this scenario AGG are over-estimating the V2G potential, since
it does not consider individual driving patterns which is the case with YDP. Individual
driving patterns limits the total storage capacity that can be used in the sense that some
vehicles are not available for V2G.

A minor over-estimation of the V2G potential with the AGG approach, when assumed
connection to the grid only at the home location, is also seen for a 30 kWh battery capacity
(see Figure 7). However, with a battery capacity of 85 kWh, AGG is as effective as YDP (see
Figure 7). In a windy region like Ireland without access to hydro power, investments in long-
term storage (such as hydrogen storage) are under-estimated with AGG compared to YDP,
assuming a battery capacity of 15 kWh and charging at the home location (see Figure 8).
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3.4. Individual Battery Storage Levels and Charging Patterns

It is only with YDP that individual driving profiles over more than one day in a row
can be obtained (since AGG only considers one aggregated driving profile and DDP only
representative daily driving profiles without the connection between days for individual
vehicles). The results from the modelling of YDP show that the charging and discharging
of the individual EVs differ strongly between the 426 yearly driving profiles in the model.

Figure 9 shows the levels of charging (Figure 9a) and discharging back to the grid
(Figure 9b), and the battery storage levels (Figure 9c) during a period of 30 days for 3
of the 426 profiles for central Spain. The EVs with the highest yearly driving distance
(~58,432 km per year) have more limited possibilities to store electricity for several days
and discharge back to the grid due to limitations on the battery capacity, and fewer hours
connected to the grid (Figure 9).
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capacity, with V2G and connected to the grid at all parking longer than 1 h.

However, for EVs with a low yearly driving distance (~1658 km per year) and the
median EV driving distance (~15,137 km per year), the EV batteries are to a large extent
used for discharging back to the grid following the generation of variable renewable
energy (mainly solar power for central Spain), since a shorter driving distance means more
potential time connected to the grid, as well as fewer hours spent charging the battery to
be used for driving.
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The large differences in charging patterns observed for the three profiles in Figure 9
indicates that for research questions concerning, for example battery conditions, individual
driving patterns might be important to consider in electricity systems modelling. As shown
in Figure 9c, the vehicles that have the maximum driving distance per year are cycled more
often and more rapidly between the high and low battery storage levels. V2G can cause
more severe cycling for some vehicles than for other vehicles, which cannot be captured
using an aggregated vehicle representation. Therefore, it is necessary to analyse individual
vehicles for these type of research questions.

Results from analysing the charging and discharging patterns from the 426 profiles,
indicates that there will be a spread in number of cycles per year among the 426 vehicles (a
range between 232 and 387 is found assuming a battery capacity of 30 kWh and connection
to the grid at all parking with stops longer than 1 h). However, we want to stress that in
the model used for this study, there is no incitement implemented in the model to charge
certain vehicles in a specific way. For example, the model did not include a minimisation
of the number of cycles per vehicle, only the total amount of cycles for all vehicles.

4. Discussion

The present study looks at different approaches for integrating EV charging into elec-
tricity system models. One of the approaches was to use an aggregated vehicle representa-
tion, while two of the approaches include individual driving profiles (i.e., 200 representative
daily driving profiles and 426 ~2-month driving profiles extrapolated to full-year driving
profiles). The electricity system model used in this study (ENODE) was designed so that
all three approaches could be run within a reasonable time-frame.

This work applies measured driving patterns from measured gasoline and diesel
vehicles for one region in Sweden. There are, of course, several concerns with using this
type of data, e.g., that the data represent only a small sample of all vehicles in only one
particular region. There is a lack of detailed GPS measured driving patterns that are
representative for the whole vehicle fleet for larger regions. The measured driving patterns
applied in this study will therefore not take into account national differences in driving
profile between the modelled regions. Thus, there may exist regional differences that this
study cannot capture. These regional differences could for example be working hours,
leisure time activities, as well as geographical factors like Sweden being a low population
density country.

Another uncertainty is the development of autonomous vehicles that may significantly
change the ways in which vehicles are used in the future (although the driving distribution
between night and day should be similar). This will then also most likely change the
way EV batteries can be used for electricity system flexibility. The extent to which we are
likely to own our vehicles in the future may also strongly influence driving patterns, and
therefore also the results presented in this paper.

This study concludes that an aggregated EV representation can be a good proxy in
most of our scenarios investigated, except when the charging infrastructure is limited
exclusively to the home location. These results indicate that previous studies using an
aggregated EV integration approach are not over-estimating the V2G potential. However,
in this study we have based the data for the aggregated EV representation on averaged
values from GPS measurements of driving patterns, while previous studies were mainly
using data from travel surveys as a basis for the aggregated EV representation. A study
comparing the results for an aggregated representation with averaged values based on
travel surveys and GPS measurements of individual driving patterns would be of interest.

5. Conclusions

This study shows that including individual driving patterns increases the number of
model variables by a factor of at least three, which of course affects the running time of
the model. Therefore, more comprehensive electricity system models that also include, for
example, trade between regions or several sectors, might not be suitable for something other
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than an aggregated vehicle profile with one or at most two vehicle representations. The
main results of this study are that different EV integration approaches have clear impacts
on the individual charging and discharging back to the grid. It is therefore important
to investigate when an aggregated vehicle profile (AGG) is a good proxy in models to
estimate the V2G potential of passenger EVs.

This study found that AGG can be a good proxy in most of the scenarios investigated,
except when (i) the charging infrastructure is limited exclusively to the home location in
regions without access to hydro power, and (ii) when analysing certain research questions
related to the battery health status, such as possible battery degradation from V2G. An
aggregated vehicle profile approach is over-estimating the V2G potential in the scenario
with 15 kWh battery capacity and grid access only at home location, which results in,
for example, a ~10 percentage point higher share of variable renewable electricity in the
Hungary electricity system than with YDP. Aggregated vehicle profile over-estimates the
V2G potential, since it is not considered individual driving patterns.

YDP is the best of the three EV integration approaches to represent the “true” value
of V2G, as YDP include individual driving patterns over several months. However, a
limitation of YDP is the lack of similar data-sets for other geographical regions with the
purposes of comparison. This makes it difficult to decide if the driving patterns of the
chosen 426 vehicles are representative for other geographical regions.

The DDP approach has the advantages that less than 200 measured days out of a total
of 27,879 days gives a good approximation of the aggregated driving profile/demand of
the passenger car fleet. With this approach, it is only important to have a data-set with
many measured days, possibly with different cars. However, applying DDP means a limit
in the model to store electricity in the EV batteries for more than one day. The result
shows that the possibility to store electricity between days, as can be resolved with YDP
and AGG, becomes important in terms of providing flexibility to the system from EVs
already with a 15 kWh battery. Thus, the DDP approach with intra-day storage significantly
under-estimates the storage potential of EV batteries and thereby also the value of V2G.
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Appendix A

Appendix A provides the full mathematical description of the model. Following
variables, parameters and sets are included in the model:

Ctot is the total system cost
P is the set of all technologes
T is the set of all timesteps

PVRE is subset of P which include 12 onshore wind power classes, offshore
wind power and solar PV

PSTR is subset of P which includes two types of stationary batteries and
two types of hydrogen storage
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Cinv
p is the investment cost of technology p

ip is the investments in technology p
Crun

p,t is the running cost of technology p in timestep t
gp,t is the electricity generation from technology p in timestep t

ccycl
p,t

is the the cycling cost (summed start-up cost and part load costs) of
technology p in timestep t

bch
p,t

is the electricity with which the storage type pSTR is charged at
timestep t

Dt is the demand of electricity at timestep t

bdisch
p,t

is the electricity discharged to the grid with the storage type pSTR at
timestep t

Rp is the capacity limit for investments in wind and solar resources
Wp,t is the profile limiting the weather dependent generation

gactive
p,t

is the active capacity of technology p which is spinning and thus can
generate electricity in timestep t

Lmin
p is the minimum load level of technology p

gon
p,t is the capacity of technology p which is started in timestep t

Con
p,t is the start-up cost of technology p in timestep t

Cpart
p,t is the part load cost of technology p in timestep t

Ecap is the cap on carbon dioxide emissions
Ep,t is the emissions from technology p in timestep t
Epart

p,t is the part load emissions from technology p in timestep t
Eon

p,t is the start-up emissions from technology p in timestep t
socp,t is the energy stored in the storage technology type pSTR and at time t
ηp is the round-trip efficiency of storage technology pSTR

CF is the the power-to-storage capacity factor
In f lowt is the hourly water inflow of energy to the reservoirs.
TT is the set of all timesteps including the last timestep of the day
DP is the set of electric vehicle driving profiles
ECPEV

dp,t is the electric vehicle charging for driving profile dp at timestep t

EDgrid
dp,t

is the electric vehicle discharging to the grid for driving profile dp at timestep t
n is the charging and discharging efficiency of the electric vehicle battery

NCdp,t
is the number of electric vehicles that are parked and connected to the grid for driving profile dp
at timestep t

CP is the electric vehicle charging power (7 kW)

FAdp,t

is, in DDP and YDP, either 1 or 0 depending on whether or not the vehicles belonging to driving
profile dp are connected to the grid at time-step t; and in AGG, it is the share of the fleet
connected to the grid at timestep t

Ndp is the number of electric vehicles belonging to driving profile dp
SLPEV

dp,t is the storage level of the electric vehicle battery for driving profile dp at timestep t
EDPEV

dp,t is the electric vehicle discharging to the wheels for driving profile dp at timestep t
BS is the capacity of the electric vehicle battery

The objective function of the model can be expressed as:

minCtot = ∑
p∈P

Cinv
p ip + ∑

p∈P
∑
t∈T

(
Crun

p,t gp,t + ccycl
p,t

)
(A1)

The demand for electricity has to be met in all timesteps:

∑
p∈P

gp,t + ∑
p∈PSTR

bdisch
p,t + ∑

dp∈DP
EDgrid

dp,t ≥ Dt + ∑
dp∈DP

ECPEV
dp,t + ∑

p∈PSTR

bch
p,t. ∀ t ∈ T (A2)

Generation must stay below installed capacity, weighted by profile, Wp,t, which is
weather dependent for wind and solar power (but constantly equal to one for thermal
technologies).

gp,t ≤ ipWp,t , ∀ t ∈ T, p ∈ P (A3)

Investments in wind and solar power cannot exceed regional resources capacity.

ip ≤ Rp , ∀ p ∈ PVRE (A4)
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Thermal cycling is accounted for by Equations (A5)–(A9) as follows:

gp,t ≤ gactive
p,t , ∀ t ∈ T, p ∈ P (A5)

Lmin
p gactive

p,t ≤ gp,t , ∀ t ∈ T, p ∈ P (A6)

gon
p,t ≥ gactive

p,t − gactive
p,t−1 , ∀ t ∈ T, p ∈ P. (A7)

gon
p,t ≤ ip − gactive

p,t−k , ∀ k ∈ K, p ∈ P. (A8)

ccycl
p,t ≥ gon

p,t Con
p,t +

(
gactive

p,t − gp,t

)
Cpart

p,t , ∀ t ∈ T, p ∈ P. (A9)

Equations (A5) and (A6) limits the generation of a technology to be between the hot
capacity and the minimum load. Equation (A7) controls the amount of capacity that is
started and Equation (A8) controls that capacity deactivated for at least the minimum
start-up time. Equation (A9) gives the hourly cycling cost for each technology.

The cap on total carbon dioxide emissions is constrained by

∑p∈P ∑t∈T

(
Ep,t gp,t + gon

p,tE
on
p,t +

(
gactive

p,t − gp,t

)
Epart

p,t

)
≤ Ecap. (A10)

Storage technologies (stationary batteries and hydrogen) are implemented in the
model with the following energy balance constraint:

socp,t+1 ≤ socp,t + ηpbch
p,t − bdisch

p,t , ∀ p ∈ PSTR, t ∈ T (A11)

The charge and discharge volumes are limited by the investment in storage capacity
and the power-to-storage capacity factor CF. Thus,

bch
p,t ≤ ipCFp , ∀ p ∈ PSTR, t ∈ T . (A12)

bdisch
p,t ≤ ipCFp , ∀ p ∈ PSTR, t ∈ T. (A13)

socp,t ≤ ip , ∀ p ∈ PSTR, t ∈ T. (A14)

In addition, the amount of energy stored is, of course, required to be less than or equal
to the storage capacity, as shown in Equation (A14), and all the variables are stated with
non-negativity constraints. Similar to the storage in (A11), hydropower storage is modelled
as is described in Equation (A15), respectively.

sochydropower,t+1 ≤ sochydropower,t + In f lowt − ghydropower,t , ∀ t ∈ T, (A15)

See Equations (3)–(8) in the article for a description of all equations that has been
added in order to integrate the different EV approaches in the model.

Appendix B

Appendix B gives some additional economical and technical data. Table A1 shows fuel
cost and properties. Table A2 shows cost and lifetime of different technologies and fuels
investment options in the model. In Table A2 no running costs are presented. This is due to
the fact that cost of cycling thermal generation are included explicitly in the optimisation.
Cycling costs consist of start-up costs and part-load costs and are taken from Jordan and
Venkataraman [41]. One exception is nuclear, where the start-up time is assumed to be 20 h
and the minimum load level 70% taken from Persson et al. [42]. An interest rate of 5% has
been used in the model.

Technology costs in the average literature estimates have been used for electrolysers,
fuel cells, batteries and hydrogen storage [33–35]. The hydrogen storage is divided into
tanks and caverns. To reduce the stress of the caverns they are set to have a maximum of 12
cycles per year, which makes the model invest in more expensive hydrogen tanks to cover
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more frequent variations. Costs for hydrogen compressors are assumed to be included
in the investment cost, and the efficiency loss of compression and storage is assumed to
be minor (0.2%). The electrolyser stack is assumed to be replaced during the lifetime of
the electrolyser, the net present value of the stack replacement is therefore included in the
investment cost of the electrolyser. Carbon capture and storage (CCS) has in the model a
capture efficiency of about 90%.

Table A1. Fuel costs and properties.

Fuel [Type] Low Heating Value C Intensity (tCO2/MWh) Fuel Cost (€/MWh)

Lignite 9 30 5.45
Hard coal 25 26 9.77

Natural gas 47 16 34.27
Biomass 19 31 40

Waste 0 10 1
Uranium 0 0 8.07

Biogas 21 16 0
Hard coal/biomass 25 26 12.97
Natural gas/biogas 47 16 30.32

Table A2. Technology investment, operation and maintenances costs (O&M) and lifetimes of some of the key technolo-
gies available in the model. CCS = carbon capture and storage; CHP = Combined heat and power; GT = gas turbine;
CCGT = closed-cycle gas turbine; H2 = hydrogen.

Lifetime
(Years)

Investment
Cost (€/kWel)

Fixed O&M
Cost

(€/kWel/year)

Variable
O&M Cost

(€/kWel/year)

Efficiency
(%)

Minimum Load
Level (Share of
Rated Power)

Start-Time
(h)

Start Cost
(€/MW)

Hard coal/Lignite a 12
Condense 40 1980 50 2.1 48 0.35 6 57

CCS 40 2925 106 2.1 40 0.35 0 57
CCS + bio-cofired 40 3363 127 2.1 39 0.35 12 57

Nuclear 0
Nuclear 60 5000 149 - 33 0.90 24 400

Natural gas a 0
GT 30 450 7.92 0.8 42 0.50 0 20

CCGT 30 900 12.96 0.8 61 0.20 0 43
CCS 30 1575 35.1 0.8 54 0.35 12 57

Bio a

Condense 40 1935 56 2.1 35 0.35 12 57
GT 30 450 7.92 0.8 42 0.20 0 20

CCGT 30 900 12.96 0.8 61 0.20 6 43

Intermittent a

Wind (onshore) 25 1476 34 1.1 - - - -
Wind (offshore) 25 2115 90 1.1 - - - -

Solar PV 25 585 10 1.1 - - - -

Storage b

Li-ion batteries c 15 135 0.27 - 95/95 - - -
Flow batteries c 30 52 - - - - - -

Electrolyser 30 900 24 - 80 - - -
Fuel cell 30 450 - 3 65 - - -

H2 tank storage c 40 45 - - 100 - - -
H2 cave storage c 50 11 - - 100 - - -

a The value for investment costs, fixed/variable O&M costs are the taken from the World Energy Outlook assumptions of the IEA from the
2016 edition [32] and has been extrapolated for Year 2040 to Year 2050. Investment costs for CCS technologies are obtained from the Zero
Emission Platform [43]. b Storage technology data is obtained from Technology data for energy plants by the Danish Energy Agency [33],
Brynolf et al. [34], and Nyqvist and Nilsson [35]. c The units for these are per kWh.

In the model, high resolution wind profiles from the ERA-Interim data is merge into
12 wind classes per region. Table A3 shows the full load hours (FLH) and the maximum
capacity to invest in per country and wind class, as well as, for offshore wind and solar
PV. Furthermore, the wind power generation profiles used in the model are calculated for
wind turbines with low specific power (200 W/m2) [44]. We use a combination of two
data set MERRA and ECMWF ERA-Interim (year 2012), whereby the profiles from the
former are re-scaled with the average wind speeds from the latter [39,45,46]. The wind
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farm density is set to 3.2 MW/km2 and is assumed to be limited to 10% of the available
land areas [47]. Solar PV is modelled as mono-crystalline silicon cells installed with optimal
tilt with one generation profile for each region. Solar radiation data from MERRA is used
to calculate the generation with the model presented by Norwood et al. [38], including
thermal efficiency losses.

Table A3. Full-load hours (FLH) and maximum capacity (Cap) limits for onshore wind classes 1–12, offshore wind, and
solar PV.

Wind Class (WC)
and Technology

ES3 HU IE SE2

FLH [h] Cap [GW] FLH [h] Cap [GW] FLH [h] Cap [GW] FLH [h] Cap [GW]

Onshore WC 1 960 0.4 1190 0.0 - - - -
Onshore WC 2 1550 3.6 1670 1.3 - - - -
Onshore WC 3 2020 12.0 2100 5.5 - - 2030 0.6
Onshore WC 4 2310 7.1 2370 7.8 - - 2230 4.5
Onshore WC 5 2560 6.1 2570 2.4 - - 2440 6.9
Onshore WC 6 2790 6.3 2750 1.3 - - 2620 9.9
Onshore WC 7 3020 4.6 3070 2.4 - - 2900 9.1
Onshore WC 8 3300 1.3 3350 0.2 - - 3270 11.6
Onshore WC 9 - - - - - - 3700 1.5
Onshore WC 10 - - - - 4240 0.3 4120 1.7
Onshore WC 11 - - - - 4640 13.8 4600 0.5
Onshore WC 12 - - - - 5360 2.1 5260 0.1
Offshore wind - - - - 5360 . . . 5260 . . .

Solar PV 1770 unlimited 1360 unlimited 1000 unlimited 1050 unlimited

Appendix C

Appendix C and Table A4 gives some additional vehicle input data and specifications.

Table A4. Model assumptions connected to electric vehicles.

Central Sweden Ireland Hungary Central Spain

EV share of total passenger car fleet 60% 60% 60% 60%
Number of EVs (million) * 2.9 1.7 2.7 5.2

EV electricity consumption at the
wheels (kWh/km) 0.17 0.17 0.17 0.17

Maximum charging power (kW) 7 7 7 7
Battery round-trip efficiency 90% 90% 90% 90%
Degradation cost due to V2G 0 0 0 0

* The passenger car fleet is assumed to increase by 37% until Year 2050 as compared to Year 2016 [48].

The investments cost for EV batteries are assumed to be taken by the EV owner and can
be used by the electricity system for free, i.e., no investment or operational and maintenance
costs for the EV batteries are included in the electricity system model optimisation. The
location where the vehicles are parked most of the measured time period is assumed to be
the home location.

The 426 measured vehicles in the GPS vehicle data-set are in this study used to describe
the spread in the individual driving patterns. Figure A1 shows the number of kilometres
extrapolated to one year for the 426 measured vehicles. A wide range of the numbers of
kilometres driven per year for the vehicles is evident in Figure A1. Some of the vehicles are
driven 58,500 km per year (corresponding to ~9300 kWh), while other vehicles are driven
less than 2000 km per year (corresponding to ~300 kWh).

The share of the kilometres for which electricity is used in the GPS vehicle data-set
depends on the available EV battery capacity, the deployment of the charging infrastructure,
and the maximum charging power. Figure A2 shows how the share of the kilometres driven
in the GPS vehicle data-set using electricity depends on the EV battery capacity, assuming
a charging power of 7 kW.
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Figure A3 shows the share of the fleet that is parked connected to the grid and thereby
available for charging and discharging back to the grid. Figure A3 shows the parking
during an average day, in aggregate form; each day has a specific pattern according to the
average yearly profile of the 426 measured vehicles.
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Appendix D

Appendix D shows the regions modelled. All the scenarios are analysed for four
geographical regions that exhibit major differences in wind, hydro, and solar resources.
Figure A4 shows the regions of Europe, with the four regions modelled in this study shaded
blue: central Sweden (electricity price area SE3), Ireland, central Spain, and Hungary.
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