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We investigate heat circulators where a phase coherent region is contacted by three leads that are either
normal- or superconducting. A magnetic field, and potentially the superconducting phases, allow to control
the preferential direction of the heat flow between the three-different temperature-biased contacts. The main
goal of this study is to analyze the requirements for heat circulation in nonideal devices, in particular focusing
on sample-to-sample variations. Quite generally, we find that the circulation performance of the devices is
good as long as only a few transport channels are involved. We compare the performance of circulators with
normal conducting contacts to those with superconducting contacts and find that the circulation coefficients are
essentially unchanged.
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I. INTRODUCTION

With the miniaturization of electronic circuits and the
possibility of fabricating devices operating at the nanoscale,
control and management of heat flows [1] is becoming in-
creasingly important. On the one hand, the performance of
nanodevices can critically depend on ultracold temperatures
[2]. Therefore the ability to control heat flows is for instance
very useful when developing microrefrigerators, making it
possible to operate on-chip cooling [2,3]. On the other hand,
from a different perspective, heat control in circuits is a fun-
damental requirement when heat itself is used for operations
[4,5], as in the field of coherent caloritronics [6–8] that has
recently attracted a lot of attention.

In this context, it becomes important to design and analyze
devices which provide versatile and tunable control over heat
flows. Many such devices have been investigated so far, both
theoretically [9–30] and experimentally [31–36], including
thermal transistors [37–40], valves [41,42], interferometers
[43,44], thermal routers [45,46], and a large variety of ther-
mal rectifiers. Another key element for heat management,
which has been less studied, is represented by circulators:
these are multiterminal systems that are able to steer the
heat conduction in a preferential direction (e.g., from a given
terminal to the next one only in the anticlockwise direction).
With this motivation, a three-terminal heat current circula-
tor has recently been suggested [47]. Such a device works
similarly as charge current circulators [48–51], which are cru-
cial for electronics. Beyond that, three-terminal structures for
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coherent charge current control are also of interest for quan-
tum networks [52,53].

The three-terminal device that has recently been suggested
as a heat circulator consists of a ringlike structure with su-
perconducting contacts, penetrated by a magnetic field, see
Fig. 1(b). The superconducting system is of special interest
for several reasons. It has been shown in recent years that
heat currents carried by quasiparticles in superconducting de-
vices can be coherently controlled via superconducting phase
differences [43,54,55]. This has started the field of coherent
caloritronics, reviewed in Ref. [7], where a circulator element

FIG. 1. Three-terminal conductors for heat circulation.
(a) Generic setup consisting of a scattering region (gray) with three
normal contacts denoted by Ni and threaded by a magnetic field
B. (b) The same setup with superconducting contacts. (c) Sketch
of the simplest realization of the scattering region, made of three
sites that are coupled to each other with hopping amplitude t and to
the contacts with γ . [(d) and (e)] Modifications of (c) allowing for
return paths including different fractions of the total flux. Here, we
have an additional hopping t ′ to all sites not included in the external
“circle.” These modified setups are addressed in Sec. V.
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can become part of the basic toolbox. From a fundamental
perspective, superconducting phases give an additional con-
trol knob and heat can be circulated independently of charge
currents. However, at the same time, heat control in general
and heat circulation more specifically is equally of interest
in normal conducting devices. Still, heat circulation in three-
terminal normal conducting systems has, to our knowledge,
not been considered so far.

In this paper, we analyze three-terminal heat-current cir-
culators from different perspectives. (1) We investigate the
performance of heat circulation in a similar setup as in
Ref. [47] with normal conducting as well as with super-
conducting contacts, see Fig. 1(a). This analysis actually
shows that under certain conditions heat circulation can
even be more effective in the absence of superconductivity.
In contrast to the earlier proposal, where the gap was as-
sumed to be constant, we fully include the self-consistent
temperature-dependence of the superconducting gap. (2) The
heat circulator of Ref. [47] consists of a simplified setup
with three central sites tunnel-coupled to each other and to
the superconducting contacts, penetrated by a homogeneous
magnetic flux, see Fig. 1(c). We perform a detailed study
on conductors deviating from the ideal ring-structure, see,
e.g., panels (d) and (e). A main consequence of this is that
the enclosed flux varies with each trajectory that a particle
can follow between the contacts. We show how this can lead
to a deterioration and, in the most extreme cases, even to a
full suppression of the circulation effect. We also discuss the
conditions under which heat circulation is instead preserved.
(3) We further investigate how realistic limitations can im-
pact this ideal setting and analyze in detail the statistics of
the circulating coefficient and its constituents. Previously, it
has been shown how disorder can suppress phase-coherent
control of heat flows [56,57]. Here, we analyze the role of
sample-to-sample variations of onsite energies and coupling
constants in the three-site structure and in the modified ones
in Figs. 1(d)–1(e). In addition, we also consider as the central
scattering region a chaotic cavity which we take as a model
of an extended quantum system [58]. Here, by using random
matrix theory methods [59], we study the sample-to-sample
variations of heat conductances and rectifications, in the same
spirit of universal conductance fluctuations studies.

This analysis is important for experimental realizations of
such circulators. However, most importantly, it gives detailed
insights into the working principles of the circulator device.
To improve the understanding of the device, we do not only
study the circulation coefficient, but also analyze the heat
conductances between terminals as well as rectification co-
efficients between pairs of terminals, separately.

This paper is organized as follows. In Sec. II, we lay out the
general model and define the quantities we use to characterize
a three-terminal device with either normal or superconducting
contacts. The simplest realization of such a device [Fig. 1(c)]
is investigated in Sec. IV, where normal and superconducting
systems are compared. Then, more complicated setups, such
as those in Fig. 1(d) and 1(e) and also a chaotic scattering
region, are studied in Sec. V. Finally, in Sec. VI, we draw our
conclusions and summarize the most relevant conditions to
achieve a good heat circulation. Two appendices are dedicated
to technical and/or complementary details.

II. THREE-TERMINAL CONDUCTORS FOR HEAT
CIRCULATION

We consider a general three-terminal device, composed of
three contacts, connected to a central conducting region (see
Fig. 1). Each terminal has a temperature Ti (i = 1, 2, and 3)
and an electrochemical potential μi. Our goal is to character-
ize the heat circulation properties of such a device, in the case
where temperature biases (but no voltage ones) are present in
the system. These transport properties depend on the details
of the central region which is connected to the terminals and,
in the framework of a scattering theory approach [60,61], are
determined by a scattering matrix. In contrast to Refs. [62,63],
we assume the central, ring-shaped device to be small with
respect to the quasiparticle coherence length, guaranteeing
coherent heat current control over the entire central structure.
As Figs. 1(a) and 1(b) illustrate, we consider both the case
where the terminals are normal metals and the one where
they are superconductors. The main aspects distinguishing the
two scenarios are that in the superconducting system heat and
charge transport are very different and that the superconduct-
ing phases yield additional control parameters to tune the heat
circulation. However, many of the properties we are interested
in also occur in a normal conducting system and this is why
we start with this case. In the remainder of this section we
introduce the model describing the simplest realization of the
scattering region [Fig. 1(c)].

A. Normal conducting heat circulator

The most basic setup in which heat circulation is possible
is a ring that can be modelled by a simple three-site conductor
[47]. Any trajectory starting and ending at the same terminal
encloses a magnetic flux n� which is an integer multiple (n ∈
Z) of the magnetic flux � = ∫

ringd2r B, given by the surface
integral of the magnetic field B (perpendicular to the plane)
inside the ring. For more complex structures, the enclosed flux
depends on the details of the trajectories. This, including the
extreme case where the conductor is a chaotic cavity without
any preferred trajectories, will be explored in Sec. V.

The setup represented in Fig. 1(a), together with (c), is a
normal conducting version of what has been investigated in
Refs. [47,64]. It consists of three sites (labeled by i = 1, 2, 3)
with Hamiltonian W , that are connected by a hopping ampli-
tude γ to their respective lead. The Hamiltonian W contains
on-site energies εi on the diagonal and hopping amplitudes
t̃i j (from j to i) elsewhere. In the presence of an external
magnetic field the hopping amplitudes have the form t̃i j =
ti jeiθi j , where ti j can be taken real and symmetric, while the
phases θi j = − e

h̄

∫ i
j A · d� (e > 0 is the elementary charge)

encode the effect of the magnetic field. For any closed path,
a particle thus gains a phase shift which is proportional to
the flux enclosed by that path. In particular, one has the con-
straint θ13 + θ32 + θ21 = 2π�/�0 ≡ α, with �0 = h/e the
flux quantum. Quite generally, for such a system the scattering
matrix S (E ) at energy E is obtained in terms of W as (see
Appendix A for details)

S (E ) =
[(

1 − iE

�

)
13 + iW

�

]−1[(
1 + iE

�

)
13 − iW

�

]
,

(1)
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where � = πγ 2ν and ν is the density of states in the normal
leads. Considering the geometry in Fig. 1(c), we explicitly
have

W =

⎛
⎜⎝

ε1 t12e−iα/3 t13eiα/3

t12eiα/3 ε2 t23e−iα/3

t13e−iα/3 t23eiα/3 ε3

⎞
⎟⎠. (2)

Modifications of W , describing the setups in Figs. 1(d) and
1(e), are introduced in Sec. V B. Note that the scattering
matrix obtained according to Eq. (1) is 2π -periodic in the
dimensionless flux α.

B. Superconducting heat circulator

In this subsection, we address the setup sketched in
Fig. 1(b), where the three contacts are in a superconducting
state. Each of them is therefore characterized by the (real-
valued) magnitude of the gap 
i and a superconducting phase
ϕi. In order to have a meaningful comparison with the normal
conducting system introduced before, we self-consistently
take into account the temperature dependence 
i(Ti ) of the
gap. The scattering matrix Ssc of this three-terminal super-
conducting device can be expressed in terms of the scattering
matrix S of the central region as [61,65]

Ssc = r + τ ′S0(16 − r′S0)−1τ. (3)

Here, the scattering at energy E of electrons and holes at the
central region is given by

S0(E ) =
(S (E ) 0

0 S∗(−E )

)
. (4)

The reflection (transmission) matrices r, r′ (τ, τ ′) of the ideal
normal-superconducting interfaces are given by [66]

reh = rhe = −diag
({

viu
−1
i

})
, (5a)

r′
eh = (r′

he)∗ = diag
({

eiϕiviu
−1
i

})
, (5b)

τee = (τ ′
ee)∗ = τ ′

hh = (τhh)∗

= diag
({

eiϕi/2u−1
i

√
u2

i − v2
i

})
, (5c)

in the Andreev approximation. We define

u2
i = 1

2

⎛
⎝1 +

√
E2 − 
2

i

E

⎞
⎠ = 1 − v2

i (6)

and diag denotes a diagonal matrix. With these ingredients,
Ssc in Eq. (3) fully describes the quasiparticle scattering pro-
cesses at energy E > maxi(
i ).

III. HEAT TRANSPORT OBSERVABLES

Temperature differences between the three contacts lead
to heat currents between them. Here, we are interested in
controlling the magnitude of heat currents and the preferential
direction in which they can circulate between the terminals.

A. Heat current operator

The starting point is the operator for the heat current into
reservoir i (see, e.g., Ref. [67])

Ĵi =1

h

∫ ∞

Emin

dE ′
∫ ∞

Emin

dE
∑

n=e,h

(
E + E ′

2
− μi

)

× [b̂†
i,n(E )b̂i,n(E ′) − â†

i,n(E )âi,n(E ′)] (7)

and its expectation value 〈Ĵi〉 = Ji. Here, we measure all en-
ergies with respect to the electrochemical potentials μi ≡ 0
which we assume to be equal for all i. The annihilation opera-
tors âi,n for incoming fluxes are connected to operators b̂i,n for
outgoing ones by the (elastic) scattering matrices given in the
previous section. The subscript n indicates electron- and hole-
like contributions to transport. To keep the notation simple,
we write Eq. (7) for the single-channel case; for multichannel
cases, such as treated in Sec. V B 5, the sum over n needs to be
extended to count channels in the contacts too. For a normal
conducting system, the integral starts at Emin = 0, while the
lower bound is Emin = 
 in the superconducting case. Here,

 = 
(Ti ) = maxi(
i(Ti )) is the magnitude of the largest gap

i in the problem at given temperatures Ti.

B. Heat conductance

To characterize the heat transport of the devices shown
in Fig. 1, we consider the linear-response heat conductances
in the presence of small temperature differences. A standard
linear-response calculation for Ji = ∑

j κi j |Ti, j≡T δTj yields
the heat conductance matrix with elements κi j ≡ κi j |Ti, j≡T .
For the normal conducting case, one finds, taking together
electron- and hole contributions,

κi j = − 1

hT

∫ ∞

−∞
dE E2 f ′(E )(δi j − |Si j |2). (8)

Here, f (E ) = [1 + exp(E/kBT )]−1 is the Fermi function at
temperature T . For the system with superconducting contacts,
we obtain instead

κsc
i j = − 1

hT

∫ ∞




dE E2 f ′(E )
[
2δi j − Tr

(
Ssc

i j
†Ssc

i j

)]
. (9)

The trace appearing in this case is to be taken over the
electron-hole degree of freedom.

C. Heat rectification and circulation

It has been shown in Ref. [47] that it is possible to achieve
a situation where the heat preferentially flows in a given
direction by tuning the magnetic flux and/or imposing a
superconducting phase bias among the terminals. In linear
response, this requires that the heat conductances present a
rectification effect with κi j 	= κ ji for i 	= j. To quantify this
effect, we introduce the rectification coefficient

Ri j = κi j − κ ji

κi j + κ ji
. (10)

The heat circulation can be quantified via the coefficient

C = κ13κ32κ21 − κ12κ23κ31

κ13κ32κ21 + κ12κ23κ31
. (11)
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It takes the value C = +1 for a perfect counterclockwise cir-
culation and C = −1 for a perfect clockwise one, which arise
for the limiting cases where either κi j = 0 or κ ji = 0. In the
superconducting system, the definitions for Rsc and Csc are
identical to the previous ones, simply replacing each κi j with
κsc

i j .
It is instructive to understand how the circulation and rec-

tification coefficients C and R are related to each other. In the
fully symmetric case, where all anticlockwise heat conduc-
tances are equal to κcw and all the clockwise ones are equal to
κcw, the rectification and circulation are given by

R = κcw − κcw

κcw + κcw
and C = κ3

cw − κ3
cw

κ3
cw + κ3

cw

. (12)

The relation between the two coefficients is more direct in
the case of weak rectification, κi j − κ ji 
 κi j + κ ji, where we
find

C ≈ R12 + R23 + R31. (13)

IV. LINEAR-RESPONSE HEAT CIRCULATION IN AN
IDEAL THREE-SITE SETUP

In this section, we show the results of our analysis for the
ideal three-site setup of Fig. 1(c), starting with the normal
conducting system and then comparing its performance with
the superconducting heat circulator.

A. Normalconducting contacts

We consider the specific setup combining Fig. 1(a) with
1(c), for which the model has been introduced in Sec. II A. Its
properties are particularly simple in the symmetric situation
with equal on-site energies εi = ε and hopping amplitudes
ti j = t ; we will address this simple case in the present
section. Then, all heat conductances in the same direction
(clockwise/anticlockwise) are equal to each other. The circu-
lation coefficient, obtained from Eqs. (8) and (11), is shown as
a function of the magnetic flux in Fig. 2(a) and as a function of
temperature [inset of (a)]. Concerning the dependence on the
magnetic flux, the ideal ring shape of the system constrains
C to vanish at α = 0, π, 2π , meaning that for these fluxes it
is equally probable for the heat current to circulate in both
directions. Moreover, the circulation coefficient is antisym-
metric about the point α = π and is maximal at α = 3π/2
for a large range of parameters. As far as temperature effects
are concerned, Fig. 2(a) shows that by increasing T , the cir-
culation coefficient is typically reduced. The typical scale on
which the effect of a finite temperature becomes important is
kBT ∼ �.

This means in particular, that in the regime kBT 
 � the
temperature dependence of the circulation coefficient (and of
the underlying heat conductances) is negligible. The reason
for this is that the scattering matrix S can in this limit be taken
as energy-independent, setting E = 0 in Eq. (1). Then, Eq. (8)
reduces to

κi j = κ0(|Si j |2 − δi j ), (14)

FIG. 2. Circulation coefficient C for the basic three-site ring:
(a) as a function of the dimensionless magnetic flux α for a hopping
amplitude t = � and different temperatures (inset: as a function
of temperature for different hopping amplitudes and α = 3π/2).
(b) Low-temperature limit, where κi j can be evaluated from Eq. (14).
Here, we plot again C vs α for different on-site energies (inset: C vs
t/� for α = 3π/2 and the same values of ε as in the main plot).

where κ0 = π2k2
BT/(3h) is the thermal conductance quan-

tum.1 The scattering matrix elements at E = 0, obtained from
(1), have the simple form

S31 = S12 = S23 = 2e2iα/3t̄ (t̄ + iye−iα )

2it̄3 cos α − y(3t̄2 + y2)
,

S13 = S21 = S32 = 2e−2iα/3t̄ (t̄ + iyeiα )

2it̄3 cos α − y(3t̄2 + y2)
,

S j j = t̄2(1 + 3iε̄) − y2y∗ − 2it̄3 cos α

2it̄3 cos α − y(3t̄2 + y2)
, (15)

where ε̄ = ε/�, t̄ = t/�, and y = 1 + iε̄. Note, that in this
special case, heat and charge circulation are the same, as
the thermal and electrical conductances are related by the
Wiedemann-Franz law.

We now show how C depends on ε and t , in this low-
temperature regime, kBT 
 �. In Fig. 2(b), C is shown as
a function of α for different on-site energies ε and the inset
shows the dependence on t . We see that the optimal hopping

1Notice that this approximation was indeed used in Ref. [47] where
the superconducting circulator was proposed. As we discuss in the
following, this is a point to be careful about, as the presence of
the superconductor in general further enhances the energy-dependent
features of the scattering matrix.
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FIG. 3. (a) Circulation coefficient Csc for the superconducting
system with critical temperature Tc as a function of the magnetic flux
α for ε = 0 and for a hopping amplitude t = � = 5kBTc. Inset: the
same, but with � = kBTc. (b) Csc as a function of t , for α = 3π/2,
ε = 0 and � = 5kBTc. In both panels, no phase bias is applied be-
tween the superconducting contacts.

amplitude is t = � but a close-to-maximal circulation coeffi-
cient is also found for a quite large range of values around t =
�. In addition, Fig. 2(b) shows that the circulation coefficient
is not very sensitive to ε: a deviation of the on-site energy from
ε = 0 makes the curves more asymmetric, slightly shifting
the value of α at which the maximum circulation coefficient
is reached. Overall, as also shown in the inset, the effect of
increasing |ε| is to reduce the circulation coefficient.

B. Superconducting contacts

We now compare the results for the normal conducting
device, analyzed above, with those of a superconducting cir-
culator, introduced in Sec. II B. Before starting the discussion,
it is worth noting that, in the absence of phase biases, also the
superconducting device is completely symmetric and there-
fore all clockwise heat conductances are equal to each other
(idem for the anticlockwise heat conductances). We will first
consider precisely this case and show the effect of phase
biases later on. Moreover, in order to keep the discussion as
simple as possible, we assume from now on that the three
superconductors have the same gap amplitude 
 = 
1 =

2 = 
3, the temperature dependence of which is calculated
self-consistently.

We show in Fig. 3(a) Csc as a function of α for ε = 0,
different temperatures and t = � = 5kBTc, where Tc is the
critical temperature of the superconductor. Similarly to the
normal system, in this low-temperature regime, it is possible

to reach a close-to-maximal clockwise (Csc = −1) or coun-
terclockwise (Csc = +1) circulation. Hence, as for the normal
circulator, the most favorable regime for a good circulation
coefficient is the low-temperature regime. Again this regime is
fixed by kBT 
 �, where now T should at the same time not
exceed the critical temperature Tc for the system to be in the
superconducting state. Qualitatively, in this regime we find the
same result as in Ref. [47], however at modified parameters
and with small changes due to the self-consistent evaluation
of the temperature-dependence of the gap amplitude 
.

When reducing � with respect to T and Tc, Csc is typically
reduced: an example of such a trend is shown in the inset,
where � = kBTc. This considerable temperature-dependence
is due to the fact that the energy dependence of the scattering
matrix is enhanced compared to the one of the normal con-
ducting system by the presence of the superconducting gap.

As further features, we observe that the value of α at which
the maximal circulation coefficient |Csc| is reached in general
depends on the interplay between the parameters t , T and �.
In many cases, though, the maximum is found at α = 3π/2,
as in Fig. 3(a). In addition, Fig. 3(b) shows that the maximal
circulation coefficient at α = 3π/2 is achieved for a hopping
amplitude close to t = � (here, again, the exact value of the
maximum as a function of t slightly depends on temperature).
This plot is specific to the choice �/kBTc  1: at lower ratios,
the behavior is quite different (not shown).

Comparing Fig. 2 and 3 only reveals small differences
between the normal- and superconducting systems. It is nat-
ural to ask whether the superconducting device offers some
advantages with respect to the normal one. Let us start with
the case where no phase biases are imposed among the su-
perconducting terminals and compare the performances of the
normal- and superconducting devices, which we present in
Fig. 4(a). Here, we show the ratio between the circulation co-
efficients Csc and C at α = 3π/2, where we have the maximal
counterclockwise heat circulation for most values of t . We
see that the normal system usually performs better than the
superconducting one, at any temperature.2 In Fig. 4, we chose
�/kBTc = 5. We have verified that only for much larger ratios
(over 30), it is possible that Csc > C for hoppings t ∼ 0.1�.
In addition, one should be aware that the heat conductance
in the superconducting device is typically smaller than that
of the normal one, as shown in Fig. 4(b). This means that
the amount of circulated heat is typically larger in the normal
conducting compared to the superconducting setup. We can
therefore conclude that, in the absence of phase biases, there
is no specific advantage of the superconducting with respect
to the normal conducting device.

Nevertheless, the latter is more versatile as it offers an
additional control parameter to tune the circulation, namely,
the possibility of imposing phase biases between different
terminals. In Ref. [47], it was shown that when the heat
circulation is controlled by just imposing phase biases (and
no magnetic flux), an opposite behavior compared to Fig. 3(b)
emerges. That is, a higher circulation coefficient is reached
at lower hopping amplitudes t . Here, we show the combined

2When T = Tc, the two circulation coefficients are equal, since
superconductivity is suppressed.
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FIG. 4. Ratio of the circulation coefficients (a) and the heat con-
ductances (b) between the superconducting and normal device as a
function of temperature. We have set the phases of the superconduc-
tors to be equal and chosen α = 3π/2, ε = 0, and � = 5kBTc.

effect of phase bias and magnetic field: in Fig. 5, we plot Csc

as a function of α and ϕ3, fixing the other superconducting
phases to ϕ1 = ϕ2 = 0. As we can see, the highest circulation
coefficient is reached when t is close to �, namely when the
dependence of Csc on the phase ϕ3 is quite weak [Fig. 5(b)].
In contrast, at low hoppings the circulation is more sensitive
to variations of the superconducting phase, albeit the overall
circulation coefficient is smaller [Fig. 5(a)].

V. SAMPLE-TO-SAMPLE VARIATIONS

Having described the behavior of the simplest possible
setup, in this section, we show how nonideal operational con-
ditions affect the performance of the heat circulator. Focusing
on the low-temperature regime, where the energy dependence
of the scattering matrix in κ can be neglected, see Eqs. (8) and
(14), we consider two other mechanisms leading to deviations
from the ideal condition. A first ingredient is represented by
random variations of the parameters of the model (hopping
amplitudes and on-site energies), in order to see whether
sample-to-sample variations limit the usefulness of the device.
Secondly, we investigate what happens when the device does
not have a ring-like structure, as shown in the modified setups
in Fig. 1(d)–1(e). Here, the main difference with the basic
model in Fig. 1(c) is that a path starting and ending at the same
terminal can include different fractions of the total magnetic
flux penetrating the structure. To avoid unnecessary complica-
tions, we restrict the analysis to the normal conducting case.
This choice is motivated by the fact that superconducting
terminals exhibit qualitatively the same behavior, as shown in
the previous section.

FIG. 5. Circulation coefficient Csc as a function of α and the
superconducting phase ϕ3 in terminal 3 (with respect to ϕ1 = ϕ2 = 0)
for two values of the hopping amplitude t . We have set ε = 0,
T = 0.1Tc, and � = 5kBTc.

A. Variations of the hopping and onsite energies

As previously shown, the circulation coefficient of the ideal
three-site system is not particularly sensitive to the variation of
the hopping amplitude and on-site energy (see Fig. 2). There-
fore C is also expected to be quite robust to sample-to-sample
variations of the model parameters. In Fig. 6, we show that
this is indeed the case, a result that was already anticipated
in Ref. [47]. We do not restrict ourselves to the symmetric
case εi = ε and ti j = t , but we consider the general coupling
matrix in Eq. (2). In particular, we have taken ti j, εi to be
uniformly distributed, i.e. |ti j − 〈ti j〉| < δ(ti j )/2, with average
〈ti j〉 = � and full width δ(ti j ) = 2� and |εi − 〈εi〉| < δ(εi )/2,
with 〈εi〉 = 0 and δ(εi ) = 2�. We find that the reduction of the
circulation coefficient is roughly only about 15% (clearly by
reducing the range of variations of the parameters, the perfor-
mance of the device is even less affected). Furthermore, Fig. 6
shows that C varies only a little around its ensemble-average
〈C〉. All these features are peculiar of the simple model of
Fig. 1(c); in the following, we show that with increasing com-
plexity of the device also the impact of the sample-to-sample
variations grows.

B. Trajectory-dependent enclosed flux

As a next step, we investigate the impact of a modified
structure of the central scattering region on the behavior of the
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FIG. 6. Comparison between the ideal circulation coefficient for
ti j = t = � and εi = ε = 0 (dashed black line) and the ensemble-
averaged circulation coefficient 〈C〉 over 2000 samples obtained with
a random variation of the parameters in the coupling matrix Eq. (2)
(solid orange line), see main text. The variance of C is also shown
(solid purple line).

heat circulator device. In particular, we consider the possibil-
ity that different paths starting and ending at a given terminal
enclose a different fraction of the total magnetic flux. First,
we consider a modification of the simple toy model that we
obtain by adding extra lattice sites to the minimal model, as
shown in Figs. 1(d) and 1(e). Secondly, we consider a more
realistic model of an extended central region that we describe
by a chaotic cavity modelled by random scattering matrices.
As we will see, while single realizations can still be tuned to
act as heat circulators, these increasingly complicated systems
have a considerable impact on the device performance.

1. Generic central structure with multiple lattice sites

We consider a modified setup, as represented in Figs. 1(d)
and 1(e): here, M additional sites (labeled by μ =
a1, . . . , aM) are present in the scattering region, but they are
not connected to any terminal. Thus, in Fig. 1(d), we have
M = 6 and in Fig. 1(e) M = 4. In both cases, the extra
central site is labeled with μ = a1. In this modified setup, the
coupling matrix W describing the central region can be split
into four blocks as

W =
(W11 W12

W21 W22

)
, (16)

where W11 characterizes the subspace of the three sites con-
nected to the leads, W22 characterizes the subspace of the
additional M sites, and cross couplings between sites i =
1, 2, 3 and μ = a1, . . . , aM are taken into account by the
off-diagonal blocks W12 and W21. For this more general
system, a formally identical result as in Eq. (1) is obtained,
with a modified matrix W given by the Schur complement
W = W11 − W12(W22)−1W21 (see Appendix A for details).

Although the result is valid for any W , we restrict the
discussion to nearest neighbor coupling only, as shown in
the sketch of Fig. 1(d) and 1(e). The phases associated with
the transition from any site ζ to any of its neighbors ξ are cal-
culated according to θξζ = − e

h̄

∫ ξ

ζ
A · d�, using the symmetric

FIG. 7. [(a) and (b)] Heat conductance κcw as a function of the
magnetic flux for the setup depicted in Fig. 1(e). In both panels,
the hopping to the leads is t = 0.5�. We have set t ′ = 0.2� in
(a) and ε = 0.2� in (b). (c) Circulation coefficient for t = 0.5� and
different values of ε and t ′. Note that for all choices of parameters,
the circulation |C| can reach almost unity by fine-tuning the magnetic
flux α.

gauge A = B(−y, x, 0)/2. As for the basic three-site model,
the resulting scattering matrix is periodic in the normalized
flux α, although the periodicity is no longer 2π , due to the
more complex possible paths that can be followed between
any two terminals. It depends on the detailed geometry of the
system, as we discuss in the following.

2. Hexagonal central structure

Let us start with the analysis of the “hexagonal” model in
Fig. 1(e). We initially consider equal on-site energies (εi =
εμ = ε), therefore having W11 = ε13 in Eq. (16). Likewise,
the other blocks are obtained by considering equal hopping
strengths tμi = t (μ 	= a1) between pairs of external sites and
ta1i = t ′ between the central site a1 and its neighbors (see
Fig. 1). Here, thanks to the symmetry of the setup, we have
again κ12 = κ23 = κ31 = κcw and κ13 = κ32 = κ21 = κcw as
for the basic three-site ring. Moreover, κcw is obtained from
κcw by simply reversing the magnetic flux; therefore we can
just focus on one of them. In Fig. 7 we show the heat con-
ductance κcw as a function of the magnetic flux, for t = 0.5�

and various parameters. For a disconnected center site, t ′ = 0,
the plot is 2π -periodic, as for the simplest three-site model,
because in this case any allowed path beginning and ending
at the same terminal encloses the whole flux too. However, as
soon as t ′ 	= 0, this is no longer true and different paths are
available, thus changing the periodicity. For this geometry, it
is 12π because the minimal flux enclosed by a path starting
and ending at the same terminal is α/6 instead of α. The other
important aspect emerging from the plots is that the behavior
of the heat conductance is quite sensitive to the variations
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FIG. 8. Average circulation coefficient (solid orange line) and
variance (solid purple line) for an ensemble of random hoppings and
on-site energies, see main text. The dashed line denotes the results
for the clean case with ε = 0.3�, t = �, and t ′ = 0.4�. These plots
refer to the setup shown in Fig. 1(e).

of both t ′ and ε. This is reflected as well by the circulation
coefficient, see Fig. 7(c), which depends in a highly nontrivial
way on the model parameters. Note however, that despite this
strong parameter dependence, in several instances a very high
(and even maximal) circulation coefficient C can be obtained.
At the same time, this behavior indicates less robustness in the
circulation coefficient against sample-to-sample variations of
the model parameters, compared to what we have previously
illustrated in Fig. 6 for the simple three-site model.

In Fig. 8, we show the averaged circulation coefficient over
2000 samples generated for a random choice of hoppings and
on-site energies. As for the simple three-site model, the pa-
rameters were allowed to vary independently from each other,
meaning that the external and internal hopping amplitudes, as
well as the on-site energies were not constrained to be equal
among each other. In Fig. 8, we consider the average values
〈tμi〉 = � (μ 	= a1), ta1i = 0.4�, 〈εi〉 = 0.3� and full widths
δ(tμi ) = 0.6�, δ(ta1i ) = 0.8�, δ(εi ) = 2�. The dashed black
line shows the circulation coefficient, calculated for a fixed
value of the parameters. This indeed shows that variations in
the parameters have a much more pronounced impact on the
magnitude of the circulation coefficient (compared to Fig. 6).
Also, parameter variations in the hexagonal model make the
variance (purple line) to be of the same order of magnitude
as the average value 〈C〉. Note however, that the circulation
effect is not fully suppressed but persists.

3. Square central structure

Let us now come to the analysis of the setup with a square
structure, as sketched in Fig. 1(d). This configuration shows
similar features as the hexagonal one, which we have just
illustrated. Only details are different, due to the different
symmetry of the system. For instance, the periodicity of the
heat conductances of the square structure is 8π , because (as
soon as the internal hopping t ′ is nonzero) the minimal flux
that can be enclosed in a path starting and ending at the same
terminal is α/4. Moreover, the position of the terminals is
now such that not all heat conductances are equal to each
other: κ23 = κ31 	= κ12 (and similarly for the counterclockwise

FIG. 9. Heat circulation with a square central structure. (a) Cir-
culation coefficient for t = 0.5� and various combinations of t ′

and ε. (b) Ensemble-averaged 〈C〉 (solid orange line), for a random
variation of the parameters, compared with the corresponding result
when no sample-to-sample variation is present (dashed black curve).
The solid purple line shows the variance of C.

direction). However, apart from these specific differences, the
qualitative behavior is the same: the system is quite sensi-
tive to a variation of the model parameters, which results in
a considerable reduction of the circulation coefficient when
sample-to-sample variations are introduced. This is shown in
Fig. 9, where we observe a stronger drop in the circulation co-
efficient, even compared to the one of the hexagonal structure
in Fig. 8. This can be attributed to the increased asymmetry of
the device with respect to the three contacts.

4. Three-terminal chaotic cavity

Given the fact that, as we have seen, the performance of the
system deteriorates considerably when increasing the com-
plexity of the minimal model only slightly, it is an important
question to understand how much circulation can be expected
in more realistic models for extended scattering regions. To
answer to this question, we study the case of an extended cen-
tral system (cavity), e.g., a large quantum dot. The dynamics
in such a system (with irregular boundaries) is chaotic, see
Ref. [58] for a review. Of course, this example is quite far
apart from the initial simple ring-shaped system considered in
Sec. II A. Nonetheless, we will see that heat circulation is still
possible under certain conditions.

We start by investigating the system in the case where
only a single mode (M = 1) of each lead is coupled to the
central cavity. Such a system can be realized by having a
quantum point contact, tuned to the first conductance step,
in between the cavity and each of the leads. A successful
method to address chaotic and disordered systems is random
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matrix theory [59]. According to this approach, the scattering
matrix S for a system with broken time-reversal symmetry
is a random matrix distributed in the circular unitary en-
semble (CUE). However, random matrices from the CUE do
not carry information on the magnetic field. An extension of
the CUE has therefore been developed to include the inten-
sity of the magnetic field B as a parameter, resulting in the
formula [68]

S (B) = U 11 + U 12[1N − R(B)U 22]−1R(B)U 21. (17)

Here, U i j are the four blocks of a (3 + N ) × (3 + N ) ran-
dom matrix U distributed according to the circular orthogonal
ensemble (unitary and symmetric matrices). Furthermore, we
have R(B) = exp(BQ), Q being an arbitrary real and anti-
symmetric matrix. As long as N  1, the detailed choice of
the matrix Q has been shown to be irrelevant and the result
only depends on the parameter Tr(Q2), related to the Thouless
energy Eth and the mean level spacing δ in the cavity [68].
Therefore it is convenient to use for R the parametrization
R(x) = exp(xD) [64], D being an antisymmetric matrix with
Tr(D2) = −1, while x is a dimensionless quantity related to
the magnetic flux piercing the cavity as x ∝ α

√
ETh/δ. The

exact proportionality coefficient is a numerical factor of order
1 that depends on the precise shape of the cavity [68]. With
this parametrization, the distribution of the scattering matrix S
interpolates between the circular orthogonal ensemble (COE)
at x = 0 (time-reversal symmetric system) and the CUE at
x  1 (when time reversal symmetry is fully broken). In
contrast to the previous models, the scattering matrix obtained
from Eq. (17) is no longer periodic in α as the magnetic flux
enclosed in the path between any two terminals of the system
can assume arbitrary values.

The trend indicated in the two setups with extra lattice sites
is continued in the chaotic system: in the same way as the
variations of the model parameters produced quite different
results for both the heat conductance and the circulation coef-
ficient, here any different realization of the random scattering
matrix (17) results in a completely different outcome for
the same quantities. Some examples illustrating this behavior
are shown in Fig. 10(a). As a result, after averaging over a
large number of random samples, the circulation coefficient is
suppressed to zero. This is shown in Fig. 10(b), where the
ensemble-averaged circulation coefficient C is plotted as a
function of x. The average is performed over 10 000 samples,
generated according to Eq. (17), with N = 40. It should be
emphasized, however, that the sample-to-sample variations of
C are quite large, as shown by the variance (purple curve);
this confirms that it is likely that a given random realization
produces a good circulation coefficient for some fine-tuned
values of the magnetic flux, which depend on the specific
device. In particular, Fig. 10(a) shows some realizations where
a close-to-optimal circulation coefficient is reached for several
values of x ∝ α

√
ETh/δ.

Let us now focus on the evolution of Var(C) as a function of
x: we observe a transition from a vanishing variance at small
x towards a more or less constant value when x increases.
This evolution is the result of the progressive breaking of
time reversal symmetry. Indeed, at zero magnetic flux, we
have C = 0 for every realization of the scattering matrix, since

FIG. 10. (a) Circulation coefficient C for some realizations of
the random scattering matrix (17) describing the sample-to-sample
variation of a chaotic cavity. (b) Averaged circulation coefficient
(solid orange line) and its variance (solid purple line) over 10 000
random samples, generated according to Eq. (17), with N = 40.

Onsager’s reciprocity guarantees that κi j = κ ji. As a result,
also the variance Var(C) vanishes in this case. On the other
hand when time-reversal symmetry is broken, it is possible to
have κi j 	= κ ji and therefore the circulation coefficient varies.
In order to have an independent check of the magnitude of
Var(C) at large x, it is useful to find analytical expressions in
limiting cases. We discuss in the following how to achieve
this, considering that at large x the scattering matrix is dis-
tributed in the CUE.

With this goal in mind, we first investigate the sample-to-
sample variations of the heat conductance and the rectification
coefficient. They are reported in Fig. 11, showing 〈κ13/κ0〉
and 〈R13〉, together with their variances. The values of the
ensemble-averaged heat conductance can be calculated ana-
lytically for x = 0 and x  1. Indeed the ensemble averaging
amounts to an integration in the unitary group and, in the
case of the heat conductance, Eq. (8) shows that we have to
integrate a polynomial function of the scattering matrix S . It
is known how to perform such integrations (see, for instance,
Ref. [69]) and we get (for i 	= j)

〈κi j

κ0

〉
x1

= 1

d
= 1

3
,

(18)

Var
(κi j

κ0

)
x1

= d − 1

d2(d + 1)
= 1

18
,

where we used that the size of the scattering matrix S is in
our case d = 3. These values are in good agreement with the
numerical average in Fig. 11(a) for x large enough. In a similar
way, it is possible to obtain analytical results when x = 0 and
the scattering matrix is distributed in the COE. In this case,
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FIG. 11. (a) Averaged heat conductance 〈κ13〉 (orange) and its
variance (purple). The dashed lines highlight the analytical predic-
tions from Eqs. (18) and (19). (b) Averaged rectification coefficient
〈R13〉 (orange) and its variance (purple). The dashed line shows the
analytical result from Eq. (20). In both panels the averages are taken
over 10 000 random samples, generated according to Eq. (17), with
N = 40. Finally, the shaded bands correspond to 95% (darker) and
99% (lighter) confidence intervals.

we find 〈κi j

κ0

〉
x=0

= 1

d + 1
= 1

4
,

(19)

Var
(κi j

κ0

)
x=0

= d2 + d + 2

d (d + 1)2(d + 3)
= 7

144
,

again in agreement with Fig. 11(a).
Let us now consider the rectification coefficient and the

circulation coefficient. At zero magnetic flux, we have al-
ready observed that Ri j = C = 0 for every realization. We
then consider the case of large x and do the averaging over
the unitary group. It is easy to conclude on a general basis
that 〈Ri j〉 = 〈C〉 = 0 thanks to the possibility of relabelling
the indices in the definitions (10) and (11) when computing
the integration over the unitary group (see Appendix B 1).
Concerning the variance, we take a specific parametrization
of U (3) in terms of trigonometric functions [70] in order to
compute ensemble averages. For the rectification we obtain
(see Appendix B 1)

Var(Ri j ) =
∫ 1

0
dy

∫ 1

0
dz

(
y − z

y + z

)2

= 3 − 4 ln 2, (20)

for any i 	= j. Notice that the numerical value found in
Fig. 11(b) at large x perfectly matches with the above analyt-
ical result. Finally, we have checked that the outcome of the
integration over U (3) is consistent with the value of Var(C)

FIG. 12. Variance of the rectification (blue dots) and the circula-
tion coefficient (orange squares) as a function of the channels M in
each of the three leads connected to the cavity. All points have been
obtained by averaging over 105 random samples. The lines are fits
with the scaling law ζM−2. The coefficients are ζ = 1/6 for Ri j and
ζ = 3/2 for C.

found in Fig. 10(b), although we are not able to provide an
analytic result for this quantity.

5. Chaotic cavity with multi-mode leads

So far, we have seen that when a single conduction channel
connects the reservoirs to the chaotic cavity, the circulation
is still highly efficient for some sample-specific values of the
magnetic flux. Moreover, we have provided analytic results
for the average and variance of heat conductances and rectifi-
cation coefficients. It is natural to ask whether the circulation
effect survives even when there are M channels of each lead
connected to the central cavity. As before, the average heat
conductances and their variance can be obtained analytically.
In the time-reversal-symmetric case (x = 0), we have

〈κi j

κ0

〉
x=0

= M2

1 + 3M
,

(21)

Var
(κi j

κ0

)
x=0

= M(2 + 5M )

9(1 + 3M )2
,

whereas for broken time-reversal symmetry the result is
〈κi j

κ0

〉
x1

= M

3
,

Var
(κi j

κ0

)
x1

= 4M2

9(9M2 − 1)
. (22)

Notice that for large M there is no difference in the average
heat conductance (M/3 in both cases), while a tiny difference
persists in the variance (4/81 in the CUE and 5/81 in the
COE). Next, we look at what happens to the rectification and
the circulation coefficient by increasing M. We directly work
in the limit x  1, so that the scattering matrix is distributed
in the CUE and perform a numerical simulation by generating
random matrices of increasing sizes. The result is shown in
Fig. 12, where we see that both Var(Ri j ) and Var(C) decay
as M−2 for large M. This behavior signals that the different
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conducting channels are not independent of each other3 and
the coupling among them results in a faster decay of the vari-
ances of Ri j and C. In addition, the decrease of the variances
implies that sample-to-sample variations around the average
become smaller and smaller by increasing M, meaning that,
even for a single realization, the circulation coefficient is
strongly suppressed if many channels are present. More pre-
cisely, starting from a fine-tuned value of the magnetic flux
at which a given device has a good performance with one
conducting channel, the circulation coefficient will decrease
as 1/M by increasing the number of modes in the leads. This
indicates that in order to maintain a good performance, the
reservoirs have to be connected to the central scattering region
via quantum point contacts, in such a way that at most a few
conduction channels are open.

Finally, we investigate whether the M−2 behavior observed
in the numerical simulation, Fig. 12, can also be understood
analytically. In the following we show that indeed the decay
of Var(Ri j ) and Var(C) can be found exactly in the large-
M limit. Starting with the rectification, we can consider the
approximation

Var
(X

Y

)
≈ Var(X )

〈Y 〉2 + 〈X 〉2

〈Y 〉4 Var(Y ) − 2〈X 〉
〈Y 〉3 Cov(X,Y ) (23)

with X = κi j − κ ji and Y = κi j + κ ji. This approximation is
expected to work well when X/Y does not depart too much
from its average, which corresponds to the large-M limit in
our case. We clearly have 〈X 〉 = 0; moreover Cov(X,Y ) =
0 as can be verified via direct substitution. We have already
calculated 〈Y 〉 = 2〈κi j〉 = 2M/3 and the only thing left is the
evaluation of Var(X ), for which we obtain

Var(κi j − κ ji ) = 2M2

3(9M2 − 1)
. (24)

The approximation (23) then yields

Var(Ri j ) ≈ 3

2(9M2 − 1)
→

M1

1

6M2
. (25)

This is exactly the behavior found with the best fit (blue
line) in Fig. 12. Notice also that the above formula predicts
Var(Ri j ) = 3/16 = 0.1875 for M = 1, to be compared with
the exact result 3 − 4 ln 2 = 0.2274 [see Eq. (20)]. Concern-
ing the circulation, we can apply the same method, with
X,Y = κ13κ32κ21 ∓ κ12κ23κ31 and evaluate Var(X ) exactly for
all M. However, the result is cumbersome (see Appendix B 2)
and in the large-M limit, we can adopt an alternative strategy,
by considering a function

g(x1, . . . , x6) = x1x2x3 − x4x5x6

x1x2x3 + x4x5x6
, (26)

where each xi is one heat conductance, according to the defi-
nition of C. Its variance is estimated as

Var(g) ≈
6∑

i=1

(
∂g

∂xi

)2

Var(xi ) + 2
∑
i< j

∂g

∂xi

∂g

∂x j
Cov(xi, x j )

(27)

3The expected behavior in this case is Var(C) ∼ M−1 and similarly
for Var(Ri j ).

with all derivatives being evaluated at xi = 〈xi〉. The result of
this calculation gives the estimate

Var(C) ≈ 27

2(9M2 − 1)
→

M1

3

2M2
, (28)

which again matches with the best fit in Fig. 12 and captures
the M−2 decay with the right prefactor.

VI. CONCLUSION

In conclusion, we have presented a detailed analysis of
three-terminal conductors with normal- or superconducting
contacts acting as heat current circulators. We have shown
that the presence of superconducting terminals as considered
in a previous proposal [47] is not an essential ingredient,
even if they introduce further tunability on the device. Normal
conducting systems have a similar (and often even improved)
circulation coefficient. The essential requirement is the pres-
ence of a magnetic flux which breaks time-reversal symmetry.

Importantly, we have also investigated to what extent non-
ideal devices affect the circulation coefficient. In slightly
modified setups compared to the proposal in [47], introducing
the possibility of trajectories enclosing different amounts of
magnetic flux, we found a much more important sensitivity on
the system parameters. Therefore the device is less robust with
respect to sample-to-sample variations of these parameters,
even though it is possible to fine-tune it to obtain high circula-
tion coefficients. Finally, we addressed the case of a chaotic
scattering region and investigated the statistics of the heat
conductances and the circulation performance. Here, while
on average the circulation effect is completely suppressed,
specific realizations still exhibit high performances, provided
that the number of conducting channels is low.

Among the different effects related to nonideal devices
that we have discussed, we expect some of them to be more
significant than others. In particular, we can distinguish two
situations. (1) If the device can be designed with a ring shape
in such a way that most trajectories enclose the same magnetic
flux, then variations of the model parameters are of little
importance as long as they are of the order of the coupling
�; the circulation effect is robust in this case, even if there
is no precise control on the device parameters within this
regime. In particular, the circulation coefficient is expected to
have the simple behavior of Fig. 6. (2) On the other hand,
circulation effects can still be achieved with different designs,
for example using a (fairly large) quantum dot as the central
region. Here, the device would be highly sensitive to param-
eter variations (see Fig. 10) and therefore a lack of control
over them implies that a fine-tuning of the magnetic flux is
necessary to obtain high circulation efficiencies. However, the
crucial point for this to be possible is that the number of
conducting channels has to be small, otherwise the circula-
tion effect disappears due to self-averaging of the different
channel contributions, as shown by Fig. 12. Experimentally,
the required few-channel contacts can be implemented by
connecting the central region to the reservoirs via quantum
point contacts. In summary, the ring shape and a small number
of conduction channels are the most relevant ingredients for
good heat circulation.

085409-11



MATTEO ACCIAI et al. PHYSICAL REVIEW B 103, 085409 (2021)

An interesting issue still to be addressed is to understand
the behavior of the heat current correlators (noise) in such
multi-terminal devices and what information can be extracted
from them. Despite being less studied with respect to its
charge counterpart, heat current noise is an interesting topic
for the community and is being more and more investigated
[71–75]. We leave this issue for future works.
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APPENDIX A: DERIVATION OF THE SCATTERING
MATRIX FROM A TIGHT BINDING MODEL

In this Appendix, we provide the details on the calculation
of the scattering matrix S used in the main text. We work
directly in the most general setup and obtain the result (1) as
a particular case.

Let us consider i = 1, . . . , N semi-infinite chains with hop-
ping amplitude v between nearest neighbor sites. By labeling
with ni the nth site of the ith chain, we have the hopping
Hamiltonian

H0 = −v

−1∑
n=−∞

N∑
i=1

(|ni〉 〈ni − 1| + |ni − 1〉 〈ni|). (A1)

The scattering region is formed by N sites (01, . . . 0N ), 0i

being connected to the ith chain, and by M additional sites
that are not directly connected to the chains (a1, . . . , aM).
The central region is then made of N + M sites, coupled to
each other via an (N + M) × (N + M) matrix W . We write
the corresponding Hamiltonian as Hs = H1 + H2, with

H1 =
N∑

i, j=1

W11
i j |0i〉 〈0 j | +

aM∑
μ,ν=a1

W22
μν |μ〉 〈ν| (A2)

and

H2 =
N∑

i=1

aM∑
ν=a1

W12
iν |0i〉 〈ν| +

aM∑
μ=a1

N∑
j=1

W21
μ j |μ〉 〈 j|, (A3)

where the diagonal block W11 (W22) of the matrix W de-
scribes the subspace of the sites 01, . . . , 0N (a1, . . . , aM)
only. Diagonal elements of these two blocks contain the onsite
energies of the N (M) sites. The off-diagonal blocks of W
(W12 and W21), take cross couplings into account. Finally,
the coupling between the scattering region and the leads is

Hc = −γ

N∑
i=1

(|0i〉 〈−1i| + |−1i〉 〈0i|). (A4)

The free spectrum of the tight-binding chains is Eq =
−2v cos q. Now, in order to find the scattering matrix of the
system, we consider an incoming wave from the chain j and
write the scattering state in the chain i as (for n � −1)

ψni = δi je
iqn + Si je

−iqn. (A5)

Next, one has to solve the Schrödinger equation∑
ξ 〈ζ |H |ξ 〉ψξ = Eqψζ , where ξ and ζ can take values

ni and a1, . . . , aM. For ζ = −1i, we have

−vψ−2i − γψ0i = Eqψ−1i . (A6)

For ζ = 0i, one finds

−γψ−1i +
N∑

j=1

W11
i j ψ0 j +

aM∑
ν=a1

W12
iν ψν = Eqψ0i . (A7)

Finally, for ζ = μ = a1, . . . , aM,

N∑
j=1

W 21
μ j ψ0 j +

aM∑
ν=a1

W 22
μν ψν = Eqψμ. (A8)

By eliminating ψμ and ψ0i and recalling (A5) one eventually
finds the matrix equation

−v(e−2iq1N + Se2iq ) − γ 2[W11 + W12(Eq1M − W22)−1W21 − Eq1N ]−1(e−iq1N + Seiq ) = Eq(e−iq1N + Seiq ), (A9)

which is solved by (neglecting a global phase factor)

S = − (Eq + ve−iq )1N + γ 2[W11 + W12(Eq1M − W22)−1W21 − Eq1N ]−1

(Eq + veiq )1N + γ 2[W11 + W12(Eq1M − W22)−1W21 − Eq1N ]−1
, (A10)

where the notation A/B stands for B−1A. Next, we linearize
the spectrum Eq ≈ 2v(q − π/2) (which amounts to approx-
imate the density of states ν in the leads as a constant) and
consider the wide-band limit, obtaining

S (E ) =
(
1N + i(W − E1N )

�

)−1(
1N − i(W − E1N )

�

)
,

(A11)
where W = W11 + W12(E1M − W22)−1W21 and � = γ 2/

v = πγ 2ν, ν being the density of states in the leads. Finally,
in the case where just the N sites connected to the chains are

present (and no additional ones), only the block W11 exists
and the scattering matrix is found by simply letting W = W11.
In this way, and also taking N = 3, one recovers Eq. (1).

APPENDIX B: EXACT EXPRESSIONS FOR AVERAGES
AND VARIANCES

1. Derivation of Eq. (20)

In this section, we explain in more detail why the en-
semble average of the rectification and the circulation yields
〈Ri j〉 = 〈C〉 = 0 and we derive Eq. (20). The ensemble av-
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erage amounts to an integration over the unitary group:
〈 f (U )〉 = ∫

dV f (U ), where f is a generic function of a uni-
tary matrix U and dV is the group measure. The latter is
invariant if a unitary transformation is performed, meaning
that

∫
dV f (U ) = ∫

dV f (U0U ), where U0 is unitary. In the
case of Ri j , U is the scattering matrix and the function to
be integrated is f (U ) = (|Ui j |2 − |Uji|2)/(|Ui j |2 + |Uji|2) =
f1(U ) − f2(U ), where f1(U ) = |Ui j |2/(|Ui j |2 + |Uji|2) and
f2(U ) = |Uji|2/(|Ui j |2 + |Uji|2). It is clear that f1(U ) =
f2(U0U ), U0 being the unitary matrix which swaps rows and
columns (i, j) in the matrix U . Therefore

〈Ri j〉 =
∫

dV [ f1(U ) − f2(U )]

=
∫

dV f1(U ) −
∫

dV f2(U0U ) = 0. (B1)

By the very same reasoning, one concludes that 〈C〉 = 0.
We now evaluate Var(Ri j ) = 〈R2

i j〉 and derive Eq. (20).
First of all, following the same argument given above, one
easily shows that Var(Ri j ) is the same for every i 	= j. Next,
to get Eq. (20), we consider a single channel for each lead and
thus the integration is performed over the unitary group U (3).
We use the parametrization of Ref. [70], according to which
the group measure can be written as

dV = − 1

32π5

5∏
i=1

dφi d (cos4 θ1)d (cos2 θ2)d (cos2 θ3), (B2)

with 0 � θ1, θ2, θ3 � π/2 and 0 � φi � 2π . The
parametrization of the elements Ui j is given in Eq. (2.10) of

Ref. [70]. As we said, Var(Ri j ) does not depend on i and
j and then we can take R13 which is the most convenient
for the calculation. By applying to the matrix U the unitary
transformation that exchanges the first two columns one gets

Var(R13) =
∫

dV

[ |U13|2 − |U32|2
|U13|2 + |U32|2

]2

. (B3)

The parametrization for the elements entering the last expres-
sion is [70] U13 = cos θ1 sin θ2eiφ4 and U32 = cos θ1 sin θ3eiφ5 .
By using these relations in the previous formula, together with
Eq. (B2), one finds

Var(R13) =
∫ 1

0
d (cos2 θ2)

∫ 1

0
d (cos2 θ3)

[
sin2 θ2 − sin2 θ3

sin2 θ2 + sin2 θ3

]2

(B4)
yielding Eq. (20) in the main text.

2. Variance of the circulation coefficient

In this section we show a complementary way to arrive
at the large-M behavior Var(C) → 3/(2M2) [see Eq. (28)].
Moreover, we also show exact expressions for the average and
variances of the combinations of heat conductances entering
the numerator of the circulation coefficient.

By using the diagrammatic method of Ref. [69], we find

〈κ12κ23κ31〉 = 〈κ13κ32κ21〉 = M5(9M2 − 2)

3(9M2 − 1)(9M2 − 4)
. (B5)

Applying again the same technique, and using the tables in
Ref. [76], we evaluate V = Var(κ13κ32κ21 − κ12κ23κ31), find-
ing V = 11/420 for M = 1 and

V = 2M4(6561M12 − 34263M10 + 50625M8 − 14355M6 − 6046M4 − 2470M2 − 84M + 200)

27(9M2 − 1)2(M2 − 1)(9M2 − 4)(9M2 − 16)(9M2 − 25)
(B6)

for M � 2. According to Eq. (23), this gives an estimate for Var(C) of 11/49 when M = 1 and

Var(C) ≈ (9M2 − 4)(6561M12 − 34263M10 + 50625M8 − 14355M6 − 6046M4 − 2470M2 − 84M + 200)

6M6(9M2 − 2)2(M2 − 1)(9M2 − 16)(9M2 − 25)
(B7)

for M � 2. As we can expect, this is a poor estimate for small
M, but it captures exactly the large-M behavior 3M−2/2 and

already for M = 8 the error with respect to the true value is
less than 5%.
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