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ABSTRACT

Beamspace processing is an efficient and commonly used
approach in harmonic retrieval (HR). In the beamspace, mea-
surements are obtained by linearly transforming the sensing
data, thereby achieving a compromise between estimation ac-
curacy and system complexity. Meanwhile, the widespread
use of multi-sensor technology in HR has highlighted the ne-
cessity to move from a matrix (two-way) to tensor (multi-
way) analysis. In this paper, we propose a beamspace tensor-
ESPRIT for multidimensional HR. In our algorithm, parame-
ter estimation and association are achieved simultaneously.

Index Terms— Tensor, beamspace-ESPRIT, harmonic
retrieval, CANDECOMP/PARAFAC decomposition.

1. INTRODUCTION

Multidimensional (R-D) harmonic retrieval (HR) is required
in numerous signal processing problems [1] and has been
studied for many decades in a variety of fields, such as
mobile communications [2], multiple-input multiple-output
(MIMO) radar [3] and nuclear magnetic resonance spec-
troscopy [4]. A number of HR techniques are available in the
literature [5]. Estimation of signal parameters via rotational
invariance techniques (ESPRIT) [6] and its variants [7, 8]
have become one of the popular search-free signal subspace-
based parameter estimation techniques [9]. A tensor is a
natural approach to describe R-D data for R ≥ 3 [10]. CAN-
DECOMP/PARAFAC (CP) and Tucker are two widely used
tensor decomposition approaches [11]. Note that associa-
tion of frequencies in each dimension is also important for
multidimensional HR. In tensor-ESPRIT-type algorithms, the
association is usually achieved by computing the eigenval-
ues of the estimated matrices jointly via a joint approximate
eigen-decomposition [12] or a simultaneous Schur decompo-
sition [13].

In some applications HR must be performed in beamspace,
due to hardware constraints or achieving a compromise be-
tween estimation accuracy and system complexity. An im-
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Fig. 1. Illustration of measurements in beamspace. (a) gen-
eral case. (b) MIMO example with hybrid combining.

portant application is millimeter wave (mmWave) MIMO
communications, where beamspace measurements naturally
occur due to hybrid array architectures [14]. In beamspace
HR, the sensing data are not available directly, but mea-
surements are obtained by their linear transformation. Cor-
respondingly, they are called beamspace measurements to
distinguish between element space measurements in standard
HR. As shown in Fig. 1, element space measurements of di-
mensions M1 ×M2 ×M3 are linearly transformed to obtain
beamspace measurements of dimensions N1 × N2 × N3.
Beamspace ESPRIT methods were proposed in [15] and re-
cently applied to mmWave MIMO communications [16] for
R = 3. A similar problem was addressed in [17], where
a tensor decomposition-aided mmWave channel estimation
algorithm was developed for R = 3 in a discrete Fourier
transform (DFT) beamspace. However, the method requires a
line search for each of the dimensions, so that the complexity
may be too high for real-time applications [5].

A search-freeR-D and general beamspace tensor-ESPRIT
algorithm is proposed in [18] for mmWave MIMO channel
estimation. In this paper, we extend the algorithm in [18]
for multidimensional HR. We first evaluate the bias and
root-mean square error (RMSE) performance for different
beamspaces, followed by demonstrating the robustness of the
method with respect to uncertainty in the number of sources,
as well as the applicability for sources with partially distinct
frequencies.



2. PROBLEM FORMULATION

We use (·)H, (·)T and C to denote Hermitian transpose, trans-
pose and the set of complex numbers, respectively. We follow
the tensor operations defined in [19]. The (i1, i2, · · · , iR) en-
try of an R-D tensor A is denoted as ai1,i2,··· ,iR .

Element-Space Model We consider sequential transmis-
sions, where for the kth snapshot, the element-space tensor
Xk has entries of the form:1

xm1,··· ,mR,k =

L∑
l=1

γl(k)

R∏
r=1

ejωr,l×mr , (1)

where mr = 0, 1, · · · ,Mr − 1, r = 1, 2, · · · , R, l =
1, 2, · · · , L. Here, Mr, R and L denote the number of sen-
sors for the rth dimension, the number of dimensions and the
number of R-D frequencies (i.e., number of signal paths or
sources), respectively, γl(k) represents the unknown complex
amplitude of the lth frequency at the kth snapshot, while
ωr,l ∈ (−π, π) is the frequency in the rth dimension of the
lth source. For multiple snapshots, the tensor dimension is
(R+1). After obtaining the RL frequencies, parameter asso-
ciation is required to obtain the structured information of the
measurements. The frequencies associated to the lth source
are denoted as {ω1,l, ω2,l, · · · , ωR,l}, where, l = 1, 2, · · · , L.
The number of sources L is assumed to be known (e.g.,
from an R-D source enumeration method [20]). The tensor
Xk ∈ CM1×M2×···×MR can be expressed as

Xk =

L∑
l=1

γl a1,l ◦ a2,l ◦ · · · ◦ aR,l, (2)

where ar,l =
[
ejωr,l ej2ωr,l · · · ejMrωr,l

]T
and ◦ de-

notes the vector outer product [11]. We also define:

Ar =
[
ar,1 ar,2 · · · ar,L

]
∈ CMr×L. (3)

Beamspace Model For beamspace measurements, after the
r-mode product of Xk with linear transformation matrix [11],
the model (2) is modified to

Yk =

L∑
l=1

γl b1,l ◦ b2,l ◦ · · · ◦ bR,l, (4)

where the beamspace array manifold is defined as

Br =
[
br,1 br,2 · · · br,L

]
= WH

r Ar ∈ CNr×L. (5)

Here WH
r =

[
wr,1 wr,2 · · · wr,Mr

]
∈ CNr×Mr is the

linear transformation matrix. The transformation (5) can be
interpreted as a matrix beamformer. The columns of trans-
formation matrix Wr are usually chosen as beamformers to

1For notational compactness, noise is omitted in the equations

cover a sector of source locations, provided that a priori in-
formation about the true frequencies is available. The DFT
beamforming matrix is one of the common transformation
matrices, which is defined as

Wr =
[
ar,1 ar,2 · · · ar,Nr

]
∈ CMr×Nr , (6)

where the pointing frequencies ωr,nr
, nr = 1, 2, · · · , Nr, are

spaced uniformly within the sector of interest [21]. The num-
ber Nr should be chosen properly, so that the beams cover
most of the signal energy. Furthermore, WH

r Wr = INr
is

required to maintain white in the beamspace output. This is
achievable by whitening the non-orthogonal beams [22].

Our objective is to estimate ωr,l, for r = 1, · · · , R and
l = 1, · · · , L, from noisy measurements Ỹk = Yk + Vk,
using the beamspace tensor-ESPRIT method and Vk denotes
the white Gaussian noise tensor.

3. R-D BEAMSPACE TENSOR-ESPRIT FOR HR

In the CP decomposition, a tensor is decomposed into a sum
of rank-one component tensors,

Ỹk =

L∑
l=1

λl u1,l ◦ u2,l ◦ · · · ◦ uR,l. (7)

Both association and noise reduction are achieved simultane-
ously. ESPRIT algorithms utilize the shift invariant property:

J(1)
r Ar = J(2)

r ArΦr, (8)

where Φr contains the frequencies of all sources in rth di-
mension, Φr = diag

[
e−jωr,1 e−jωr,2 · · · e−jωr,L

]
,

J
(1)
r =

[
INr−1 0(Nr−1)×1

]
and J

(2)
r =

[
0(Nr−1)×1 INr−1

]
are selection matrices.

In beamspace, the row transformation WH
r alters the tran-

sitional invariance structure in the array manifold [15], and
consequently J

(1)
r Br 6= J

(2)
r BrΦr.However, the shift invari-

ance structure can be restored, if Wr has a similar structure.
Suppose we are able to find a non-singular Nr × Nr matrix
Fr that satisfies

J(1)
r Wr = J(2)

r WrFr. (9)

The least squares (LS) estimate of Fr is given by

F̂r =
(
J(2)
r Wr

)†
J(1)
r Wr (10)

where † denotes the pseudo-inverse.

Theorem 1. Let Fr be defined as in (9). If there exists a
Qr ∈ CNr×Nr , such that

Qrwr,Mr
= 0Nr×1, and QrF

H
r wr,1 = 0Nr×1, (11)

then

QrF
H
r Br = QrBrΦ

H
r . (12)



Proof. See Appendix A in [18].

It is worth mentioning that Qr in (11) can be obtained by
forming a projection matrix corresponding to the orthogonal
subspace ofR{wr,Mr

,FH
r wr,1}. Then

Q̂r = INr
−wr,Mr

wH
r,Mr

−
(
FH

r wr,1

) (
FH

r wr,1

)H
. (13)

Let Ur =
[
ur,1 ur,2 · · · ur,L

]
, its columns span the

signal subspace, and replace Br by Br = UrDr, where
Dr ∈ CL×L is a non-singular matrix. Then (12) becomes

QrF
H
r Ur = QrUrΓr (14)

where
Γr = DrΦ

H
r D−1r ∈ CL×L. (15)

It is interesting to note that Dr is incorporated in Γr, direct
computing is not required. We estimate Γr via LS from (14):

Γ̂r =
(
QrUr

)†
QrF

H
r Ur. (16)

From (15), eigenvalues of Γr are the diagonal elements
of ΦH

r , so that the lth eigenvalue of Γr is given by ejωr,l .
Note that the lth column of Ur corresponds to the same
source. For the rth dimension, the L frequencies ωr =
{ωr,1, ωr,2, · · · , ωr,L} can be estimated jointly from the
eigenvalues of Γr. The proposed algorithm is summarized in
Algorithm 1.

Algorithm 1: R-D Beamspace Tensor-ESPRIT for
HR

Input: Measurements Ỹk and Wr, r = 1, 2, · · · , R.
Output: Frequencies ωl, l = 1, 2, · · · , L.
Estimate source number L [20] and
obtain Ur by taking CP decomposition on Ỹk.
for r = 1, 2, to R do

Estimate F̂r from (10) and Q̂r from (13).
Estimate ω̂r by TLS-ESPRIT [15].

end
For the lth source ωl = {ω1,l, ω2,l, · · · , ωR,l}.

4. SIMULATION RESULTS

The performance of the proposed method is evaluated in
terms of the bias and RMSE on estimated parameters:

Bias =
1

RL

R∑
r=1

L∑
l=1

(ωr,l − ω̂r,l) (17)

and RMSE =

√
1

RLEt

{∑R
r=1

∑L
l=1 (ωr,l − ω̂r,l)

2
}
, where

ω̂r,l is an estimate of ωr,l, and Et{·} denotes the expected

value based on 200 Monte-Carlo trials. The proposed method
is compared with tensor-ESPRIT (T-ESPRIT) algorithm
[7] in element space, as well as Cramér-Rao lower bound
(CRLB). In the following simulations, a DFT beamform-
ing matrix is considered. The unknown amplitude of the
lth frequency at the kth snapshot, γl(k), is drawn from
N (0, 1). Signal-to-noise ratio (SNR) is defined as SNR =
‖X̃k − Vk‖2F /‖Vk‖2F , where ‖ ·‖F denotes the tensor Frobe-
nius norm [11]. In element space, M1 = M2 = M3 = 8
and the number of measurements is K = 10. The Matlab
package Tensorlab [23] is utilized for tensor computation. In
the first test, there are three sources and the frequencies to be
estimated are:

r = 1 : (ω1,1, ω1,2, ω1,3) = (0.550π, 0.719π, 0.906π)

r = 2 : (ω2,1, ω2,2, ω2,3) = (0.410π, 0.777π, 0.276π)

r = 3 : (ω3,1, ω3,2, ω3,3) = (0.340π, 0.906π, 0.358π).

Fig. 2 shows the 3-D HR parameter estimation perfor-
mance versus SNR using DFT beamforming matrix. RMSE
performance under different SNR is shown in Fig. 2. Com-
parison element space T-ESPRIT is also included. For
beamspace ESPRIT, the data dimensions are N1 ×N2 ×N3,
and different values of Nr are considered: Nr = 4, 6 and 8.
We observe that both bias and RMSE are reduced by increas-
ing the size of the matrix beamformer. The performance is
close to element space ESPRIT when a larger Nr is used.

Sources with partially distinct frequencies are common
phenomena in real applications. In the second test, the per-
formance of the proposed method for partially distinct fre-
quencies is evaluated. Now there are four sources, and the
frequencies are same in at least one of the 3 dimensions. In
the beamspace, N1 = N2 = N3 = 6 and and SNR is 20 dB.
The 3-D HR frequencies to be estimated are:

r = 1 : (ω1,1, ω1,2, ω1,3, ω1,4) = ( 0.2π, 0.2π , 0.6π, 0.8π)

r = 2 : (ω2,1, ω2,2, ω2,3, ω2,4) = (0.9π, 0.4π, 0.4π , 0.6π)

r = 3 : (ω3,1, ω3,2, ω3,3, ω3,4) = (0.1π, 0.2π, 0.8π, 0.8π ).

As shown in Fig. 3, the four sources are estimated and
associated correctly, even with partially distinct frequencies.

In the third test, different source numbers are considered.
In the beamspace, N1 = N2 = N3 = 6 and SNR is 10 dB.
The 3-D HR frequencies to be estimated are:

r = 1 : (ω1,1, ω1,2, ω1,3) = (0.1π, 0.3π, 0.8π)

r = 2 : (ω2,1, ω2,2, ω2,3) = (0.9π, 0.4π, 0.2π)

r = 3 : (ω3,1, ω3,2, ω3,3) = (0.4π, 0.1π, 0.7π).

The number of sources is L = 3. The amplitudes of the
first, second and third sources are 1, 0.85 and 0.75, respec-
tively. As shown in Fig. 4, the 3-D parameters are associated,
even with inaccurate source number information. Let L̂ be
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Fig. 2. Parameter estimation performance versus SNR for dis-
tinct frequencies.
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Fig. 3. Parameter estimation for partially distinct frequencies.

the estimated number of sources. An interesting observation
is that, if L̂ ≤ L, then the first dominant L̂ sources are identi-
fied, and the corresponding results are shown in Fig. 4(a)-Fig.
4(c). Otherwise, the first dominant L sources are still observ-
able, but the extra fake sources are randomly distributed, as
shown in Fig. 4(d).
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Fig. 4. Parameter association performance for the proposed
method with inaccurate source number information.



5. CONCLUSION

A beamspace R-D tensor-ESPRIT algorithm is developed for
multidimensional harmonic retrieval. Source parameters esti-
mation and association are achieved simultaneously. Further-
more, the effect of errors in the estimated number of sources
is investigated, as well as the applicability for sources with
partially distinct frequencies is demonstrated.
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