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Passive methods of nuclear safeguards determine the important parameters of an unknown sample from
the statistics of the detection of the neutrons emitted from the item. These latter are due to spontaneous
fissions and (a,n) reactions, enhanced by internal multiplication before leaking out. Based on the original
work of Böhnel, the methodology of traditional multiplicity counting is based on the first three factorial
moments of the number of neutrons, emitted from the sample due to one source event. These ‘‘Böhnel
moments” were derived in the so-called ‘‘point model”, in which no space-dependence is accounted
for, rather a uniform first collision probability is assumed for each neutron, irrespective of the position
of its birth and its velocity direction, and, more important, it is assumed to be the same for all generations
in the fission chain as for the source neutrons. The purpose of the present work is to derive the same fac-
torial moments in a one-speed space-dependent model, in which the position and direction of the neu-
trons is accounted for, but (similarly to the original Böhnel model), no energy dependence is assumed.
The integral equations for the moments are solved numerically with a collision number expansion. It
is shown that compared to the space-dependent calculations, the unfolding method using the point
model underestimates the fissile mass and the underestimation increases with increasing both of fissile
mass and the value of a.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The principles of determining the singles, doubles and triples
neutron count rates used in identifying and quantifying unknown
items of special nuclear materials are well known (Böhnel, 1985;
Ensslin et al., 1998; Pázsit and Pál, 2008; Pázsit et al., 2009). The
basic step of the derivation consists of the setting up a
backward-type probability balance equation (master equation)
for the number distribution of neutrons leaving the sample due
to a single source event (spontaneous fission or an ða; nÞ event).
It is assumed that the only reaction which the neutrons can
undergo is induced fission, and that there exists a uniform first col-
lision probability p which is the same for all neutrons, arising both
from the source event and from induced fission, and irrespective of
the position of the neutron. Since the effect of spatial or directional
dependence of the neutrons on the results is not taken into
account, this model is often referred to as the point model.

Because of using the backward equation approach (deriving a
forward equation is not possible for this case), one has to go in
two steps: first an equation for the number distribution of neu-
trons leaving the sample due to one single starting neutron is writ-
ten down; then another master equation is derived which connects
the source-event induced distribution with the single starting neu-
tron induced distribution. Turning to the generating functions of
these quantities, one can derive equations for the factorial
moments of these distributions, out of which the first three of
the source-induced event are of interest. In the point model, these
are simple algebraic equations, which can be solved explicity in a
recursive way (the equations for the higher order moment are lin-
ear, but contain powers of all the lower order moments).

In this paper we present a derivation of the equations for the
same factorial moments, but instead of using the point model
and postulating a universal first collision probability, the interac-
tions of the neutrons will be treated in a space-angle dependent
one-speed transport model. More precisely, the position and direc-
tion dependence of both the source neutrons and those propagat-
ing in the sample will be accounted for; however, the factorial
moments of the number of neutrons leaving the item will be calcu-
lated irrespective of their exiting direction, i.e accounting for the
detection process (the geometry and material composition of the
detectors is not modelled). Extension of the model to include
energy dependence is straightforward, similarly to the case of
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stochastic neutron transport in reactors (Pál, 1958; Bell, 1965).
Likewise, the detector geometry can also be taken into account,
although all these generalisations incur a substantial complication
of the calculations.

The general theory, valid for all sample geometries will be given
first. Then a quantitative solution will be given for a spherical item,
since the spherical geometry simplifies the numerical work signif-
icantly. This restriction can be easily abandoned, at the price of
requiring a larger effort for obtaining quantitative results. Work
on extending the calculations to cylindrical geometry is under
way and will be reported in a forthcoming publication. The quan-
titative solutions in this paper are obtained by a Neumann-series
(collision number) iterative expansion scheme, applied directly
(and separately) on the three moment equations.

With this technique, quantitative results are given for the first
three factorial moments. The factorial moments for a given sample
can be calculated both in the point model and in the space-
dependent model, and compared to each other. In the safeguards
context, the interesting question is how much deviation the appli-
cation of the point model will incur as compared to the more real-
istic space-dependent model. This question can also be answered
by converting the factorial moments to singles, doubles and triples
rates, and performing the inversion procedure to extract the fissile
mass from the measured multiplicity rates. Such a comparison was
also performed. The results show that the difference in the fissile
mass, as determined from the point model instead from the more
accurate space-angle dependent model is relatively moderate, but
it increases with both the sample mass and with the value of a (the
relative contribution of ða;nÞ neutrons to the source neutrons).
Although the bias is relatively moderate (up to 25%, depending
on the item mass and the value of a), an important point is that
the bias of the point model is not conservative, i.e. it underesti-
mates the fissile mass. Based on the results, it is possible to suggest
a correction procedure applied to the point model equations to
extract the correct fissile mass.

One might object that in reality, there are many reasons other
than the space- and angular dependence of the neutron transport
inside the sample, which are not accounted for by the point model,
such as energy dependence, reactions other than fission, account-
ing for the detection process etc., and that the effect of all those
aspects can be readily simulated by Monte-Carlo calculations.
Indeed, work to determine the bias of the point model with
Monte-Carlo simulations, and hence to derive empirical correction
factors has been performed in the past by introducing the so-called
Weighted Point Model (Burward-Hoy et al., 2004). Nevertheless,
this fact does not diminish the value of the type of investigations
presented in this paper, whose goal is to provide both quantitative
results, as well as insight. The need for getting insight into the ori-
gin of the bias of the point model was also expressed in the work of
Croft et al. (2007) in which one of the contributing factors, namely
the dependence of the leakage multiplication on the position of the
source neutrons was investigated. Our goal here is to investigate
the effect of fully accounting for the spatial and angular aspects
of the neutron transport inside the item. This goal can be achieved
in a fundamental way by the transport model applied here, not
only quantifying the bias, but also lending insight into its origin
in terms of neutron transport theory.

Another aspect is that by using the same stochastic formalism
as the point model, but extended to spatial and angular effects,
the point model and the space dependent model are based on
equivalent premises, hence it is easier to ensure a consistent com-
parison between the two models. Last, but not least, the insight
given by the analytical model, and the ease and speed of a deter-
ministic calculation, makes it easier to suggest a correction proce-
dure for the bias which is due to the neglection of space
dependence in the point model.
2

2. Preliminaries

The general assumptions of the space-angle dependent model
are as follows. The source of the neutrons in the item, consisting
of fissile material, consists partly of spontaneous fission, leading
to the emission of a random number of neutrons with a given num-
ber distribution psf ðnÞ and intensity Qsf � F, and partly of single
neutrons generated in ða;nÞ reactions, with an intensity Qa. The
only reaction the neutrons can undergo is fission (absorption and
scattering can be included in a straightforward way). The macro-
scopic reaction cross section is equal to Rf . The angular distribution
of the neutrons from induced fission will also be assumed
isotropic.

The source events occur randomly in space within the itemwith
a uniform spatial probability density pRðrÞ inside the volume V of
the item, i.e.

pRðrÞ ¼
1
V
: ð1Þ

The source neutrons will have independent, identical uniform
angular distribution with a density

pXðXÞ ¼ 1
4p

: ð2Þ

To simplify the derivations, it is customary to introduce the
number distribution psðnÞ and the intensity Qs of the (total) source
events, which includes both the fission and the ða;nÞ neutrons in a
weighted sum, as (Pázsit and Pál, 2008; Pázsit et al., 2009)

psðnÞ ¼
Qa

Qs
dn;1 þ F

Qs
psf ðnÞ ð3Þ

with

Qs ¼ Qa þ F ð4Þ
For further simplification of the formalism, one introduces the

factor a as the ratio of the rate of production of neutrons by
ða;nÞ reactions and spontaneous fissions:

a ¼ Qa

F msf ;1
ð5Þ

where msf ;1 is the expectation of the number of neutrons from spon-
taneous fission, i.e. the first moment of psf ðnÞ. Using this definition
one has

Qs ¼ F ð1þ amsf ;1Þ ð6Þ
and

psðnÞ ¼
amsf ;1 dn;1 þ psf ðnÞ

1þ amsf ;1
ð7Þ

The generating function qsðzÞ of the number distribution psðnÞ of
neutrons from a source event, and the factorial moments of the lat-
ter are defined as

qsðzÞ ¼
X1
n¼0

zn psðnÞ;
dn qsðzÞ
dzn

jz¼1 � ms;n ð8Þ

These factorial moments are not known, because they include
the unknown factor a (cf. (7)).

On the other hand, the number distribution, and hence the fac-
torial moments of the spontaneous and induced fission, respec-
tively, are known, since these are known nuclear physics
quantities. These are denoted for the spontaneous fission as

qfsðzÞ ¼
X1
n¼0

zn pfsðnÞ;
dn qfsðzÞ
dzn

jz¼1 � mfs;n ð9Þ

and similarly for the induced fission (‘‘reaction”, subscript r)
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qrðzÞ ¼
X1
n¼0

zn prðnÞ
dn qrðzÞ
dzn

jz¼1 � mr;n ð10Þ

It is worth mentioning that in the safeguards literature, usually
an alternative notation (subscript i) is used for the induced fission
(Ensslin et al., 1998; Pázsit et al., 2009). However, here we follow
the notations of Pázsit and Pál (2008) (subscript r), for the same
reason as in the latter publication, i.e. to avoid confusion when i
is used as a running index or in summation formulae.

In the derivations which will follow, the moments of the source
distribution and that of the induced fission will appear as coeffi-
cients in the equations of the sought moments of the neutrons
emitted from the item. In the end, for the unfolding of the fissile
mass, the factorial moments mi ði ¼ 1 . . .3Þ of the number of parti-
cles in the analytical formulae of the point model, these are re-
written in terms of the (known) moments of the spontaneous fis-
sion and the (unknown) parameter a.

3. Derivation of the master equations for arbitrary item shape

3.1. Single particle induced distribution

The following integral master equation can be written down for
the number distribution pðnjr;XÞ of the neutrons, leaving the sam-
ple due to one starting neutron inside the item with position r and
direction X, by adding the probabilities of not having, respectively
having a first collision somewhere on the path towards the surface
of the item:

pðnjr;XÞ ¼ e�‘ðr;XÞRf dn;1þ

Rf

Z ‘ðr;XÞ

0
dse�sRf

X1
0

prðkÞ
X

n1þn2þ...þnk¼n

Z
4p

dX1

4p
dX2

4p
. . .

dXk

4p
� ð11Þ

pðn1jr þ sX;X1Þpðn2jr þ sX;X2Þ . . . pðnkjr þ sX;XkÞ:
Here, the quantity ‘ðr;XÞ denotes the distance from the point r

along direction X to the surface (boundary) of the item.
In one-speed transport theory, and especially in cases with

some degree of symmetry, such as in slab and spherical geometry,
it is convenient to express length scales in units of the collision
mean free path (here being equal to R�1

f ), i.e. to swith to optical
path length units. Since we consider here a homogeneous item,
even in our case it simplifies the notations to switch to optical
units. This means that we introduce the notations for the dimen-
sionless quantities

r̂ ¼ x̂; ŷ; ẑf g ð12Þ
where

x̂ ¼ x � Rf ; ŷ ¼ y � Rf ; ẑ ¼ z � Rf ; ð13Þ
and then re-denote r̂ as r. With this, (11) will read as

pðnjr;XÞ ¼ e�‘ðr;XÞ dn;1þ
Z ‘ðr;XÞ

0
dse�s

X1
0

prðkÞ
X

n1þn2þ...þnk¼n

Z
4p

dX1

4p
dX2

4p
. . .

dXk

4p
� ð14Þ

pðn1jr þ sX;X1Þpðn2jr þ sX;X2Þ . . . pðnkjr þ sX;XkÞ:
where now ‘ðr;XÞ; r and s are dimensionless quantities, the first of
these denoting the distance to the boundary in optical path units.

Introducing the generating function gðzjr;XÞ of the probability
pðnjr;XÞ of Eq. (14), defined as
3

gðzjr;XÞ ¼
X1
n¼0

zn pðnjr;XÞ; ð15Þ

one obtains the equation

gðzjr;XÞ ¼ ze�‘ðr;XÞ

þ
Z ‘ðr;XÞ

0
dse�s qr

1
4p

Z
4p

dX0gðzjr þ sX;X0Þ
� �

ð16Þ

where qrðzÞ is the generating function of the number distribution of
the induced fission neutrons, defined in Eq. (10), with the quantity
in the square brackets being its argument.

3.2. Source event induced distribution

In a similar way, for the number distribution PðN jSÞ of the neu-
trons leaving the item due to one source event S, and its generating
function GðzÞ, the following equations are obtained:

PðN jSÞ ¼ 1
V

Z
V
dr

X1
0

psðkÞ
X

N1þN2þ...þNk¼N

Z
4p

dX1

4p
dX2

4p
. . .

dXk

4p

�pðN1jr;X1ÞpðN2jr;X2Þ . . .pðNkjr;XkÞ: ð17Þ
Hence the equation for the generating function GðzÞ reads as

GðzÞ ¼ 1
V

Z
V
drqs

1
4p

Z
4p

dXgðzjr;XÞ
� �

: ð18Þ

Eqs. (16) and (18) are the space-dependent analogues of the
point-model based Böhnel equations, see Eqs. (11.38) and (11.39)
in Pázsit and Pál (2008) for the generating functions hðzÞ (the
equivalent of gðzÞ here) and HðzÞ (the analogue of our GðzÞ here).
Of course our present equations are now more complicated due
to the spatial and angular dependence of the neutron positions
and directions, but the correspondence between the respective
non-collided and collided terms in the equations for g and h is
quite conspicuous. The conceptual similarity, as well as the differ-
ence between the point model and the space-dependent model
will be returned to soon.

Eqs. (16) and (18) can be written in a more compact form by
introducing the ‘‘scalar” (angularly integrated) generating function
gðzjrÞ as

gðzjrÞ ¼ 1
4p

Z
4p

dXgðzjr;XÞ ð19Þ

This quantity might appear as an analogue to the scalar (angu-
larly integrated) angular flux (or rather its generating function),
and we shall refer to its moments as ‘‘scalar moments” in this
paper. However, it has to be kept in mind that the direction X is
that of the starting neutron and not the exiting one (in other
words, nðr;XÞ is the analogue of the importance of the starting
neutron), and the expression ‘‘scalar” has to be understood in this
sense. With the definition (19), Eqs. (16) and (18) can be written in
the more compact form

gðzjr;XÞ ¼ ze�‘ðr;XÞ þ
Z ‘ðr;XÞ

0
dse�s qr gðzjr0ðsÞÞ½ � ð20Þ

and

GðzÞ ¼ 1
V

Z
V
drqs gðzjrÞ½ �: ð21Þ

where also the notation

r0ðsÞ � r þ sX ð22Þ
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was introduced. Eq. (20) can be integrated w.r.t. X to obtain an
equation directly to the scalar generating function gðzjrÞ as

gðzjrÞ ¼ zg0ðzjrÞ þ
1
4p

Z
4p

dX
Z ‘ðr;XÞ

0
dse�s qr gðzjr0Þ½ � ð23Þ

where

g0ðzjrÞ ¼
1
4p

Z
4p

dXe�‘ðr;XÞ ð24Þ

is the generating function of the uncollided part.
The above equations are valid for any item shape as long as only

fission with isotropic distribution of the directions of the fission
neutrons, and isotropic scattering (not included here) is accounted
for. The only quantity which is dependent on the geometry is the
distance to the boundary, ‘ðr;XÞ. We will see a concrete expression
for this quantity in a subsequent section when considering a spher-
ical item.

3.3. Derivation of the moments

3.3.1. First moments
The derivation of the equations for the factorial moments from

the equations for the generating functions goes on the same lines
as in the point model case. Denote the angular and scalar first
moments as

hnðr;XÞi ¼ @

@z
gðzjr;XÞ jz¼1 � nðr;XÞ; hnðrÞi

¼ @

@z
gðzjrÞ jz¼1 � nðrÞ; ð25Þ

and

hNi ¼ @

@z
GðzÞ jz¼1 � N: ð26Þ

Then, for nðr;XÞ, one obtains from (20) the equation

nðr;XÞ ¼ e�‘ðr;XÞ þ mr;1
Z ‘ðr;XÞ

0
dse�s nðr0ðsÞÞ ð27Þ

where mr;1 is the first moment (expectation) of the number of neu-
trons in induced fission, as defined in (10), just as in the point
model. Likewise, for N one obtains from (21)

N ¼ ms;1
V

Z
V
drnðrÞ ð28Þ

where ms;1 is the first moment (expectation) of the number of neu-
trons per source event, defined in Eq. (8).

As is seen from Eq. (28), for the calculation of the expectation N
of the source event induced emission, it is sufficient to know the
scalar expectation nðrÞ of the single-particle induced emission
number. This is of course a result of the isotropic angular distribu-
tion of the source and induced fission neutrons; accounting for ani-
sotropic scattering would necessitate keeping the angular
quantities. Keeping only scalar quantities will simplify the nota-
tions in the continuation. Integration of (27) yields an equation
directly for the scalar expectation as

nðrÞ ¼ n0ðrÞ þ mr;1
4p

Z
4p

dX
Z ‘ðr;XÞ

0
dse�s nðr0ðsÞÞ ð29Þ

with

n0ðrÞ ¼ 1
4p

Z
4p

dXe�‘ðr;XÞ ð30Þ

being the uncollided contribution to the expectation of the single-
particle induced number of neutrons leaving the sample, for a start-
ing neutron with isotropically distributed angular direction. It is a
4

known quantity, and it will be the starting term of the collision
number expansion form of the numerical solution.

3.3.2. Second factorial moments
From now on we will only keep the scalar forms of the single-

particle induced moments. Let us introduce the notations

hnðrÞðnðrÞ � 1Þi � mðrÞ ð31Þ
and

hN ðN � 1Þi � M ð32Þ
After a twofold derivation of the equations for g and G, respec-

tively, one obtains

mðrÞ ¼ 1
4p

Z
4p

dX
Z ‘ðr;XÞ

0
dse�s mr;2 n2ðr0ðsÞÞ þ mr;1mðr0ðsÞÞ� � ð33Þ

which can be re-written as

mðrÞ ¼ AðrÞ þ mr;1
4p

Z
4p

dX
Z ‘ðr;XÞ

0
dse�s mðr0ðsÞÞ ð34Þ

with

AðrÞ ¼ mr;2
4p

Z
4p

dX
Z ‘ðr;XÞ

0
dse�s n2ðr0ðsÞÞ ð35Þ

and

M ¼ 1
V

Z
V
dr ms;2 n2ðrÞ þ ms;1mðrÞ� � ð36Þ
3.3.3. Third factorial moments
In a similar manner, for the third moments

hnðrÞðnðrÞ � 1ÞðnðrÞ � 2Þi � wðrÞ ð37Þ
and

hN ðN � 1Þ ðN � 2Þi � W ð38Þ
one obtains

wðrÞ ¼ 1
4p

Z
4p

dX
Z ‘ðr;XÞ

0
dse�s mr;3 n3ðr0ðsÞÞ þ 3mr;2 nðr0ðsÞÞmðr0ðsÞÞ þ mr;1wðr0ðsÞÞ� �

ð39Þ

and

W ¼ 1
V

�
Z
V
dr ms;3 n3ðr0ðsÞÞ þ 3ms;2 nðr0ðsÞÞmðr0ðsÞÞ þ ms;1wðr0ðsÞÞ� �

ð40Þ
Again, Eq. (39) can be re-written as

wðrÞ ¼ BðrÞ þ 1
4p

Z
4p

dX
Z ‘ðr;XÞ

0
dse�s wðr0ðsÞÞ ð41Þ

with

BðrÞ ¼ 1
4p

Z
4p

dX
Z ‘ðr;XÞ

0
dse�s mr;3 n3ðr0ðsÞÞ þ 3mr;2 nðr0ðsÞÞmðr0ðsÞÞ� �

ð42Þ
4. Equations for a spherical item

The calculations simplify significantly if one considers a spher-
ical item. In such a case, due to symmetry considerations, it is
easy to see that all appearing quantities will only depend on
r ¼ jrj and l, where l is the cosine of the angle between r and
X, i.e.



Fig. 1. The dependence of the distance ‘ðx;lÞ to the boundary of the sphere as a
function of x;X and l ¼ cosð#Þ.
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l ¼ r �X
jrj : ð43Þ

To emphasise in the notations that length scales are expressed
in units of the mean free path, we will use the variable x for the
radial position in optical path length units, i.e.

x ¼ r � Rf ð44Þ
instead of using the variable r of the original geometrical distance to
the origin. The physical radius R of the spherical item is then given
in optical path lengths as X ¼ R � Rf .

It is seen that in this model, unlike in the point model, there is
no need to introduce a first collision probability p, since the colli-
sions are described at the level of the individual neutrons due to
the transport model applied. However, the transport model also
defines a first collision probability for the isotropically distributed
source neutrons, which can be calculated from the non-collided
part. A numerical calculation of the first collision probability is
readily possible for any geometry; however, for spherical geome-
try, a simple closed form analytic formula is available. This formula
has long been known, and is given as (Bell and Glasstone, 1970;
Williams, 1971)

p ¼ 1� 3
8X3 ð2X2 � 1þ ð1þ 2XÞe�2XÞ: ð45Þ

When making comparison with the results of the point model,
Eq. (45) will be used to ensure that the calculations of the factorial
moments refer to the same system, since the first collision proba-
bility of the source neutrons must be the same in both models. The
difference between the more fundamental transport model and the
point model is that in the latter, the first collision probability is
assumed to be the same for all generation of neutrons, which is
not true in reality. Although the source neutrons are distributed
uniformly in the sphere, the spatial distribution of the neutrons
emerging from the first, second etc. collisions is not uniform. The
transport model used here accounts properly for this difference
automatically, whereas the point model does not.

4.1. Equations for the generating functions

For the generating function gðzjx;lÞ

gðzjx;lÞ ¼
X1
n¼0

zn pðnjx;lÞ; ð46Þ

of the probability pðnjx;lÞ of emission of n neutrons by a starting
neutron with coordinates ðx;lÞ the corresponding equation simpli-
fies to

gðzjx;lÞ ¼ ze�‘ðx;lÞ þ
Z ‘ðx;lÞ

0
dse�s qr gðzjx0ðsÞÞ½ �: ð47Þ

where qr is the generating function of the number distribution of
the induced fission neutrons (see Eq. (8)),

gðz jxÞ ¼ 1
2

Z 1

�1
dlgðz jx;lÞ ð48Þ

is the ‘‘scalar” generating function,

x0ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ s2 þ 2xsl

q
ð49Þ

is the radial position of the neutron at a distance s away from x
along direction l, and

‘ðx;lÞ ¼ �xlþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxlÞ2 þ ðX2 � x2Þ

q

¼ �xlþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ðl2 � 1Þ þ X2

q
ð50Þ
5

is the distance to the boundary of the sphere from the radius x along
direction l (see Fig. 1).

Similarly to the general case, Eq. (23), an equation for the scalar
generating function can be derived directly as

gðzjxÞ ¼ zg0ðzjxÞ þ
1
2

Z 1

�1
dl

Z ‘ðx;lÞ

0
dse�s qr gðzjx0ðsÞÞ½ �: ð51Þ

with

g0ðzjxÞ ¼
1
2

Z 1

�1
dle�‘ðx;lÞ ð52Þ

Further, the relationship between the generating function GðzÞ
of the probability PðN jSÞ of emitting N neutrons due to one source
emission event S, and that of the single particle induced scalar dis-
tribution gðzjxÞ is given as

GðzÞ ¼ 3
X3

Z X

0
x2 qs gðzjxÞ½ �dx: ð53Þ

In the above, account is taken for the fact that the singe event
distributions emit neutrons isotropically, and the source event dis-
tribution is spatially homogeneous.

Eq. (53) shows that once the single neutron induced distribu-
tion (or its moments) are known, the source induced moments
can be easily obtained by pure quadrature, without the need of
solving any equations. Hence, only the calculation of the single par-
ticle induced moments constitutes a computational challenge.

4.2. Equations for the factorial moments

The equations for the angularly dependent moments can be
obtained by taking derivatives of Eq. (47) w.r.t. z and those for
the scalar moments from Eq. (51). For the first moment, we will
write down both; for the rest of the moments only the equations
for the scalar moments will be given.

For the angular first moment (expectation) hnðx;lÞi � nðx;lÞ
one obtains

nðx;lÞ ¼ e�‘ðx;lÞ þ mr;1
Z ‘ðx;lÞ

0
dse�s nðx0ðsÞÞ: ð54Þ
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where mr;1 stands for the expectation of the number of neutrons
from induced fission. For the scalar expectation one obtains

nðxÞ ¼ n0ðxÞ þ mr;1
2

Z 1

�1
dl

Z ‘ðx;lÞ

0
dse�s nðx0ðsÞÞ ð55Þ

with

n0ðxÞ ¼ 1
2

Z 1

�1
e�‘ðx;lÞdl: ð56Þ

The expectation of the number of neutrons N emitted from the
item for one source event is given as

N ¼ 3ms;1
X3

Z X

0
x2 nðxÞdx: ð57Þ

where ms;1 is the first moment (expectation) of the number of neu-
trons in a source emission event.

For the scalar second moments, similarly to the general case, we
introduce the notations

hnðxÞ ðnðxÞ � 1Þi � mðxÞ ð58Þ
and

hN ðN � 1Þi � M: ð59Þ
With these definitions, using the chain rule of derivation of

nested functions, one obtains

mðxÞ ¼ AðxÞ þ mr;1
2

Z 1

�1
dl;

Z ‘ðx;lÞ

0
dse�s mðx0ðsÞÞ ð60Þ

with

AðxÞ ¼ mr;2
2

Z 1

�1
dl

Z ‘ðx;lÞ

0
dse�s n2ðx0ðsÞÞ ð61Þ

and

M ¼ 3
X3

Z X

0
x2 ms;2 n2ðxÞ þ ms;1mðxÞ� �

dx ð62Þ

Third moments: defining

hnðxÞ ðnðxÞ � 1ÞðnðxÞ � 2Þi � wðxÞ ð63Þ
and

hN ðN � 1Þ ðN � 2Þi � W; ð64Þ
one obtains for the scalar single-neutron induced and the source
event induced third moments the equations

wðxÞ ¼ BðxÞ þ mr;1
2

Z 1

�1
dl

Z ‘ðx;lÞ

0
dse�s wðx0ðsÞÞ ð65Þ

with

BðxÞ ¼
Z 1

�1
dl

Z ‘ðx;lÞ

0
dse�s mr;3 n3ðx0ðsÞÞ þ 3mr;2 nðx0ðsÞÞmðx0ðsÞÞ� �

ð66Þ
and

W ¼ 3
X3

Z X

0
x2 ms;3 n3ðxÞ þ 3ms;2 nðxÞmðxÞ þ ms;1wðxÞ� �

dx: ð67Þ
5. Solution with a collision number expansion

It is seen from the foregoing that only the single neutron
induced scalar moments obey an integral equation which has to
be solved, the source event induced moments (which are the main
interest of the calculations) can be obtained by quadrature from
the single-particle induced scalar moments. In the simplified case
6

of spherical geometry of the item, obeying a high order symmetry,
the solution of the moments due to a single initiating particle can
be obtained relatively easily by various deterministic numerical
techniques, similarly to other cases of space- and energy depen-
dent stochastic transport problems, such as the SN or finite differ-
ence methods (Endo et al., 2008; Saxby, 2018).

Here we suggest the use of a collision number (Neumann series)
expansion method (Case et al., 1953), which was used earlier by
one of the present authors for solving the non-linear integral equa-
tions of invariant embedding for electron and positron backscatter-
ing from surfaces (Glazov and Pázsit, 2004; Glazov and Pázsit,
2007). This is a straightforward and easy-to-apply procedure, as
will be shown below. As it is mentioned in Case et al. (1953), this
method works well only for subcritical cases with short fission
chains, where the collision number expansion converges fast. This
is actually the case in nuclear safeguards where the fissile items are
far away from criticality.

5.1. First moment

For the scalar mean nðxÞ, the procedure of solving Eq. (55) goes
as follows. The starting (zeroth) term consists of the expectation of
the scalar non-collided part, Eq. (56)

n0ðxÞ ¼ 1
2

Z 1

�1
e�‘ðx;lÞdl; ð68Þ

The scalar once-collided part n1ðxÞ is then given as

n1ðxÞ ¼ mr;1
2

Z 1

�1
dl

Z ‘ðx;lÞ

0
dse�s n0ðx0ðsÞÞ ð69Þ

and in general, the kth term of the expansion is given as

nkðxÞ ¼ mr;1
2

Z 1

�1
dl

Z ‘ðx;lÞ

0
dse�s nk�1ðx0ðsÞÞ: ð70Þ

The full solution for the scalar ‘‘flux” is obtained by summing up
to all collision numbers, i.e.

nðxÞ ¼
X1
k¼0

nkðxÞ ¼ n0ðxÞ þ
X1
k¼1

nkðxÞ � nuncollðxÞ þ ncollðxÞ: ð71Þ

Here, the first term is the uncollided part, and the rest is the col-
lided part. An approximate solution with desired accuracy can be
obtained by a proper choice of the cut-off of the iteration at
k ¼ kmax.

At this point it is worth pointing out an analogy with the equa-
tions and the corresponding results of the point model. In the point
model equations, Eq. (11.41) in Pázsit and Pál (2008), the expecta-
tion h1 of the neutrons leaving the item induced by one starting
neutron (the point model analogue of our nðxÞ) is given as

h1 ¼ 1� p
1� pmr;1

ð72Þ

where p is the (uniform) first collision probability, and 1� p is the
non-collision probability. Since the solution (72) is only valid when
pmr;1 < 1 (i.e. when the system is subcritical), the denominator can
be expanded into a Taylor series, yielding

h1 ¼ ð1� pÞ½1þ pmr;1 þ ðpmr;1Þ2 þ ðpmr;1Þ3 þ . . .� ð73Þ
In this form the similarity with Eqs. (70) and (71) is obvious,

since the r.h.s. of (73) also contains the exactly none, once, twice
etc. collided neutrons, multiplied with the leakage probability
1� p. This is because they all have to leave the item without fur-
ther collisions, and the non-collision probability in the point model
is independent on how many collisions the neutron had before, or
where it was born etc. In our space-dependent formulae, both the
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collision and non-collision probabilities are dependent on the posi-
tion and the direction of the neutron, and, this way, they are differ-
ent for different generations (e.g. for neutrons from the source and
from induced fission).

The similarity actually can be extended even to the solution
method. Namely, the equation for h1, given as

h1 ¼ 1� p þ pmr;1h1 ð74Þ
which of course can be solved directly leading to the compact form
(72), can also be solved by the same iteration technique. Noticing
that pmr;1 < 1, on can write that

hð0Þ
1 ¼ 1� p; hð1Þ

1 ¼ 1� pþ pmr;1h
ð0Þ
1

¼ ð1� pÞð1þ pmr;1Þ; etc: ð75Þ
which will lead to the same solution as (73), which is equivalent to
(72).

5.2. Solution for the second and third moments

The equations for the higher order moments can be solved with
the same techniques sequentially, if the solution of the lower order
moments is already available. Hence, the solution of Eq. (60) for the
second moment,

mðxÞ ¼ AðxÞ þ mr;1
2

Z 1

�1
dl;

Z ‘ðx;lÞ

0
dse�s mðx0ðsÞÞ ð76Þ

can be obtained if its inhomogeneous term,

AðxÞ ¼ mr;2
2

Z 1

�1
dl

Z ‘ðx;lÞ

0
dse�s n2ðx0ðsÞÞ ð77Þ

is already available from the solution for the first moment. Then,
similarly to the iterative process applied for the first moment equa-
tion, one writes

m0ðxÞ ¼ AðxÞ; ð78Þ

m1ðxÞ ¼ mr;1
2

Z 1

�1
dl

Z ‘ðx;lÞ

0
dse�s m0ðx0ðsÞÞ ð79Þ

and further

mkðxÞ ¼ mr;1
2

Z 1

�1
dl

Z ‘ðx;lÞ

0
dse�s mk�1ðx0ðsÞÞ ð80Þ

Again, the full solution is given by

mðxÞ ¼
X1
k¼0

mkðxÞ ð81Þ

where the summation can be cut after a suitable value of kmax when
the series expansion has converged with the desired accuracy.

The expansion for the third moment wðxÞ goes in a completely
similar manner, assuming that the inhomogeneous term BðxÞ of Eq.
(66) is already known from the solutions of the first two moment
equations for nðxÞ and mðxÞ.

This way, the solution of all three moments can be obtained
solving them in sequence, starting with the first order moments
and progressing upwards. Actually, the method is readily applica-
ble to any order moments, at least in principle, since the analytical
form of the inhomogeneous part of the model equations, similarly
to AðxÞ and BðxÞ, can be obtained from repeated differentiation of
Eq. (51). The homogeneous part of all moment equations is the
same, which is a general property of the backward master equa-
tion. In pure time-dependent problems, this property has the con-
sequence that the solution of the first moment equation serves as
the Green’s function of the higher order moments (Pázsit and Pál,
2008). The Green’s function technique can also be applied in the
7

present problem, but it is more involved than in the pure time-
dependent cases, and the calculation and application of the Green’s
function for the present problem will be described in a separate
publication.

6. Quantitative results and comparison with the point model
equations

For the numerical work, one needs the material constants (the
factorial moments of the number of neutrons emitted in sponta-
neous and induced fission) and the size of the item. The material
constants were taken from Enqvist et al. (2006), corresponding to
spontaneous and induced fission in a sample of 20 wt% 240Pu and
80 wt% 239Pu. In Enqvist et al. (2006) the full distributions psf and
pr were determined from Monte-Carlo simulations of the above
item compositions, from which then the factorial moments could
be determined. The first three factorial moments of the sponta-
neous and induced fission neutron distributions for such an item
are given in Table 1 below. With the given material mix, the distri-
bution of the spontaneous fission neutrons should be essentially
determined by that of 240Pu, since the spontaneous branching ratio
of 239Pu is rather small. Indeed, a comparison with the consensus
values of both the number distribution and the factorial moments
of spontaneous fission of 240Pu given by Santi and Miller (2008)
shows an excellent agreement. Since in the numerical work also
calculations will be made for a case with a ¼ 0:5, the factorial
moments ms;i; i ¼ 1 . . .3 of the number distribution psðnÞ of the
source event, from Eqs. (7) and (8), are also given in the Table. Here
it was assumed for simplicity that the presence of oxides or other
light atomic number materials, leading to the emission of ða;nÞ
neutrons, will not alter the number distribution of the spontaneous
and induced fission neutrons.

Regarding the size of the sphere, calculations were made with
several radii X, starting with very small item sizes where the first
collision probability is close to zero (and hence the results from
the point model and space dependent model are identical) to large
items, which approach criticality; where one can expect larger dif-
ferences between the two models. These material and geometrical
data are sufficient for the calculation of the factorial moments in
the space dependent case.

Calculation of the factorial moments in the point model
requires the specification of the first collision probability p. As
mentioned earlier, in order to have a correct comparison between
the space dependent and point model values, the first collision
probability in the point model should correspond to that given
by the transport model of the space-dependent calculations. As
was also remarked, for the homogeneous sphere with isotropic
source and fission neutron directions, an analytical formula is
available (Bell and Glasstone, 1970; Williams, 1971) as given by
Eq. (45). From this formula, the first collision probability for a
sphere with a given radius can be calculated numerically, and vice
versa.

In the calculations of the moments of the space-dependent
model with the collision number expansion method, we used the
numerical options of Mathematica, version 12.1.1.0 (Wolfram
Research, 2020). For the numerical work we used the high perfor-
mance computing cluster Hebbe of Chalmers University of Tech-
nology. Using Mathematica has the advantage that extensions to
other geometries, even irregular item shapes, are straightforward
by using the analytical geometric functionality of Mathematica.

6.1. Numerical results

In order to be able to compare the influence of the ða;nÞ neu-
trons on the results, calculations were made for two scenarios for



Table 1
The first three factorial moments of spontaneous and induced fission, as well as those
of a source event with a ¼ 0:5, in a sample of 20 wt% 240Pu and 80 wt% 239Pu.

First
moments

Second
moments

Third
moments

Spontaneous fission msf ;1 ¼ 2:1538 msf ;2 ¼ 3:7912 msf ;3 ¼ 5:2146
Source event with

a ¼ 0:5
ms;1 ¼ 1:5554 ms;2 ¼ 1:8254 ms;3 ¼ 2:5108

Induced fission mr;1 ¼ 3:135 mr;2 ¼ 8:1162 mr;3 ¼ 17:0028
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each sphere size: one with a ¼ 0, which corresponds to a metallic
Pu item, and another one with a ¼ 0:5, corresponding to an oxide
Pu item (or one with a matrix material of light nuclei).

The dependence of the mean values (first factorial moments) of
the emitted particles, as functions of the radius of the sphere in
optical units, is shown in Fig. 2 for both the point model and the
space-dependent model, for a ¼ 0 (left figure) and a ¼ 0:5 (right
figure). It is seen that for very small X values, the point and the
space dependent model values are both equal to the corresponding
values of that of the source emission, since most neutrons leave the
item without collisions. This is valid for both values of a.

It is also seen that with the increase of the sphere size, the first
moment of the space dependent model increases faster than that of
the point model, for both values of a. This indicates that the space
dependent model accounts for a larger internal multiplication than
the point model, which must be due to the fact that the second and
further collision probabilities must be higher than the first collision
probability. However, the differences between the two models
become significant only for very large items, close to criticality,
which is not relevant for safeguards applications. The maximum
item diameter in the figure, X ¼ 0:45, corresponds to a first colli-
sion probability p ¼ 0:265, which, as will be shown below, is close
to the critical value. This value corresponds to a value of the leak-
age multiplication M over 4 in the point model, which is beyond
the practically interesting cases in safeguards applications.

The expectation of the number of emitted neutrons is larger for
the case of a ¼ 0 than for a ¼ 0:5 for any sphere size, which is
understandable, since the source multiplicity is lower for a ¼ 0:5
(see also Table 1).

Quantitative values for the doubles (second factorial moments)
are shown in Fig. 3. Again, for small item sizes, they are both equal
to the second factorial moment of the source for both a values, and
with increasing item size they both increase. Also, the results
obtained from the space dependent model are higher than those
from the point model. It is also seen that the differences between
the point model and the space-dependent model become larger
and start already at smaller sample sizes than for the first moment
(note the different range on the X-axis compared to Fig. 2). Simi-
larly for the case of the first moment, the second moment values
are larger for the case of a ¼ 0 at any sphere size.

The trend for the third factorial moments continues, as is shown
in Fig. 4. Here the dependence of the factorial moments is shown
only up to X ¼ 0:3 (corresponding to a first collision probability p
about 0.2). It is seen that the deviation between the point model
and the space dependent model starts at even smaller item sizes
(first collision probabilities) than for the first two moments. At
X ¼ 0:3 the result of the space-dependent model is nearly 50% lar-
ger than that of the point model.

The fact that the space dependent model predicts larger
moments than the point model can be understood by the differ-
ence in the critical sizes for the given material properties that
the two different models yield. In the point model, from the leak-
age multiplication M (not to be mixed up with the second factorial
moment M of the number of emitted neutrons due to one source
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event in the space dependent model), given as (Pázsit and Pál,
2008):

M ¼ 1� p
1� pmr;1

ð82Þ

it is seen that the first collision probability corresponding to a crit-
ical system is given as

p ¼ 1
mr;1

ð83Þ

With the numerical values used, this gives a critical p as 0.318,
and a corresponding critical size

Xpoint
crit ¼ 0:56 ð84Þ
On the other hand, an exact one-speed transport theory calcula-

tion yields the critical size of the sphere as (O’Rourke, 2019)

Xsp
crit ¼ 0:52: ð85Þ
This indicates that the space-dependent model accounts for a

higher internal multiplication than the point model, since a smaller
sphere radius is needed to make the system critical. To put it
another way, the collision probability is higher for the later gener-
ations than the first collision probability p.

6.2. The bias of the point model

So far we have only compared the factorial moments of the
number of neutrons leaving the item due to one source event.
The interesting question is what effect the difference in these fac-
torial moments has on the accuracy of the determination of the
parameters of the item, primarily the fissile mass. The fact that
the moments of the space dependent model are systematically
higher than those of the point model does not immediately tell
what error, or bias, the application of the point model yields when
it does not predict the moments accurately.

To find out the answer to this question, one has to convert the
above factorial moments into singles, doubles and triples count
rates (S;D and T rates) (Ensslin et al., 1998), since only these mul-
tiplicity rates are measurable and, unlike the factorial moments,
they carry information on the fissile mass through the sample fis-
sion rate F. The method how the fissile mass is recovered from the
point model is also based on the multiplicity rates, as will be
shown shortly.

The relationship between the factorial moments and the multi-
plicity rates is rather simple, and it is the same for both models. For
the space dependent model, they are given as

Ssp ¼ F ð1þ amsf ;1ÞeN ð86Þ

Dsp ¼ F ð1þ amsf ;1Þe2 f d
2

M ð87Þ

Tsp ¼ F ð1þ amsf ;1Þe3 f t
6

W ð88Þ

where N;M and W are calculated by the space-dependent model. In
the above, F is the fission rate which is directly proportional to the
fissile mass, msf ;1 is the first factorial moment (expectation) of the
spontaneous fission neutrons, and F ð1þ amsf ;1Þis the total source
intensity (see also Eq. (6)). Further, e is the detector efficiency, f d
and f t are the so-called doubles and triples gate factors (Ensslin
et al., 1998). Since these latter affect the moments of both the point
model and the space-dependent model exactly the same way, their
actual values will not affect the bias of the point model, and hence
they can be assumed to be unity in the quantitative work. Since the
bias of the point model will be defined as the ratio of the fission rate



Fig. 2. The dependence of the mean value of emitted particles per source event on the radius X of the item for the point model and for the space-dependent model, for a ¼ 0
(left figure) and a ¼ 0:5 (right figure). Xmax = 0.44 corresponds to p ¼ 0:265.

Fig. 3. The dependence of the second moment of emitted particles per source event on the radius X of the item for the point model and for the space-dependent model, for
a ¼ 0 (left figure) and a ¼ 0:5 (right figure). Xmax = 0.4 corresponds to p ¼ 0:245.

Fig. 4. The dependence of the third factorial moment of the emitted particles per source event on the radius X of the item for the point model and for the space-dependent
model, for a ¼ 0 (left figure) and a ¼ 0:5 (right figure). Xmax = 0.3 corresponds to p ¼ 0:193.
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obtained by the application of the point model on the ‘‘true” mea-
sured data (represented here by the multiplicity rates of the
space-dependent model) to the true fission rate (input parameter
to the calculations), the fission rate can also be taken as unity,
and the bias of the point model will be simply given by the result
of the point model by using the multiplicities of the space depen-
dent model.

To determine the bias of the point model we hence recite briefly
the procedure of how it is used to determine of the fission rate. As
is known (Böhnel, 1985; Pázsit et al., 2009), the multiplicities in
the point model are given as

S ¼ F eMmsf ;1 ð1þ aÞ ð89Þ

D ¼ F e2 f dM
2

2
msf ;2 þ M� 1

mr;1 � 1

	 

msf ;1 ð1þ aÞmr;2

� �
ð90Þ

T ¼ F e3 f t ;M
3

6
msf ;3 þ M� 1

mr1 � 1

	 

½3msf ;2 mr;2 þ msf ;1 ð1þ aÞmr;3�

�

3
M� 1
mr1 � 1

	 
2

msf ;1 ð1þ aÞm2r2� ð91Þ
9

where the quantity M is the leakage multiplication defined in Eq.
(82).

Based on the point model formulae above, the unfolding of the
fission rate from the measured S;D and T rates goes in two steps
(Ensslin et al., 1998). First, from (89)–(91), one derives a third order
polynomial equation for the leakage multiplication M as

aþ bMþ cM2 þM3 ¼ 0: ð92Þ
where the coefficients a; b and c are given as

a ¼ �6T msf ;2ðmr;1 � 1Þ
e2f tS msf ;2mr;3 � msf ;3mr;2

� � ð93Þ

b ¼ 2D msf ;3ðmr;1 � 1Þ � 3mr;2msf ;2
� �
ef d S msf ;2mr;3 � msf ;3mr;2

� � ð94Þ

c ¼ 6mr;2msf ;2D
ef dS msf ;2mr;3 � msf ;3mr;2

� �� 1: ð95Þ



Fig. 5. The relative bias of the point model as a function of the first collision
probability for two values of a.
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Here the multiplicity rates S;D and T are now denoted by bold-
face letters, because they have a key role in the determination of
the bias of the point model. The leakage multiplication M is then
obtained as the real root of Eq. (92). In possession of M, the fission
rate is obtained from (89) and (90) as (Ensslin et al., 1998)

F ¼
2D
e f d

� M ðM�1Þ mr;2 S
mr;1�1

h i
e M2 msf ;2

ð96Þ

According to the foregoing, the bias

C � Fpoint

Fspace
ð97Þ

of the point model can be obtained as follows. The multiplicities
Ssp;Dsp and Tsp of the space dependent model are calculated from
(86)–(88) with F � Fspace ¼ 1. These are then substituted for S;D
and T in (93)-(95), and Eq. (92) is solved for M � Mspace. This value
is then used, together with Ssp and Dsp in the right hand side of (96),
and the F so obtained is equal to the bias C.

The bias C of the point model was calculated according to this
procedure for both a ¼ 0 and a ¼ 0:5. The dependence of the bias
on the sphere size X is shown in Fig. 5. The figure shows that the
bias of the point model increases with both the item size and the
value of a. With a ¼ 0, the bias remains quite moderate even for
X ¼ 0:3 (which corresponds approximately to p ¼ 0:2). However,
for a ¼ 0:5, the bias is nearly 25% at X ¼ 0:3 (p ¼ 0:2). Although
the bias is relatively moderate, it is non-conservative, i.e. applica-
tion of the point model will underestimate the fissile mass.

These results are consistent with the earlier observed bias of the
point model, and in particular with the results of Burward-Hoy
et al. (2004), who also note the non-conservative bias of the point
model, i.e. the underestimation of the fissile mass. In this latter
work the empirically calculated bias values are given as functions
of the leakage multiplication. Since the leakage multiplication is
different for the point model and for the space-dependent model,
we have instead chosen the sample size (uniquely related to the
sample mass), which makes it more straightforward to define a
correction factor for the determination of the sample mass via
the (biased) point model results. If the value of a is known, then
for the fission rate predicted by the point model, one takes the cor-
responding X value and the curve corresponding to the a value in
Fig. 5, to find the correction factor to be applied to get the correct
fission rate.

In reality the value of a is not known, rather it has also to be
determined by the same (biased) procedure by the point model,
hence the determination of the correction factor requires a multi-
variate analysis. An alternative approach could be that, instead of
determining correction formulae to the point model, to develop
machine learning methods to extract the fission rate and the a fac-
tor directly from the measured multiplicities as input. The machine
learning based unfolding method, such as an artificial neural net-
work, can be trained by a large data set produced by the space
dependent model for various item sizes, compositions and a val-
ues, similar to methods developed to unfold item data from com-
bined neutron-gamma measurements (Enqvist et al., 2010). The
investigation of the bias of the point model in the determination
of a, and the feasibility of determining bias factors by multivariate
analysis or developing machine learning techniques by training
sets provided by the space-dependent calculations will be deferred
to later work.

It might be interesting to understand the reason why the point
model underestimates the fissile mass. This is the easiest done by
considering the case when a ¼ 0. In that case the point model mul-
tiplicities (89)-(91) simplify, and the F value given by the point
model can be simply expressed from (89) alone in the form
10
F ¼ S
eMms;1

ð98Þ

From this it immediately follows that the bias of the point
model can simply be expressed as

C � Fpoint

Fspace
¼ Sspace

Mspace

Mpoint

Spoint
¼ Sspace=Spoint

Mspace=Mpoint
ð99Þ

In the above, the ratio between the singles for the space depen-
dent and point model, respectively, in the numerator in the last
equality is the same as the ratio of the first moments of the space
dependent model and the point model, respectively. This has
already been calculated, and the results are shown on the left side
of Fig. 2. It shows that the space dependent S values are increas-
ingly larger than the point model ones, hence the ratio
Sspace=Spoint is larger than unity and increases with the size of the
item. However, a simple quantitative analysis shows that the same
is valid for the ratio of the leakage multiplicities Mspace=Mpoint too,
except that the ratio between these two latter is much larger. This
is shown on the right hand side diagram of Fig. 6. For comparison,
the left hand side shows the dependence of the singles rates for the
same range of the item sizes X. It is seen that the leakage multipli-
cation of the space dependent model (which is in the denominator
of (99)) exceeds that of the point model much more than the sin-
gles rates of the space dependent model that of the point model,
and this leads to the underestimation of the fissile mass by the
point model.

The reason that the deviation between the leakage multiplica-
tions is larger than that of the singles (first moments) between
the two models is that the leakage multiplication depends on all
three multiplicities (factorial moments). This is seen from the
way it is determined through (92)–(95). Whereas the first
moments (singles) differ only slightly from each other, the second
and third moments differ more significantly, as indicated by
Figs. 2–4. Hence the larger deviation between the leakage multipli-
cations than between the first moments.

Although a similar simple transparent interpretation cannot be
made for the bias of the point model for the case when a > 0, an
intuitive interpretation still can be made. It is a general tendency
in multiplicity counting that the higher moments are both larger
than the lower moments, and also that they increase faster than
the lower order moments with the sample mass. The moments of
the number of particles leaving the sample reflect both the multi-
plicities of the source and the multiplicities of the internal multi-
plication in the sample. The multiplicity of the source neutrons is
not related to the fissile mass, it is only the internal multiplication
which is related to it. An increasing a means a decreasing source



Fig. 6. The deviation between the singles rates (first factorial moments) and the leakage multiplications between the point model and the space-dependent model, as
functions of the item size, for a ¼ 0.
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multiplicity, and hence the multiplicity of the number of neutrons
leaving the sample is affected more by the internal multiplication
for a larger a. It is this effect which leads to an increasing of the
bias of the point model with increasing a values.
7. Conclusions

Equations were derived for the probability distribution of the
number of neutrons, leaving a sample of fissile material with spon-
taneous fission as the neutron source, in a space and angle depen-
dent one-speed transport model. From these the first three
factorial moments, which are used to calculate the singles, doubles
and triples rates of multiplicity counting of nuclear safeguards,
were calculated by a collision number type expansion. The results
show that for small item sizes (small first collision probabilities)
the point model and the space dependent model give very similar
results, as expected. With the increase of the item size, the devia-
tion between the point model and the space dependent model
increases, and the deviation becomes larger for the higher order
moments. A quantitative evaluation of the error in estimating the
sample size with assuming the point model was made based on
these results, which showed that compared to the case when one
accounts for the spatial aspects of the internal transport of neu-
trons inside the item before leaking out, the point model underes-
timates the fissile mass of the item. The tendencies found, as well
as the quantitative values, are in agreement with earlier experience
in the field Burward-Hoy et al. (2004).

The formalism developed in this paper can readily be extended
to more complicated geometries. In particular, calculations for a
cylindrical geometry only require the introduction of two more
parameters, which will still lead to manageable running times in
the numerical work. Work is already continued into this direction.
Extension to the calculation of higher order factorial moments is
also simple. Further plans include the investigation of the use of
the Green’s function technique for the calculation of the factorial
moments, as well as elaboration of multivariate unfolding tech-
niques, probably based on machine learning methods, to elaborate
correction factors to the point model equations, or to extract the
correct fissile mass from the measured multiplicities directly by
machine learning methods. Taking also energy dependence into
account would be substantially more complicated, and for such
cases numerical methods other than the collision number expan-
sion might appear more feasible.
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