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a b s t r a c t 

In this article, a novel implementation of a widely used pseudo-two-dimensional (P2D) model for 

lithium-ion battery simulation is presented with a transmission line circuit structure. This implemen- 

tation represents an interplay between physical and equivalent circuit models. The discharge processes 

of an LiNi0.33Mn0.33Co0.33O2-graphite lithium-ion battery under different currents are simulated, and 

it is seen the results from the circuit model agree well with the results obtained from a physical simula- 

tion carried out in COMSOL Multiphysics, including both terminal voltage and concentration distributions. 

Finally we demonstrated how the circuit model can contribute to the understanding of the cell electro- 

chemistry, exemplified by an analysis of the overpotential contributions by various processes. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

For lithium-ion batteries, mathematical models not only consti- 

ute tools to estimate the performance of different battery com- 

onents, as well as the cell or the battery pack, but also provide 

ools to strengthen the understanding of many physical properties, 

hich determine the electrochemical response during the battery 

peration. An adequate model can be used to both interpret exper- 

ment results [1] and offer estimations of quantities that cannot 

e easily accessed through measurement, for example local over- 

otentials, capacity losses, morphology changes [2] , internal tem- 

erature fluctuations and the growth of the solid electrolyte inter- 

hase (SEI) layer [3–5] . Modelling can aid battery diagnostics, and 

hereby help to prevent premature ageing of the cells [6–8] . 

From atomistic scale to system scale, there exist battery models 

ith different complexities depending on the application. In bat- 

ery management systems, empirical circuit models are commonly 

sed which can fairly accurately describe the dynamic behavior of 

atteries and can be computed in real time with on-board micro- 

rocessors. However, the quality of a circuit model is directly de- 

endent on parameterization data which requires massive amount 
∗ Corresponding author. 

E-mail address: zeyang.geng@chalmers.se (Z. Geng). 
1 Previous affiliation: Division of Mathematics and Physics, UKK, Mälardalen Uni- 
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f experiments at different state of charges (SOC) and tempera- 

ures [9] . Moreover, the effectiveness of the model decreases with 

he battery being aged since all the parameters are affected by the 

tate of health (SOH). It is also a challenge to transfer these mod- 

ls to different generations of cells or types of batteries, which 

ake them reliable for only a limited segment of battery devices. 

n many cases, Kalman filters are used together with the empiri- 

al circuit models to improve the accuracy [10,11] . While empiri- 

al circuit models can illustrate the dynamic behaviour of batteries 

ith a transparent structure, such a structure gives very little or 

o information about the physical parameters actually governing 

he behavior of the system. 

A physics-based approach can instead be employed using the 

rst principles-based lithium-ion battery model that was devel- 

ped by Newman, Doyle and Fuller [12,13] and has been im- 

lemented into a number of commercial softwares, e.g. COMSOL 

ultiphysics. Newman’s model is a Pseudo-two-Dimensional (P2D) 

odel consisting of a set of partial differential equations (PDEs). 

he PDEs are typically solved with the finite element method 

14] or the finite volume method [15] which leads to a high com- 

utational load. As a consequence of the long computational time, 

here has been a great effort on simplifying the P2D model into 

ingle particle models [16,17] or reduced-order P2D models with 

olynomial approximations [18] . These simplifications increase the 

alculation efficiency but also limits the conditions where the 

odels are valid [19] . Furthermore, the physics-based models with 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Nomenclature 

Symbols 

T Temperature, K 

n Number of electrons involved in the redox reac- 

tion 

F Faraday constant, 96485 s ·A/mol 

U Electrode potential, V 

i Current density per electrode area, A/m 

2 

j 0 Exchange current density, A/m 

2 

α Transfer coefficient 

η Overpotential caused by the redox reaction, V 

R Gas constant, 8.314 J/mol ·K 

c Lithium ion concentration, mol/m 

3 

c s,sur f Lithium ion concentration on the particle sur- 

face, mol/m 

3 

k a Anodic reaction rate constant 

k c Cathodic reaction rate constant 

c s,max Maximum concentration in the intercalation 

material, mol/m 

3 

t Time, s 

j Charge transfer current density per surface area, 

A/m 

2 

ε Volume fraction 

D Diffusion coefficient, m 

2 /s 

t 0 + Transference number of lithium ion 

S a Specific surface area, m 

2 /m 

3 

κ Electrolyte conductivity, S/m 

� Electrical potential, V 

f A Activity coefficient of the salt 

h Element size in the meshing 

σ Electrode conductivity, S/m 

L Cell thickness, m 

r s Radius of solid particles, m 

r Radial distance in the particle, m 

I Given current density, A/m 

2 

V Terminal voltage, V 

R s Electronic resistance in the solid, �·m 

2 

R ct Charge transfer resistance, �·m 

2 

R l Electrolyte resistance, �·m 

2 

Subscripts 

pos Positive electrode 

neg Negative electrode 

s Solid phase 

l Liquid phase 

Superscripts 

e f f Effective 

omplex mathematical equations remains challenging to use and 

nterpret for researchers without a solid mathematics or physics 

ackground. 

To reduce the gap between the empirical equivalent circuit 

odels and the physics-based models, different physics-based cir- 

uit models have recently been implemented in several different 

ays. One simple approach is to use the transmission line struc- 

ure with an elementary resistor network but without any link to 

he mass transport process in the cell [20,21] . One further step, 

mployed by Sato et al., was to connect the elements in the cir- 

uit model with physical principles [22] , but then the current dis- 

ribution within the electrode is ignored in their model. A recent 

nteresting approach used by Li et al. [23] is to construct a physics- 

ased equivalent circuit model with passive electrical components, 

hich is fast and accurate, however, the number of circuit ele- 
2 
ents, voltage sources and transformers make the model some- 

hat less easy to comprehend and implement. 

So far, the physics-based circuit models reported in literature 

se circuit structures to describe both the current distribution and 

he mass transport processes. The current distribution can be de- 

cribed by a concise transmission line model accurately, however 

he effort s to describe the mass transport process with circuit ele- 

ents will lead to either simplified models [20–22] and thus can- 

ot fully capture the battery cell behaviours described in New- 

an’s P2D model, or with an advanced structure [23] , somewhat 

xceeding the simplicity of the usual transmission line models. 

hese facts are important and thus forms a research gap, i.e. to 

ave an easy understandable, but still accurate, circuit based model 

f a Li-ion cell. 

To bridge this gap, we present a novel implementation for New- 

ans P2D model. Compared with the physical based P2D model, 

his proposed model has a circuit based structure and it is easy 

o interpret visually, without any simplification of the physical ori- 

ins. This is in strong contrast to equivalent circuit models, which 

nly can give an approximate prediction of the behaviour while 

his novel model assigns real physical meanings to all the passive 

lectrical circuit elements, and thus reproduce identical results as 

he physical based P2D model, without using any kind of empiri- 

al fitting from measured or simulated data. In this work, a concise 

ransmission line structure is combined with two partial differen- 

ial equations for the mass transport processes. The transmission 

ine structure not only describes the current distribution with the 

esh current method, but also offers a clear visual illustration of 

he P2D model. The partial differential equations which describe 

he concentration distributions are solved with the finite difference 

ethod, avoiding simplifications or approximations, and thus guar- 

ntees the accuracy of the model. Apart from the demonstration of 

he novel implementation, one additional purpose is to quantify 

ts accuracy towards a ’full physical model’, in our case in COMSOL 

ultiphysics, in terms of step time and number of meshes. 

. Model implementation 

The discharge process in a lithium ion battery cell is described 

n Fig. 1 , where lithium ions move from the negative electrode to 

he positive electrode inside the battery and electrons move from 

he negative electrode to the positive electrode through the outer 

ircuit In the charge process, the opposite flows will occur. The ba- 

ic steps shown in the figure include electrons moving in the solid 

hase, charge transfer and mass transport of lithium ions in both 

olid particles and in the liquid electrolyte. These processes can be 

odelled by a set of equations, which are listed in Table 1 [13] .

n this work, these processes are represented with the electronic 

esistance in the solid R s , charge transfer resistance R ct , electrode 

otential U and electrolyte resistance R l , which are connected in 

 transmission line structure. The transmission line structure was 

riginally proposed by de Levie [24] assuming that the porous elec- 

rode consists of cylindrical particles. The transmission line struc- 

ure can, however, be generally applied for a porous electrode if 

nly the current distribution in the through-plane direction is con- 

idered, regardless of the particle shapes. 

The electronic conduction follows Ohm’s law in (2) and is mod- 

lled with a resistor R s in the circuit. The value of R s only depends

n the electronic conductivity σs and the volume fraction of the 

olid matrix, so R s will remain the same during the simulation 

nless the model is coupled with, for example, a temperature or 

ging phenomenon. In commercial lithium-ion batteries, the elec- 

ronic conductivity is improved by adding different types of carbon 

dditives in the electrode, and R s can therefore in many cases be 

gnored. The charge transfer process is described by the Butler–

olmer equation in (4) and is represented by R ct in the circuit. 
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Fig. 1. The discharge process in a lithium ion battery cell and the representation of the transmission line structure. 

Table 1 

Equations used in Newman’s model. 

Equations with boundary conditions Implementation 

Potential U = U(c s,sur f ) (1) Update the voltage source 

i s = −σ e f f 
s ∇ �s (2) ∇ �s = −I/σ e f f 

s at x = 0 and x = L Update the electrode resistance R s = −h ∇�s /i s 

�
 i l = −κe f f ∇�l + 

2 κe f f RT 
F 

(1 + 

∂ ln f A 
∂ lnc l 

)(1 − t 0 + ) ∇ lnc l (3) Update the electrolyte resistance R l = −h ∇�l /i l 

j = j 0 (exp αa Fη
RT 

− exp −αc Fη
RT 

) (4) j 0 = F k αa 
c k αc 

a (c s,max − c s,sur f ) 
αa c αc 

s,sur f 
c αa 

l 
Update the charge transfer resistance R ct = η/S a h j

Current distribution I = 

�
 i s + 

�
 i l (5) Mesh current method 

S a j = ∇ ·� i l (6) Mesh current method 

Concentration distribution εl 
∂c l 
∂t 

= ∇ · (εl D 
e f f 

l 
∇c l ) −

�
 i l ·∇t 0 + 

F 
+ 

S a j(1 −t 0 + ) 
F 

(7) ∇c l = 0 at x = 0 and x = L Finite difference method 
∂c s 
∂t 

= D s ( 
∂ 2 c s 
∂r 2 

+ 

2 
r 

∂c s 
∂r 

) (8) ∂c s 
∂r 

= 0 at r = 0 , ∂c s 
∂r 

= −F D s / j at r = r s Finite difference method 

Porous electrode σ e f f 
s = σs ε1 . 5 

s , κe f f = κε1 . 5 
l 

, D e f f 

l 
= D l ε

1 . 5 
l 

(9) 

U
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nder a very small current, i.e. close to equilibrium, the Butler–

olmer equation can be linearized from a Taylor series 

xp(x ) = 1 + x + 

x 2 

2! 
+ 

x 3 

3! 
+ ... ≈ 1 + x (10)

nd thus 

j ≈ j 0 (1 + 

αa F η

RT 
− 1 + 

αc F η

RT 
) = j 0 

F η

RT 
(11) 

here j is the charge transfer current density per surface area, j 0 
s the exchange current density, F is the Faraday constant, R is the 

as constant, T is temperature and η is the overpotential caused 

y the redox reaction. The linearization yields the charge transfer 

esistance for the active surface area R 
′ 
ct as 

 

′ 
ct = 

η

j 
= 

RT 

j 0 F 
(12) 

he charge transfer resistance for the electrode area R ct is scaled 

ith the specific surface area S a and the length of the mesh ele- 
3 
ent h 

 ct = 

R 

′ 
ct 

S a h 

(13) 

here S a can be estimated with the volume fraction of the solid εs 

nd the particle radius r s 

 a = 

3 εs 

r s 
(14) 

he linearization above is only used to initialize R ct at the equilib- 

ium state. During the simulation, R ct will be updated according to 

4) with the corresponding local current density and lithium ion 

oncentrations. 

After the charge transfer process, a concentration gradient will 

e built up both in the particles and in the electrolyte. The concen- 

ration gradient together with the potential gradient are the driv- 

ng forces for the mass transport process. The mass transport in 

he particle is expressed by Fick’s law in (8) and the surface con- 

entration c s,sur f will determine the electrode potential U in the 
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Fig. 2. Calculation flow. 
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Fig. 4. Solving the concentration distributions by using the result from the mesh 

current calculation. 
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ircuit. Finally, R l represents the resistance of the mass transport 

n the electrolyte, which is described with the concentrated elec- 

rolyte theory in (3) and (7). In the equilibrium state, there is no 

oncentration gradient and ∇c l = 0 meaning that R l can be initial- 

zed with only the electrolyte conductivity κ . Later in the simula- 

ion, R l will be updated according to (3) based on the electrolyte 

urrent and concentration. It shall be emphasized that all resis- 

ance values directly comes from the physical background and no 

mpirical fitting is needed. All the transport parameter values are 

orrected with (9) thereby taking the porosity of the electrode into 

onsideration. 

In this work, a decoupled quasi-dynamic simulation approach 

s implemented, where the current distribution is solved in an al- 

ebraic way and is considered to be static within the time step. 

ith the formed static boundary conditions, the concentrations are 

olved dynamically, as shown in Fig. 2 . The current distribution 

s solved with the mesh current method by the circuit structure, 

nd the concentration distribution is solved with the finite differ- 

nce method. The two methods are explained in the sections be- 

ow. blue 

.1. Solving the current distribution 

In a porous electrode, the current is distributed unevenly within 

he electrode, and the current density is normally higher close to 

he separator and lower close to the current collector. In this work, 

he current distribution is described with the transmission line cir- 

uit structure and solved with the mesh current method, instead of 

he (5) and (6). 
After initializing the component values in the circuit through 

1)–(4), the resistance triangular matrix and voltage vector for the 
ransmission line structure in Fig. 1 can be generated as 

 matrix = 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

R s, 1 + R ct, 1 + R ct, 2 + R l, 1 −R ct, 2 

−R ct, 2 R s, 2 + R ct, 2+3 + R l, 2 −R ct, 3 

. 
. 
. 

. 
. 
. 

. 
. 
. 

−R ct,n R s,n + R ct,n + R ct,n +1 + R l,n 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(15) 

 v ector = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

U 1 + I(R ct, 1 + R l, 1 ) − U 2 

U 2 + IR l, 2 − U 3 

... 

U n + IR l,n − U n +1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(16) 
4 
here I is the input current density and n is the meshing number. 

he current distribution can be calculated as 

 v ector = R 

−1 
matrix 

V v ector , (17) 

here the elements in the current vector I v ector refer to the mesh 

urrents I 1 , I 2 , ..., I n −1 shown in Fig. 3 . Thereby i s , j and i l can be

alculated with Kirchhoff’s circuit laws. 

The resulting i l and j will be used as input and boundary con- 

itions in (7) and (8) to solve the concentration distribution, as 

hown in Fig. 4 . 

.2. Solving the concentration distribution 

Within one time step, the current solved from the mesh cur- 

ent method is assumed to be constant, and the PDEs (7) and (8) 

an be solved numerically to obtain the concentration distribution. 

oth (7) and (8) are parabolic PDEs in one space dimension with 

eumann boundary conditions. We have chosen the finite differ- 

nce method for the spatial discretization because of the simple 

eometric feature for one dimensional problems. Other numeri- 

al methods, such as the finite element method, the finite volume 

ethod, and the difference potential method can however also be 

sed [25] . 

There are two distinct difficulties in solving these two PDEs. In 

7), the material porosity εl is discontinuous at the two material 

nterfaces. For an accurate spatial discretization, the finite differ- 

nce stencils should not cross the material discontinuities. In our 

ethod, we discretize (7) in each subdomain (negative electrode, 

eparator and positive electrode) separately by finite difference 

perators with a summation-by-parts (SBP) property [26] . At the 

aterial interfaces, we impose physical interface conditions such 

hat the concentration and its flux are continuous. These interface 

onditions as well as the Neumann boundary conditions are im- 

osed numerically by the simultaneous-approximation-term (SAT) 
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ethod [27] . As a result, the semi-discretized equations are en- 

rgy stable. The resulting system of ordinary differential equations 

s solved by the MATLAB built-in function ode 15 s . 

Eq. (8) is reduced from the three dimensional heat equation in 

pherical coordinates when the solution is independent of the po- 

ar angle and azimuthal angle. The numerical difficulty here is the 

ingularity at r = 0 . In our method, we first multiply (8) by r on

oth sides 

 

∂c s 

∂t 
= D s (r 

∂ 2 c s 
∂r 2 

+ 2 

∂c s 

∂r 
) , (18) 

nd then approximate the spatial derivatives in (18) by the SBP 

nite difference operators [28] . We again use the SAT method to 

mpose the Neumann boundary conditions. In this case, the en- 

rgy stable semi-discretized equations are a system of differen- 

ial algebraic equations, and are also in this case solved by using 

he MATLAB built-in function ode 15 s . Besides the finite difference 

ethod, the diffusion in the particles (8) can also be solved with a 

ransmission line model [29,30] . However in such an approach, the 

ransmission line model does not add any extra insight or explana- 

ion of the physical phenomenon and thus has not been adapted in 

his work. 

After the current and concentration distributions are estab- 

ished, a new set of current and concentration values shall be used 

o update the potential and the resistance matrix according to (1)- 

4), shown as step 4 in Fig. 2 . 

The MATLAB code is available at https://github.com/ 

iyangWangSE/CircuitModelLi-ionBattery . 

. Results and discussion 

.1. Comparison to a physics-based model 

With the implementation described above, an 

iNi0.33Mn0.33Co0.33O2-graphite lithium-ion battery — a widely 

sed commercial battery chemistry especially for electric vehicles 

is simulated at different discharge currents. The parameters 

sed to describe the cell and its components are listed in Table 2 

31] . A simulation with the same cell parameters is performed 

ith COMSOL Multiphysics as the comparison reference. 

The oxidation reaction on the negative electrode side is 

iC 6 → C 6 + Li + + e −

nd on the positive electrode side the reduction reaction is 

i 1 −x Ni 1 / 3 Mn 1 / 3 Co 1 / 3 O 2 + xLi + + xe − → LiNi 1 / 3 Mn 1 / 3 Co 1 / 3 O 2 

.1.1. Comparison of the terminal voltage 

The simulated battery voltage profiles during discharge are pre- 

ented in Fig. 5 (a), showing an excellent agreement with the re- 

ults from COMSOL Multiphysics. The differences are shown in 

ig. 5 (b) in percentage. The difference is somewhat larger at higher 

urrents, but still indicates a high accuracy for the transmission 

ine-based model. 

.1.2. Comparison of the concentration distributions 

Besides the terminal voltage, the lithium ion concentration dis- 

ributions are also critical in the simulation as the concentration 

s one key factor if aging phenomenon or mechanical stress are to 

e coupled in the model [32,33] . The concentrations in the elec- 

rolyte is shown in Fig. 6 (a). At t = 0 s, the initial concentration in

he electrolyte is 1 mol/dm 

3 . At t > 0 s, the battery starts to dis-

harge and lithium ions travel from the negative electrode to the 

ositive electrode and thus a concentration gradient starts to build 

p. This concentration gradient will quickly reach an equilibrium 

tate in the beginning and then stay constant during the rest of the 
5 

https://github.com/SiyangWangSE/CircuitModelLi-ionBattery
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Fig. 5. Simulated voltage profiles at different discharge current rates and a compar- 

ison with the result obtained from a simulation in COMSOL Multiphysics. 
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Fig. 6. Electrolyte concentration and particle surface concentration changes with 

time under a discharge current density of 2 mA/cm 
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ischarge time. Fig. 6 (b) shows how the concentration at the parti- 

le surface changes with time. The initial lithium ion concentration 

s 10% in the negative electrode and 90% in the positive electrode 

hich corresponds to a high SOC. During discharge, the negative 

lectrode is being de-lithiated and the surface concentration de- 

reases. As the current tends take the path of least resistance, the 

harge transfer current density is higher at the separator side (46.6 

m) than the current collector side (0 μm). Therefore the surface 

oncentration decreases faster at the separator side. The opposite 

rocess happens in the positive electrode,i.e. the particles are lithi- 

ted during discharge and again with a higher current density at 

he separator side. 

.1.3. Comparison of the computation efforts 

For the results shown in Fig. 5 (a), 20 mesh elements are used 

n the negative electrode, separator and positive electrode, respec- 

ively. In general, a finer mesh can give numerically more accurate 

esults but on the other hand increases the computation time. In 

ig. 7 (a) the results with different meshing are presented using a 

ischarge current of 2 mA/cm 

2 . Moreover, for the case of 20 mesh- 

ng elements, a comparison of 2 nd order and 4th order space dis- 

retization is also shown. As can be seen, the 4th order space dis- 

retization provides a higher accuracy especially when the voltage 

rofile starts to change rapidly at a low state of charge. However a 

inimum number of 8 mesh elements (9 grid points) is required 

n each domain to implement the 4th order space discretization. 

With the implementation in this work, the computation time 

ncreases linearly with the number of the mesh elements. When 

0 meshes are applied in each domain (negative electrode domain, 
6 
eparator domain and positive electrode domain) with 4th order 

iscretization and 20 s time step, it takes around 8 s to perform 

he simulation shown in Fig. 5 (a) (2 mA/cm 

2 case). This corre- 

ponds to 50 ms for the calculation of each time step. With the 

xact same configuration (meshing, discretization and time step), it 

akes around 6 s to perform the same simulation in COMSOL Mul- 

iphysics. The proposed circuit model has a comparable compu- 

ational effort compared with an optimized commercial software, 

espite the fact that the circuit model is based on a different plat- 

orm and has not used any additional packages or tools. 

Another factor that affects the accuracy and simulation time is 

he choice of the time step, especially when a quasi-dynamic ap- 

roach is used, as in this work. For the results in Fig. 5 (a), the time

tep was 5 s and Fig. 7 (b) shows the results for different choices of

ime steps. This indicates that under a constant current, the time 

tep does not affect the result significantly. 

To develop the model further, thermal and aging phenomenons 

an be coupled with the current electrochemical model. In the case 

f thermal coupling, the parameters in Table 2 will be temperature 

ependent instead of constants. The temperature will be taken into 

onsideration in step 4 in Fig. 2 . In the multiphysics simulation, 

he time step does not have to be the same since the battery ther- 
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Fig. 7. Performance of the model with different meshing sizes and different time 

steps under a discharge current density of 2 mA/cm 
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Fig. 8. Equivalent resistance R di f f,s to represent the overpotential caused by the dif- 

fusion in the solid. 

Fig. 9. The resistance values in the transmission line structure when the cell volt- 

age is discharged to 3.6 V under a discharge current density of 2 mA/cm 

2 . 20 mesh 

elements are used in each electrode. The y-axis is in logarithmic scale. 
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al time constant is generally larger than the electrochemical time 

onstant which means the temperature can be updated less often. 

.2. Contributions to the overpotential 

This current implementation with a transmission line structure 

erves as an interplay between physics-based models and equiva- 

ent circuit models. On one hand, it is built upon the first-principle 

lectrochemical equations with physically based material param- 

ters. On the other hand, it contains an illustrative yet simplis- 

ic structure that can be easily interpreted and straightforwardly 

olved. We exemplify here how to this transmission line circuit 

odel can aid the understanding of the contributions of different 

rocesses to the overpotential. 

In the previous calculations, the resistance elements R s , R ct and 

 l represent the processes of electronic conduction, redox reac- 

ion and the mass transport in the electrolyte. The diffusion pro- 

ess in the solid has not been directly introduced, since the elec- 

rode potential is determined by the particle surface concentration, 

nd which is reflected in the circuit. Here, however, we introduce 

he term R di f f,s to represent the diffusion process in the solid, as 

hown in Fig. 8 . With the presence of the resistance R di f f,s , the

oltage source is determined from the average concentration in the 

ctive material particles instead of from the surface concentration. 

A corresponding battery model is built using the parameters in 

able 2 and discharged from 4.15 V with 2 mA/cm 

2 . When the bat-

ery is discharged to 3.6 V, the values of all the resistance elements 

re presented in Fig. 9 (note that the y-axis is in logarithmic scale). 

ne observation is that the resistance caused by the mass trans- 
7 
ort in the electrolyte is a few orders of magnitude lower than 

he resistance caused by the diffusion in the solid, as the diffusion 

oefficient in the liquid D l is much higher than the diffusion coef- 

cient in the solid D s ( D l � D s ). However the overpotential caused 

y mass transport in the electrolyte is significant, as demonstrated 

n Fig. 10 . 

One way to interpret this result is to compare the diffusion 

ength. With 20 mesh elements in the positive electrode, the dif- 

usion length is around 2 μm for both the liquid and solid phases, 

nd the diffusion coefficient affects the resistance values ( R l and 

 di f f,s ). However, the total diffusion length for the electrolyte phase 

s the electrode thickness, which is around 20 times longer than 

he diffusion length in the solid. This, in turn, leads to the overpo- 

ential being significant. Similarly, another interpretation is to fo- 

us on the electrical circuit structure. The solid diffusion resistance 

lements R di f f,s are connected in parallel, and only the branch cur- 

ent goes through each resistor. Contrarily, R l are connected in se- 

ies, and the overpotential on each resistance element thereby ul- 
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Fig. 10. Overpotential caused by various processes in the electrode when the cell voltage is discharged to 3.6 V under a current density of 2 mA/cm 
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imately adds up. As a consequence, the total overpotential be- 

omes comparable to the overpotential caused by R di f f,s . This ex- 

mple shows that although the diffusion in the liquid is way faster 

han in the solid, the resulting overpotential caused by the elec- 

rolyte resistance cannot be ignored. Especially in the case of thick 

lectrodes, the mass transport process in the electrolyte could be 

 limiting factor. 

. Conclusion 

A new implementation of Newman’s P2D model in MATLAB is 

resented in this work, constructed as an interplay between the 

hysical and equivalent circuit models. A classic transmission line 

tructure is used to replace the equations that describe the cur- 

ent distribution within the electrode. The concentration distribu- 

ions are solved with the finite difference method and a decouple 

uasi-dynamic approach is used to combine the two solutions. The 

esults from the circuit model agree very well with the result sim- 

lated with a commercial software COMSOL Multiphysics based on 

he finite element methods. This implementation closes the gap 

etween physical and equivalent circuit models and is an useful 

ool to understand the processes inside the battery, as exemplified 

y the analysis of different contributions to the overpotential. 
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