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Low-Complexity Geometric Shaping
Ali Mirani , Erik Agrell , Fellow, IEEE, and Magnus Karlsson , Senior Member, IEEE, Fellow, OSA

Abstract—Approaching Shannon’s capacity via geometric
shaping has usually been regarded as challenging due to mod-
ulation and demodulation complexity, requiring look-up tables
to store the constellation points and constellation bit labeling.
To overcome these challenges, in this paper, we study lattice-
based geometrically shaped modulation formats in multidimen-
sional Euclidean space. We describe and evaluate fast and low
complexity modulation and demodulation algorithms that make
these modulation formats practical, even with extremely high
constellation sizes with more than 1028 points. The uncoded bit
error rate performance of these constellations is compared with
the conventional quadrature amplitude modulate (QAM) formats
in the additive white Gaussian noise and nonlinear fiber channels.
At a spectral efficiency of 2 bits/sym/polarization, compared with
4-QAM format, transmission reach improvement of more than
38% is shown at the hard-decision forward error correction
threshold of 2.26× 10−4.

Index Terms—Optical communication, coherent receiver, mul-
tidimensional modulation format, geometric shaping, lattice.

I. INTRODUCTION

MUCH effort have been put on different aspects of optical
links to overcome the need for higher information

throughput. Among them, the optimization of modulation
formats has been an important research area [1], [2]. One
way to increase the transmission rate is to use higher-order
modulation formats, i.e., transmitting more information bits in
each channel use. However, higher-order modulation formats
require more signal power to achieve a certain performance
which can be a problem because fiber links are limited
in transmitting power by fiber nonlinearities [3, chap. 8].
Another method to improve the transmission rate in optical
communication is to use constellation shaping. Shaping can
be performed in two different ways, which can also be
combined with each other, known as probabilistic shaping
[4] and geometric shaping [5]. Probabilistic shaping uses
a nonuniform distribution over a regular, low-dimensional
constellation such as QAM, whereas geometric shaping refers
to a nonrectangular constellation, often multidimensional, with
a uniform distribution. Recently, probabilistic shaping has been
extensively studied and shown to provide rate adaptability
and energy efficiency gains [6], [7]. However, its need for
a distribution matcher increases the system complexity. Also
geometric shaping has been studied, although less, but used to
design nonlinear tolerant and multidimensional constellations
[8], [9], [10].
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Exploiting multidimensional modulation formats brings
about two independent performance gains known as
coding gain and shaping gain. Coding gain comes from the
fact that constellation points can be packed more densely in
multidimensional space, and the shaping gain is achieved when
the constellation boundary is closer to a hypersphere. The
maximum shaping gain that can be obtained by a spherical
boundary in high dimensional space is 1.53 dB compared to
a cubic boundary [11].

The electromagnetic field has 4 degrees of freedom [12]
and combined with coherent detection schemes, receivers with
improved sensitivity can be utilized to compensate for channel
distortions, i.e., polarization drift and nonlinear effects [13].
Furthermore, taking advantage of wavelengths, time slots, and
spatial modes/cores in a fiber link can increase the available
degrees of freedom and increase data transmission rates. Typ-
ically, these dimensions have been modulated independently
in fiber optic communications, but there are studies that show
that optimizing formats in many dimensions will improve the
performance of the system.

Modern research on multidimensional modulation for-
mats in optical communication systems dates back to 2009
when the possibility of optimizing the constellations in the
4-dimensional space formed by the optical field was demon-
strated [14]. High-dimensional modulation formats were then
optimized by sphere packing to find the most power-efficient
and spectral-efficient modulation formats [15]. Later on, there
were even more research on employing higher dimensions
such as 8 and 24. In [16], 8-dimensional lattice modulation for-
mats were simulated based on spherical cut [17] with 128 and
256 constellation points. Also, by combining pulse-position
modulation with polarization-switched quadrature phase-shift
keying (QPSK), an 8-dimensional modulation format was ex-
perimentally investigated in [18] showing significant improve-
ment over polarization multiplexed QPSK. In [19] and [20],
8- and 24-dimensional modulation formats using temporally
adjacent time slots were used to transmit data over short-reach
intensity modulated links. In [21], multidimensional modula-
tion formats in coherent optical systems were demonstrated by
spherical-cut constellations and block-coded modulation. The
advantages of combining multidimensional shaping with non-
binary coded modulation were shown in [22]. An optimized
8-dimensional modulation format based on polarizations and
time slots was compared with polarization multiplexed binary
phase-shift keying (BPSK) to show its improved nonlinear
performance in [23]. In [24], multidimensional constellations
based on lattices, so called Voronoi constellation (VC), were
investigated and were suggested as coded modulation schemes
with higher shaping gains than generalized cross constellations
indicated in [11]. Also, the densest lattices for the sphere
packing problem in different dimensions with fast and low-
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complexity modulation and demodulation algorithms were
studied in [25] and [26]. In [27], to achieve high spectral
efficiency (SE), digital backpropagation was combined with
trellis shaping where bit-interleaved coded modulation and a
convolutional shaping code were used for lower and higher bit
levels, respectively. The complexity of this method is mainly
due to the Viterbi algorithm decoder in the transmitter [28].

In this paper, we evaluate the performance of coherent fiber
links with ultra-large Voronoi constellations with more than
1028 points, which has never been done before to our knowl-
edge. The low-complexity algorithms are numerically com-
pared with maximum likelihood (ML) detection and shown to
perform almost equivalently at high SE or high signal to noise
ratio (SNR). Low-complexity natural binary and quasi-Gray
constellation bit labelings are used to map bits to constellation
points and their performances are compared. The asymptotic
power efficiency of lattices for different dimensions and SEs,
as well as the optimum choice of Voronoi boundary are
studied. The uncoded bit error rate (BER) performance of
these VCs are then examined in the additive white Gaussian
noise (AWGN) and nonlinear fiber-optic channels.

The remainder of the paper is organized as follows. In
section II, we describe the lattice theory, lattice properties,
and how to use them for finite constellations. Fast modulation
and demodulation algorithms for lattice-based VCs are then
presented in section III. In section IV, figures of merit for
comparing modulation formats at different dimensions are
defined and numerical simulations are applied to demonstrate
these concepts. We finally give the performance of the VCs
in section V in both the AWGN and the nonlinear fiber-optic
channels. The conclusion of this paper is presented in section
VI.

II. PRELIMINARIES

In this section, we introduce the basics of lattice theory,
lattice properties, constellations and their construction based
on lattices.

In general, lattices are periodic structures of points in
N -dimensional Euclidean space. Mathematically, lattices can
be described and constructed using a set of linearly indepen-
dent vectors g1,g2, · · · ,gl ∈ RN in N -dimensional space
where R is the set of real numbers and l ≤ N . Linear
combination of these vectors with integer coefficients creates
the lattice points which are then defined by

Λ =
{
z1g1 + · · ·+ zlgl

∣∣∣ zi ∈ Z, i ∈ {1, · · · , l}
}
. (1)

In this paper, we only consider full-rank lattices, i.e., l = N .
In order to describe lattices in a more compact way, the square
generator matrix G = [g1, g2, · · · , gN ] ∈ RN×N is defined,
where g1, . . . ,gN are column vectors. Thus, det(G) 6= 0 and
Λ =

{
Gz | z ∈ ZN

}
. It should be noted that the generator

matrix is not unique and different generator matrices can create
the same lattice points.

In communication systems, information bits are mapped
to symbols that are sent every Ts seconds and modulate a
carrier which are then transmitted through a channel. Symbols
are selected from a set of M elements, the constellation,

𝑉(𝟎)

a

𝒈1

𝒈2

𝑉𝑟
𝐚 + 𝑉𝑟

𝐴2 𝑙𝑎𝑡𝑡𝑖𝑐𝑒

Fig. 1: Properties for A2 lattice. The vectors g1 = [1 0]T

and g2 = [1/2
√

3/2]T show the basis vectors of the lattice.
Circular points show the lattice points, small hexagons are
the Voronoi regions around the lattice points and V (0) is
the Voronoi region of the lattice. The filled points are the
selected constellation points with a Voronoi cut. The boundary
Vr indicates the scaled Voronoi region with r = 4, containing
r2 = 16 points and a is the shift vector.

C = {c0, c1, ..., cM−1}. Constellations can be described in
an N -dimensional space and therefore each symbol (ci) is
represented by an N -dimensional vector. In this work, an equal
probability of generating each symbol from the constellation
is considered. Therefore, the entropy of this source or average
information of each symbol is m = log2M bits, and the
information rate of the source is equal to Rb = m

Ts
bits per

second.
The average energy per symbol is defined as

Es =
1

M

M−1∑
i=0

‖ci‖2 = m · Eb, (2)

where Eb is the average energy per bit. The average power is
calculated as P = Es/Ts.

In order to use the (infinite) set of points in a lattice in
communications, we need to select a finite set of points as a
constellation. In other words, we need to cut a constellation
from the lattice. There are different ways of doing this, e.g.,
spherical or cubic cuts [21], [29], but what is interesting for us
in this paper is the Voronoi cut. The Voronoi region around a
lattice point x, known as V (x), is defined as the set of points
in RN which are closer to point x than any other points of
the lattice, i.e.,

V (x) =
{
y ∈ RN

∣∣∣ ‖y − x‖ ≤ ‖y −w‖ ,∀w ∈ Λ
}
. (3)

It should be noted that the all-zero vector, 0, is always a lattice
point and the Voronoi region V (0) is called the Voronoi region
of the lattice.

A VC is generally defined as the set of (possibly shifted)
lattice points that lie inside the Voronoi region of a sparser lat-
tice [24]. In this work, we focus on the special case where the
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sparser lattice is a scaled version of Λ, for which simple and
efficient modulation and demodulation algorithms are available
[25]. Denoting the scale factor by the integer r, we define Vr as
the Voronoi region of the lattice rΛ = {rx | x ∈ Λ}. The VC
is now defined as CΛ(r,a) = {x− a | x ∈ Λ ∩ (a + Vr)},
where a is a shift vector suitably chosen to yield zero-mean
constellations and at the same time resolve potential ties when
lattice points lie on the boundary of Vr [25]. The number of
points in the VC is M = rN .

The concepts of basis vectors, infinite lattice, Voronoi
regions, scaled and shifted Voronoi regions, and finite con-
stellation points are all exemplified in Fig. 1 for the two-
dimensional hexagonal lattice A2.

The hexagonal lattice is the densest lattice in two-
dimensional space. Finding the densest structure in a given
dimension is known as a sphere packing problem, and is
notoriously difficult. Lattices that are used in this paper are
the cubic lattice (ZN ), the hexagonal lattice (AN , known to
be densest in N = 2 and N = 3), the checkerboard lattice
(DN , densest in N = 4), the Gosset lattice (E8, densest in
N = 8), and the Leech lattice (Λ24, densest in N = 24). For a
more in-depth discussion of these lattices and their properties,
see [30, chap. 4].

III. VORONOI CONSTELLATION DESIGN

In this section, we design VCs of various dimensions N
and sizes M . This is not done by tabulating all constellation
points, as in traditional geometric shaping, but by algebraic
descriptions of the constellations. Specifically, a Voronoi con-
stellation CΛ(r,a) is fully determined by the generator matrix
G, the scale factor r, and the shift vector a.

A. Modulation

After introducing the infinite lattices and creating finite
constellations using Voronoi cuts, the question that remains
is how to select a constellation point with low computational
complexity to transmit the information bits [25].

Suppose that the constellation based on lattice Λ is
CΛ(r,a) = {c0, c1, · · · , cM−1} with M = rN constellation
points. Using m = log2M bits, one of the constellation points
can be uniquely selected. To avoid storage problems, we want
to avoid storing constellation points in a look-up table, but
generate each required constellation point based on its index
each time it is needed. Therefore, m bits are mapped to a
constellation index K ∈ {0, 1, · · · ,M − 1}. Then, following
Algorithm 1 [25], a VC point for the index K can be selected.

Algorithm 1: Modulation
Result: K → c
1: K

changing base−−−−−−−→ (kN−1 · · · k1k0)r, 0 ≤ ki ≤ r − 1
2: x =

∑N
i=1 kigi

3: w = (x− a)/r
4: λ = CPA(w), λ ∈ Λ
5: c = x− rλ− a, c ∈ CΛ(r,a)

In the first line of the algorithm, K is represented in base r
using K = kN−1r

N−1 + · · ·+ k1r + k0. Then, in the subse-
quent lines, a point in the lattice is selected and finally mapped
to the region where the constellation is considered based on
CΛ(r,a). In the fourth line, the closest point algorithm (CPA)
is used to find the closest lattice point to w. The CPA is
described in [26] and we will discuss it briefly in section III-C.

B. Demodulation

After selecting a constellation point (c) and transmitting it
over the channel, in the receiver side, the received samples
(y ∈ RN ) need to be mapped back to a probable VC point
to find its index and the transmitted bits. This procedure is
described in Algorithm 2 [25].

First, the received point is shifted from the finite constel-
lation coordinates to the infinite lattice coordinates. Then, the
closest lattice point is found by CPA and the index for this
lattice point is calculated. Since this point can be outside
the constellation area, it is moved back to a point inside the
constellation region by the modulo operation (this procedure
is shown in Fig. 2b by arrows). Finally, the base of the index
is changed and bits can be recovered in the end.

The demodulation algorithm is almost the reverse procedure
of the modulation algorithm and their core part is the CPA.
Therefore, the complexity of the modulation and the demodu-
lation algorithms are similar. This is one of the advantages of
using the lattice structures as the constellation in transmission
systems.

C. Closest point algorithm

The CPA which is used in the modulation and demodulation
procedure is the main part of these algorithms and it provides
an optimum way to find the closest point of an infinite lattice
to a point in RN . The CPA was described in [26] for different
lattices such as ZN , AN , DN , and E8. To implement CPA
for Λ24, we use the information in [31] and [32] and the
construction based on extended Golay code and D24 lattice.
Usually, a more complicated lattice can be constructed using
a union of cosets (shifted lattices) of other simpler lattices.
Therefore, finding the closest lattice point in these complicated
lattices will be simplified to applying CPA to the simpler
cosets and finally comparing their results to find the closest
point. For instance, A2 can be viewed as two rectangular
lattices (scaled Z2 lattices) and E8 is the union of two cosets
of D8. Consequently, the CPA is applied over these cosets
and their results are compared to find the closest point. The
CPA also finds the closest lattice point in an infinite lattice

Algorithm 2: Demodulation
Result: y→ K
1: w = y + a
2: λ = CPA(w), λ ∈ Λ
3: k′ = G−1λ, k′ = [k′N−1, · · · , k′1, k′0]T

4: k = k′ (mod r), k = [kN−1, · · · , k1, k0]T

5: (kN−1 · · · k1k0)r
changing base−−−−−−−→ K
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𝐏

𝐰

(a) Maximum likelihood (ML) detection.

𝐏

𝐰

(b) Detection using Algorithm 2.

Fig. 2: Detection methods in the receiver.

to a point in RN with few comparisons which depends on
the number of dimensions regardless of the infinite number
of lattice points. The CPA independence from the number of
lattice points is one of the most important advantages of using
lattice-based geometrically shaped constellations compared to
other shaping methods.

D. The constellation shift vector

In order to find the best shift vector to minimize
the constellation energy, an iterative algorithm was sug-
gested in [25] which can converge in a few iterations,
an+1 = (1/M)

∑
x∈CΛ(r,an) x. However, if M is very large,

as for some constellations in this paper (see Table II), then the
sum cannot be exactly calculated, and if the sum is replaced
by a Monte-Carlo approximation, then the algorithm is not
guaranteed to converge.

In Fig. 3, we show that when the number of constellation
points increases, we can ignore the optimization of finding
the best shift vector, i.e., for large constellations, choosing
any shift vector will give almost the same constellation
energy as optimizing it. To show this concept, we define
µ := Ea0 [|Es,0 − Es,opt|/Es,opt] where Ea0 stands for expec-
tation with respect to choosing a0 uniformly in V (0), Es,0

is the constellation energy using a random a0, and Es,opt is

Fig. 3: Effect of random selection of the shift vector on the
constellation energy.

the constellation energy optimized by the iterative algorithm
in [25] initialized with a0. Figure 3 shows that µ decreases
as the number of constellation points increases. Therefore,
in constellations taken from the Leech lattice and E8 lattice
with SE of 8 bits/sym/dimension pair, where generating all
constellation points is not feasible, we choose a random shift
vector a in V (0). In this case, the effect of constellation
average offset is negligible on the constellation energy, as
shown in Fig. 3. However, for other constellations in this paper,
the proposed algorithm in [25] with a0 = 0 is applied and will
always result in a zero-mean constellation.

IV. FIGURES OF MERIT

In this section, parameters to study and compare different
multidimensional modulation formats are introduced.

1) Spectral efficiency: For a constellation with M separate
symbols in N dimensions, the SE is calculated as

SE =
log2M

N/2
= 2 log2 r (4)

and has the unit of bits per symbol per dimension pair. In
fiber-optic communication, usually, the polarization of light
is considered as a pair of dimensions because each polariza-
tion can support two dimensions of in-phase and quadrature
components. If sinc pulse shaping is used, the unit of SE can
also be considered as bits per second per Hertz which shows
how efficient the frequency spectrum is being used [33].

Based on Eq. (4), the SE is related to the scaling factor (r) of
the Voronoi region. This shows that any SEs can be achieved
by changing r for every lattice Λ. In this work, to simplify
bit mapping, we focus on scaling factors that are powers of 2,
i.e., r = 2, 4, 8, 16.
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2) Symbol and bit error rate: For equiprobable constella-
tions with ML estimation, using pairwise error probability and
union bound, the symbol error rate (SER) is bounded by

SER ≤ 1

M

M−1∑
i=0

∑
j 6=i

1

2
erfc

(
dij

2
√
N0

)
(5)

where dij is the Euclidean distance between ci and cj . For
high SNR, the terms with dij = dmin dominate, and for
lattices, all constellation points have at least one neighbor at
distance dmin [34, chap. 5]. Therefore, the SER is bounded
by

1

2
erfc

(
dmin

2
√
N0

)
≤ SER ≤̃ τ̄

2
erfc

(
dmin

2
√
N0

)
(6)

which ≤̃ means an approximate upper bound that approaches
the true value as N0 goes to zero. Also, τ̄ = (1/M)

∑M−1
i=0 τi

which τi is the number of neighbours at the minimum distance
from symbol ci. Equation (6) shows that two important factors
for SER of lattices are dmin and average of number of closest
neighbors which for high-dimensional lattices can be very high
[34, chap. 5].

The BER depends on the bit labeling of the symbols as well.
For dense packing high dimensional lattices, there is no Gray
mapping solution to optimize the BER performance. In this
paper, instead of looking for the best bit mapping, we looked
at two fast and low-complexity methods which we call nat-
ural binary and quasi-Gray constellation bit labeling. Natural
binary labeling is the direct transformation of the symbol index
(K) to its base-2 representation. Quasi-Gray labeling means
transforming the symbol indexes in each dimension (ki) to a
binary Gray code.

3) Sensitivity penalty: For every modulation format,
dmin is the minimum Euclidean distance between two
symbols of the constellation. For high SNR and the
AWGN channel, the probability of symbol error can be
approximated using the union bound and its dominant
terms which are proportional to erfc(dmin/(2

√
N0)) where

erfc(x) = (2/
√
π)
∫∞
x

exp (−t2)dt is the complementary er-
ror function and N0/2 is the variance of the Gaussian noise
in each dimension. Therefore, the SER is a monotonically
decreasing function of

d2
min

4N0
=

P

RbN0
γ =

Eb

N0
γ (7)

where γ = d2
min/(4Eb) is defined as the asymptotic power

efficiency because for a given SER, the required power is pro-
portional to 1/γ. The parameter γ describes the constellation
geometry and is often given in dB. If different modulation
formats are compared at the same power and bit rate, γ shows
the power gain for high SNR with respect to BPSK, QPSK
and dual polarization QPSK modulation formats because for
these constellations γ = 0 dB. The sensitivity penalty is also
defined as 1/γ and it shows the performance penalty compared
to BPSK, QPSK and dual polarization QPSK for high SNR
[14]. The sensitivity penalty comparison of different VCs with
respect to QAM are shown in Fig. 4.

Fig. 4: The SE vs. sensitivity penalty for lattice base multidi-
mensional modulation formats. The dashed lines are calculated
using Eq. (23) in [14].

TABLE I: Shaping and coding gains of multidimensional
lattices [24], [34, chap. 5]

Lattice ZN A2 D4 E8 Λ24

γc (dB) 0 0.62 1.51 3.01 6.02
γs (dB) 0 0.17 0.37 0.65 1.03

For multidimensional modulation formats, as the SE in-
creases, the asymptotic power efficiency (γ) becomes propor-
tional to the product of two important gains over the cubic
lattice called the shaping gain (γs) and coding gain (γc)
[11]. Shaping gain shows how spherical the boundary of the
constellation is, and in this work, we use a Voronoi cut. The
coding gain indicates the density of the lattice points. These
gains for different lattices are shown in Table I and their
mathematical definitions were presented in [11].

V. RESULTS

In this section, we present the simulation results applying
the VCs in the AWGN and nonlinear fiber channel. The results
are shown as the performance of these modulations in terms
of uncoded BER and SER.

A. Additive white Gaussian noise channel

In this part, the bit labeling methods, detection algo-
rithms in the receiver, and the performance of the VCs with
Algorithms 1 and 2 are compared over the AWGN channel
with respect to the equivalent QAM formats with ML detec-
tion.

To compare the natural binary and quasi-Gray constellation
bit labeling, we simulate their BER performance over the
AWGN channel and use them to encode and decode the
transmitted and received VC symbols. The simulation setup
includes a transmitter which generates multidimensional sym-
bols and a multidimensional AWGN channel N (0, N0

2 IN×N ).
In the receiver, we use Algorithm 2 to estimate the VC
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Natural binary

Quasi-Gray

SE = 2 4 6 8

Fig. 5: Natural binary vs. quasi-Gray bit labeling for Leech
lattice at different SEs over AWGN channel.

symbols. At a SE = 2 bits/sym/dimension pair, these two
methods create the same symbol labeling for the constellation
points. However, for higher SEs, quasi-Gray performs better
as shown in Fig. 5 for the Leech lattice (Λ24).

In the receiver, an alternative detection scheme for VCs is
the ML estimation which is the optimum detection rule for
constellations with uniform probability distribution of sym-
bols. The ML estimation compares the received information
with all possible constellation points and finds the one which
has the minimum Euclidean distance from the received point.
The ML estimation requires a lookup table the size of the
constellation cardinality. Therefore, for our VCs, ML detection
can be extremely time consuming for the constellation sizes
shown in Table II. However, the fast and low-complexity per-
formance of Algorithm 2 comes at the expense of suboptimal
behaviour, which is illustrated in Fig. 2 and 6.

In Fig. 2a, the decision regions for the ML estimation are
shown. If point P is transmitted and w is received, since it
is still in the decision region of point P, it will be detected
correctly. However, in Fig. 2b, using Algorithm 2, the received
point will be mapped to an incorrect constellation point. This
situation only happens when the received vector w is outside
the Voronoi region of the transmitted vector (V (P)) and also
outside the scaled Voronoi region (Vr). Therefore, when the
number of constellation points increases, the ratio between the
boundary constellation points and the total number of points
decreases, and these errors will be less likely. Also, in high
SNR regimes, the received points are more probable to remain

TABLE II: Constellation size (M ) in different dimensions and
SEs

SE 2 4 6 8
A2 4 16 64 256
D4 16 256 4,096 65,536
E8 256 65,536 16,777,216 4,294,967,296
Λ24 16,777,216 ≈ 2.8 × 1014 ≈ 4.7 × 1021 ≈ 7.9 × 1028

ML

Alg. 2

SE = 2 4 6 8

Fig. 6: The ML estimation vs. Algorithm 2 performance for
QAM formats at different SEs over AWGN channel.

in the Voronoi region of their transmitted points therefore
Algorithm 2 is able to detect them correctly similar to the
ML estimation.

In Fig. 6, the ML estimation and Algorithm 2 are compared
for QAM formats in different SEs over AWGN channel.
Interestingly, as the SNR (defined as Es/(N · N0/2)) or the
number of the constellation points increases, the gap between
the SER performance of Algorithm 2 and the ML estimation
decreases and they approach each other. Therefore, it can
be concluded that, for finite VCs, Algorithm 2 is close to
optimum for constellations with high cardinality, or in the limit
of high SNR.

Finally, in Fig. 7, the BER performance of VCs in dif-
ferent dimensions are compared with the equivalent QAM
format at the same SE. Except for the A2 lattice in Fig. 7a,
all VCs will eventually perform better than the QAM for-
mat as the Eb/N0 increases. The reason for this behavior
is the asymptotic power efficiency that was discussed in
section IV. However, for low Eb/N0, QAM formats outper-
form VCs because of Gray labeling and smaller τ̄ . In Fig. 4, at
SE = 2 bits/sym/dimension pair, the A2 and the QAM format
have the same sensitivity penalty, however, in Fig. 7a, 4-QAM
always performs better than A2 in all Eb/N0. This is because
of 4-QAM Gray labeling and the average number of closest
neighbors which for the A2 lattice with 4 constellation points
is τ̄ = 2.5 and for the 4-QAM is τ̄ = 2.

B. Nonlinear optical channel

An important characteristic of the VCs is their performance
in the nonlinear fiber-optic channel. In order to investigate this
problem, a nonlinear fiber-optic channel has been simulated
using the split-step Fourier method (SSFM). In an experimen-
tal setup, multidimensional modulation formats can be realized
in different ways. Among the possible dimensions in fiber, in
this work, we focus on in-phase, quadrature, polarization, and
wavelength. Using different combinations of dimensions, e.g.,
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2.26 × 10−4

(a) SE = 2 bits/sym/dimension pair

2.26 × 10−4

(b) SE = 4 bits/sym/dimension pair

2.26 × 10−4

(c) SE = 6 bits/sym/dimension pair

2.26 × 10−4

(d) SE = 8 bits/sym/dimension pair

Fig. 7: The BER vs. Eb/N0 for multidimensional modulation formats over AWGN channel

time slots, wavelengths, spatial modes, in practice will give
different performance results because the coupling and cross-
talk between the dimensions in a nonlinear channel might
differ. In the wavelength-division multiplexing (WDM) sys-
tem considered in this paper, multiple synchronized coherent
receivers are needed to detect each channel. Another design
could possibly include time slots as additional dimensions
which will reduce the number of coherent receivers and the
nonlinear interaction of channels.

The simulation setup consists of a transmitter side including
a symbol generator that produces multidimensional symbols
according to the selected VC. These symbols are then paral-
lelized into multiple groups of 4-dimensional symbols because
each wavelength can carry up to 4 dimensions in a single-
mode fiber. At this stage, each group of 4-dimensional symbols
is combined with pilot symbols that have QPSK modulation
format and they are used for pilot-aided digital signal process-
ing in the receiver. Finally, in the transmitter, the combined
payloads and pilots are upsampled and filtered with a root-

raised-cosine (RRC) filter. Then, each group is shifted to its
corresponding wavelength and they are added together to form
a WDM system. Before the channel, the total optical power
of the signal is set and then using the Manakov equations
[35] and SSFM [36, chap. 2], the signal is propagated over
the nonlinear dispersive fiber-optic channel. The signal is
amplified using an erbium-doped fiber amplifier (EDFA) at
the end of each span in the fiber link. In our simulations,
uniform QAM constellations over multiple wavelengths and
polarizations are considered as benchmarks to compare the
transmission performance with VCs at the same SE.

On the receiver side, first, digital dispersion compensation is
applied for the whole propagation link distance. Nonlinearity-
compensation methods, such as digital backpropagation, are
not performed in the receiver; however, they can improve
the performance of the constellations by compensating the
fiber impairments at the cost of increased complexity. Then,
each wavelength channel is filtered out using an RRC filter
and downsampled. Using the QPSK pilots, polarization de-
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2.26 × 10−4

3 dB

Fig. 8: The BER vs. total transmitted optical power after 80
spans of 80 km fibers over a WDM system with 6 wavelengths.

TABLE III: Nonlinear simulation setup parameters

Parameter Value
Symbol rate 28 GBaud
RRC roll-off factor 0.2
WDM spacing 50 GHz
Fiber nonlinear coefficient 1.3 W−1km−1

Fiber dispersion 17 ps/nm/km
Fiber attenuation 0.2 dB/km
Span length 80 km
EDFA noise figure 5 dB
SSFM step size 0.5 km
Oversampling factor 32
Pilot overhead 1.56%

multiplexing and phase tracking are applied to the payload
symbols. After that, the processed payloads are combined
together to form the multidimensional symbols again and
using Algorithm 2 and ML estimation, it is decided what
the transmitted symbol has been for VCs and QAM format,
respectively. In the end, BER is calculated based on the trans-
mitted and the received bits. The parameters of the nonlinear
simulation setup are listed in Table III.

In Fig. 8, the BER performance of the Leech lattice is
compared with the 4-QAM at the same SE. The total propa-
gation distance is 80 spans (6400 km) using 6 wavelengths to
transmit the 24-dimensional signals. At a BER of 2.26×10−4,
which corresponds to 10−15 after error correction using
a Reed-Solomon (544, 514) (KP4) code [37], the achieved
transmitted power gain is more than 3 dB.

In Fig. 9, the BER performance is shown at the optimum
power in different transmission distances. According to our
simulations, the optimum power almost remains constant at
different transmission distances. In this representation, trans-
mission distance improvement of more than 30 spans or 38%
is shown at a BER equal to 2.26× 10−4.

Other shaping methods, e.g., probabilistic amplitude shap-
ing, offer around 7 to 15% reach improvement at a given
achievable information rate, compared with uniform QAM [7],
[38], [39]. However, some caution is advised when comparing

2.26 × 10−4
30 spans

Fig. 9: The BER vs. transmission distance at the optimum
optical power over nonlinear fiber-optic channel.

reach gains obtained using different performance metrics. For
example, the SER and BER benefit from both coding gain and
shaping gain, whereas information rates typically reflect shap-
ing gain only. Nevertheless, it seems clear that our geometric
shaping method can be considered as a competitive shaping
approach with low complexity to increase the performance of
optical communication systems.

Future work may include a more detailed comparison with
probabilistic shaping, as well as trellis shaping [27], [28].
Also, combinations of VC and hard-decision forward error
correction codes can be investigated in low latency and low
power consumption applications, e.g., video conferencing or
instrument control links that are latency sensitive.

VI. CONCLUSION

We have analyzed Voronoi constellations as a geometric
shaping method for optical communication systems. The com-
plexity of modulation and demodulation are low compared
with other geometric schemes because modulation and demod-
ulation are carried out algorithmically and the constellation
need not be stored in a table, paving the way for more or less
unlimited cardinalities. Reach enhancements as high as 38%
is found in nonlinear fiber link simulations. We conclude that
lattice-based geometric shaping can provide higher gains than
what has been reported using probabilistic shaping, at much
shorter block lengths and moderate complexity.
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